JP4204097B2 - Method for producing methyl methacrylate - Google Patents

Method for producing methyl methacrylate Download PDF

Info

Publication number
JP4204097B2
JP4204097B2 JP16501598A JP16501598A JP4204097B2 JP 4204097 B2 JP4204097 B2 JP 4204097B2 JP 16501598 A JP16501598 A JP 16501598A JP 16501598 A JP16501598 A JP 16501598A JP 4204097 B2 JP4204097 B2 JP 4204097B2
Authority
JP
Japan
Prior art keywords
methacrolein
acetone
methyl methacrylate
reaction
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16501598A
Other languages
Japanese (ja)
Other versions
JP2000001458A (en
Inventor
修平 大塚
英泰 竹沢
明生 宗藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP16501598A priority Critical patent/JP4204097B2/en
Publication of JP2000001458A publication Critical patent/JP2000001458A/en
Application granted granted Critical
Publication of JP4204097B2 publication Critical patent/JP4204097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
メタクロレインをメタノールおよび酸素含有ガスと触媒の存在下で反応させるメタクリル酸メチルの製造方法に関する。
【0002】
【従来の技術】
近年、メタクロレインをメタノールおよび酸素含有ガスとパラジウム系触媒の存在下で反応させて1段でメタクリル酸メチルを得る方法(以下酸化エステル化法という)が提案されている。酸化エステル化法で得られる反応液は、一般に未反応のメタクロレインおよび大過剰のメタノール、反応生成物であるメタクリル酸メチル等の混合物である。未反応のメタクロレインは、経済性を考慮して、通常回収して反応にリサイクルされる。
【0003】
この未反応のメタクロレインを重合や高沸点物化させることなく回収するために、酸化エステル化法により得られるメタクロレイン、水、メタクリル酸メチルおよびメタノールからなる反応液を、先ず蒸留に付し、蒸留塔塔底より実質的にメタクロレインを含まずメタクリル酸メチルを含むメタノール混合物を得、塔頂又は塔上部段から、未反応メタクロレイン濃度が40重量%をこえないメタノール溶液として回収する方法が、特公平2−44294号公報において提案されている。
【0004】
酸化エステル化法の原料となるメタクロレインは、通常、第3級ブチルアルコールおよび/またはイソブチレンと分子状酸素を含有するガスを酸化触媒の存在下で気相接触酸化させて製造されており、酸化の過程で各種の有機酸、アルデヒド、ケトン等が副生する。このような副生成物の一つであるアセトンは、蒸留や抽出等によりメタクロレインと完全に分離することが困難であり、メタクロレインを純度90%以上に精製してもわずかに含まれる。
【0005】
酸化エステル化法の原料にアセトンを含有するメタクロレインを用いると、アセトンは酸化エステル化反応器からそのままメタクロレイン回収工程へ送られ、未反応のメタクロレインと共に回収される。通常、回収された未反応メタクロレインは酸化エステル化反応の原料としてリサイクルされるので、反応系にアセトンが蓄積して、酸化エステル化反応の原料濃度の低下および/または滞在時間の短縮によりメタクロレイン転化率が低下する恐れがある。
【0006】
特公平2−44294号公報では、メタクロレイン回収工程において、蒸留塔の塔頂から低沸物を除去する例が挙げられている。しかしながら、前述したようなアセトンの問題に関する記載はなく、また操作条件においてもアセトンについては考慮されていない。ただし、ここでは蒸留塔の塔頂から低沸物を除去することが記載されていることから、原料メタクロレインにアセトンが含まれていた場合、アセトンのいくらかは塔頂から除去されるであろう。しかし、操作条件によっては、アセトンの蓄積量が多い場合や、蓄積量は少ないが低沸分と共に多くのメタクロレインが除去されてメタクロレインの損失が多い場合等があり、必ずしも効率的にメタクリル酸メチルを製造できる訳ではない。
【0007】
【発明が解決しようとする課題】
本発明の目的は、アセトンの蓄積およびメタクロレインの損失を抑制し、効率よくメタクリル酸メチルを製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らはこのような問題を解決するために鋭意検討を行った結果、特定の条件でアセトンを除去することにより、効率よくメタクリル酸メチルを製造できることを見出し本発明を完成するに至った。
【0009】
すなわち本発明は、アセトンを含むメタクロレインをメタノールおよび酸素含有ガスと触媒の存在下で反応させ、得られる少なくともメタクリル酸メチル、メタクロレインおよびメタノールを含む反応液を、1または2以上の蒸留塔を含むメタクロレイン回収工程にて、低沸物、メタクロレインを含む溶液およびメタクリル酸メチルを含む溶液に分離し、低沸物は系外に除去し、メタクロレインを含む溶液は該反応の原料の一部としてリサイクルするメタクリル酸メチルの製造方法において、低沸物の一部として単位時間に系外に除去されるアセトン量D(g/h)と反応液の一部として単位時間にメタクロレイン回収工程に送られるアセトン量F(g/h)の関係がD/F=0.015〜0.250となるように操作することを特徴とするメタクリル酸メチルの製造方法である。
【0010】
【発明の実施の形態】
本発明において、酸化エステル化法の原料として用いるメタクロレインは、アセトンを含有するものであればよく、アセトンの濃度は特に限定されない。アセトンを含むメタクロレインの製造方法は特に限定されないが、例えば第3級ブチルアルコールおよび/またはイソブチレンを酸化触媒の存在下に分子状酸素と気相接触酸化させ、高沸物や低沸物を予め適宜除去したメタクロレインは、通常、アセトン1〜4重量%、アセトアルデヒド1〜4重量%、水2〜5重量%を含んでいることから、本発明におけるアセトンを含むメタクロレインに該当する。
【0011】
以下、図1を用いて本願発明を説明する。ただし、図1は本発明を実施するためのプロセスの一例であり、本発明の実施に際しては、蒸留により反応液から低沸物を系外に除去し、未反応のメタクロレインを回収して酸化エステル化反応器へリサイクルすることを含むプロセスであれば特に限定されるものではない。
【0012】
酸化エステル化反応器(1)にアセトンを含有するメタクロレイン(3)、メタノール(4)および回収されたメタクロレインを含む溶液(8)を連続的に供給する。図1ではこれらの原料を混合した後に酸化エステル化反応器(1)に供給しているが、混合せずに酸化エステル化反応器(1)に直接供給してもよい。酸化エステル化反応器(1)の形式は攪拌槽反応器、気泡塔反応器、ドラフトチューブ反応器等の任意の形式が利用できる。反応器に供給するメタクロレイン:メタノールのモル比は通常1:100〜1:1である。また、酸化エステル化反応器(1)に供給する酸素含有ガス(5)は、分子状酸素を含有していれば特に制限されないが、例えば空気、酸素富化した空気、酸素、窒素等の反応に不活性なガスで希釈した空気等が用いられる。酸素含有ガスの供給方法は特に限定されないが、通常バブリング等により反応液中に供給される。通常、分子状酸素の供給量は、原料メタクロレインに対して酸素原子として0.1〜2当量である。
【0013】
酸化エステル化反応の触媒は特に制限されないが、通常パラジウム系の触媒が用いられる。触媒の使用量は反応条件や触媒の活性等により左右されるので一概に言えないが、所定の転化率を達成するのに必要な量とする。
【0014】
酸化エステル化反応の反応温度および反応圧力は特に制限されないが、反応温度は通常0〜100℃、反応圧力は常圧、減圧、加圧のいずれでもよい。また酸化エステル化反応器(1)中において、原料メタクロレイン(3)に含まれて供給されたアセトンは殆ど消失しない。
【0015】
酸化エステル化反応器(1)から出た反応液(6)は、1または2以上の蒸留塔を含むメタクロレイン回収工程に送られる。この反応液(6)の主要成分の組成は、通常、メタクロレイン1〜13重量%、メタクリル酸メチル3〜45重量%、水2〜10重量%およびメタノール45〜90重量%である。
【0016】
反応液(6)はメタクロレイン回収工程にて、低沸物(7)、メタクロレインを含む溶液(8)、メタクリル酸メチルを含む溶液(9)に分離され、低沸物(7)は系外に除去され、メタクロレインを含む溶液(8)は酸化エステル化反応の原料の一部としてリサイクルされ、メタクリル酸メチルを含む溶液(9)は精製工程に送られる。ここで、低沸物(7)とはアセトン、ギ酸メチル等の酸化エステル化反応で副生する低沸点の化合物およびメタクロレインを言い、メタクロレインを含む溶液(8)とはメタクロレイン、メタノールおよびアセトンを含む溶液を言い、メタクリル酸メチルを含む溶液(9)とはメタクロレインを実質的に含まないメタクリル酸メチルとメタノールを含む溶液を言う。
【0017】
図1はサイドストリーム口を有する蒸留塔(2)を1本だけ用いてメタクロレインを回収するメタクロレイン回収工程を例示している。反応液は蒸留塔(2)の途中に供給され、アセトンを含む低沸物は蒸留塔(2)の塔頂から低沸物(7)として系外に除去される。メタクロレインを含む溶液(8)はサイドストリーム口から抜き出し、酸化エステル化反応器(1)へリサイクルする。メタクリル酸メチルを含む溶液(9)は蒸留塔(2)の塔底から抜き出し、精製工程で蒸留操作等によりメタクリル酸メチルとメタノールに分離され、メタクリル酸メチルが得られる。同時に回収されたメタノールは酸化エステル化反応の原料等にリサイクルすることができる。
【0018】
図1には示していないが、2本以上の蒸留塔を組み合わせたメタクロレイン回収工程を用いてもよい。例えば、2本の蒸留塔を組み合わせ、酸化エステル化反応器から出た反応液を第1蒸留塔の途中に供給し、第1蒸留塔の塔頂から低沸物を系外に除去し、塔底液を第2蒸留塔の途中に供給し、第2蒸留塔において、メタクロレインを含む溶液を塔頂留出液として、メタクリル酸メチルを含む溶液を塔底液として分離し、メタクロレインを含む溶液は蒸留塔1本の場合と同様に酸化エステル化反応器へリサイクルし、メタクリル酸メチルを含む溶液は精製工程で精製する方法が挙げられる。
【0019】
メタクロレイン回収工程で用いられる蒸留塔の型式は特に限定されず、例えば棚段形式、充填塔型式等の公知の形式のものが用いられる。蒸留の際の圧力は、常圧または減圧が好ましく、重合防止のために塔底の温度は120℃以下で操作することが好ましい。本発明ではメタクロレインやメタクリル酸メチルなど重合しやすい物質を扱っており、メトキシキノンなど既知の重合禁止剤を用いることが好ましい。
【0020】
本発明において、低沸物の一部として単位時間に系外に除去されるアセトン量D(g/h)は、単位時間に系外に除去される低沸物量(g/h)にアセトンの濃度(重量%)を乗じて算出される。また、反応液の一部として単位時間にメタクロレイン回収工程に送られるアセトン量F(g/h)は、単位時間にメタクロレイン回収工程に送られる反応液量(g/h)にアセトンの濃度(重量%)を乗じて算出される。
【0021】
本発明において、DとFはD/F=0.015〜0.250、好ましくはD/F=0.020〜0.150の関係を満たすものである。DおよびFを調節する方法は特に限定されないが、Dを調節する方法としては、例えば、低沸物を留出させる際の還流比の調節、反応器へリサイクルするメタクロレインを含む溶液のリサイクル量の調節等が挙げられる。低沸物を留出させる際の還流比は特に制限されないが、40以上になるように操作することが好ましい。
【0022】
D/Fが小さくなると、反応器内においてアセトン濃度が高くなり、メタクロレインの濃度の低下および/または滞在時間の短縮によるメタクロレイン転化率の低下によりメタクリル酸メチルの収率が低下する傾向がある。また、反応器へリサイクルされるメタクロレインを含む溶液中のメタクリル酸メチルの量が多くなり、余分なエネルギーや大きな装置が必要になる等の問題が出てくる。一方、D/Fが大きくなると、アセトン等の低沸物と共に系外に除去されるメタクロレインの量が増える傾向にあり経済的に不利になる。
【0023】
【実施例】
以下、本発明を実施例および比較例により具体的に説明する。なお、反応混合液などの重量組成の分析は、ガスクロマトグラフィーにより行った。また、転化率、留出率、還流比は次のようにして算出した。
転化率(%)=(反応により消失したメタクロレインの量/反応器へ供給したメタクロレインの量)×100
留出率(%)=(塔頂から留出する液重量/蒸留塔へ供給する液重量)×100
還流比(−)=蒸留塔へ還流する液量/塔頂から抜き出す液量
【0024】
[実施例1]
イソブチレンを酸化触媒の存在下に分子状酸素含有ガスと気相接触酸化させて得られた反応生成物から、低沸物および高沸物を除去してアセトン2.3重量%およびその他の化合物5.8重量%を含む酸化エステル化反応用の原料メタクロレインを得た。
【0025】
3Lの還流器付きフラスコ(以下、反応器という)に、触媒(パラジウム5重量%−鉛1重量%−鉄1重量%を含有した炭酸カルシウム触媒)350gを入れ、上記酸化エステル化反応用の原料メタクロレイン170g/h、メタノール390g/hで供給し、反応液中に空気129.5NL/hおよび窒素142.5NL/hを供給しながら反応圧力300kPa(ゲージ圧)、反応温度80℃で反応させた。反応液を内径40mm、段数50段のオールダーショウ型蒸留塔の塔頂から20段目に供給し、還流比70、塔頂圧力100kPaで蒸留を行い、塔頂から低沸物を留出させ、塔頂から10段目のサイドカット口からメタクロレインを含む溶液を抜き出して反応器へリサイクルし、塔底からメタクロレインを実質的に含まないメタクリル酸メチルのメタノール溶液を得た。蒸留塔の留出率を1.6%にして、D/Fが0.031となるように調節して100時間連続して運転を行った。
【0026】
100時間運転後の蒸留塔塔頂部、サイドカット口および塔底部の温度はそれぞれ45℃、54℃、68℃であった。蒸留塔に供給された反応液の組成は、メタクロレイン8.9重量%、メタノール54.4重量%、メタクリル酸メチル23.5重量%、水6.0重量%、アセトン2.6重量%、その他の化合物4.6重量%であり、蒸留塔への反応液の供給速度は624g/hであった。このとき反応液の一部として単位時間にメタクロレイン回収工程に送られるアセトン量Fは16.2g/hであった。塔頂から抜き出した低沸物の組成は、メタクロレイン31.4重量%、メタノール23.5重量%、ギ酸メチル40.0重量%、アセトン5.1重量%であり、低沸物の留出速度は9.8g/hであった。このとき低沸物の一部として単位時間に系外に除去されるアセトン量Dは0.5g/hであった。サイドカット口から抜き出されるメタクロレインを含む溶液の組成は、メタクロレイン40.3重量%、メタノール45.8重量%、アセトン10.8重量%、その他の化合物3.1重量%であり、この溶液の抜き出し速度は130g/hであった。塔底から抜き出されたメタクリル酸メチルを含む溶液の組成は、メタノール57.4重量%、メタクリル酸メチル29.8重量%、水7.7重量%およびその他の化合物5.1重量%であり、この溶液の抜き出し速度は484g/hであった。
【0027】
このようにD/F=0.031とした場合、メタクロレイン転化率は66.4%であり、低沸物として系外に除去されたメタクロレインは反応器へ供給したメタクロレインの2.0%であった。
【0028】
[比較例1]
D/Fが0.013となるように留出率を実施例1の約半分(0.8%)とし、蒸留塔の還流比130とした以外は実施例1と同じ条件で運転を行った。
【0029】
100時間運転後、蒸留塔に供給された反応液の組成はメタクロレイン10.4重量%、メタノール46.6重量%、メタクリル酸メチル22.1重量%、アセトン10.1重量%であり、蒸留塔への反応液の供給速度は714g/hであった。このとき反応液の一部として単位時間にメタクロレイン回収工程に送られるアセトン量Fは72.1g/hであった。塔頂から抜き出した低沸物の組成は、メタクロレイン21.7重量%、メタノール25.8重量%、アセトン15.1重量%であり、低沸物の留出速度は6g/hであった。このとき低沸物の一部として単位時間に系外に除去されるアセトン量Dは0.91g/hであった。サイドカット口から抜き出されるメタクロレインを含む溶液の組成は、メタクロレイン18.3重量%、メタノール48.5重量%、アセトン17.1重量%であり、この液を抜き出し速度は400g/hであった。塔底から抜き出されたメタクリル酸メチルを含む溶液の組成は、メタノール44.5重量%、メタクリル酸メチル37.6重量%であり、この溶液の抜き出し速度は309g/hであった。
【0030】
このようにD/F=0.013とした場合、メタクロレイン転化率は59.8%であり、低沸物として系外に除去されたメタクロレインは反応器へ供給したメタクロレインの0.74%であった。
【0031】
[比較例2]
D/Fが0.264となるように留出率を実施例1の約4.5倍(7.2%)とした以外は実施例1と同じ条件で運転を行った。
【0032】
100時間運転後、蒸留塔に供給された反応液の組成はメタクロレイン8.8重量%、メタノール55.2重量%、メタクリル酸メチル24.4重量%、アセトン1.1重量%であり、蒸留塔への反応液の供給速度は611g/hであった。このとき反応液の一部として単位時間にメタクロレイン回収工程に送られるアセトン量Fは6.77g/hであった。塔頂から抜き出した低沸物の組成は、メタクロレイン49.3重量%、メタノール37.3重量%、アセトン4.1重量%であり、低沸物の留出速度は44g/hであった。このとき低沸物の一部として単位時間に系外に除去されるアセトン量Dは1.79g/hであった。サイドカット口から抜き出されるメタクロレインを含む溶液の組成は、メタクロレイン25.6重量%、メタノール62.4重量%、アセトン7.2重量%であり、この液の抜き出し速度は125g/hであった。塔底から抜き出されたメタクリル酸メチルを含む溶液の組成は、メタノール55.0重量%、メタクリル酸メチル31.6重量%であり、この溶液の抜き出し速度は442g/hであった。
【0033】
このようにD/F=0.264とした場合、メタクロレイン転化率は67.1%であり、低沸物として系外に除去されたメタクロレインは反応器へ供給したメタクロレインの13.0%であった。
【0034】
【発明の効果】
本発明によれば、アセトンの蓄積およびメタクロレインの損失を抑制することができるので、効率よくメタクリル酸メチルを製造することができる。
【図面の簡単な説明】
【図1】 本発明に従った実施様態概略図の一例を示す。
【符号の説明】
(1)酸化エステル化反応器
(2)蒸留塔
(3)アセトンを含有するメタクロレイン
(4)メタノール
(5)酸素含有ガス
(6)反応液
(7)低沸物
(8)メタクロレインを含む溶液
(9)メタクリル酸メチルを含む溶液
(10)ガス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing methyl methacrylate in which methacrolein is reacted with methanol and an oxygen-containing gas in the presence of a catalyst.
[0002]
[Prior art]
In recent years, a method of obtaining methyl methacrylate in one step by reacting methacrolein with methanol and an oxygen-containing gas in the presence of a palladium catalyst (hereinafter referred to as an oxidative esterification method) has been proposed. The reaction liquid obtained by the oxidative esterification method is generally a mixture of unreacted methacrolein and a large excess of methanol, a reaction product such as methyl methacrylate. Unreacted methacrolein is usually recovered and recycled to the reaction in consideration of economy.
[0003]
In order to recover this unreacted methacrolein without polymerization or conversion to a high boiling point product, a reaction liquid comprising methacrolein obtained by the oxidative esterification method, water, methyl methacrylate and methanol is first subjected to distillation, and distilled. A method of obtaining a methanol mixture containing methyl methacrylate substantially free of methacrolein from the tower bottom and recovering from the tower top or tower upper stage as a methanol solution having an unreacted methacrolein concentration of not more than 40% by weight, This is proposed in Japanese Patent Publication No. 2-44294.
[0004]
The methacrolein used as the raw material for the oxidative esterification process is usually produced by subjecting a gas containing tertiary butyl alcohol and / or isobutylene and molecular oxygen to gas phase catalytic oxidation in the presence of an oxidation catalyst. Various organic acids, aldehydes, ketones and the like are by-produced during the process. Acetone, one of such by-products, is difficult to completely separate from methacrolein by distillation or extraction, and is slightly contained even if methacrolein is purified to a purity of 90% or more.
[0005]
When methacrolein containing acetone is used as a raw material for the oxidative esterification method, acetone is sent as it is from the oxidative esterification reactor to the methacrolein recovery step and recovered together with unreacted methacrolein. Normally, the recovered unreacted methacrolein is recycled as a raw material for the oxidative esterification reaction, so that acetone accumulates in the reaction system, resulting in a decrease in the raw material concentration of the oxidative esterification reaction and / or a reduction in residence time. There is a risk that the conversion rate decreases.
[0006]
Japanese Examined Patent Publication No. 2-44294 discloses an example of removing low-boiling substances from the top of a distillation column in the methacrolein recovery step. However, there is no description regarding the problem of acetone as described above, and acetone is not considered in the operating conditions. However, since it is described here that low boiling substances are removed from the top of the distillation column, if acetone is included in the raw material methacrolein, some of the acetone will be removed from the top. . However, depending on the operating conditions, there is a case where the accumulation amount of acetone is large, or the accumulation amount is small but a large amount of methacrolein is removed with a low boiling point, resulting in a large loss of methacrolein. Methyl cannot be produced.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently producing methyl methacrylate while suppressing accumulation of acetone and loss of methacrolein.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve such problems, the present inventors have found that methyl methacrylate can be efficiently produced by removing acetone under specific conditions, and have completed the present invention. .
[0009]
That is, in the present invention, methacrolein containing acetone is reacted with methanol and an oxygen-containing gas in the presence of a catalyst, and the resulting reaction solution containing at least methyl methacrylate, methacrolein and methanol is added to one or more distillation towers. In the methacrolein recovery step, it is separated into a low boiling product, a solution containing methacrolein, and a solution containing methyl methacrylate, the low boiling product is removed out of the system, and the solution containing methacrolein is one of the raw materials for the reaction. In the process for producing methyl methacrylate to be recycled as a part, the amount of acetone D (g / h) removed out of the system as a part of low-boiling substances and the methacrolein recovery step as a part of the reaction solution per unit time It is characterized by operating so that the relationship of the amount of acetone F (g / h) sent to A may become D / F = 0.015-0.250. A method for producing methacrylic acid methyl.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the methacrolein used as a raw material for the oxidative esterification method may be any as long as it contains acetone, and the concentration of acetone is not particularly limited. The method for producing methacrolein containing acetone is not particularly limited. For example, tertiary butyl alcohol and / or isobutylene is subjected to gas phase catalytic oxidation with molecular oxygen in the presence of an oxidation catalyst, so that high-boiling or low-boiling products are previously formed. The appropriately removed methacrolein usually contains 1 to 4% by weight of acetone, 1 to 4% by weight of acetaldehyde, and 2 to 5% by weight of water, and thus corresponds to methacrolein containing acetone in the present invention.
[0011]
Hereinafter, the present invention will be described with reference to FIG. However, FIG. 1 is an example of a process for carrying out the present invention. In carrying out the present invention, low boiling substances are removed from the reaction solution by distillation, unreacted methacrolein is recovered and oxidized. There is no particular limitation as long as the process includes recycling to an esterification reactor.
[0012]
A solution (8) containing methacrolein (3) containing acetone, methanol (4) and recovered methacrolein is continuously fed to the oxidative esterification reactor (1). In FIG. 1, these raw materials are mixed and then supplied to the oxidative esterification reactor (1), but they may be supplied directly to the oxidative esterification reactor (1) without mixing. As the form of the oxidative esterification reactor (1), any form such as a stirred tank reactor, a bubble column reactor, a draft tube reactor and the like can be used. The molar ratio of methacrolein: methanol fed to the reactor is usually 1: 100 to 1: 1. The oxygen-containing gas (5) supplied to the oxidative esterification reactor (1) is not particularly limited as long as it contains molecular oxygen. For example, a reaction of air, oxygen-enriched air, oxygen, nitrogen or the like. For example, air diluted with an inert gas is used. The method for supplying the oxygen-containing gas is not particularly limited, but is usually supplied into the reaction solution by bubbling or the like. Usually, the supply amount of molecular oxygen is 0.1 to 2 equivalents as oxygen atoms with respect to the raw material methacrolein.
[0013]
The catalyst for the oxidative esterification reaction is not particularly limited, but a palladium-based catalyst is usually used. The amount of the catalyst used depends on the reaction conditions, the activity of the catalyst, etc., and cannot be generally stated, but is an amount necessary to achieve a predetermined conversion rate.
[0014]
The reaction temperature and reaction pressure of the oxidative esterification reaction are not particularly limited, but the reaction temperature is usually 0 to 100 ° C., and the reaction pressure may be normal pressure, reduced pressure, or increased pressure. In the oxidative esterification reactor (1), acetone supplied in the raw material methacrolein (3) is hardly lost.
[0015]
The reaction liquid (6) exiting from the oxidative esterification reactor (1) is sent to a methacrolein recovery step including one or more distillation towers. The composition of the main components of the reaction liquid (6) is usually 1 to 13% by weight of methacrolein, 3 to 45% by weight of methyl methacrylate, 2 to 10% by weight of water and 45 to 90% by weight of methanol.
[0016]
In the methacrolein recovery step, the reaction solution (6) is separated into a low boiling point product (7), a solution containing methacrolein (8), and a solution containing methyl methacrylate (9). The solution (8) containing the methacrolein is removed outside and recycled as part of the raw material for the oxidative esterification reaction, and the solution (9) containing methyl methacrylate is sent to the purification step. Here, the low boiling point substance (7) refers to a low boiling point compound and methacrolein by-produced by an oxidative esterification reaction such as acetone and methyl formate, and the solution (8) containing methacrolein refers to methacrolein, methanol and A solution containing acetone and a solution (9) containing methyl methacrylate mean a solution containing methyl methacrylate and methanol substantially free of methacrolein.
[0017]
FIG. 1 illustrates a methacrolein recovery step of recovering methacrolein using only one distillation column (2) having a side stream port. The reaction liquid is supplied in the middle of the distillation column (2), and low-boiling substances containing acetone are removed from the system as low-boiling substances (7) from the top of the distillation column (2). The solution (8) containing methacrolein is withdrawn from the side stream port and recycled to the oxidative esterification reactor (1). The solution (9) containing methyl methacrylate is extracted from the bottom of the distillation column (2) and separated into methyl methacrylate and methanol by a distillation operation or the like in the purification step to obtain methyl methacrylate. The methanol recovered at the same time can be recycled as a raw material for the oxidative esterification reaction.
[0018]
Although not shown in FIG. 1, a methacrolein recovery step in which two or more distillation towers are combined may be used. For example, two distillation columns are combined, the reaction solution from the oxidative esterification reactor is supplied to the middle of the first distillation column, low boilers are removed from the system from the top of the first distillation column, A bottom liquid is supplied in the middle of the second distillation tower, and in the second distillation tower, a solution containing methacrolein is separated as a tower top distillate, and a solution containing methyl methacrylate is separated as a tower bottom liquid, and contains methacrolein. The solution is recycled to the oxidation esterification reactor in the same manner as in the case of one distillation column, and the solution containing methyl methacrylate is purified in the purification step.
[0019]
The type of the distillation column used in the methacrolein recovery step is not particularly limited, and a known type such as a shelf type or a packed column type is used. The pressure during distillation is preferably normal pressure or reduced pressure, and the temperature at the bottom of the column is preferably operated at 120 ° C. or lower in order to prevent polymerization. In the present invention, materials that are easily polymerized such as methacrolein and methyl methacrylate are handled, and it is preferable to use a known polymerization inhibitor such as methoxyquinone.
[0020]
In the present invention, the amount of acetone D (g / h) removed out of the system per unit time as part of the low-boiler is the amount of acetone (g / h) removed out of the system per unit time. Calculated by multiplying by concentration (% by weight). Further, the acetone amount F (g / h) sent to the methacrolein recovery step per unit time as part of the reaction solution is the acetone concentration in the reaction solution amount (g / h) sent to the methacrolein recovery step per unit time. Calculated by multiplying by (% by weight).
[0021]
In the present invention, D and F satisfy D / F = 0.015 to 0.250, preferably D / F = 0.020 to 0.150. The method for adjusting D and F is not particularly limited. Examples of the method for adjusting D include, for example, adjustment of the reflux ratio when distilling low-boiling substances, and the amount of recycled solution containing methacrolein recycled to the reactor. Adjustment and the like. The reflux ratio when distilling the low boilers is not particularly limited, but it is preferable to operate so as to be 40 or more.
[0022]
When the D / F decreases, the acetone concentration in the reactor increases, and the yield of methyl methacrylate tends to decrease due to a decrease in methacrolein concentration and / or a reduction in methacrolein conversion due to a reduction in residence time. . In addition, the amount of methyl methacrylate in the solution containing methacrolein recycled to the reactor increases, resulting in problems such as extra energy and large equipment. On the other hand, when the D / F increases, the amount of methacrolein removed out of the system together with low-boiling substances such as acetone tends to increase, which is economically disadvantageous.
[0023]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The weight composition of the reaction mixture was analyzed by gas chromatography. The conversion rate, distillation rate, and reflux ratio were calculated as follows.
Conversion (%) = (amount of methacrolein lost by reaction / amount of methacrolein fed to the reactor) × 100
Distillation rate (%) = (weight of liquid distilled from the top of the column / weight of liquid supplied to the distillation tower) × 100
Reflux ratio (−) = amount of liquid refluxed to the distillation column / amount of liquid withdrawn from the top of the column
[Example 1]
From the reaction product obtained by gas phase catalytic oxidation of isobutylene with a molecular oxygen-containing gas in the presence of an oxidation catalyst, low and high boilers are removed to obtain 2.3 wt% acetone and other compounds 5 The raw material methacrolein for oxidative esterification reaction containing 0.8% by weight was obtained.
[0025]
350 g of a catalyst (calcium carbonate catalyst containing 5% by weight of palladium, 1% by weight of lead, and 1% by weight of iron) is placed in a 3 L flask equipped with a reflux condenser (hereinafter referred to as a reactor), and the raw material for the above oxidative esterification reaction It was supplied at 170 g / h for methacrolein and 390 g / h for methanol, and reacted at a reaction pressure of 300 kPa (gauge pressure) and a reaction temperature of 80 ° C. while supplying air 129.5 NL / h and nitrogen 142.5 NL / h into the reaction solution. It was. The reaction liquid is supplied to the 20th stage from the top of an Oldershaw type distillation column having an inner diameter of 40 mm and 50 stages, and distilled at a reflux ratio of 70 and a pressure at the top of the column of 100 kPa to distill low-boiling substances from the top of the tower. The solution containing methacrolein was extracted from the side cut port at the 10th stage from the top of the tower and recycled to the reactor to obtain a methanol solution of methyl methacrylate substantially free of methacrolein from the bottom of the tower. The distillation column was distilled at a distillation rate of 1.6% and adjusted so that D / F was 0.031, and the operation was continued for 100 hours.
[0026]
The temperatures at the top of the distillation column, the side cut port and the bottom of the column after 100 hours of operation were 45 ° C, 54 ° C and 68 ° C, respectively. The composition of the reaction solution supplied to the distillation column was methacrolein 8.9 wt%, methanol 54.4 wt%, methyl methacrylate 23.5 wt%, water 6.0 wt%, acetone 2.6 wt%, The other compound was 4.6% by weight, and the supply rate of the reaction solution to the distillation column was 624 g / h. At this time, the acetone amount F sent to the methacrolein recovery step as a part of the reaction solution per unit time was 16.2 g / h. The composition of low boilers extracted from the top of the column was methacrolein 31.4% by weight, methanol 23.5% by weight, methyl formate 40.0% by weight and acetone 5.1% by weight. The speed was 9.8 g / h. At this time, the amount D of acetone removed from the system as a part of low boiling substances per unit time was 0.5 g / h. The composition of methacrolein extracted from the side cut port was methacrolein 40.3% by weight, methanol 45.8% by weight, acetone 10.8% by weight, and other compounds 3.1% by weight. The solution withdrawal rate was 130 g / h. The composition of the methyl methacrylate extracted from the bottom of the column is 57.4% by weight of methanol, 29.8% by weight of methyl methacrylate, 7.7% by weight of water and 5.1% by weight of other compounds. The extraction rate of this solution was 484 g / h.
[0027]
Thus, when D / F = 0.031, the methacrolein conversion rate was 66.4%, and methacrolein removed out of the system as a low-boiling product was 2.0% of methacrolein fed to the reactor. %Met.
[0028]
[Comparative Example 1]
The operation was performed under the same conditions as in Example 1 except that the distillation rate was about half (0.8%) of Example 1 and the reflux ratio of the distillation column was 130 so that the D / F was 0.013. .
[0029]
After 100 hours of operation, the composition of the reaction solution fed to the distillation tower was methacrolein 10.4 wt%, methanol 46.6 wt%, methyl methacrylate 22.1 wt%, acetone 10.1 wt% The supply rate of the reaction liquid to the tower was 714 g / h. At this time, the acetone amount F sent to the methacrolein recovery step as a part of the reaction solution per unit time was 72.1 g / h. The composition of the low boiler extracted from the top of the column was 21.7 wt% methacrolein, 25.8 wt% methanol, and 15.1 wt% acetone, and the distillation rate of the low boiler was 6 g / h. . At this time, the amount of acetone D removed out of the system as a part of the low boilers was 0.91 g / h. The composition of the solution containing methacrolein extracted from the side cut opening is 18.3% by weight of methacrolein, 48.5% by weight of methanol, and 17.1% by weight of acetone. The extraction rate of this solution is 400 g / h. there were. The composition of the solution containing methyl methacrylate extracted from the column bottom was 44.5% by weight of methanol and 37.6% by weight of methyl methacrylate, and the extraction rate of this solution was 309 g / h.
[0030]
Thus, when D / F = 0.013, the methacrolein conversion rate was 59.8%, and methacrolein removed out of the system as a low-boiling product was 0.74 of methacrolein fed to the reactor. %Met.
[0031]
[Comparative Example 2]
The operation was performed under the same conditions as in Example 1 except that the distillation rate was about 4.5 times (7.2%) of Example 1 so that D / F was 0.264.
[0032]
After 100 hours of operation, the composition of the reaction solution supplied to the distillation tower was methacrolein 8.8 wt%, methanol 55.2 wt%, methyl methacrylate 24.4 wt%, acetone 1.1 wt%, The supply rate of the reaction liquid to the tower was 611 g / h. At this time, the acetone amount F sent to the methacrolein recovery step as a part of the reaction solution per unit time was 6.77 g / h. The composition of the low boilers extracted from the top of the column was methacrolein 49.3% by weight, methanol 37.3% by weight, acetone 4.1% by weight, and the low boilers distillation rate was 44 g / h. . At this time, the amount of acetone D removed out of the system per unit time as a part of the low boiling point was 1.79 g / h. The composition of methacrolein extracted from the side cut port was methacrolein 25.6% by weight, methanol 62.4% by weight, and acetone 7.2% by weight. The extraction rate of this liquid was 125 g / h. there were. The composition of the solution containing methyl methacrylate extracted from the column bottom was 55.0% by weight of methanol and 31.6% by weight of methyl methacrylate, and the extraction rate of this solution was 442 g / h.
[0033]
Thus, when D / F = 0.264, the methacrolein conversion was 67.1%, and methacrolein removed out of the system as a low-boiling product was 13.0 of methacrolein fed to the reactor. %Met.
[0034]
【The invention's effect】
According to the present invention, accumulation of acetone and loss of methacrolein can be suppressed, so that methyl methacrylate can be produced efficiently.
[Brief description of the drawings]
FIG. 1 shows an example of a schematic diagram of an embodiment according to the present invention.
[Explanation of symbols]
(1) oxidation esterification reactor (2) distillation column (3) methacrolein containing acetone (4) methanol (5) oxygen-containing gas (6) reaction liquid (7) low boiling product (8) including methacrolein Solution (9) Solution containing methyl methacrylate (10) Gas

Claims (1)

アセトンを含むメタクロレインをメタノールおよび酸素含有ガスと触媒の存在下で反応させ、得られる少なくともメタクリル酸メチル、メタクロレインおよびメタノールを含む反応液を、1または2以上の蒸留塔を含むメタクロレイン回収工程にて、低沸物、メタクロレインを含む溶液およびメタクリル酸メチルを含む溶液に分離し、低沸物は系外に除去し、メタクロレインを含む溶液は該反応の原料の一部としてリサイクルするメタクリル酸メチルの製造方法において、低沸物の一部として単位時間に系外に除去されるアセトン量D(g/h)と反応液の一部として単位時間にメタクロレイン回収工程に送られるアセトン量F(g/h)の関係がD/F=0.015〜0.250となるように操作することを特徴とするメタクリル酸メチルの製造方法。A methacrolein recovery step including reacting at least methyl methacrylate, methacrolein, and methanol, obtained by reacting methacrolein containing acetone with methanol and an oxygen-containing gas in the presence of a catalyst, and containing one or more distillation towers The solution is separated into a low-boiling product, a solution containing methacrolein and a solution containing methyl methacrylate, the low-boiling product is removed out of the system, and the solution containing methacrolein is recycled as a part of the raw material of the reaction. In the method for producing methyl acid, the amount of acetone D (g / h) removed from the system per unit time as a part of low-boiling substances and the amount of acetone sent to the methacrolein recovery step per unit time as part of the reaction solution The methyl methacrylate is operated so that the relationship of F (g / h) is D / F = 0.015 to 0.250 Manufacturing method.
JP16501598A 1998-06-12 1998-06-12 Method for producing methyl methacrylate Expired - Lifetime JP4204097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16501598A JP4204097B2 (en) 1998-06-12 1998-06-12 Method for producing methyl methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16501598A JP4204097B2 (en) 1998-06-12 1998-06-12 Method for producing methyl methacrylate

Publications (2)

Publication Number Publication Date
JP2000001458A JP2000001458A (en) 2000-01-07
JP4204097B2 true JP4204097B2 (en) 2009-01-07

Family

ID=15804227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16501598A Expired - Lifetime JP4204097B2 (en) 1998-06-12 1998-06-12 Method for producing methyl methacrylate

Country Status (1)

Country Link
JP (1) JP4204097B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60239222D1 (en) * 2001-12-21 2011-03-31 Asahi Kasei Chemicals Corp oxide catalyst
JP5008271B2 (en) * 2005-04-26 2012-08-22 旭化成ケミカルズ株式会社 Continuous production method of unsaturated carboxylic acid ester using alkane as raw material
KR20220027726A (en) * 2019-06-28 2022-03-08 아사히 가세이 가부시키가이샤 Method for producing methyl methacrylate

Also Published As

Publication number Publication date
JP2000001458A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
JP3937462B2 (en) Acrylic acid purification method
KR101130909B1 (en) Utilization of acetic acid reaction heat in other process plants
JPH11503154A (en) Recovery of acetic acid from dilute aqueous streams formed during the carbonation process
US4599144A (en) Process for recovery of methacrylic acid
EP3063117B1 (en) Process for preparing methyl methacrylate
JPS60115532A (en) Production of butadiene
EP0044409B1 (en) Process for purifying methyl methacrylate
JPH05246941A (en) Method for purifying acrylic acid in high yield in production of acrylic acid
US4341709A (en) Preparation of ε-caprolactone
JP3220234B2 (en) Purification of acetic anhydride or a mixture of acetic anhydride and acetic acid with ozone
JP3681285B2 (en) Method for producing methyl methacrylate
JP4677066B2 (en) Post-treatment of liquid crude vinyl acetate
JPS6366305B2 (en)
JP4204097B2 (en) Method for producing methyl methacrylate
JP3532763B2 (en) Purification method of methyl methacrylate
JPH0244296B2 (en)
US4736062A (en) Process for preparing methacrylic acid
JPS6310691B2 (en)
JP3832868B2 (en) Acrylic acid purification method
JPH0244294B2 (en) METAKUROREINNOKAISHUHOHO
CN110114330B (en) Method for separating formaldehyde from crude acrylic acid
JPH10120618A (en) Separation of acetic acid from acrylic acid
JPS5837290B2 (en) How to remove aldehydes and ketones
JPH0813779B2 (en) Method for recovering methacrylic acid as methyl methacrylate
GB2562332B (en) Process for separating an unsaturated carboxylic acid from a product stream produced by an aldol condensation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term