JP4203193B2 - Mounting method of semiconductor element - Google Patents

Mounting method of semiconductor element Download PDF

Info

Publication number
JP4203193B2
JP4203193B2 JP30379699A JP30379699A JP4203193B2 JP 4203193 B2 JP4203193 B2 JP 4203193B2 JP 30379699 A JP30379699 A JP 30379699A JP 30379699 A JP30379699 A JP 30379699A JP 4203193 B2 JP4203193 B2 JP 4203193B2
Authority
JP
Japan
Prior art keywords
semiconductor element
mounting
electrode
protruding
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30379699A
Other languages
Japanese (ja)
Other versions
JP2001127104A (en
Inventor
徹 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP30379699A priority Critical patent/JP4203193B2/en
Publication of JP2001127104A publication Critical patent/JP2001127104A/en
Application granted granted Critical
Publication of JP4203193B2 publication Critical patent/JP4203193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]

Landscapes

  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は情報通信分野や半導体分野等において半導体素子を回路基板や半導体素子収納用パッケージ等の配線基板にいわゆるフリップチップ実装法により実装するのに好適な、実装の際の信頼性と歩留まりを改善した半導体素子の実装方法に関するものである。
【0002】
【従来の技術】
近年、回路基板や半導体素子収納用パッケージ等の配線基板に半導体素子を搭載実装する方法として、いわゆるフリップチップ実装する方法が多用されるようになっている。この方法は、一般的には、半導体素子の実装面側の電極上に金やはんだ材料等によって突起電極を設け、一方この半導体素子が搭載される配線基板にはその突起電極に対向する位置に電極パッドを設けておき、半導体素子の突起電極と配線基板の電極パッドとを位置合わせして半導体素子を載置した後に加熱加圧することにより、または超音波エネルギーを用いることにより突起電極と電極パッドとを接合して、半導体素子を配線基板にいわゆるフェースダウンで実装するものである。
【0003】
このようなフリップチップ実装において配線基板の電極パッドと半導体素子の突起電極とを接合して機械的かつ電気的に接続する方法には、様々な方法が用いられている。例えば図2(a)に側面図で示すように、半導体素子1の下面に形成された突起電極2の先端に例えば銀ペースト5を塗布して配線基板3の搭載部に形成された電極パッド4と当接させて載置した後、同図(b)に同様の側面図で示すように、半導体素子1の上からツール6等により加熱加圧して突起電極2と電極パッド4とを銀ペースト5を介して接続する方法がある。
【0004】
さらに、図3に斜視図で示すように、半導体素子1の突起電極2を金で形成し、配線基板3の搭載部に形成された電極パッド4も金で形成して、銀ペーストやはんだ材料を用いずに突起電極2と電極パッド4とを位置合わせして、半導体素子1上から突起電極2と電極パッド4とに超音波をかけることが可能なツール(図示せず)により超音波を印加して、超音波と加熱のみで接続する方法もある。この時、シリコン等の比較的強度のある半導体素子を実装していたことと、実装機のツールや基板の配置方法や装置の構造上の制約、ならびに半導体素子と基板との位置再現性のため、同図中に矢印で示した超音波をかける方向、すなわち超音波の振動方向11は、通常、半導体素子1の端面をなす、半導体素子1の製造過程における素子材料の劈開面の方向10(同図中に他の矢印で示した)と同じ方向となるように、すなわち超音波をその振動方向が半導体素子1の端面(劈開面)に対して平行または垂直になるようにしてかけるように設定される。
【0005】
一方、マイクロ波やミリ波といった高周波帯で使用される半導体素子のフリップチップ実装において重要な点としては、半導体素子に対しては素子面に実装や封止のための樹脂を付着させず特性に悪影響を与えないことであり、その他、信頼性が良いこと、実装に要する時間が短いこと等が挙げられる。
【0006】
そのような理由から、図3に示した実装方法、すなわち半導体素子1の突起電極2を金で形成し配線基板3の搭載部に形成された電極パッド4も金で形成して、銀ペーストやはんだ材料を用いずに超音波と加熱のみで突起電極2と電極パッド4とを接合する方法は、半導体素子1の特性に悪影響を与える樹脂を用いずに実装が可能であり、また実装に要する時間が短くてすむため、非常に有望な実装方法である。
【0007】
【発明が解決しようとする課題】
しかしながら、上記のような従来の半導体素子の実装方法においては、半導体素子1に金等から成る突起電極2を搭載するためには、ワイヤボンディングの金ボールを半導体素子1の電極に付けてからそのワイヤを切断するという方法を用いることが一般的であるため、半導体素子1に超音波を印加する工程として、突起電極2の形成の時に半導体素子1の電極の数と同じだけの回数の超音波を印加する工程と、突起電極2を形成した半導体素子1を配線基板3に実装する時に大きな超音波エネルギーを印加する工程とが必要となる。
【0008】
この時、突起電極2の形成の時に超音波をかける方向と、半導体素子1と配線基板を接続する時に超音波をかける方向は、前述の理由等から、それぞれ半導体素子1の端面となっている劈開面に対して超音波の振動方向が平行または垂直になるように設定されている。つまり、半導体素子1の素子材料の劈開面と同じ方向の振動の超音波をかけることとなっている。このために、突起電極2の形成の時にかける電極数分の回数の超音波エネルギーと、それよりもはるかに大きい、半導体素子1の突起電極2と配線基板3の電極パッド4とを接合する時にかける超音波エネルギーとが、それぞれ半導体素子1の劈開方向と同じ方向に与えられることとなり、それによって半導体素子1の素子材料にダメージが与えられる結果、半導体素子1を配線基板3に超音波エネルギーを用いてフリップチップ実装する際に半導体素子1が他の劈開方向に沿って割れてしまうことがあるという問題点があった。
【0009】
本発明は上記従来技術における問題点に鑑みてなされたものであり、その目的は、超音波のエネルギーを用いて半導体素子を配線基板上にフリップチップ実装する際に半導体素子が割れてしまうという問題点を改善して、信頼性の高い半導体素子の実装方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明の半導体素子の実装方法は、隣り合う端面を構成する壁開面同士が直交する材料から成るとともに、端面が劈開面から成り、下面に複数の突起電極を有する半導体素子を、上面に前記突起電極に対応する複数の電極パッドを有する配線基板上に、前記突起電極を前記電極パッドにそれぞれ当接させて載置した後、前記半導体素子上から前記劈開面に対し 30〜60度方向の振動の超音波を印加して前記突起電極を前記電極パッドに接合させることを特徴とするものである。
【0011】
【発明の実施の形態】
本発明の半導体素子の実装方法によれば、半導体素子の突起電極を配線基板上の電極パッドに位置合わせして、半導体素子をフェイスダウンにて超音波を用いて突起電極を電極パッドに接合する実装方法において、半導体素子上から印加する超音波を半導体素子の端面をなす劈開面に対して略30〜60度方向の振動の超音波としたことにより、半導体素子の劈開面と超音波の振動方向とが略30〜60度となって、超音波エネルギーが劈開面に対して斜めにかかることとなるために、従来の実装方法のように、突起電極形成時に電極数分の回数だけ印加される超音波エネルギーと、それよりもはるかに大きい半導体素子と配線基板とを接続する実装時の超音波エネルギーとが、いずれも半導体素子の劈開方向と同じ方向に与えられることとなって半導体素子に大きなダメージが与えられる場合と比較して、半導体素子の材料に与えるダメージを大幅に軽減することができる。その結果、半導体素子を配線基板に実装する時の超音波エネルギーが半導体素子に与えるダメージを少なくして半導体素子の割れ等の不具合発生を防止することができ、高い良品率で、かつ高い信頼性で半導体素子を実装することができる。
【0012】
以下、図面に基づいて本発明を詳細に説明する。
【0013】
図1は本発明の半導体素子の実装方法の実施の形態の一例を示す、図3と同様の斜視図である。図1において、1はその側面が劈開面から成る半導体素子、2は半導体素子1の下面に形成された複数の突起電極、3は絶縁基板に所定の回路配線が形成されて成る配線基板、4は配線基板の上面に半導体素子1の突起電極2にそれぞれ対応させて形成された複数の電極パッドである。図1では、各突起電極2をそれぞれ対応する電極パッド4に当接させて、半導体素子1を配線基板3上に載置した状態を示している。
【0014】
また、10は半導体素子1の端面、すなわち素子材料の劈開面の方向を示す矢印であり、12は本発明の実装方法において突起電極2を電極パッド4に接合させる際に半導体素子1上から所定のツール(図示せず)により超音波をかける方向、すなわち印加する超音波の振動方向を示す矢印である。
【0015】
そして、本発明の実装方法においては、この超音波の振動方向12を、半導体素子1の端面となっている劈開面の方向10に対して水平方向で見て略30〜60度の角度となるように設定して、超音波を印加するものである。
【0016】
本発明によれば、このように半導体素子1上から劈開面の方向10に対して略30〜60度の振動方向12の超音波を印加して突起電極2を電極パッド4に接合させることから、半導体素子1の実装時に印加される大きな超音波エネルギーが半導体素子1の劈開方向と同じ方向に与えられることがなく、半導体素子1の素子材料に与えるダメージを大幅に軽減させることができるため、半導体素子1の割れ等の不具合を発生させることなく突起電極2を電極パッド4に接合させることができ、しかも、半導体素子1の特性に悪影響を与えるおそれのある樹脂を用いる必要もなく、信頼性の高い実装状態を提供することができるものとなる。また、実装時間も加熱加圧による実装に比べて短く、量産性に優れた実装方法である。
【0017】
本発明の半導体素子の実装方法において、半導体素子1上から印加する超音波の振動方向12は、半導体素子1の劈開面の方向10に対して略30〜60度の方向に設定され、最適には略45度の方向に設定される。この振動方向12が劈開面の方向10に対して略30度を下回ると、あるいは略60度を上回ると、半導体素子1の劈開方向にかかる超音波エネルギーの成分が大きくなって、突起電極2を電極パッド4に接合するのに必要な超音波エネルギーを印加することにより半導体素子1の割れを発生させやすくなる傾向があり、高い良品率でかつ高い接続信頼性で半導体素子1を配線基板3上に実装することが困難となる傾向がある。
【0018】
なお、超音波の振動方向12を半導体素子1の劈開面の方向10に対して略45度とした場合は、突起電極2を電極パッド4に接合させるために超音波を印加する際に、半導体素子1の劈開面の方向10にかかる超音波エネルギーの成分が従来の実装方法に対してほぼ70%程度にまで軽減させることができ、半導体素子1の割れの発生をほぼ皆無とすることができるとともに、良品率・接続信頼性および量産性に極めて優れた実装を行なうことができるものとなる。
【0019】
本発明の半導体素子の実装方法において、半導体素子1には、単結晶材料で作製され劈開面での分割により各素子に切り分けられるもの、例えばガリウムひ素(GaAs)等からなる半導体素子が好適に用いられる。
【0020】
半導体素子1の下面に形成される突起電極2には、超音波により配線基板3に形成された電極パッド4の材質と接合する様な性質で、突起電極2として形成可能なもの、例えば金やアルミニウム等が好適に用いられる。
【0021】
配線基板3にはセラミック多層配線基板や有機絶縁材料を用いた多層配線基板・厚膜配線基板と薄膜配線基板とを組み合わせたもの等の各種の配線基板や半導体素子収納用パッケージ等の、絶縁基板あるいは絶縁基体に所定の回路配線が形成されて成るものであり、半導体素子1の実装用基板として用いられるものである。
【0022】
配線基板3の上面に半導体素子1の突起電極2にそれぞれ対応させて形成される電極パッド4には、半導体素子1に形成した突起電極2が超音波により接合する様な性質のもの、例えば金・銀・アルミニウム等の電極配線材料が好適に用いられる。これらは、突起電極2の材料と配線基板3の電極パッド4の材料との組合せにより選択し決定する必要がある。
【0023】
【実施例】
次に、本発明の半導体装置の実装方法について具体例を説明する。
【0024】
まず、配線基板として厚さ0.2mmのセラミック基板を用い、この基板上の半導体素子搭載部分に、半導体素子の下面に形成された突起電極と対向する位置に膜厚5μmの金から成る電極パッドを設けた。また、電極パッドの他に同じく膜厚5μmの金から成るバイアス配線および高周波信号伝送用のRF配線も設けた。一方、半導体素子は、素子材料が厚さ0.1mmのGaAs単結晶であり、その下面に直径が60μmの金から成る複数の突起電極が形成されたものを用意した。
【0025】
そして、この半導体素子と配線基板とを用い、基板を200℃に加熱しながら、半導体素子を位置合わせして各突起電極を対応する電極パッドに当接させ、超音波をその振動方向が半導体素子の劈開面である端面に対して略45度になるようにして印加することにより、突起電極を電極パッドに接合して半導体素子をフリップチップ実装し、本発明の半導体素子の実装方法による実装試料Aを作製した。
【0026】
また、比較例として、上記と同じ半導体素子と配線基板を用いて、超音波をその振動方向が半導体素子の劈開面である端面のうち長辺に対して垂直になるようにして印加することにより、従来の半導体素子の実装方法による実装試料Bを作製した。
【0027】
さらに、同様に上記と同じ半導体素子と配線基板を用いて、超音波をその振動方向が半導体素子の劈開面である端面のうち長辺に対して水平(平行)になるようにして印加することにより、従来の半導体素子の実装方法による実装試料Cも作製した。
【0028】
そして、これら各実装試料A・BおよびCについて、実装後の半導体素子の割れの発生と超音波強度との関係を調べた。この結果を表1に示す。
【0029】
【表1】

Figure 0004203193
【0030】
表1は、印加した超音波の振動の方向毎に、超音波強度と半導体素子の割れの発生との関係を示すものであり、3段階の超音波強度について、それぞれの試料において半導体素子の割れが無かった場合を○で、割れが発生した場合を×で示している。この結果より分かるように、超音波方向の違いで半導体素子が割れた場合と、正常に実装できた場合の差が生じており、本発明の実装方法による実装試料Aによれば、従来の実装方法による試料BおよびCに比べて、割れの発生が無く、半導体素子に対する超音波エネルギーによるダメージを十分に軽減できている。
【0031】
なお、試料Aにおいては、いずれの超音波強度による突起電極と電極パッドとの接合強度も、従来の実装方法と同等程度の十分な強度であった。
【0032】
また、試料Aに対して超音波の振動方向を半導体素子の端面に対して略30度から略60度の範囲で設定して同様に実装し評価したところ、いずれも素子の割れは無く、十分な接合強度を有する実装状態であった。さらに、超音波の振動方向を半導体素子の端面に対して20度および70度に設定して同様に実装し評価したところ、超音波強度が大の場合に半導体素子の割れが発生しやすくなる傾向が見られた。
【0033】
これにより、本発明の半導体素子の実装方法によれば、高い良品率で、かつ高い接続信頼性を有する半導体素子の実装が可能となることが確認できた。
【0034】
なお、以上はあくまで本発明の実施の形態の例示であって、本発明はこれらに限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更や改良を加えることは何ら差し支えない。例えば、半導体素子に超音波を印加して突起電極を電極パッドに接合する際に、より良好な接合状態を得るために加熱を併用してもよいことは言うまでもない。また、突起電極の形成方法としてワイヤボンディングによるボールを用いず、メッキ法や印刷法等を用いてもよい。
【0035】
【発明の効果】
本発明の半導体素子の実装方法によれば、隣り合う端面を構成する壁開面同士が直交する材料から成るとともに、端面が劈開面から成り、下面に複数の突起電極を有する半導体素子を、上面に前記突起電極に対応する複数の電極パッドを有する配線基板上に、前記突起電極を前記電極パッドにそれぞれ当接させて載置した後、前記半導体素子上から前記劈開面に対し 30〜60度方向の振動の超音波を印加して前記突起電極を前記電極パッドに接合させることから、半導体素子の劈開面と超音波の振動方向と 30〜60度となって超音波エネルギーが劈開面に対して斜めにかかることとなるために、半導体素子と配線基板とを接続する実装時の大きな超音波エネルギーが半導体素子の素子材料に与えるダメージを大幅に軽減することができ、その結果、半導体素子の割れ等の不具合発生を防止することができ、高い良品率で、かつ高い信頼性で半導体素子を実装することができた。
【0036】
また、半導体素子の特性に悪影響を与えるおそれのある樹脂を用いる必要もなく、信頼性の高い実装状態を提供することができ、実装時間も加熱加圧による実装に比べて短く、量産性にも優れている。
【0037】
以上により、本発明によれば、超音波のエネルギーを用いて半導体素子を配線基板上にフリップチップ実装する際に半導体素子が割れてしまうという問題点を改善して、信頼性の高い半導体素子の実装方法を提供することができた。
【図面の簡単な説明】
【図1】本発明の半導体素子の実装方法の実施の形態の一例を示す斜視図である。
【図2】(a)および(b)は、それぞれ半導体素子のフリップチップ実装の工程を説明するための側面図である。
【図3】従来の半導体素子の実装方法の例を示す斜視図である。
【符号の説明】
1・・・半導体素子
2・・・突起電極
3・・・配線基板
4・・・電極パッド
10・・・半導体素子1の劈開面の方向
12・・・超音波の振動の方向[0001]
BACKGROUND OF THE INVENTION
The present invention improves mounting reliability and yield suitable for mounting a semiconductor element on a circuit board or a wiring board such as a package for housing a semiconductor element by a so-called flip chip mounting method in the fields of information communication and semiconductors. The present invention relates to a method for mounting a semiconductor device.
[0002]
[Prior art]
In recent years, a so-called flip chip mounting method has been widely used as a method for mounting and mounting a semiconductor element on a wiring board such as a circuit board or a package for housing a semiconductor element. In this method, generally, a protruding electrode is provided on an electrode on a mounting surface side of a semiconductor element by using a material such as gold or solder. On the other hand, a wiring board on which the semiconductor element is mounted is positioned at a position facing the protruding electrode. An electrode pad is provided and the protruding electrode of the semiconductor element and the electrode pad of the wiring board are aligned and the semiconductor element is placed and then heated and pressurized, or by using ultrasonic energy, and the protruding electrode and the electrode pad And the semiconductor element is mounted on the wiring substrate in a so-called face-down manner.
[0003]
In such flip-chip mounting, various methods are used for mechanically and electrically connecting the electrode pads of the wiring board and the protruding electrodes of the semiconductor element. For example, as shown in a side view in FIG. 2A, an electrode pad 4 formed on the mounting portion of the wiring board 3 by applying, for example, silver paste 5 to the tip of the protruding electrode 2 formed on the lower surface of the semiconductor element 1. Then, as shown in the same side view in FIG. 4B, the protruding electrode 2 and the electrode pad 4 are silver paste by heating and pressing with a tool 6 or the like from above the semiconductor element 1. There is a method of connecting via 5.
[0004]
Further, as shown in a perspective view in FIG. 3, the protruding electrode 2 of the semiconductor element 1 is formed of gold, and the electrode pad 4 formed on the mounting portion of the wiring substrate 3 is also formed of gold, and silver paste or solder material The projection electrode 2 and the electrode pad 4 are aligned without using the tool, and ultrasonic waves are applied by a tool (not shown) that can apply ultrasonic waves to the projection electrode 2 and the electrode pad 4 from the semiconductor element 1. There is also a method of applying and connecting only by ultrasonic waves and heating. At this time, due to the fact that relatively strong semiconductor elements such as silicon were mounted, restrictions on the placement machine tool and substrate placement method and device structure, and the position reproducibility of the semiconductor elements and the substrate The direction of applying an ultrasonic wave indicated by an arrow in the figure, that is, the vibration direction 11 of the ultrasonic wave, is usually the direction 10 of the cleaved surface of the element material in the manufacturing process of the semiconductor element 1, which forms the end face of the semiconductor element 1. The ultrasonic wave is applied so that the vibration direction is parallel or perpendicular to the end surface (cleavage surface) of the semiconductor element 1 so that the direction is the same as that indicated by other arrows in FIG. Is set.
[0005]
On the other hand, an important point in flip chip mounting of semiconductor elements used in high frequency bands such as microwaves and millimeter waves is that the semiconductor elements have characteristics without attaching resin for mounting or sealing to the element surface. In other words, there are no adverse effects, and there are other things such as high reliability and a short time required for mounting.
[0006]
For that reason, the mounting method shown in FIG. 3, that is, the protruding electrode 2 of the semiconductor element 1 is formed of gold, and the electrode pad 4 formed on the mounting portion of the wiring substrate 3 is also formed of gold, silver paste, The method of bonding the protruding electrode 2 and the electrode pad 4 by using only ultrasonic waves and heating without using a solder material can be mounted without using a resin that adversely affects the characteristics of the semiconductor element 1 and is required for mounting. This is a very promising implementation because it takes less time.
[0007]
[Problems to be solved by the invention]
However, in the conventional semiconductor element mounting method as described above, in order to mount the protruding electrode 2 made of gold or the like on the semiconductor element 1, a wire-bonded gold ball is attached to the electrode of the semiconductor element 1. Since a method of cutting a wire is generally used, as a process of applying an ultrasonic wave to the semiconductor element 1, an ultrasonic wave having the same number of times as the number of electrodes of the semiconductor element 1 is formed when the protruding electrode 2 is formed. And a step of applying large ultrasonic energy when the semiconductor element 1 on which the protruding electrode 2 is formed is mounted on the wiring board 3.
[0008]
At this time, the direction in which the ultrasonic wave is applied when the protruding electrode 2 is formed and the direction in which the ultrasonic wave is applied when the semiconductor element 1 and the wiring board are connected are the end faces of the semiconductor element 1 for the reasons described above. The ultrasonic vibration direction is set to be parallel or perpendicular to the cleavage plane. That is, an ultrasonic wave having a vibration in the same direction as the cleavage surface of the element material of the semiconductor element 1 is applied. For this reason, when bonding the protruding electrode 2 of the semiconductor element 1 and the electrode pad 4 of the wiring board 3, which is much larger than the ultrasonic energy corresponding to the number of electrodes applied when forming the protruding electrode 2. The ultrasonic energy applied is applied in the same direction as the cleavage direction of the semiconductor element 1, thereby damaging the element material of the semiconductor element 1. As a result, the ultrasonic energy is applied to the wiring substrate 3. When flip-chip mounting is used, there is a problem in that the semiconductor element 1 may break along other cleavage directions.
[0009]
The present invention has been made in view of the above-described problems in the prior art, and its purpose is that the semiconductor element breaks when the semiconductor element is flip-chip mounted on a wiring board using ultrasonic energy. An object of the present invention is to provide a highly reliable method for mounting a semiconductor element by improving the points.
[0010]
[Means for Solving the Problems]
In the semiconductor element mounting method of the present invention, the semiconductor element having a plurality of protruding electrodes on the lower surface is formed on the upper surface of the semiconductor element having a plurality of projecting electrodes on the lower surface, while the wall open surfaces constituting the adjacent end surfaces are made of orthogonal materials. on the wiring substrate having a plurality of electrode pads corresponding to the projecting electrodes, wherein after the projection electrodes were placed respectively brought into contact with the electrode pad, 3 0 to 60 degrees with respect to the cleavage plane from over the device The protruding electrodes are bonded to the electrode pads by applying ultrasonic waves of directional vibrations.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
According to the semiconductor element mounting method of the present invention, the protruding electrode of the semiconductor element is aligned with the electrode pad on the wiring substrate, and the protruding electrode is bonded to the electrode pad using ultrasonic waves face down. In the mounting method, the ultrasonic wave applied from above the semiconductor element is an ultrasonic wave having a vibration of approximately 30 to 60 degrees with respect to the cleavage plane that forms the end face of the semiconductor element. Since the direction is approximately 30 to 60 degrees and the ultrasonic energy is applied obliquely to the cleavage plane, it is applied as many times as the number of electrodes when forming the protruding electrodes as in the conventional mounting method. Both the ultrasonic energy and the ultrasonic energy at the time of mounting for connecting a semiconductor element much larger than that to the wiring board are applied in the same direction as the cleavage direction of the semiconductor element. Compared to when given large damage to the device, it is possible to greatly reduce the damage to the material of the semiconductor device. As a result, the ultrasonic energy when mounting the semiconductor element on the wiring board can reduce the damage to the semiconductor element and prevent the occurrence of defects such as cracking of the semiconductor element, with high yield rate and high reliability. A semiconductor element can be mounted.
[0012]
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 is a perspective view similar to FIG. 3, showing an example of an embodiment of a semiconductor element mounting method of the present invention. In FIG. 1, 1 is a semiconductor element whose side surface is a cleavage plane, 2 is a plurality of protruding electrodes formed on the lower surface of the semiconductor element 1, and 3 is a wiring board in which predetermined circuit wiring is formed on an insulating substrate, 4 Are a plurality of electrode pads formed on the upper surface of the wiring substrate so as to correspond to the protruding electrodes 2 of the semiconductor element 1, respectively. FIG. 1 shows a state in which each protruding electrode 2 is brought into contact with the corresponding electrode pad 4 and the semiconductor element 1 is placed on the wiring board 3.
[0014]
Further, 10 is an arrow indicating the direction of the end face of the semiconductor element 1, that is, the cleavage surface of the element material, and 12 is a predetermined value from above the semiconductor element 1 when the protruding electrode 2 is bonded to the electrode pad 4 in the mounting method of the present invention. It is an arrow which shows the direction which applies an ultrasonic wave with the tool (not shown) of, ie, the vibration direction of the ultrasonic wave to apply.
[0015]
In the mounting method of the present invention, the ultrasonic vibration direction 12 is at an angle of approximately 30 to 60 degrees when viewed in the horizontal direction with respect to the cleavage plane direction 10 which is the end face of the semiconductor element 1. In this way, ultrasonic waves are applied.
[0016]
According to the present invention, the protruding electrode 2 is bonded to the electrode pad 4 by applying ultrasonic waves having a vibration direction 12 of approximately 30 to 60 degrees with respect to the cleavage plane direction 10 from the semiconductor element 1 in this way. Since the large ultrasonic energy applied at the time of mounting the semiconductor element 1 is not given in the same direction as the cleavage direction of the semiconductor element 1, damage to the element material of the semiconductor element 1 can be greatly reduced. The protruding electrode 2 can be bonded to the electrode pad 4 without causing defects such as cracking of the semiconductor element 1, and there is no need to use a resin that may adversely affect the characteristics of the semiconductor element 1. It is possible to provide a high mounting state. In addition, the mounting time is shorter than mounting by heating and pressing, and this mounting method is excellent in mass productivity.
[0017]
In the semiconductor element mounting method of the present invention, the vibration direction 12 of the ultrasonic wave applied from above the semiconductor element 1 is set to a direction of approximately 30 to 60 degrees with respect to the direction 10 of the cleavage plane of the semiconductor element 1 and optimally. Is set to approximately 45 degrees. When the vibration direction 12 is less than about 30 degrees with respect to the direction 10 of the cleavage plane, or more than about 60 degrees, the component of ultrasonic energy applied in the cleavage direction of the semiconductor element 1 increases, and the protruding electrode 2 is By applying ultrasonic energy necessary for bonding to the electrode pad 4, the semiconductor element 1 tends to be easily cracked, and the semiconductor element 1 is placed on the wiring substrate 3 with a high yield rate and high connection reliability. Tends to be difficult to implement.
[0018]
When the ultrasonic vibration direction 12 is about 45 degrees with respect to the cleavage plane direction 10 of the semiconductor element 1, when applying ultrasonic waves to bond the protruding electrodes 2 to the electrode pads 4, the semiconductor The component of the ultrasonic energy applied in the direction 10 of the cleavage plane of the element 1 can be reduced to about 70% as compared with the conventional mounting method, and the occurrence of cracks in the semiconductor element 1 can be almost eliminated. At the same time, it is possible to perform mounting with excellent yield rate, connection reliability, and mass productivity.
[0019]
In the semiconductor element mounting method of the present invention, the semiconductor element 1 is preferably a semiconductor element made of a single crystal material and separated into each element by division on a cleavage plane, such as gallium arsenide (GaAs). It is done.
[0020]
The protruding electrode 2 formed on the lower surface of the semiconductor element 1 has a property such that it can be bonded to the material of the electrode pad 4 formed on the wiring substrate 3 by ultrasonic waves, and can be formed as the protruding electrode 2 such as gold or the like. Aluminum or the like is preferably used.
[0021]
The wiring substrate 3 is an insulating substrate such as a ceramic multilayer wiring substrate, a multilayer wiring substrate using an organic insulating material, a combination of a thick film wiring substrate and a thin film wiring substrate, or a package for housing a semiconductor element. Alternatively, a predetermined circuit wiring is formed on an insulating base, and is used as a mounting substrate for the semiconductor element 1.
[0022]
The electrode pads 4 formed on the upper surface of the wiring board 3 so as to correspond to the protruding electrodes 2 of the semiconductor element 1 have properties such that the protruding electrodes 2 formed on the semiconductor element 1 are joined by ultrasonic waves, for example, gold -Electrode wiring materials such as silver and aluminum are preferably used. These need to be selected and determined depending on the combination of the material of the protruding electrode 2 and the material of the electrode pad 4 of the wiring board 3.
[0023]
【Example】
Next, a specific example of the semiconductor device mounting method of the present invention will be described.
[0024]
First, a ceramic substrate having a thickness of 0.2 mm is used as a wiring substrate, and an electrode pad made of gold having a thickness of 5 μm is provided on the semiconductor element mounting portion on the substrate at a position facing the protruding electrode formed on the lower surface of the semiconductor element. Provided. In addition to the electrode pads, a bias wiring made of gold having a thickness of 5 μm and an RF wiring for high-frequency signal transmission were also provided. On the other hand, a semiconductor element was prepared in which the element material was a GaAs single crystal having a thickness of 0.1 mm, and a plurality of protruding electrodes made of gold having a diameter of 60 μm were formed on the lower surface thereof.
[0025]
Then, using this semiconductor element and the wiring board, while heating the substrate to 200 ° C., the semiconductor element is aligned, each protruding electrode is brought into contact with the corresponding electrode pad, and the vibration direction of the ultrasonic wave is the semiconductor element. The semiconductor device is flip-chip mounted by bonding the protruding electrode to the electrode pad by applying the surface so as to be approximately 45 degrees with respect to the end surface, which is a cleavage surface of the semiconductor device, and the mounting sample according to the semiconductor device mounting method of the present invention A was produced.
[0026]
As a comparative example, by using the same semiconductor element and wiring board as described above, ultrasonic waves are applied so that the vibration direction is perpendicular to the long side of the end face which is the cleavage plane of the semiconductor element. Then, a mounting sample B was manufactured by a conventional semiconductor element mounting method.
[0027]
Further, similarly, using the same semiconductor element and wiring board as described above, the ultrasonic wave is applied so that the vibration direction is horizontal (parallel) to the long side of the end face which is the cleavage plane of the semiconductor element. Thus, a mounting sample C by a conventional semiconductor element mounting method was also produced.
[0028]
And about these mounting samples A * B and C, the relationship between generation | occurrence | production of the crack of the semiconductor element after mounting, and ultrasonic strength was investigated. The results are shown in Table 1.
[0029]
[Table 1]
Figure 0004203193
[0030]
Table 1 shows the relationship between the ultrasonic intensity and the occurrence of cracks in the semiconductor element for each direction of vibration of the applied ultrasonic waves. The case where there is no crack is indicated by ◯, and the case where a crack occurs is indicated by ×. As can be seen from this result, there is a difference between the case where the semiconductor element is cracked due to the difference in the ultrasonic direction and the case where the semiconductor element can be normally mounted. According to the mounting sample A according to the mounting method of the present invention, the conventional mounting Compared to samples B and C obtained by the method, cracks are not generated, and damage to the semiconductor element due to ultrasonic energy can be sufficiently reduced.
[0031]
In the sample A, the bonding strength between the protruding electrode and the electrode pad by any ultrasonic strength was sufficient strength equivalent to the conventional mounting method.
[0032]
Moreover, when the vibration direction of the ultrasonic wave with respect to the sample A was set in the range of about 30 degrees to about 60 degrees with respect to the end face of the semiconductor element and was mounted and evaluated in the same manner, there was no crack of the element, and sufficient It was the mounting state which has various joining strength. Furthermore, when the ultrasonic vibration direction was set to 20 degrees and 70 degrees with respect to the end face of the semiconductor element and evaluated in the same manner, cracking of the semiconductor element tends to occur when the ultrasonic intensity is large. It was observed.
[0033]
Thereby, according to the mounting method of the semiconductor element of this invention, it has confirmed that the mounting of the semiconductor element which has a high yield rate and high connection reliability is attained.
[0034]
Note that the above are merely examples of the embodiments of the present invention, and the present invention is not limited to these embodiments, and various modifications and improvements may be added without departing from the scope of the present invention. . For example, when an ultrasonic wave is applied to a semiconductor element to bond a protruding electrode to an electrode pad, it goes without saying that heating may be used in combination in order to obtain a better bonding state. Further, as a method for forming the protruding electrode, a plating method, a printing method, or the like may be used without using a ball by wire bonding.
[0035]
【The invention's effect】
According to the method for mounting a semiconductor element of the present invention, a semiconductor element having a plurality of projecting electrodes on the lower surface is formed on the upper surface, the wall open surfaces constituting the adjacent end surfaces being made of a material orthogonal to each other, the end surface being a cleaved surface. wherein on the wiring substrate having a plurality of electrode pads corresponding to the projecting electrodes, wherein after the projection electrodes were placed respectively brought into contact with the electrode pad, with respect to the cleavage plane from over the device with the 3 0 By applying ultrasonic waves with a vibration in the direction of 60 degrees to bond the protruding electrodes to the electrode pads, the cleavage plane of the semiconductor element and the vibration direction of the ultrasonic waves are 30 to 60 degrees, and the ultrasonic energy is Since it is applied obliquely with respect to the cleavage plane, damage to the element material of the semiconductor element due to large ultrasonic energy during mounting for connecting the semiconductor element and the wiring board can be significantly reduced. As a result, defects such as cracking of the semiconductor element can be prevented, and the semiconductor element can be mounted with a high yield rate and high reliability.
[0036]
In addition, there is no need to use a resin that may adversely affect the characteristics of the semiconductor element, and a highly reliable mounting state can be provided. Are better.
[0037]
As described above, according to the present invention, it is possible to improve the problem that a semiconductor element is broken when flip-chip mounting the semiconductor element on a wiring board using ultrasonic energy. An implementation method could be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an embodiment of a semiconductor element mounting method according to the present invention.
FIGS. 2A and 2B are side views for explaining a process of flip-chip mounting of a semiconductor element, respectively.
FIG. 3 is a perspective view showing an example of a conventional method for mounting a semiconductor element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor element 2 ... Projection electrode 3 ... Wiring board 4 ... Electrode pad
10 ... direction of the cleavage plane of the semiconductor element 1
12 ・ ・ ・ Direction of ultrasonic vibration

Claims (1)

隣り合う端面を構成する壁開面同士が直交する材料から成るとともに、端面が劈開面から成り、下面に複数の突起電極を有する半導体素子を、上面に前記突起電極に対応する複数の電極パッドを有する配線基板上に、前記突起電極を前記電極パッドにそれぞれ当接させて載置した後、前記半導体素子上から前記劈開面に対して30〜60度方向の振動の超音波を印加して前記突起電極を前記電極パッドに接合させることを特徴とする半導体素子の実装方法。 The wall open surfaces constituting the adjacent end surfaces are made of a material orthogonal to each other, the end surfaces are made of cleaved surfaces, a semiconductor element having a plurality of protruding electrodes on the lower surface, and a plurality of electrode pads corresponding to the protruding electrodes on the upper surface. on a wiring substrate having, after said projecting electrodes were placed respectively brought into contact with the electrode pad, wherein by applying ultrasonic vibration of 3 0 ° to 60 ° direction with respect to the cleavage plane from the semiconductor element A method of mounting a semiconductor element, comprising bonding the protruding electrode to the electrode pad.
JP30379699A 1999-10-26 1999-10-26 Mounting method of semiconductor element Expired - Fee Related JP4203193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30379699A JP4203193B2 (en) 1999-10-26 1999-10-26 Mounting method of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30379699A JP4203193B2 (en) 1999-10-26 1999-10-26 Mounting method of semiconductor element

Publications (2)

Publication Number Publication Date
JP2001127104A JP2001127104A (en) 2001-05-11
JP4203193B2 true JP4203193B2 (en) 2008-12-24

Family

ID=17925412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30379699A Expired - Fee Related JP4203193B2 (en) 1999-10-26 1999-10-26 Mounting method of semiconductor element

Country Status (1)

Country Link
JP (1) JP4203193B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308141A (en) * 2000-02-18 2001-11-02 Sony Corp Method of manufacturing electronic circuit device

Also Published As

Publication number Publication date
JP2001127104A (en) 2001-05-11

Similar Documents

Publication Publication Date Title
KR100604334B1 (en) Flip Chip Bondig Method for Enhancing the Performance of Connection in Flip Chip Packaging Process
JP3503133B2 (en) Connection method of electronic device assembly and electronic device
KR100686315B1 (en) Manufacturing method for electronic circuit device
US6460591B1 (en) Ultrasonic bonding method and ultrasonic bonding apparatus
JP2001308220A (en) Semiconductor package and its manufacturing method
JPS63119552A (en) Lsi chip
JP3794792B2 (en) Circuit board
KR100378919B1 (en) Surface acoustic wave device having bump electrodes and method for producing the same
EP1369911A1 (en) Method of manufacturing semiconductor device
JP4572465B2 (en) Manufacturing method of electronic component device
JP4203193B2 (en) Mounting method of semiconductor element
JP2001053092A (en) Package, device and its manufacture
JP3520410B2 (en) Electronic component mounting method
JP3132458B2 (en) Semiconductor device mounting structure and mounting method
JP2001210672A (en) Mounting method of semiconductor element
JP2002016168A (en) Substrate for mounting and semiconductor module using the same
JP4540216B2 (en) Manufacturing method of semiconductor module
JP3594771B2 (en) Semiconductor device mounting structure
JPH11224888A (en) Semiconductor device and its manufacturing
JP2002299374A (en) Semiconductor device and its manufacturing method
JP2762705B2 (en) Structure of circuit board for mounting semiconductor device
JPH09298218A (en) Semiconductor device and manufacture thereof
JP2000357716A (en) Tab tape, cof tape, semiconductor device and manufacture thereof
JP2000021917A (en) Method for forming bump contact point
JP2003282628A (en) Bare chip mounting component and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees