JP4202836B2 - Laser welding method and laser welding apparatus - Google Patents

Laser welding method and laser welding apparatus Download PDF

Info

Publication number
JP4202836B2
JP4202836B2 JP2003172451A JP2003172451A JP4202836B2 JP 4202836 B2 JP4202836 B2 JP 4202836B2 JP 2003172451 A JP2003172451 A JP 2003172451A JP 2003172451 A JP2003172451 A JP 2003172451A JP 4202836 B2 JP4202836 B2 JP 4202836B2
Authority
JP
Japan
Prior art keywords
laser
light
laser irradiation
irradiation unit
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003172451A
Other languages
Japanese (ja)
Other versions
JP2005007665A (en
Inventor
松本  聡
直久 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2003172451A priority Critical patent/JP4202836B2/en
Publication of JP2005007665A publication Critical patent/JP2005007665A/en
Application granted granted Critical
Publication of JP4202836B2 publication Critical patent/JP4202836B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1661Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning repeatedly, e.g. quasi-simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/47Joining single elements to sheets, plates or other substantially flat surfaces
    • B29C66/472Joining single elements to sheets, plates or other substantially flat surfaces said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • B29C66/81267Transparent to electromagnetic radiation, e.g. to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91933Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined higher than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91943Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined higher than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73771General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73775General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being crystalline

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Fluid Mechanics (AREA)
  • Plasma & Fusion (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、重ね合わせた樹脂材料からなる被溶接物に対してレーザ照射手段からレーザ光を照射して被溶接物を溶接するレーザ溶接方法および装置に関する。
【0002】
【従来の技術】
レーザ光を透過する光透過性樹脂と、レーザ光を吸収して溶融する光吸収性樹脂とを重ね合わせてなるワークに、レーザ溶接を施す方法として特公昭62−49850号公報(特許文献1)に開示された接合方法がある。この接合方法は、レーザ光に対して非吸収性の樹脂と吸収性の樹脂とを重ね合わせ、非吸収性の樹脂側からレーザ光を照射して両方の樹脂を接合するというものである。
【0003】
他方、特開平10−111471号公報(特許文献2)においては、2本のレーザビームを用いたワークの溶接方法が開示されている。この溶接方法は、ミラーによってレーザ光を2分割し、この分割された2本のレーザ光によって金属などの被溶接部材を溶接するというものである。
【0004】
【特許文献1】
特公昭62−49850号公報
【0005】
【特許文献2】
特開平10−111471号公報
【0006】
【発明が解決しようとする課題】
ところで、上記特許文献1に開示されたレーザ溶接方法などにおいては、両方の樹脂を強固に接合することが望まれる。このような強固な接合を行うために、上記特許文献2に開示されるように、2本のレーザ光を用いてレーザ溶接することが考えられる。
【0007】
ところが、単に2本のレーザビームを用いて複数回のレーザ照射を行ったとしても、高い溶接強度を得ることができるとは限らない。このため、樹脂材料に対して2本のレーザビームを用いた際の有効な溶接条件等については、検討する余地があるものであった。
【0008】
そこで、本発明の課題は、複数回のレーザ照射を行うことにより、樹脂をレーザ溶接するにあたり、被溶接物を強固に溶接するレーザ溶接を行うことができるようにすることにある。
【0009】
【課題を解決するための手段】
上記課題を解決した本発明に係るレーザ溶接方法は、レーザ光を透過する光透過性樹脂とレーザ光を吸収して溶融する光吸収性樹脂とを重ね合わせてなる被溶接物に対して相対的に移動するレーザ照射手段から被溶接物にレーザ光を照射し、光吸収性樹脂を溶融させて、光透過性樹脂と光吸収性樹脂とを溶接するレーザ溶接方法であって、光透過性樹脂と光吸収性樹脂とのそれぞれの溶接面同士を向かい合わせた状態で、両樹脂を押圧手段によって押圧し、光吸収性樹脂の溶融温度以上になるレーザ光強度とされてレーザ照射手段から出射されたレーザ光を光透過性樹脂側から光吸収性樹脂に対して照射する第1照射を行い、押圧した状態のまま、光吸収性樹脂のガラス転移点温度以上になるレーザ光強度とされてレーザ照射手段から出射されたレーザ光を光透過性樹脂側から光吸収性樹脂に対して再度照射する第2照射を行うことを特徴とするものである。
【0010】
本発明に係るレーザ溶接方法では、複数回のレーザ光の照射を行うにあたり、押圧手段によって光透過性樹脂と光吸収性樹脂とのそれぞれの溶着面を当接させた状態で押圧している。この状態で、まず、光吸収性樹脂の溶融温度以上になるレーザ光強度とされてレーザ照射手段から出射されたレーザ光を光透過性樹脂側から光吸収性樹脂に対して照射する。光吸収性樹脂は、レーザ光を吸収して溶融するとともに発熱する。この熱が光吸収性樹脂から光透過性樹脂に伝達され、光透過性樹脂も溶融する。このように、両樹脂が溶融したとき、両樹脂は、押圧手段によって押圧させられた当接させられた状態とされている。このため、両樹脂の溶融した部分は、両樹脂の界面から放出されず、両樹脂の隙間に流れ込んで、両樹脂の界面をなじませる。
【0011】
ところが、両樹脂が溶融した後、瞬時に冷却してしまうと、両樹脂の溶融部分が隙間を埋めることなく固化してしまい、両樹脂を完全になじませることができないことが懸念される。この点本発明に係るレーザ溶接方法では、両樹脂を押圧した状態のまま、光吸収性樹脂のガラス転移点温度以上になるレーザ光強度とされてレーザ照射手段から出射されたレーザ光を光透過性樹脂側から光吸収性樹脂に対して再度照射している。このため、先のレーザ光の照射によって溶融された両樹脂の部分が両樹脂の界面に流れ込む時間を稼ぐことができるので、両樹脂が十分になじんだ状態とすることができる。その後、レーザ光の照射が終了することにより、溶融した両樹脂が固化して、両樹脂が強固に溶着した状態とすることができる。
【0012】
なお、本発明における溶融温度とは、光吸収性樹脂の種類によって異なり、光吸収性樹脂が結晶性樹脂である場合には溶融温度は融点となり、光吸収性樹脂が非結晶性樹脂である場合には、溶融温度は軟化点温度となる。
【0013】
ここで、レーザ照射手段による第1照射が済んだ後、第1照射を開始した位置と同一の位置にレーザ照射手段を移動させ、第1照射を行った溶接位置に対して、レーザ照射手段による第2照射を行う態様とすることができる。
【0014】
このように、先のレーザ照射手段と独立に移動する次のレーザ照射手段によって次のレーザ光の出射を行うことにより、両レーザ照射手段によるレーザ照射の時間や照射間隔を容易に調整することができ、被溶接物の性状等に合わせた溶接を容易に行うことができる。特に、溶接する部位が円や直角などの場合であっても、容易にレーザ照射手段を移動させることができる。また、本発明にいう先のレーザ照射手段とは独立に移動する次のレーザ照射手段としては、先のレーザ照射手段とは別個となる次のレーザ照射手段を用いることもできるし、先のレーザ照射手段と同一であり、たとえば被溶接物の他の部位を移動した後のレーザ照射手段を次のレーザ照射手段とすることもできる。
【0015】
このとき、レーザ照射手段として、レーザ照射部を1つ備えるシングルスポットレーザ照射手段を用いることができる。レーザ照射部を1つ備えるシングルスポットのレーザ照射手段により、簡素な構成によるレーザ照射手段とすることができる。
【0016】
また、レーザ照射手段が、第1レーザ照射部および第1レーザ照射部に従属して移動する第2レーザ照射部を備えており、第1レーザ照射部からのレーザ光の出射が行われた後、第2レーザ照射部からの再度のレーザ光の出射が行われる態様とすることができる。
さらに、レーザ照射手段は、第1レーザ照射手段と、第1レーザ照射手段とは独立して移動する第2レーザ照射手段と、を備えており、第1レーザ照射手段によって第1照射を行い、続いて第2レーザ照射手段よって第2照射を行う態様とすることができる。
また、第1レーザ照射手段および第2レーザ照射手段として、レーザ照射部を1つ備えるシングルスポットレーザ照射手段をそれぞれ用いる態様とすることができる。
【0017】
このように、先のレーザ照射手段に従属して移動する次のレーザ照射手段を用いることにより、レーザ照射手段を移動手段によって移動させる際に、その移動手段の構成を簡素なものとすることができる。
【0018】
レーザ照射手段として第1レーザ照射部および第2レーザ照射部を備えるダブルスポットレーザ照射手段を用い、第1レーザ照射部によって第1照射を行い第2レーザ照射部によって第2照射を行う態様とすることができる。
【0019】
あるいは、レーザ照射手段が、1つのレーザ照射部と、レーザ照射部から照射されたレーザ光を分割するレーザ光分割手段とを備えており、第1レーザ照射部から出射されるレーザ光に相当するレーザ光および第2レーザ照射部から出射されるレーザ光に相当するレーザ光が、レーザ分割手段からそれぞれ出射される態様とすることもできる。
【0020】
これらの手段によって、先のレーザ照射手段に従属して移動する次のレーザ照射手段からの再度のレーザ光の出射が行われる態様とを容易に構成することができる。
【0021】
また、上記課題を解決した本発明に係るレーザ溶接装置は、レーザ光を透過する光透過性樹脂とレーザ光を吸収して溶融する光吸収性樹脂とを重ね合わせてなる被溶接物に対してレーザ光を照射するレーザ照射手段と、光透過性樹脂と光吸収性樹脂とのそれぞれの溶接面同士を向かい合わせた状態で、両樹脂を押圧する押圧手段と、レーザ照射手段を被溶接物に対して相対的に移動させる移動手段と、を備え、移動手段は、押圧手段が、光透過性樹脂と光吸収性樹脂とのそれぞれの溶接面同士を向かい合わせた状態で、両樹脂を押圧しているときに、光吸収性樹脂の溶融温度以上になるレーザ光強度とされたレーザ光を光透過性樹脂側から光吸収性樹脂に対して照射する第1照射を行うレーザ照射手段を溶接方向に沿って移動させ、押圧手段で被溶接物を押圧した状態のまま、光吸収性樹脂のガラス転移点温度以上になるレーザ光強度とされたレーザ光を光透過性樹脂側から光吸収性樹脂に対して再度照射する第2照射を行うレーザ照射手段を溶接方向に沿って移動させるものである。
【0022】
レーザ照射手段が、レーザ照射部を1つ備えるシングルスポットレーザ照射手段である態様とすることができるし、レーザ照射手段が、レーザ照射部を2つ備えるダブルスポットレーザ照射手段である態様とすることもできる。
【0023】
【発明の実施の形態】
以下、図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、各図面は説明の理解を容易にするため、誇張ないし省略している部分があり、その寸法比率は必ずしも実際のそれとは一致しない。
【0024】
図1は、本発明の第1の実施形態に係るレーザ溶接装置の側面図である。図1に示すように、本実施形態に係るレーザ溶接方法に用いるレーザ溶接装置1は、本発明のレーザ照射手段であるツインスポット照射ヘッド(以下、本実施形態において「照射ヘッド」という)2を備えている。また、照射ヘッド2には、半導体レーザ出射装置3が接続されており、半導体レーザ出射装置3から照射ヘッド2に対してレーザ光が供給される。照射ヘッド2の下方位置には、載置台4が配置されている。載置台4の上には、被溶接物であるワーク5を載置するステージ6が設けられており、このステージ6の上にワーク5が載置されている。
【0025】
ワーク5は、レーザ光を透光する光透過性樹脂(レーザ透過性樹脂)からなる光透過性樹脂層5Aと、レーザ光を吸収して溶融する光吸収性樹脂(レーザ吸収性樹脂)からなる光吸収性樹脂層5Bとを備えている。光透過性樹脂層5Aは、光吸収性樹脂層5Bの下層とされており、載置台4には、光吸収性樹脂層5Bが接しており、その上層に光透過性樹脂層5Aが配置されている。
【0026】
また、照射ヘッド2には、第1光出射部2Aと第2光出射部2Bが形成されている。照射ヘッド2では、供給されたレーザ光を2つに分割し、それぞれ第1光出射部2Aおよび第2光出射部2BからレーザビームL1,L2を出射する。第1光出射部2Aから出射されるレーザビームL1の光強度は、光吸収性樹脂層5Bを構成する光吸収性樹脂の溶融温度になるレーザ光強度とされている。また、第2光出射部2Bから出射されるレーザビームL2の光強度は、光吸収性樹脂のガラス転移点温度以上になるレーザ光強度とされている。
【0027】
さらに、載置台4には、押圧手段である圧力掛け治具7が設けられている。圧力掛け治具7は、ワーク5の前後位置に配置され、上下方向に延在するシリンダ8を2本備えている。シリンダ8は、載置台4に固定されたシリンダ筒8Aとシリンダ筒8Aに出入りすることによって、シリンダ筒8Aとその先端部との距離を伸縮させるシリンダロッド8Bとを備えている。シリンダロッド8Bがシリンダ筒8Aに出入りすることにより、シリンダロッド8Bの先端部が上下動する。シリンダロッド8Bの先端部には、押圧パッド9が取り付けられており、シリンダロッド8Bの先端部を上下動させることにより押圧パッド9はシリンダ8の伸縮方向(上下方向)に移動させられる。また、押圧パッド9とワーク5との間には、ワーク5に当接して押圧力を伝達する押圧板10が介在されている。押圧板10は、アルミニウムによって形成されており、図2に示すように、ワーク5におけるレーザビームL1,L2が照射される溶接部分Wを除いた部分のほぼ全面に当接している。そして、シリンダ8を収縮させ、シリンダロッド8Bとともに押圧パッド9を下降させることにより、押圧パッド9の下面をワーク5に当接させ、光透過性樹脂層5Aと光吸収性樹脂層5Bとの溶接面同士を向かい合わせた状態で、両樹脂層5A,5Bを押圧パッド9によって押圧する。このとき、押圧板10を用いることにより、ワーク5を均等にステージ6に押圧し、ワーク5における両樹脂層5A,5B同士を確実に当接させることができる。なお、押圧板10としては、剛性を有するものが好適に用いられる。
【0028】
さらに、照射ヘッド2には、第1温度モニタ11および第2温度モニタ12が接続されている。また、照射ヘッド2には、図示しない2つの2色式表面温度センサからなる温度センサが設けられており、第1温度モニタ11および第2温度モニタ12は、それぞれの温度センサに接続されている。これらの温度センサでは、照射ヘッド2における光出射部2A,2Bから出射されたレーザビームL1,L2が照射されるワーク5の表面温度を計測している。計測された温度は、それぞれ第1温度モニタ11および第2温度モニタ12に表示される。
【0029】
他方、照射ヘッド2は、照射ヘッドを移動させる図示しない移動装置に取り付けられており、この移動装置によって照射ヘッド2をワーク5の溶接方向に沿って移動させることができる。照射ヘッド2における第1光出射部2Aと、第2光出射部2Bとは、照射ヘッド2の移動方向に沿って離間して配置されており、第1光出射部2Aは第2光出射部2Bよりも、矢印Fで示す溶接方向の前方位置に配置されている。以後、「前方」、「後方」の表現については、特に示さない限り、この溶接方向を基準とする。
【0030】
以上の構成を有するレーザ溶接装置1によるレーザ溶接方法について説明する。レーザ溶接を行う際には、レーザ溶接装置1における載置台4の上にワーク5を載置する。ワーク5を載置したら、圧力掛け治具7によってワーク5を押圧する。このとき、ワーク5には、圧力掛け治具7によって均等に圧力が加えられる。圧力掛け治具7でワーク5を押圧したら、図示しない移動装置を駆動させて、照射ヘッド2を図2および図3に示す矢印Fで示す溶接方向へ移動させる。そして、照射ヘッド2の第1光出射部2Aから出射されるレーザビームL1によってワーク5を照射する。第1光出射部2Aから出射されるレーザビームL1は、光吸収性樹脂の溶融温度になるレーザ光強度に調節されている。このようにレーザビームL1を出射すると、レーザビームL1が照射された部分では、上層の光透過性樹脂層5Aを透過し、光吸収性樹脂層5Bに到達し、レーザビームL1によって光吸収性樹脂層5Bが照射される。
【0031】
光吸収性樹脂層5BにおけるレーザビームL1が照射された部位は、レーザビームL1によって溶融温度、たとえば融点以上にまで加熱されて溶融される。また、レーザビームL1によって光吸収性樹脂層5Bが加熱されることにより、光吸収性樹脂層5Bに生じた熱が光透過性樹脂層5Aに伝えられて、光透過性樹脂層5Aが溶融する。こうして、光吸収性樹脂層5Bおよび光透過性樹脂層5Aが溶融した後、両樹脂層5A,5Bは圧力掛け治具7によって押圧されている。このため、溶融した両樹脂層5A,5Bの部分が両樹脂層5A,5Bの界面から流出することが止められている。流出を止められた両樹脂層5A,5Bの溶融した部分は、両樹脂層5A,5Bの界面における隙間に流れ込んでその隙間を埋め、両樹脂層5A,5Bの界面をなじませている。
【0032】
続いて、図示しない移動装置によって、照射ヘッド2を溶接方向に移動させると、レーザビームL1が照射された位置に、第2光出射部2Bから出射されるレーザビームL2が照射される。第2光出射部2Bから出射されるレーザビームL2は、光吸収性樹脂層5Bのガラス転移点温度以上になるレーザ光強度に調節されている。このとき、ワーク5は、圧力掛け治具7(図1)によって押圧された状態のままである。レーザビームL2が照射されると、両樹脂層5A,5Bの溶融部分が冷却された固化するのを遅らせている。両樹脂層5A,5Bの溶融部分の固化遅らされると、その分、両樹脂層5A,5Bが界面の隙間に流れ込む時間を稼ぐことができ、さらに良好に界面をなじませることができる。このように、光吸収性樹脂の溶融温度以上になるレーザ光強度のレーザビームL1が照射された部位がガラス転移点温度以上になるレーザ光強度に調節されたレーザビームL2を照射させることにより、溶融した部分がさらになじまされて、強固な溶着とすることができる。このようにして、ワーク5の溶接が行われる。
【0033】
ここで、光透過性樹脂層5Aと光吸収性樹脂層5Bとをなじませてから固化・溶着させるときのレーザビームの照射条件について説明する。光透過性樹脂層5Aおよび光吸収性樹脂層5Bを溶融させて両樹脂層5A,5Bをなじませ、強固に溶着するためには、両性樹脂層5A,5Bの十分な変形量および溶融量が必要となる。これらの変形量および溶融量とは、光透過性樹脂層5Aと光吸収性樹脂層5Bの間の隙間に入ってその隙間を埋めるだけの変形量および溶融量である。また、両樹脂層5A,5Bをなじませるには、溶融した液状の部分が両樹脂層5A,5Bの隙間を埋めるまでに移動するための十分な時間が必要である。
【0034】
たとえば、図4(a)に示す両樹脂層5A,5Bに対して第1光出射部2Aから、光吸収性樹脂層5Bの溶融温度以上、たとえば溶着最適温度程度となるレーザ光強度となるレーザビームL1を照射し、両樹脂層5A,5Bが十分に溶融したとする。この場合であっても、溶融した部分が十分に移動する時間を与えられていない場合、図4(b)に示す状態に変わるに止まり、両樹脂層5A,5Bの隙間を完全に埋めることができない自体が起こりえる。
【0035】
この点、本実施形態に係るレーザ溶接方法においては、第1光出射部2Aから出射されたレーザビームL1がワーク5に照射された後、同一の位置に第2光出射部2BからレーザビームL2が出射される。このレーザビームL2が出射されることにより、両樹脂層5A,5Bの溶融した部分の固化を遅らせ、両樹脂層5A,5Bの隙間に移動するための時間を確保することができる。このため、両樹脂層5A,5B間の界面をなじませて、その溶着を強固なものとすることができる。
【0036】
ワーク5におけるレーザビームL1,L2の照射部分の温度は、それぞれ第1温度モニタ11および第2温度モニタ12に表示され監視されている。各温度モニタ11,12に表示される温度に基づいて、溶接状態の監視を行うことができる。そして、この溶接状態の監視の結果から、溶接条件を適宜変えることができる。
【0037】
たとえば、ワーク5の面精度が高く、良好な溶接が行われている場合には、第1温度モニタ11に表示される温度は、図5に示すように、時間変化があった場合でもあまり大きな変化が見られないものとなる。ワーク5の面精度が高い場合には、ワーク間の隙間がほとんどないため、レーザ吸収性樹脂層5Bが吸収した熱量のうち、レーザ吸収性樹脂層5B自身を溶融させる熱量と、レーザ透過性樹脂層5Aを溶融させる熱量とが均一に利用されている。このため、溶融温度が安定するので、図5に示すような温度変化の場合には、ワーク5の面精度が高いと判断することができる。
【0038】
これに対して、ワーク5の面精度が低く、良好な溶接が行われない場合には、図6に示すように、時間変化に対してばらついた温度変化が見られる。ワーク5の面精度が低く、ワーク5の両樹脂層5A,5B間の隙間が大きくなってしまうと、両樹脂層5A,5Bが接触しているところでは一定温度となる。しかし、空気の方がワーク5よりも熱伝導率が低いことから、両樹脂層5A,5Bが非接触のところではレーザ吸収性樹脂層5Bが吸収した熱量がレーザ透過性樹脂層5Aを溶かすことに使われずにその隙間で熱がこもってしまう。その結果、隙間部分の温度は高くなってしまい、測定温度はばらつくので、図6に示すような温度変化の場合には、溶着が安定しないことを示す。
【0039】
このように、ワークの面精度が低い場合には、溶接条件を変えることができる。たとえば、面精度が低い場合には、ワークの溶接速度を遅くして、両樹脂層5A,5Bをなじませる時間を長くすることができる。また、レーザ光強度を高くして、ワーク5の溶融量が多くなるようにすることもできる。このとき、具体的には、たとえば第2光出射部2Bから出射されるレーザビームL2のレーザ光強度を、光吸収性樹脂層5Bの溶融温度にまで上昇させることもできる。あるいは、図7(a)に示すように、第1光出射部2A(図1)から出射されるレーザビームL1の照射面積が大きくなるようにすることができるし、図7(b)に示すように、第1光出射部2Aから複数のレーザビームL11,L12,L13…を照射する態様とすることもできる。
【0040】
他方、圧力掛け治具7による押圧状態が悪いことも、好適な溶着を妨げる要因となる。このようなワーク5の面精度の低さや圧力掛け治具7の押圧状態の悪さは第1温度モニタ11に表示される温度変化によってリアルタイムで監視することができる。たとえば、図8(a)に示す均等な山型の温度変化を示すのは、ワーク5の面精度が低い場合であり、図8(b)に示すような山型がばらついてその一部が高くなるような温度変化を示すのは、圧力掛け治具7による圧力が均等に掛かっていない場合であると考えられる。また、図9(a)に示すようなほとんど均等であるものの1点だけが高温となる温度変化を示すのは、ワーク5の界面におおきな傷があり、その傷による生じる隙間のために温度が上昇した場合であると考えられる。さらに、図9(b)に示すような途中まで均等にばらついていて、途中から異なるばらつきとなるのは、ワーク5の界面に段差が生じている場合であると考えられる。ただし、図8および図9に示したような温度変化を示していても、第2温度モニタ12に表示される温度変化がある程度一定となっている場合には、強固な溶着が行われていると考えることができる。
【0041】
これに対して、たとえば第2温度モニタ12に表示された温度が、図10(a)に示すように、一部が突出して他の部分がほぼ平坦な温度変化を示す場合について考える。この場合には、2回のレーザビームL1,L2の照射によっても、ワーク5の界面における傷の部分の隙間が埋まらなかったことを意味している。また、図10(b)に示すように、平坦な温度変化が、一部の突出した部分を境に段差を持って変わっている場合について考える。この場合には、2回のレーザビームL1,L2の照射によっても、ワークの界面の段差がなくならなかったことを意味している。これらの場合には、突出する部分の時間的な割合が低く、たとえば全体の1割程度である場合には、ある程度の強固な溶着が行われていると判断し、それ以外は、十分な溶着が行われなかったと判断することができる。
【0042】
ところで、レーザによる樹脂の溶着では、レーザによる溶融速度を速くすると溶融深さが浅くなる。また、樹脂は熱に対する応答が遅く、溶融粘度が樹脂の種類によって異なる。これらの点を加味して、図11(a)に示すように、形状精度が低い樹脂、図11(b)に示す表面精度が低い樹脂を溶融する場合には、両樹脂層5A,5Bをなじませるための対策として、溶融速度を遅くする、スポットサイズを大きくする、温度を十分に上げることなどが考えられる。溶融速度を遅くすることにより、光吸収性樹脂層5Bが変形し溶融移動して両樹脂層5A,5B間の隙間を埋める時間や変形、溶融量を稼ぐ時間をとることができる。また。溶融温度を上げることにより、両樹脂層5A,5Bを十分に溶融させることにより、両樹脂層5A,5Bをなじませやすくすることができる。
【0043】
次に、本実施形態に係るレーザ溶接方法の効果について説明する。
【0044】
本発明者らは、従来のレーザ溶接方法によるワークの溶接強度と本発明に係るレーザ溶接方法によるワークの溶接強度を比較する実験を行った。従来のレーザ溶接方法として、いわゆるシングルスポットによる1回の溶接により、ワークを溶接した。また、本実施形態に係るレーザ溶接方法として、上記実施形態に示すレーザ溶接方法によるレーザ溶接により、ワークを溶接した。そのときの溶着面の温度と引っ張り強さとの関係を測定した。なお、溶接速度は、ともに50mm/sとした。その結果を図12に示す。また、本実施形態に係るレーザ溶接方法では、第2温度モニタ12に表示される温度を測定した。
【0045】
図12に示すように、本実施形態に係るレーザ溶接方法では、従来の溶接方法における同一の温度であっても、ほとんどの温度で高い引っ張り強度を示した。この結果から判るように、本実施形態に係るレーザ溶接によれば、強固な溶着を行うことができる。
【0046】
ここで、上記実施形態においては、光吸収性樹脂層5Bの溶融温度およびガラス転移点温度を用いているが、これらの温度は、樹脂の種類によって異なる。光吸収性樹脂層5Bを構成する樹脂が結晶性樹脂の場合には、溶融温度は融点となり、光吸収性樹脂層5Bを構成する樹脂が非結晶性樹脂の場合には溶融温度は軟化点となる。各樹脂におけるガラス転移点温度、融点、および軟化点温度は、それぞれ表1に示す通りである。
【0047】
【表1】

Figure 0004202836
次に、本発明の第2の実施形態について説明する。図13は、本実施形態に係るワーク溶接装置の側面図である。本実施形態においては、レーザ照射手段として、シングルスポット照射ヘッドを備えている点で、上記第1の実施形態と主に異なり、その相違点について主に説明する。図13に示すように、本実施形態に係るレーザ溶接装置20は、レーザ照射手段としてシングルスポット照射ヘッド(以下、本実施形態において「照射ヘッド」という)21を備えている。照射ヘッド21には、半導体レーザ出射装置3が接続されており、半導体レーザ出射装置3から照射ヘッド21に対してレーザ光が供給される。また、半導体レーザ出射装置3は、照射ヘッド21から出射するレーザビームのレーザ光強度を調整する強度調整機能を備えている。
【0048】
また、照射ヘッド21には、温度モニタ22が接続されている。また、照射ヘッド21には、図示しない2色式表面温度センサからなる温度センサが設けられている。この温度センサは、温度モニタ22に接続され、照射ヘッド21から出射されたレーザビームLが照射されるワーク5の表面温度を計測して、温度モニタ22に出力している。
【0049】
次に、本実施形態に係るレーザ溶接装置を用いたレーザ溶接方法について説明する。レーザ溶接を行う際には、上記第1の実施形態と同様、圧力掛け治具7によってワークをステージ6に押圧し、ワーク5における両樹脂層5A,5Bの溶接面同士を当接させる。この状態で、図示しない移動装置を用いて照射ヘッド21を溶接方法に移動させる。このとき、照射ヘッド21から出射されるレーザビームLのレーザ光強度は、光吸収性樹脂層5Bの溶融温度以上の温度、たとえば溶融最適温度となるように調整されている。図14(a)に示すように、このようなレーザ光強度に調整されたレーザビームL21を照射することにより、光吸収性樹脂層5Bが加熱されて溶融し、光吸収性樹脂層5Bの熱により光透過性樹脂層5Aも溶融する。この両樹脂層5A,5Bの溶融した部分が両樹脂層5A,5Bの隙間に入り込み、両樹脂層5A,5Bの間の界面をなじませる。
【0050】
こうして、ワーク5における溶接位置の溶接が一通り済んだら、圧力掛け治具7でワーク5を押圧した状態のまま、照射ヘッド21を同一の位置に移動させ、一回レーザ光を照射した溶接位置に、再びレーザビームLを照射する。図14(b)に示すように、再びレーザビームL22を照射する際のレーザビームLのレーザ光強度は、光吸収性樹脂層5Bのガラス転移点以上となる温度となるように調整されている。このようなレーザ光強度に調整されたレーザビームL22を照射することにより、両樹脂層5A,5Bの溶融部分の固化遅らせることができる。したがって、その分、両樹脂層5A,5Bが界面の隙間に流れ込む時間を稼ぐことができて良好に界面をなじませることができるので、両樹脂層5A,5Bを強固に溶着とすることができる。このようにして、ワーク5の溶接が行われる。
【0051】
このように、本実施形態に係るシングルスポットの照射ヘッド21を用いて、最初に光吸収性樹脂層5Bの溶融温度以上の温度となるレーザ光強度でレーザビームL21を照射し、続いて光吸収性樹脂層5Bのガラス転移点以上の温度となるレーザ光強度のレーザビームL22を照射することにより、ワーク5を強固に溶着させることができる。
【0052】
また、本実施形態に係るレーザ溶接装置20は、シングルスポットの照射ヘッド21を用いて、これを複数回移動させることで、複数回のレーザビームの照射を行うようにしている。このため、溶接位置が円や直角などのツインスポットでの溶接が比較的困難な位置であっても、容易に溶接を行うことができる。
【0053】
さらに、複数回のレーザビームの照射を行う際に、高速かつ確実な溶接を行おうとすれば、レーザビームの照射形状を工夫することができる。たとえば、図15(a)に示すように、溶接方向に沿って長径部分が配置されただ円形の照射形状となるレーザビームL23とすることもできるし、図15(b)に示すように、溶接方向に沿って長辺が配置された長方形形状の照射形状となるレーザビームL24とすることもできる。
【0054】
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。たとえば、ワーク形状が複雑であったり、材質が途中で変化したりする場合には、それらの形状や材質に合わせて、レーザ光強度を設定する態様とすることもできる。
【0055】
【発明の効果】
以上の説明のとおり、本発明によれば、複数回のレーザ照射を行うことにより、樹脂をレーザ溶接するにあたり、被溶接物を強固に溶接するレーザ溶接を行うことができるようにすることができる。
【図面の簡単な説明】
【図1】第1の実施形態に係るレーザ溶接装置の側面図である。
【図2】第1の実施形態に係るレーザ溶接装置の平面図である。
【図3】溶接を行っている状態を示す側断面図である。
【図4】(a)は、溶接が行われる前のワークの側断面図、(b)は、最初のレーザビームが照射された後のワークの断面図である。
【図5】ワークの面精度が高い場合のワークの温度変化の一例を示すグラフである。
【図6】ワークの面精度が低い場合のワークの温度変化の一例を示すグラフである。
【図7】(a)は照射面積を大きくしたレーザビームが照射されるワークの平面図、(b)は複数のレーザビームが照射されるワークの平面図である。
【図8】(a),(b)とも、ワークの面精度が低い場合のワークの温度変化の一例を示すグラフである。
【図9】(a),(b)とも、ワークの面精度が低い場合のワークの温度変化の一例を示すグラフである。
【図10】(a),(b)とも、ワークの面精度が低く、溶接不良と判断される場合のワークの温度変化の一例を示すグラフである。
【図11】(a)は形状精度が低い場合の樹脂の側断面図、(b)は表面精度が低い樹脂の表面部分の拡大図である。
【図12】シングルスポット照射およびダブルスポット照射における溶着面の温度と引っ張り強さとの関係を示すグラフである。
【図13】第2の実施形態に係るレーザ溶接装置の側面図である。
【図14】(a)は最初のレーザビームの照射を行っている際のワークの側断面図、(b)は2回目のレーザビームの照射を行っている際のワークの側断面図である。
【図15】(a)はだ円形の照射形状となるレーザビームが照射されたワークの平面図、(b)は長方形形状の照射形状となるレーザビームが照射されたワークの平面図である。
【符号の説明】
1…レーザ溶接装置、2…照射ヘッド、2A,2B…光出射部、3…半導体レーザ出射装置、4…載置台、5…ワーク、5A…レーザ透過性樹脂層、5B…レーザ吸収性樹脂層、6…ステージ、7…圧力掛け治具、8…シリンダ、8A…シリンダ筒、8B…シリンダロッド、9…押圧パッド、10…押圧板、11,12…温度モニタ、20…レーザ溶接装置、21…照射ヘッド、22…温度モニタ、L,L1,L2…レーザビーム、W…溶接部分。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser welding method and apparatus for welding a workpiece by irradiating laser beams from a laser irradiation unit to the workpieces made of superposed resin materials.
[0002]
[Prior art]
Japanese Patent Publication No. 62-49850 (Patent Document 1) discloses a method of performing laser welding on a workpiece formed by superposing a light-transmitting resin that transmits laser light and a light-absorbing resin that absorbs and melts laser light. There is a bonding method disclosed in the above. In this bonding method, a non-absorbing resin and an absorptive resin are superposed on the laser beam, and both the resins are bonded by irradiating the laser beam from the non-absorbing resin side.
[0003]
On the other hand, Japanese Patent Laid-Open No. 10-111471 (Patent Document 2) discloses a workpiece welding method using two laser beams. In this welding method, a laser beam is divided into two by a mirror, and a member to be welded such as a metal is welded by the two divided laser beams.
[0004]
[Patent Document 1]
Japanese Examined Patent Publication No. 62-49850
[0005]
[Patent Document 2]
JP-A-10-111471
[0006]
[Problems to be solved by the invention]
By the way, in the laser welding method etc. which were indicated by the above-mentioned patent documents 1, it is desirable to join both resin firmly. In order to perform such strong bonding, it is conceivable to perform laser welding using two laser beams as disclosed in Patent Document 2 above.
[0007]
However, even if laser irradiation is performed a plurality of times using only two laser beams, high welding strength cannot always be obtained. For this reason, there is room for studying effective welding conditions and the like when two laser beams are used for the resin material.
[0008]
Then, the subject of this invention is enabling it to perform the laser welding which welds a to-be-welded object firmly in performing laser welding of resin by performing laser irradiation of multiple times.
[0009]
[Means for Solving the Problems]
  The laser welding method according to the present invention that has solved the above-mentioned problems is relative to an object to be welded formed by superposing a light-transmitting resin that transmits laser light and a light-absorbing resin that absorbs and melts the laser light. A laser welding method for irradiating an object to be welded with laser light from a moving laser irradiation means, melting the light-absorbing resin, and welding the light-transmitting resin and the light-absorbing resin, the light-transmitting resin In the state where the respective welded surfaces of the resin and the light-absorbing resin face each other, the two resins are pressed by the pressing means, and the laser light intensity that is equal to or higher than the melting temperature of the light-absorbing resin is emitted from the laser irradiation means. Irradiate the light-absorbing resin from the transparent resin sidePerform the first irradiation,With the pressed state, the laser light intensity becomes higher than the glass transition temperature of the light-absorbing resin, and the laser light emitted from the laser irradiation means is irradiated again from the light-transmitting resin side to the light-absorbing resin.Perform the second irradiationIt is characterized by this.
[0010]
In the laser welding method according to the present invention, when the laser beam is irradiated a plurality of times, pressing is performed in a state where the respective welding surfaces of the light transmitting resin and the light absorbing resin are brought into contact with each other by the pressing means. In this state, first, the laser beam emitted from the laser irradiating means with the laser beam intensity that is equal to or higher than the melting temperature of the light absorbing resin is irradiated from the light transmitting resin side to the light absorbing resin. The light-absorbing resin absorbs laser light and melts and generates heat. This heat is transferred from the light-absorbing resin to the light-transmitting resin, and the light-transmitting resin is also melted. Thus, when both resins are melted, both resins are brought into contact with each other and pressed by the pressing means. For this reason, the melted portion of both resins is not released from the interface between the two resins, but flows into the gap between the two resins, so that the interface between the two resins is blended.
[0011]
However, if the two resins are melted and then cooled immediately, the melted portion of both resins solidifies without filling the gap, and there is a concern that the two resins cannot be completely blended. In this regard, in the laser welding method according to the present invention, the laser beam emitted from the laser irradiation means is transmitted through the laser beam with the laser beam intensity equal to or higher than the glass transition temperature of the light-absorbing resin while both the resins are pressed. The light-absorbing resin is irradiated again from the photosensitive resin side. For this reason, since it is possible to earn time for the portions of the two resins melted by the previous laser beam irradiation to flow into the interface between the two resins, the two resins can be sufficiently familiar. Thereafter, when the irradiation of the laser beam is completed, both the melted resins are solidified, and both the resins can be firmly welded.
[0012]
The melting temperature in the present invention differs depending on the type of the light absorbing resin. When the light absorbing resin is a crystalline resin, the melting temperature becomes the melting point, and the light absorbing resin is an amorphous resin. In this case, the melting temperature becomes the softening point temperature.
[0013]
  here,After the first irradiation by the laser irradiation unit is completed, the laser irradiation unit is moved to the same position as the position where the first irradiation is started, and the second irradiation by the laser irradiation unit is performed on the welding position where the first irradiation is performed. It can be set as the aspect which performs.
[0014]
Thus, by emitting the next laser beam by the next laser irradiation means that moves independently of the previous laser irradiation means, it is possible to easily adjust the time and interval of laser irradiation by both laser irradiation means. It is possible to easily perform welding in accordance with the properties of the workpiece. In particular, the laser irradiation means can be easily moved even when the part to be welded is a circle or a right angle. As the next laser irradiation means that moves independently of the previous laser irradiation means in the present invention, the next laser irradiation means that is separate from the previous laser irradiation means can be used, or the previous laser irradiation means can be used. The laser irradiation means is the same as the irradiation means. For example, the laser irradiation means after moving another part of the workpiece can be used as the next laser irradiation means.
[0015]
At this time, a single spot laser irradiation unit including one laser irradiation unit can be used as the laser irradiation unit. With a single spot laser irradiating means having one laser irradiating portion, a laser irradiating means having a simple configuration can be obtained.
[0016]
  Further, the laser irradiation means includes a first laser irradiation unit and a second laser irradiation unit that moves depending on the first laser irradiation unit,First laser irradiation unitAfter the laser beam is emitted fromSecond laser irradiation unitThe laser beam can be emitted again from the laser beam.
  Further, the laser irradiation means includes a first laser irradiation means and a second laser irradiation means that moves independently of the first laser irradiation means, and performs the first irradiation by the first laser irradiation means, Then, it can be set as the aspect which performs 2nd irradiation by a 2nd laser irradiation means.
  Further, as the first laser irradiation unit and the second laser irradiation unit, a single spot laser irradiation unit including one laser irradiation unit can be used.
[0017]
In this way, by using the next laser irradiation means that moves in dependence on the previous laser irradiation means, the structure of the moving means can be simplified when the laser irradiation means is moved by the movement means. it can.
[0018]
  As laser irradiation meansA first laser irradiation unit and a second laser irradiation unit are provided.Using double spot laser irradiation means,First irradiation is performed by the first laser irradiation unit.,Second irradiation is performed by the second laser irradiation unit.It can be set as an aspect.
[0019]
  Alternatively, the laser irradiation unit includes one laser irradiation unit and a laser beam dividing unit that divides the laser beam irradiated from the laser irradiation unit,First laser irradiation unitA laser beam corresponding to the laser beam emitted fromSecond laser irradiation unitThe laser light corresponding to the laser light emitted from the laser beam may be emitted from the laser dividing unit.
[0020]
By these means, it is possible to easily configure a mode in which the laser beam is emitted again from the next laser irradiation means that moves depending on the previous laser irradiation means.
[0021]
  Moreover, the laser welding apparatus according to the present invention that has solved the above-described problems is directed to an object to be welded in which a light-transmitting resin that transmits laser light and a light-absorbing resin that absorbs and melts laser light are overlapped. Laser irradiation means for irradiating laser light, pressing means for pressing both resins in a state where the respective welded surfaces of the light transmitting resin and the light absorbing resin face each other, and the laser irradiation means on the workpiece And a moving means for moving relative to theTransportation meansThe pressing means presses both resins with the welded surfaces of the light-transmitting resin and light-absorbing resin facing each other.Welding laser irradiating means for performing a first irradiation for irradiating the light absorbing resin from the light transmitting resin side with a laser beam having a laser beam intensity equal to or higher than the melting temperature of the light absorbing resin. The laser light intensity is increased from the light-transmitting resin side to the light-absorbing resin side while the workpiece is pressed by the pressing means, and the laser light intensity is higher than the glass transition temperature of the light-absorbing resin. The laser irradiation means for performing the second irradiation for irradiating the resin again is moved along the welding direction.Is.
[0022]
The laser irradiation means may be a single spot laser irradiation means including one laser irradiation unit, and the laser irradiation means may be a double spot laser irradiation unit including two laser irradiation units. You can also.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, each drawing has a part exaggerated or omitted for easy understanding of the description, and the dimensional ratio does not necessarily match the actual one.
[0024]
FIG. 1 is a side view of the laser welding apparatus according to the first embodiment of the present invention. As shown in FIG. 1, a laser welding apparatus 1 used in a laser welding method according to this embodiment includes a twin spot irradiation head (hereinafter referred to as “irradiation head” in this embodiment) 2 that is a laser irradiation means of the present invention. I have. A semiconductor laser emitting device 3 is connected to the irradiation head 2, and laser light is supplied from the semiconductor laser emitting device 3 to the irradiation head 2. A mounting table 4 is disposed below the irradiation head 2. On the mounting table 4, a stage 6 on which a work 5 that is an object to be welded is placed is provided, and the work 5 is placed on the stage 6.
[0025]
The workpiece 5 is made of a light-transmitting resin layer 5A made of a light-transmitting resin (laser-transmitting resin) that transmits laser light, and a light-absorbing resin (laser-absorbing resin) that absorbs and melts the laser light. And a light-absorbing resin layer 5B. The light-transmitting resin layer 5A is a lower layer of the light-absorbing resin layer 5B, the light-absorbing resin layer 5B is in contact with the mounting table 4, and the light-transmitting resin layer 5A is disposed thereon. ing.
[0026]
Further, the irradiation head 2 is formed with a first light emitting part 2A and a second light emitting part 2B. The irradiation head 2 divides the supplied laser light into two and emits laser beams L1 and L2 from the first light emitting unit 2A and the second light emitting unit 2B, respectively. The light intensity of the laser beam L1 emitted from the first light emitting portion 2A is set to the laser light intensity that becomes the melting temperature of the light-absorbing resin constituting the light-absorbing resin layer 5B. The light intensity of the laser beam L2 emitted from the second light emitting portion 2B is set to a laser light intensity that is equal to or higher than the glass transition temperature of the light-absorbing resin.
[0027]
Further, the mounting table 4 is provided with a pressure applying jig 7 as a pressing means. The pressure applying jig 7 includes two cylinders 8 that are disposed at the front and rear positions of the workpiece 5 and extend in the vertical direction. The cylinder 8 includes a cylinder cylinder 8A fixed to the mounting table 4 and a cylinder rod 8B that expands and contracts the distance between the cylinder cylinder 8A and its tip by entering and exiting the cylinder cylinder 8A. As the cylinder rod 8B enters and exits the cylinder cylinder 8A, the tip of the cylinder rod 8B moves up and down. A pressing pad 9 is attached to the tip of the cylinder rod 8B, and the pressing pad 9 is moved in the expansion / contraction direction (vertical direction) of the cylinder 8 by moving the tip of the cylinder rod 8B up and down. In addition, a pressing plate 10 that is in contact with the work 5 and transmits a pressing force is interposed between the pressing pad 9 and the work 5. The pressing plate 10 is made of aluminum and, as shown in FIG. 2, is in contact with almost the entire surface of the workpiece 5 except for the welding portion W irradiated with the laser beams L1 and L2. Then, the cylinder 8 is contracted, and the pressing pad 9 is lowered together with the cylinder rod 8B, whereby the lower surface of the pressing pad 9 is brought into contact with the work 5, and the light-transmitting resin layer 5A and the light-absorbing resin layer 5B are welded. The two resin layers 5A and 5B are pressed by the pressing pad 9 with the surfaces facing each other. At this time, by using the pressing plate 10, the workpiece 5 can be uniformly pressed against the stage 6, and both the resin layers 5 </ b> A and 5 </ b> B in the workpiece 5 can be reliably brought into contact with each other. In addition, as the press board 10, what has rigidity is used suitably.
[0028]
Furthermore, a first temperature monitor 11 and a second temperature monitor 12 are connected to the irradiation head 2. Further, the irradiation head 2 is provided with a temperature sensor including two unillustrated two-color surface temperature sensors, and the first temperature monitor 11 and the second temperature monitor 12 are connected to the respective temperature sensors. . These temperature sensors measure the surface temperature of the workpiece 5 irradiated with the laser beams L1 and L2 emitted from the light emitting portions 2A and 2B in the irradiation head 2. The measured temperatures are displayed on the first temperature monitor 11 and the second temperature monitor 12, respectively.
[0029]
On the other hand, the irradiation head 2 is attached to a moving device (not shown) that moves the irradiation head, and the irradiation head 2 can be moved along the welding direction of the workpiece 5 by this moving device. The first light emitting unit 2A and the second light emitting unit 2B in the irradiation head 2 are spaced apart from each other along the moving direction of the irradiation head 2, and the first light emitting unit 2A is the second light emitting unit. It is arrange | positioned rather than 2B in the front position of the welding direction shown by the arrow F. FIG. Hereinafter, unless otherwise indicated, the expression “front” and “back” is based on this welding direction.
[0030]
The laser welding method by the laser welding apparatus 1 having the above configuration will be described. When performing laser welding, the workpiece 5 is mounted on the mounting table 4 in the laser welding apparatus 1. When the workpiece 5 is placed, the workpiece 5 is pressed by the pressure applying jig 7. At this time, pressure is evenly applied to the work 5 by the pressure applying jig 7. When the workpiece 5 is pressed by the pressure applying jig 7, a moving device (not shown) is driven to move the irradiation head 2 in the welding direction indicated by the arrow F shown in FIGS. Then, the workpiece 5 is irradiated with the laser beam L1 emitted from the first light emitting portion 2A of the irradiation head 2. The laser beam L1 emitted from the first light emitting unit 2A is adjusted to a laser beam intensity that becomes a melting temperature of the light absorbing resin. When the laser beam L1 is emitted in this manner, the portion irradiated with the laser beam L1 passes through the upper light-transmitting resin layer 5A, reaches the light-absorbing resin layer 5B, and is absorbed by the laser beam L1. Layer 5B is irradiated.
[0031]
The portion of the light-absorbing resin layer 5B irradiated with the laser beam L1 is heated and melted to a melting temperature, for example, a melting point or higher, by the laser beam L1. Further, when the light absorbing resin layer 5B is heated by the laser beam L1, heat generated in the light absorbing resin layer 5B is transmitted to the light transmitting resin layer 5A, and the light transmitting resin layer 5A is melted. . Thus, after the light-absorbing resin layer 5B and the light-transmitting resin layer 5A are melted, both the resin layers 5A and 5B are pressed by the pressure applying jig 7. For this reason, the melted portions of the two resin layers 5A and 5B are prevented from flowing out from the interface between the two resin layers 5A and 5B. The melted portions of the two resin layers 5A and 5B that have stopped flowing out flow into gaps at the interfaces between the two resin layers 5A and 5B, fill the gaps, and familiarize the interfaces between the two resin layers 5A and 5B.
[0032]
Subsequently, when the irradiation head 2 is moved in the welding direction by a moving device (not shown), the position irradiated with the laser beam L1 is irradiated with the laser beam L2 emitted from the second light emitting unit 2B. The laser beam L2 emitted from the second light emitting unit 2B is adjusted to a laser beam intensity that is equal to or higher than the glass transition temperature of the light absorbing resin layer 5B. At this time, the workpiece 5 remains pressed by the pressure applying jig 7 (FIG. 1). When the laser beam L2 is irradiated, the molten portions of both the resin layers 5A and 5B are delayed from being cooled and solidified. If the melted portions of the resin layers 5A and 5B are delayed in solidification, it is possible to gain time for the resin layers 5A and 5B to flow into the gaps between the interfaces, and to better blend the interfaces. Thus, by irradiating the laser beam L2 adjusted to the laser beam intensity at which the portion irradiated with the laser beam L1 having the laser beam intensity that is equal to or higher than the melting temperature of the light-absorbing resin is equal to or higher than the glass transition temperature, The melted portion can be further blended to achieve strong welding. In this way, the workpiece 5 is welded.
[0033]
Here, the laser beam irradiation conditions when the light-transmitting resin layer 5A and the light-absorbing resin layer 5B are solidified and welded will be described. In order to melt the light-transmitting resin layer 5A and the light-absorbing resin layer 5B so that both the resin layers 5A and 5B are blended and firmly welded, a sufficient amount of deformation and melting of the amphoteric resin layers 5A and 5B is sufficient. Necessary. These deformation amount and melting amount are the deformation amount and the melt amount enough to enter the gap between the light-transmitting resin layer 5A and the light-absorbing resin layer 5B and fill the gap. In order to make both resin layers 5A and 5B conform, sufficient time is required for the molten liquid portion to move until the gap between both resin layers 5A and 5B is filled.
[0034]
For example, with respect to both the resin layers 5A and 5B shown in FIG. 4A, the laser beam intensity becomes higher than the melting temperature of the light-absorbing resin layer 5B, for example, about the optimum welding temperature, from the first light emitting portion 2A. It is assumed that both the resin layers 5A and 5B are sufficiently melted by irradiation with the beam L1. Even in this case, if the molten part does not have enough time to move, the state changes to the state shown in FIG. 4B, and the gap between the two resin layers 5A and 5B can be completely filled. The inability itself can happen.
[0035]
In this regard, in the laser welding method according to the present embodiment, after the workpiece 5 is irradiated with the laser beam L1 emitted from the first light emitting portion 2A, the laser beam L2 is emitted from the second light emitting portion 2B to the same position. Is emitted. By emitting the laser beam L2, it is possible to delay the solidification of the melted portions of both the resin layers 5A and 5B and secure a time for moving to the gap between the both resin layers 5A and 5B. For this reason, the interface between both the resin layers 5A and 5B can be blended and the welding can be strengthened.
[0036]
The temperatures of the irradiated portions of the workpiece 5 with the laser beams L1 and L2 are displayed and monitored on the first temperature monitor 11 and the second temperature monitor 12, respectively. Based on the temperatures displayed on the temperature monitors 11 and 12, the welding state can be monitored. The welding conditions can be changed as appropriate from the result of monitoring the welding state.
[0037]
For example, when the surface accuracy of the workpiece 5 is high and good welding is performed, the temperature displayed on the first temperature monitor 11 is too large even when there is a time change as shown in FIG. There will be no change. When the surface accuracy of the workpiece 5 is high, there is almost no gap between the workpieces. Therefore, out of the amount of heat absorbed by the laser-absorbing resin layer 5B, the amount of heat that melts the laser-absorbing resin layer 5B itself, and the laser-transmitting resin The amount of heat that melts the layer 5A is used uniformly. For this reason, since the melting temperature is stabilized, it can be determined that the surface accuracy of the workpiece 5 is high in the case of a temperature change as shown in FIG.
[0038]
On the other hand, when the surface accuracy of the workpiece 5 is low and good welding is not performed, as shown in FIG. 6, a temperature change that varies with a time change is seen. If the surface accuracy of the workpiece 5 is low and the gap between the resin layers 5A and 5B of the workpiece 5 becomes large, the temperature becomes constant at the place where the resin layers 5A and 5B are in contact. However, since the thermal conductivity of air is lower than that of the workpiece 5, the amount of heat absorbed by the laser-absorbing resin layer 5B dissolves the laser-transmitting resin layer 5A when the resin layers 5A and 5B are not in contact with each other. Heat is trapped in the gap without being used. As a result, the temperature of the gap portion becomes high, and the measured temperature varies. Therefore, in the case of a temperature change as shown in FIG. 6, it indicates that the welding is not stable.
[0039]
Thus, when the surface accuracy of the workpiece is low, the welding conditions can be changed. For example, when the surface accuracy is low, the welding speed of the workpiece can be slowed down and the time for allowing both resin layers 5A and 5B to blend can be lengthened. Further, the laser beam intensity can be increased to increase the amount of melting of the workpiece 5. At this time, specifically, for example, the laser beam intensity of the laser beam L2 emitted from the second light emitting unit 2B can be raised to the melting temperature of the light absorbing resin layer 5B. Alternatively, as shown in FIG. 7A, the irradiation area of the laser beam L1 emitted from the first light emitting portion 2A (FIG. 1) can be increased, and as shown in FIG. As described above, a plurality of laser beams L11, L12, L13... May be emitted from the first light emitting unit 2A.
[0040]
On the other hand, the poor pressing state by the pressure application jig 7 is also a factor that hinders suitable welding. Such low surface accuracy of the workpiece 5 and poor pressing state of the pressure applying jig 7 can be monitored in real time by a temperature change displayed on the first temperature monitor 11. For example, the uniform mountain-shaped temperature change shown in FIG. 8A is when the surface accuracy of the work 5 is low, and the mountain-shaped variation shown in FIG. It is considered that the temperature change that becomes high is a case where the pressure applied by the pressure applying jig 7 is not applied evenly. Moreover, although it is almost equal as shown in FIG. 9 (a), only one point shows a temperature change in which the temperature becomes high. There is a large flaw at the interface of the work 5, and the temperature is due to a gap generated by the flaw. This is thought to be the case when it rises. Furthermore, it is considered that the case where there is a step at the interface of the workpiece 5 is shown in FIG. However, even if the temperature change shown in FIGS. 8 and 9 is shown, if the temperature change displayed on the second temperature monitor 12 is constant to some extent, strong welding is performed. Can be considered.
[0041]
On the other hand, for example, consider a case where the temperature displayed on the second temperature monitor 12 shows a temperature change in which a part protrudes and the other part is substantially flat as shown in FIG. In this case, it means that the gap between the scratches at the interface of the workpiece 5 was not filled even by the two irradiations of the laser beams L1 and L2. Further, as shown in FIG. 10B, consider a case where a flat temperature change changes with a step at a part of the protruding portion. In this case, it means that the step at the interface of the workpiece was not lost even by the two irradiations of the laser beams L1 and L2. In these cases, when the protruding portion has a low time ratio, for example, about 10% of the whole, it is determined that a certain degree of strong welding is performed, and otherwise, sufficient welding is performed. Can be determined not to have been performed.
[0042]
By the way, in resin welding by laser, the melting depth becomes shallower when the melting rate by laser is increased. Resins have a slow response to heat, and the melt viscosity varies depending on the type of resin. In consideration of these points, when melting a resin having a low shape accuracy as shown in FIG. 11A and a resin having a low surface accuracy shown in FIG. 11B, both resin layers 5A and 5B are As measures for adapting, it is conceivable to slow the melting rate, increase the spot size, or raise the temperature sufficiently. By slowing down the melting rate, the light-absorbing resin layer 5B can be deformed, melted and moved to fill the gap between the resin layers 5A and 5B, time for deformation, and time for earning the melting amount. Also. By raising the melting temperature, both resin layers 5A, 5B can be sufficiently melted, so that both resin layers 5A, 5B can be easily blended.
[0043]
Next, the effect of the laser welding method according to the present embodiment will be described.
[0044]
The inventors of the present invention conducted an experiment to compare the welding strength of a workpiece by the conventional laser welding method and the welding strength of the workpiece by the laser welding method according to the present invention. As a conventional laser welding method, workpieces were welded by one-time welding using a so-called single spot. In addition, as a laser welding method according to the present embodiment, workpieces were welded by laser welding using the laser welding method described in the above embodiment. The relationship between the temperature of the weld surface at that time and the tensile strength was measured. The welding speed was 50 mm / s. The result is shown in FIG. In the laser welding method according to the present embodiment, the temperature displayed on the second temperature monitor 12 is measured.
[0045]
As shown in FIG. 12, the laser welding method according to the present embodiment showed high tensile strength at most temperatures even at the same temperature as in the conventional welding method. As can be seen from this result, the laser welding according to the present embodiment can perform strong welding.
[0046]
Here, in the said embodiment, although the melting temperature and glass transition point temperature of the light absorptive resin layer 5B are used, these temperature changes with kinds of resin. When the resin constituting the light-absorbing resin layer 5B is a crystalline resin, the melting temperature becomes the melting point, and when the resin constituting the light-absorbing resin layer 5B is an amorphous resin, the melting temperature is the softening point. Become. Table 1 shows the glass transition temperature, melting point, and softening temperature of each resin.
[0047]
[Table 1]
Figure 0004202836
Next, a second embodiment of the present invention will be described. FIG. 13 is a side view of the workpiece welding apparatus according to the present embodiment. The present embodiment is mainly different from the first embodiment in that a single spot irradiation head is provided as laser irradiation means, and the difference will be mainly described. As shown in FIG. 13, the laser welding apparatus 20 according to the present embodiment includes a single spot irradiation head (hereinafter referred to as “irradiation head” in the present embodiment) 21 as a laser irradiation means. The semiconductor laser emitting device 3 is connected to the irradiation head 21, and laser light is supplied from the semiconductor laser emitting device 3 to the irradiation head 21. Further, the semiconductor laser emitting device 3 has an intensity adjustment function for adjusting the laser beam intensity of the laser beam emitted from the irradiation head 21.
[0048]
A temperature monitor 22 is connected to the irradiation head 21. The irradiation head 21 is provided with a temperature sensor composed of a two-color surface temperature sensor (not shown). This temperature sensor is connected to the temperature monitor 22, measures the surface temperature of the workpiece 5 irradiated with the laser beam L emitted from the irradiation head 21, and outputs it to the temperature monitor 22.
[0049]
Next, a laser welding method using the laser welding apparatus according to this embodiment will be described. When laser welding is performed, the workpiece is pressed against the stage 6 by the pressure applying jig 7 as in the first embodiment, and the weld surfaces of the two resin layers 5A and 5B in the workpiece 5 are brought into contact with each other. In this state, the irradiation head 21 is moved to the welding method using a moving device (not shown). At this time, the laser beam intensity of the laser beam L emitted from the irradiation head 21 is adjusted to be a temperature equal to or higher than the melting temperature of the light absorbing resin layer 5B, for example, the optimum melting temperature. As shown in FIG. 14A, the light absorbing resin layer 5B is heated and melted by irradiating the laser beam L21 adjusted to such laser light intensity, and the heat of the light absorbing resin layer 5B is heated. As a result, the light-transmitting resin layer 5A is also melted. The melted portions of the two resin layers 5A and 5B enter the gaps between the two resin layers 5A and 5B, and the interface between the two resin layers 5A and 5B is blended.
[0050]
Thus, once the welding at the welding position on the work 5 is completed, the irradiation head 21 is moved to the same position while the work 5 is pressed by the pressure applying jig 7, and the welding position at which the laser beam is irradiated once. Then, the laser beam L is irradiated again. As shown in FIG. 14B, the laser beam intensity of the laser beam L when irradiating the laser beam L22 again is adjusted to a temperature that is equal to or higher than the glass transition point of the light-absorbing resin layer 5B. . By irradiating the laser beam L22 adjusted to such laser light intensity, solidification of the melted portions of both the resin layers 5A and 5B can be delayed. Accordingly, it is possible to gain time for the two resin layers 5A and 5B to flow into the gaps between the interfaces and to satisfactorily blend the interfaces, so that both the resin layers 5A and 5B can be firmly welded. . In this way, the workpiece 5 is welded.
[0051]
As described above, using the single spot irradiation head 21 according to the present embodiment, the laser beam L21 is first irradiated with the laser light intensity at a temperature equal to or higher than the melting temperature of the light absorbing resin layer 5B, and then the light absorption is performed. The workpiece 5 can be firmly welded by irradiating the laser beam L22 having a laser beam intensity at a temperature equal to or higher than the glass transition point of the conductive resin layer 5B.
[0052]
Further, the laser welding apparatus 20 according to the present embodiment uses a single spot irradiation head 21 to move the laser beam multiple times, thereby irradiating the laser beam multiple times. For this reason, even if the welding position is a position where welding at a twin spot such as a circle or a right angle is relatively difficult, welding can be easily performed.
[0053]
Further, when performing high-speed and reliable welding when performing laser beam irradiation a plurality of times, the laser beam irradiation shape can be devised. For example, as shown in FIG. 15A, a laser beam L23 having a circular irradiation shape in which a long diameter portion is arranged along the welding direction can be used. As shown in FIG. 15B, welding can be performed. A laser beam L24 having a rectangular irradiation shape with long sides arranged in the direction can also be used.
[0054]
The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, when the workpiece shape is complicated or the material changes in the middle, the laser light intensity can be set in accordance with the shape or material.
[0055]
【The invention's effect】
As described above, according to the present invention, by performing laser irradiation a plurality of times, it is possible to perform laser welding that firmly welds an object to be welded when laser welding a resin. .
[Brief description of the drawings]
FIG. 1 is a side view of a laser welding apparatus according to a first embodiment.
FIG. 2 is a plan view of the laser welding apparatus according to the first embodiment.
FIG. 3 is a side sectional view showing a state in which welding is performed.
4A is a side cross-sectional view of a workpiece before welding is performed, and FIG. 4B is a cross-sectional view of the workpiece after irradiation with the first laser beam.
FIG. 5 is a graph showing an example of a temperature change of a workpiece when the surface accuracy of the workpiece is high.
FIG. 6 is a graph showing an example of a temperature change of a workpiece when the surface accuracy of the workpiece is low.
7A is a plan view of a workpiece irradiated with a laser beam having a large irradiation area, and FIG. 7B is a plan view of a workpiece irradiated with a plurality of laser beams.
FIGS. 8A and 8B are graphs showing an example of a temperature change of a workpiece when the surface accuracy of the workpiece is low.
FIGS. 9A and 9B are graphs showing an example of a temperature change of a workpiece when the surface accuracy of the workpiece is low.
FIGS. 10A and 10B are graphs showing an example of a temperature change of a workpiece when it is determined that the surface accuracy of the workpiece is low and welding is poor.
11A is a side sectional view of a resin when the shape accuracy is low, and FIG. 11B is an enlarged view of the surface portion of the resin with low surface accuracy.
FIG. 12 is a graph showing the relationship between the temperature of the welded surface and the tensile strength in single spot irradiation and double spot irradiation.
FIG. 13 is a side view of a laser welding apparatus according to a second embodiment.
14A is a side cross-sectional view of a work when the first laser beam is irradiated, and FIG. 14B is a side cross-sectional view of the work when the second laser beam is irradiated. .
15A is a plan view of a workpiece irradiated with a laser beam having an elliptical irradiation shape, and FIG. 15B is a plan view of a workpiece irradiated with a laser beam having a rectangular irradiation shape.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Laser welding apparatus, 2 ... Irradiation head, 2A, 2B ... Light emission part, 3 ... Semiconductor laser emission apparatus, 4 ... Mounting stand, 5 ... Work, 5A ... Laser-permeable resin layer, 5B ... Laser-absorbing resin layer , 6 ... Stage, 7 ... Pressure applying jig, 8 ... Cylinder, 8A ... Cylinder cylinder, 8B ... Cylinder rod, 9 ... Press pad, 10 ... Press plate, 11, 12 ... Temperature monitor, 20 ... Laser welding device, 21 ... Irradiation head, 22 ... Temperature monitor, L, L1, L2 ... Laser beam, W ... Welded part.

Claims (11)

レーザ光を透過する光透過性樹脂とレーザ光を吸収して溶融する光吸収性樹脂とを重ね合わせてなる被溶接物に対して相対的に移動するレーザ照射手段から前記被溶接物にレーザ光を照射し、前記光吸収性樹脂を溶融させて、前記光透過性樹脂と前記光吸収性樹脂とを溶接するレーザ溶接方法であって、
前記光透過性樹脂と前記光吸収性樹脂とのそれぞれの溶接面同士を向かい合わせた状態で、前記両樹脂を押圧手段によって押圧し、
前記光吸収性樹脂の溶融温度以上になるレーザ光強度とされて前記レーザ照射手段から出射されたレーザ光を前記光透過性樹脂側から前記光吸収性樹脂に対して照射する第1照射を行い、
押圧した状態のまま、前記光吸収性樹脂のガラス転移点温度以上になるレーザ光強度とされて前記レーザ照射手段から出射されたレーザ光を前記光透過性樹脂側から前記光吸収性樹脂に対して再度照射する第2照射を行うことを特徴とするレーザ溶接方法。
Laser light is applied to the workpiece from a laser irradiation means that moves relative to the workpiece that is formed by superimposing a light-transmitting resin that transmits laser light and a light-absorbing resin that absorbs and melts laser light. A laser welding method in which the light absorbing resin is melted and the light transmitting resin and the light absorbing resin are welded.
In a state where the respective welded surfaces of the light-transmitting resin and the light-absorbing resin face each other, the two resins are pressed by pressing means,
The first irradiation is performed to irradiate the light-absorbing resin from the light-transmitting resin side with the laser beam emitted from the laser irradiation means with a laser beam intensity that is equal to or higher than the melting temperature of the light-absorbing resin. ,
In the pressed state, the laser light intensity that is equal to or higher than the glass transition temperature of the light-absorbing resin and the laser light emitted from the laser irradiation means is applied to the light-absorbing resin from the light-transmitting resin side. And performing a second irradiation for irradiation again.
前記レーザ照射手段による前記第1照射が済んだ後、After the first irradiation by the laser irradiation means is completed,
前記第1照射を開始した位置と同一の位置に前記レーザ照射手段を移動させ、前記第1照射を行った溶接位置に対して、前記レーザ照射手段による前記第2照射を行う請求項1に記載のレーザ溶接方法。The laser irradiation unit is moved to the same position as the position where the first irradiation is started, and the second irradiation by the laser irradiation unit is performed on the welding position where the first irradiation is performed. Laser welding method.
前記レーザ照射手段として、レーザ照射部を1つ備えるシングルスポットレーザ照射手段を用いる請求項2に記載のレーザ溶接方法。  The laser welding method according to claim 2, wherein a single spot laser irradiation unit including one laser irradiation unit is used as the laser irradiation unit. 前記レーザ照射手段は、第1レーザ照射手段と、前記第1レーザ照射手段とは独立して移動する第2レーザ照射手段と、を備えており、The laser irradiation means includes a first laser irradiation means and a second laser irradiation means that moves independently of the first laser irradiation means,
前記第1レーザ照射手段によって前記第1照射を行い、Performing the first irradiation by the first laser irradiation means;
続いて前記第2レーザ照射手段よって前記第2照射を行う請求項1に記載のレーザ溶接方法。The laser welding method according to claim 1, wherein the second irradiation is performed by the second laser irradiation unit.
前記第1レーザ照射手段および前記第2レーザ照射手段として、レーザ照射部を1つ備えるシングルスポットレーザ照射手段をそれぞれ用いる請求項4に記載のレーザ溶接方法。The laser welding method according to claim 4, wherein a single spot laser irradiation unit including one laser irradiation unit is used as each of the first laser irradiation unit and the second laser irradiation unit. 前記レーザ照射手段が、第1レーザ照射部および前記第1レーザ照射部に従属して移動する第2レーザ照射部を備えており、
前記第1レーザ照射部からのレーザ光の出射が行われた後、前記第2レーザ照射部からの再度のレーザ光の出射が行われる請求項1に記載のレーザ溶接方法。
The laser irradiation means includes a first laser irradiation unit and a second laser irradiation unit that moves depending on the first laser irradiation unit,
The laser welding method according to claim 1, wherein after the laser beam is emitted from the first laser irradiation unit , the laser beam is emitted again from the second laser irradiation unit .
前記レーザ照射手段として第1レーザ照射部および第2レーザ照射部を備えるダブルスポットレーザ照射手段を用い、前記第1レーザ照射部によって前記第1照射を行い、前記第2レーザ照射部によって前記第2照射を行う請求項5に記載のレーザ溶接方法。A double spot laser irradiation unit including a first laser irradiation unit and a second laser irradiation unit is used as the laser irradiation unit, the first irradiation is performed by the first laser irradiation unit, and the second laser irradiation unit performs the second irradiation. 6. The laser welding method according to claim 5 , wherein irradiation is performed . 前記レーザ照射手段が、1つのレーザ照射部と、前記レーザ照射部から照射されたレーザ光を分割するレーザ光分割手段とを備えており、
前記第1レーザ照射部から出射されるレーザ光に相当するレーザ光および前記第2レーザ照射部から出射されるレーザ光に相当するレーザ光が、前記レーザ分割手段からそれぞれ出射される請求項6に記載のレーザ溶接方法。
The laser irradiation means includes one laser irradiation unit and a laser beam dividing unit that divides the laser beam irradiated from the laser irradiation unit,
Laser light corresponding to the laser beam emitted from the laser light and the second laser irradiation unit corresponding to the laser beam emitted from the first laser irradiation part, to claim 6 emitted respectively from the laser splitting means The laser welding method as described.
レーザ光を透過する光透過性樹脂とレーザ光を吸収して溶融する光吸収性樹脂とを重ね合わせてなる被溶接物に対してレーザ光を照射するレーザ照射手段と、
前記光透過性樹脂と前記光吸収性樹脂とのそれぞれの溶接面同士を向かい合わせた状態で、前記両樹脂を押圧する押圧手段と、
前記レーザ照射手段を前記被溶接物に対して相対的に移動させる移動手段と、
を備え、
前記移動手段は、
前記押圧手段が、前記光透過性樹脂と前記光吸収性樹脂とのそれぞれの溶接面同士を向かい合わせた状態で、前記両樹脂を押圧しているときに、
前記光吸収性樹脂の溶融温度以上になるレーザ光強度とされたレーザ光を前記光透過性 樹脂側から前記光吸収性樹脂に対して照射する第1照射を行う前記レーザ照射手段を溶接方向に沿って移動させ、
前記押圧手段で前記被溶接物を押圧した状態のまま、前記光吸収性樹脂のガラス転移点温度以上になるレーザ光強度とされたレーザ光を前記光透過性樹脂側から前記光吸収性樹脂に対して再度照射する第2照射を行う前記レーザ照射手段を溶接方向に沿って移動させることを特徴とするレーザ溶接装置。
A laser irradiation means for irradiating a laser beam to a workpiece formed by superimposing a light-transmitting resin that transmits laser light and a light-absorbing resin that absorbs and melts the laser light;
In a state where the respective welded surfaces of the light-transmitting resin and the light-absorbing resin face each other, a pressing means that presses both the resins,
Moving means for moving the laser irradiation means relative to the workpiece;
With
The moving means is
When the pressing means is pressing the two resins in a state where the respective weld surfaces of the light transmissive resin and the light absorbing resin face each other ,
The laser irradiation means for performing the first irradiation for irradiating the light absorbing resin from the light transmitting resin side with a laser beam having a laser beam intensity equal to or higher than the melting temperature of the light absorbing resin in the welding direction. Move along,
With the pressing means pressing the work to be welded, a laser beam having a laser beam intensity equal to or higher than the glass transition temperature of the light absorbing resin is applied to the light absorbing resin from the light transmitting resin side. A laser welding apparatus for moving the laser irradiation means for performing the second irradiation to be irradiated again along the welding direction .
前記レーザ照射手段が、レーザ照射部を1つ備えるシングルスポットレーザ照射手段である請求項9に記載のレーザ溶接装置。The laser welding apparatus according to claim 9 , wherein the laser irradiation unit is a single spot laser irradiation unit including one laser irradiation unit. 前記レーザ照射手段が、レーザ照射部を2つ備えるダブルスポットレーザ照射手段である請求項9に記載のレーザ溶接装置。The laser welding apparatus according to claim 9 , wherein the laser irradiation unit is a double spot laser irradiation unit including two laser irradiation units.
JP2003172451A 2003-06-17 2003-06-17 Laser welding method and laser welding apparatus Expired - Lifetime JP4202836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172451A JP4202836B2 (en) 2003-06-17 2003-06-17 Laser welding method and laser welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172451A JP4202836B2 (en) 2003-06-17 2003-06-17 Laser welding method and laser welding apparatus

Publications (2)

Publication Number Publication Date
JP2005007665A JP2005007665A (en) 2005-01-13
JP4202836B2 true JP4202836B2 (en) 2008-12-24

Family

ID=34096603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172451A Expired - Lifetime JP4202836B2 (en) 2003-06-17 2003-06-17 Laser welding method and laser welding apparatus

Country Status (1)

Country Link
JP (1) JP4202836B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182003A (en) * 2006-01-10 2007-07-19 Stanley Electric Co Ltd Laser welding method for resin material
JP2008055620A (en) * 2006-08-29 2008-03-13 Keihin Corp Manufacturing method of laser welded structure
JP5308718B2 (en) * 2008-05-26 2013-10-09 浜松ホトニクス株式会社 Glass welding method
JP5308717B2 (en) 2008-05-26 2013-10-09 浜松ホトニクス株式会社 Glass welding method
DE112009001347T5 (en) 2008-06-11 2011-04-21 Hamamatsu Photonics K.K., Hamamatsu Melt bonding process for glass
KR101651301B1 (en) 2008-06-11 2016-08-25 하마마츠 포토닉스 가부시키가이샤 Fusion-bonding process for glass
KR101651300B1 (en) 2008-06-23 2016-08-25 하마마츠 포토닉스 가부시키가이샤 Fusion-bonding process for glass
JP5481167B2 (en) 2009-11-12 2014-04-23 浜松ホトニクス株式会社 Glass welding method
JP5535588B2 (en) 2009-11-25 2014-07-02 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
JP5481173B2 (en) 2009-11-25 2014-04-23 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
JP5567319B2 (en) 2009-11-25 2014-08-06 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
JP5525246B2 (en) 2009-11-25 2014-06-18 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
JP5535589B2 (en) 2009-11-25 2014-07-02 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
JP5466929B2 (en) 2009-11-25 2014-04-09 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
JP5481172B2 (en) 2009-11-25 2014-04-23 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
JP5535590B2 (en) 2009-11-25 2014-07-02 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
JP6443855B2 (en) * 2014-10-27 2018-12-26 精電舎電子工業株式会社 Laser welding method for thermoplastic resin material, laser welding apparatus for thermoplastic resin material
CN107584770A (en) * 2017-09-28 2018-01-16 广东顺德华焯机械科技有限公司 A kind of multistation plastic laser welding glass binder equipment
EP4082760A4 (en) * 2019-12-27 2024-01-10 Laser Systems Inc Resin member machining method, resin member machining apparatus, and resin component manufacturing method

Also Published As

Publication number Publication date
JP2005007665A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP4202836B2 (en) Laser welding method and laser welding apparatus
JP3303259B2 (en) Method and apparatus for bonding resin by laser
KR100814056B1 (en) Method and apparatus for laser welding thermoplastic resin members
US7540934B2 (en) Method and apparatus for irradiation welding of two thermoplastic components
JP4071417B2 (en) Welding method and apparatus
JP6105781B2 (en) Laser synchro welding process and equipment
DE50113511D1 (en) Method for laser transmission welding of plastic parts
JP2017524558A (en) Laser welding method and apparatus along a welding seam of two joining members made of thermoplastic synthetic material
JP6014834B1 (en) Laser welding method for light transmitting resin and laser welding apparatus for light transmitting resin
Nguyen et al. Absorber-free quasi-simultaneous laser welding for microfluidic applications
JP4202853B2 (en) Laser welding method
US20040231788A1 (en) Laser joining method for structured plastics
JP2004066739A (en) Method and device for laser welding
KR102200937B1 (en) Method of laser welding
TWI777674B (en) Laser welding apparatus and laser processing device
JP6584796B2 (en) Joining method, joining apparatus, and joined body
KR20170073142A (en) Bonding method of sandwich plates
JP2005035069A (en) Member joining device and member joining method
JP2021528252A (en) How to join two components and component assembly
JP3931817B2 (en) Laser welding method and welding apparatus
CN110370655A (en) A kind of apparatus and method of laser beam connection plastic workpiece
CN111479669B (en) Method for welding synthetic resin member
KR102200938B1 (en) Controlling method of laser welding
JP2005041073A (en) Laser welding method for welding resin materials
JP2001087878A (en) Method for laser beam joining of metal plate of very small lapped shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Ref document number: 4202836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

EXPY Cancellation because of completion of term