JP4201618B2 - Ice machine - Google Patents

Ice machine Download PDF

Info

Publication number
JP4201618B2
JP4201618B2 JP2003047485A JP2003047485A JP4201618B2 JP 4201618 B2 JP4201618 B2 JP 4201618B2 JP 2003047485 A JP2003047485 A JP 2003047485A JP 2003047485 A JP2003047485 A JP 2003047485A JP 4201618 B2 JP4201618 B2 JP 4201618B2
Authority
JP
Japan
Prior art keywords
ice making
temperature
ice
water
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003047485A
Other languages
Japanese (ja)
Other versions
JP2004257626A (en
Inventor
朗 陶山
幸正 竹田
浩司 土川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2003047485A priority Critical patent/JP4201618B2/en
Publication of JP2004257626A publication Critical patent/JP2004257626A/en
Application granted granted Critical
Publication of JP4201618B2 publication Critical patent/JP4201618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、製氷機における冷却能力の調整に関するものである。
【0002】
【従来の技術】
従来から、製氷機は、製氷水を冷凍回路にて冷却して氷の生成を行う製氷部と、製氷部へ製氷水を供給する給水部とを備えている(特許文献1)。図5(a)に示すように、給水部においては、製氷水を貯留しておく給水タンク1が備えられ、給水タンク1に製氷水を供給する給水パイプ2が設置されている。給水パイプ2には製氷水の流通を制御する給水弁3が取り付けられると共に、給水パイプ2の外周面に給水パイプ2の内部を流れる製氷水の温度を測定するためのサーミスタ4が取り付けられている。これは、サーミスタ4を直接製氷水に入れて温度を測定することが衛生上できないため、このようにサーミスタ4を給水パイプ2の外周面に取り付けて間接的に測定するようにしている。また、給水タンク1の内部に製氷水の水位を検知するためのフロート5が配設され、フロート5にて検知された水位に基づいて給水弁3の開閉が行われる。
【0003】
図6を参照しながらこのような給水部の動作について説明する。ステップS1にて、フロート5が給水の位置(図5(b)の水位X)まで低下していることを検知した場合、ステップS2に進んで給水弁3を開き、給水パイプ2から給水タンク1へ製氷水を供給する。これによりフロート5の位置が上昇する。ステップS3にてフロート5が満水の位置(図5(a)の水位Y)に到達すると、ステップS4に進んで給水弁3を閉じ、給水パイプ2から給水タンク1への製氷水の供給が停止される。給水弁3は、給水タンク1内の製氷水が製氷部に供給されることにより減少し、フロート5が再び給水の位置へ低下するまで閉じられる。
【0004】
図5(a)は給水弁3を開いて給水タンク1へ製氷水を供給している状態を示し、図5(b)は製氷水が供給された後に給水弁3を閉じて給水タンク1への製氷水の供給を停止している状態を示している。図5(a)に示されるように給水弁3が開いている場合には、サーミスタ4は製氷水本来の水温を検知する。一方、図5(b)に示されるように給水弁3が閉じている場合には、製氷水が給水パイプ2内に停滞している間に機械内の熱により暖められ、給水パイプ2の直径が細いため暖められ易いこともあって、サーミスタ4が検知する温度は製氷水本来の水温より高くなる。
【0005】
サーミスタ4にて検知した製氷水の温度変化を図5(c)に示す。図5(a)に示すように給水弁3を開いて製氷水を供給しているaの時点においてはサーミスタ4により検知される温度は製氷水本来の水温になるが、図5(b)に示すように給水終了後に給水弁3を閉じ、製氷水の供給を停止した後のbの時点ではサーミスタ4により検知される温度は機械内の温度まで上昇する。
【0006】
【特許文献1】
特開平9−4950号公報
【0007】
【発明が解決しようとする課題】
しかしながら、このサーミスタ4で検知した製氷水の温度に基づいて製氷部における冷凍回路の冷却能力を調整するような制御を行う場合、給水弁3の開弁による給水最中の製氷水の温度は低くなると共に給水が一旦中断し次の給水直前の製氷水の温度は高くなるので、短時間内で検知される製氷水の温度が変化し、その影響を受けて制御動作が頻繁に切り替わって安定しないという問題点があった。
【0008】
本発明は以上のような問題点を解決するためになされたもので、給水時と給水直前との製氷水の温度に違いがあっても冷却能力の制御を安定させることのできる製氷機及びその冷却能力調整方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の目的を達成するために、本発明に係る製氷機は、所定の給水サイクルで供給される給水部の製氷水を用い、製氷部で氷の製造を行う製氷機において、給水部の製氷水温度を測る検温手段と、検温手段で検知された製氷水温度が、給水サイクルより長い所定の設定時間、連続して基準温度を超えたか否かにより、製氷部の冷却能力を調整する冷却能力調整部とを備えるものである。
また、製氷部は、ファンを有する凝縮器を含んだ冷凍回路を備え、冷却能力調整部により、製氷水温度が基準温度を設定時間、連続して超えた場合にファンを本来の稼動率で駆動させると共に、製氷水温度が基準温度を設定時間、連続して超えない場合に、該ファンを本来の稼動率より低い稼動率で稼動させるようにしてもよい。
本発明に係る製氷機の冷却能力調整方法は、所定の給水サイクルで供給される給水部の製氷水を用い、製氷部で氷の製造を行う製氷機の冷却能力調整方法において、検温手段にて給水部の製氷水温度を検知し、検温手段にて検知された製氷水温度が、給水サイクルより長い所定の設定時間、連続して基準温度を超えたか否かにより、製氷部の冷却能力を調整するものである。
【0010】
【発明の実施の形態】
以下、本発明に係る実施の形態を添付図面に基づいて説明する。
実施の形態に係るオーガ式製氷機の構成を図1に示す。製氷機は主に、製氷水から氷を製造する製氷部6、製氷部6に対して製氷水を供給する給水部7及び製氷部6にて製造された氷を蓄える貯氷部8から構成される。給水部7には製氷水を貯留する給水タンク9が備えられ、水道等の水源と接管して給水タンク9へ製氷水を供給する給水パイプ10が、給水タンク9に接続されている。給水パイプ10には製氷水の流通を制御する給水弁11が取り付けられ、給水弁11の上流側で且つ給水パイプ10の外周面に、給水パイプ10の内部を流れる製氷水の温度を間接的に測定する検温手段としてのサーミスタ12が取り付けられている。また、給水タンク9の内部に製氷水の水位を検知するためのフロート13が配設され、フロート13にて検知された水位に基づいて給水弁11の開閉を行う給水用コントローラ14が設けられている。
【0011】
製氷部6は、給水タンク9から配管15にて連結され且つ給水タンク9から製氷水が供給される製氷筒16を備えている。製氷筒16の外周面には製氷筒16内の製氷水を冷却する蒸発パイプ17が螺旋状に巻き付けられ、蒸発パイプ17は断熱材18にて覆われている。蒸発パイプ17は圧縮機19、凝縮器20及び膨張弁21と共に冷凍回路を形成している。凝縮器20には凝縮器20の冷却に用いられるファン22がファンモータ22aによって駆動されるように設けられている。また、製氷筒16の内部には、駆動モータ23にて回転駆動されるオーガ24が設置され、製氷筒16の内周面に生成した氷を削り取って製氷筒16の上部へ搬送する螺旋刃25がオーガ24の外周面に取り付けられている。製氷筒16の上部には、螺旋刃25にて搬送された氷を押し固める氷押し出しヘッド26が設けられている。
【0012】
貯氷部8は製氷部6にて製造された氷を貯氷する貯氷槽27を備えている。貯氷槽27内においてオーガ24の上端部には、カッター28が取り付けられている。カッター28は、氷押し出しヘッド26から貯氷槽27の内部に押し出された氷をチップ状に分断する。また、カッター28の上方には、貯氷槽27の内部に貯留されている氷を攪拌するアジテータ29が取り付けられている。貯氷槽27の上部には、貯氷槽27内の氷が満杯か否かを検知するアイスレベル検知板30が取り付けられ、貯氷槽27内が氷で満杯になった場合に冷凍回路の運転を停止する。また、貯氷槽27には氷放出口32が形成され、氷放出口32には開閉機構部33によって開閉される開閉扉34が設置されている。
【0013】
また、この製氷機には、給水部7のサーミスタ12により検出される製氷水の温度を基に、ファン22の回転数を制御して冷凍回路の冷却能力の調整を行う冷却能力調整部35が設けられている。冷却能力調整部35には、設定時間βを計測するためのタイマ36と、サーミスタ12にて検出された製氷水の温度が入力される温度判断部37と、温度判断部37の判断に基づく比例制御によってファンモータ22aへの通電率を100%以下に可変調整し、ファン22の回転数を調整するファンスピードコントロール基板(以下、FSC)38とが設けられている。温度判断部37においては、基準温度αが設定されると共に、サーミスタ12から入力される製氷水の温度が、設定時間βだけ連続して基準温度αを超えたか否かの判断がなされる。
【0014】
次に、本実施の形態に係るオーガ式製氷機の動作の概要について説明する。給水弁11を開くことにより、給水パイプ10から給水タンク9に製氷水が供給される。給水タンク9に貯留された製氷水は配管15を介して製氷筒16内に供給される。圧縮機19を作動させることにより冷凍回路が作動し、蒸発パイプ17内の低温冷媒によって製氷筒16が冷却され、製氷筒16の内部の製氷水が冷却されて製氷筒16の内周面に氷が生成される。これらの氷は駆動モータ23にて回転するオーガ24の螺旋刃25にて製氷筒16の内周面から削り取られて氷押し出しヘッド26に押し込まれる。これにより、氷は圧縮されて柱状に固まった状態で、氷押し出しヘッド26の上部から貯氷槽27の内部へ送り込まれ、カッター28でチップ状に分断されて貯氷槽27の内部に蓄えられる。そして、アイスレベル検知板30を介して貯氷槽27内が氷で満杯になったことが検知されると、冷凍回路の運転が停止されて製氷が停止する。また、開閉機構部33によって開閉扉34が開けられるとチップ状の氷が氷放出口32から外部へ放出される。
【0015】
給水部7においては、給水タンク9への製氷水の供給が給水弁11の開閉を行う給水用コントローラ14によって制御されている。即ち、このコントローラ14がフロート13を介して給水タンク9の製氷水の水位が給水位置まで下降したことを検知した場合に給水弁11を開いて製氷水の供給を行い、この供給によりフロート13が満水位置に上昇したら給水弁11を閉じて製氷水の供給を停止する。製氷部6において、所定量の氷を製造するために必要な時間及び製氷水量は一定であるため、所定の時間に給水タンク9から製氷筒16へ供給される製氷水の量も一定になる。このため、例えば、貯氷槽27内に氷がない運転開始の直後、即ち製氷が停止されずに連続して氷の製造が行われる場合、給水タンク9のフロート13が一定の周期で上下動し、給水パイプ10から給水タンク9へ製氷水の供給が一定の給水サイクルで行われる。給水サイクルは、給水タンク9への製氷水の供給開始時点から始まり、供給の停止を経て次の供給開始時点にて終わり、1サイクル当たり時間Tかかる。
【0016】
図2に示されるように、一般に給水サイクルの時間Tの間に給水部7のサーミスタ12にて検知される製氷水の温度は変化する。すなわち、製氷水が給水されている時に検知される製氷水の温度は低いが、給水が停止された後の製氷水の温度は次第に上昇し、高くなる。そして、再び給水が開始されると低下する。このように、給水の停止後から次の給水の直前にかけて、製氷水の温度が高くなるのは、給水弁11が閉じることにより給水パイプ10内に停滞した製氷水が製氷機の駆動、例えば圧縮機19や駆動モータ23の駆動により発生する熱により加熱されるためであり、給水中に製氷水の温度が下がるのは製氷機の発熱にて加熱されていない状態の製氷水本来の水温が検出されるためである。
【0017】
ここで、図3(a)に示される温度と時間の関係を表すグラフ及び図4に示されるフローチャートを用い、この実施の形態に係る製氷機に用いられている冷却能力調整部35の動作を説明する。図3(a)に示される温度は給水部7のサーミスタ12にて検知され、温度判断部37に入力される製氷水の温度である。図示されるように、給水サイクルの時間T内の温度変化に加えて、図3(d)に示されるように製氷機の連続運転による製氷機内の温度上昇や周囲の気温の変化等により、製氷水本来の水温も製氷機の駆動開始後から時間の経過と共に変化(図3(a)では上昇していく場合を例示している)していく。時刻Taにおいて給水パイプ10から給水タンク9へ製氷水の供給が開始されるので、サーミスタ12にて検知される製氷水の温度は製氷水本来の水温に一時的に低下する。給水タンク9内のフロート13が満水位置まで上昇すると供給は停止し、製氷水の温度は時刻Taから時間の経過と共に上昇していく。
【0018】
図3(b)に示されるように時刻Taにて冷却能力調整部35への通電が開始され、冷却能力調整部35の温度判断部37にてサーミスタ12から入力される製氷水の温度が基準温度αを超えたか否かの判断が行われる。即ち、温度判断部37では、図4のフローチャートに示されるように、ステップS11にてタイマ36の計測を開始させると共に、ステップS12にてサーミスタ12で検知された製氷水の温度と基準温度αとを比較して、製氷水の温度が基準温度αを超えたか否かを判断する。
【0019】
時刻Taにおいては、図3(a)に示されるように製氷水の温度は基準温度αを超えていないので、ステップS12からステップS13に進み、タイマ36の計測を停止してタイマ36の計測値をクリアする。そして、ステップS14にて製氷水の温度が基準温度α以下であることをFSC38へ出力し、再びステップS11に戻る。FSC38では製氷水の温度が基準温度α以下であることが入力されると、冷却能力を調整する一態様としてファン22の稼動率を低下させるよう、ファンモータ22aへの通電率を100%未満に減少させ、ファン22を低速で回転させることにより製氷部6における冷凍回路の冷却能力を抑制する。
【0020】
時刻Tbにて製氷水の温度が基準温度αを超えると、温度判断部37では、ステップS11からステップS12に進んだ後、ステップS15に進む。ステップS15では、設定時間βが経過するまでステップS12に戻りながら、その度毎にステップS12でサーミスタ12にて入力される製氷水の温度と基準温度αとを比較し、製氷水の温度が基準温度αを超えているか否かを判断する。設定時間βは給水サイクルの時間Tより長く且つ給水サイクルの時間Tの2倍より短い時間に設定されている。このため、時刻Tbから設定時間βが経過しない時刻Tcにおいて、次の給水サイクルが開始されて製氷水の給水が始まるので、サーミスタ12にて検知される製氷水の温度は低下して基準温度α以下になる。これにより、設定時間βの時間経過が実現しないため、ステップS12からステップS13に進み、タイマ36の計測値をクリアすると共に、ステップS14で製氷水の温度が基準温度α以下であることをFSC38に出力し、図3(c)に示されるようにFSC38にて時刻Taから継続されているファンモータ22aへの通電率を低下させ、冷却能力を抑制する制御を継続させる。
【0021】
ステップS14からステップS11に再び戻り、ステップS12にて製氷水の温度の検知を行う。時刻Tcから時刻Tdまで、製氷水の温度は基準温度α以下であるため、ステップS11からステップS14までの処理が繰り返され、冷却能力を抑制する制御が継続される。時刻Tdでは再びステップS12からステップS15に進む。給水が開始されて製氷水の温度が基準温度α以下に下がる時刻Teは、時刻Tdから設定時間βが経過する前なので、製氷水の温度が基準温度α以下とFSC38に出力されて時刻Taから継続されている冷却能力を抑制する制御が継続される。
【0022】
時刻Tfにて製氷水の温度が基準温度αを超えると、ステップS11からステップS12を介してステップS15へ進む。時刻Tgにおいて製氷水の供給がなされるためにサーミスタ12で検知される製氷水の温度が低下するが、製氷水本来の水温の上昇によって基準温度α以下までは低下しない。従って、時刻Tfから設定時間βが経過した時刻Thにおいて、ステップS15からステップS16に進み、製氷水の温度が基準温度αより高いことがFSC38に出力される。これにより、FSC38は、図3(c)に示されるように、ファンモータ22aに対する通電率を100%とし、時刻Taから時刻Thまで継続されていた冷却能力を低下させる制御から本来の冷却能力を発揮させる制御に変更する。
【0023】
このように、1日の気温の変化や製氷機の連続運転によって製氷水の温度が変化するため、製氷水の温度に対して基準温度αを設定し、製氷水の温度が基準温度αより高い場合には本来の冷却能力を発揮させると共に、基準温度α以下の場合には本来の冷却能力を抑制する制御を行って、製氷水を過冷却すること防ぎつつ効率よく製氷が行える。
【0024】
また、このような制御を行う際には、製氷水本来の水温が上昇して基準温度α付近まで到達した場合、給水サイクルの時間T内にサーミスタ12で検知される製氷水の温度が基準温度αに対して頻繁に上下するような状態が起こるが、検出される製氷水の温度が基準温度αより高い状態がタイマ36の設定時間βまで続かなければ、温度判断部37にて製氷水の温度が基準温度αより高いと判断されないために、短時間内にファン22の回転数を切り替えることなく、安定した回転を実施させることができる。すなわち、ハンチングの発生を防止し、確実に製氷水の温度の変化に対応した動作に切り替えることができる。
【0025】
なお、図1に示される実施の形態の製氷機において、冷却能力調整部35に、製氷機の外部の気温を測定するサーミスタ39及び、凝縮器20の中央を通過している冷媒の温度を測定するサーミスタ40をそれぞれ接続し、給水パイプ10に設けられたサーミスタ12と共にそれぞれの温度を検出することにより、冷却能力調整部35にて、より好適な冷却能力を実施することが可能な回転数をファン22に対して与えることができる。
例えば、冬期には供給される製氷水の温度が低いために製氷筒16内部における氷の生成が過剰となる場合があり、氷を削り取る螺旋刃25が設けられたオーガ24の駆動モータ23に過負荷がかかると共に異音が発生する虞がるが、サーミスタ12、39、40にて製氷水の温度、気温、冷媒の温度が低いことが検知される等の条件で、冷却能力調整部35においてファン22の回転数を下げることにより冷凍回路の冷却能力を抑制することもできるので、駆動モータ23に過負荷がかかることを阻止でき且つ異音の発生を阻止できる。
【0026】
なお、本実施の形態では、冷却能力の調整態様として、ファンの稼動率を調整する方法を採用しているが、冷凍回路の冷却能力を調整する方法はこれに限定されるものではなく、例えば、冷凍回路を構成している圧縮機の稼動率を調整する方法や、蒸発パイプにヒータ等を取り付けて加熱することで蒸発パイプ内の冷媒の温度が低下しすぎることを防ぐ方法など、他の方法でも良い。さらに、本実施の形態では、ファンの稼動率はファン回転数で定義していたが、本発明はこれに限定されず、例えばファンの回転時間などでもよい。なお、圧縮機の稼動率やヒータによる加熱態様も同様に、回転数、回転時間、加熱温度、加熱時間など利用する方法を適宜選択することが可能である。
また、本実施の形態に係る製氷機はオーガ式であったが、流下式製氷機等の他の形態の製氷機においても、本実施の形態で用いられている制御方法、すなわち、給水部にて検知された製氷水の温度が基準温度αより高い状態が設定時間β続いた場合にのみ製氷水の温度が基準温度αより高いと判断して冷凍回路の冷却能力を向上させる制御を適用することができる。
【0027】
【発明の効果】
以上説明したように、本発明によれば、給水部にて検知される製氷水の温度が、設定時間、連続して基準温度を超過した場合にのみ製氷水の温度が基準温度より高いと判断して本来の冷却能力を冷凍回路に発揮させる制御を行う一方、設定時間、連続して基準温度を超えない場合は製氷水の温度が基準温度以下と判断して本来の冷却能力を低下させる制御を冷凍回路に行うようにしたので、給水部において給水直前の温度が基準温度より高く且つ給水時の温度が基準温度以下の場合であっても、短時間内で冷却能力が切り替わることなく、安定した動作を冷凍回路に実施させることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係るオーガ式製氷機の全体構成を示した図である。
【図2】 本実施の形態のオーガ式製氷機の給水サイクル内における製氷水の温度変化を示す図である。
【図3】 本実施の形態のオーガ式製氷機に関し、(a)は製氷水の温度変化を示す図であり、(b)は冷却能力調整部への通電を示すタイミングチャートであり、(c)はFSCの制御を示す図であり、(d)は製氷機内の温度の変化を示す図である。
【図4】 本実施の形態のオーガ式製氷機における冷却能力調整部の動作を示すフローチャートである。
【図5】 従来の製氷機の給水部に関し、(a)は製氷水の供給がなされている状態を示す図であり、(b)は製氷水の供給が停止された状態を示す図であり、(c)は製氷水の供給から停止後までの製氷水の温度変化を示す図である。
【図6】 従来の製氷機の給水部の動作を示すフローチャートである。
【符号の説明】
6…製氷部、7…給水部、9…給水タンク、10…給水パイプ、11…給水弁、12…サーミスタ、16…製氷筒、17…蒸発パイプ、19…圧縮機、20…凝縮器、21…膨張弁、22…ファン、35…冷却能力調整部、36…タイマ、37…温度判断部、38…ファンスピードコントロール基板(FSC)、T…給水サイクルの時間、α…基準温度、β…設定時間。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to adjustment of cooling capacity in an ice making machine.
[0002]
[Prior art]
Conventionally, an ice making machine includes an ice making unit that generates ice by cooling ice making water in a refrigeration circuit, and a water supply unit that supplies ice making water to the ice making unit (Patent Document 1). As shown in FIG. 5A, the water supply unit is provided with a water supply tank 1 that stores ice-making water, and a water supply pipe 2 that supplies ice-making water to the water supply tank 1 is installed. A water supply valve 3 for controlling the flow of ice making water is attached to the water supply pipe 2, and a thermistor 4 for measuring the temperature of ice making water flowing inside the water supply pipe 2 is attached to the outer peripheral surface of the water supply pipe 2. . This is because the thermistor 4 cannot be directly put into ice-making water and the temperature can not be measured for hygiene purposes. Therefore, the thermistor 4 is attached to the outer peripheral surface of the water supply pipe 2 and measured indirectly. A float 5 for detecting the water level of the ice making water is disposed inside the water supply tank 1, and the water supply valve 3 is opened and closed based on the water level detected by the float 5.
[0003]
The operation of such a water supply unit will be described with reference to FIG. When it is detected in step S1 that the float 5 has been lowered to the water supply position (water level X in FIG. 5B), the process proceeds to step S2 where the water supply valve 3 is opened and the water supply tank 1 is opened from the water supply pipe 2. Supply ice making water. As a result, the position of the float 5 rises. When the float 5 reaches the full water position (the water level Y in FIG. 5A) in step S3, the process proceeds to step S4, the water supply valve 3 is closed, and the supply of ice-making water from the water supply pipe 2 to the water supply tank 1 is stopped. Is done. The water supply valve 3 decreases when the ice making water in the water supply tank 1 is supplied to the ice making unit, and is closed until the float 5 is lowered to the water supply position again.
[0004]
5A shows a state where the water supply valve 3 is opened and ice making water is supplied to the water supply tank 1, and FIG. 5B shows a state where the water supply valve 3 is closed after the ice making water is supplied to the water supply tank 1. The supply of ice water is stopped. When the water supply valve 3 is opened as shown in FIG. 5A, the thermistor 4 detects the original water temperature of the ice making water. On the other hand, when the water supply valve 3 is closed as shown in FIG. 5B, the ice making water is warmed by the heat in the machine while it is stagnating in the water supply pipe 2, and the diameter of the water supply pipe 2 is increased. Therefore, the temperature detected by the thermistor 4 is higher than the original water temperature of ice making water.
[0005]
The temperature change of the ice making water detected by the thermistor 4 is shown in FIG. As shown in FIG. 5 (a), the temperature detected by the thermistor 4 is the original water temperature of the ice making water at the time point a where the water supply valve 3 is opened and ice making water is supplied. As shown, the temperature detected by the thermistor 4 rises to the temperature in the machine at time b after the water supply valve 3 is closed and the supply of ice-making water is stopped after the water supply is completed.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-4950
[Problems to be solved by the invention]
However, when control is performed to adjust the cooling capacity of the refrigeration circuit in the ice making unit based on the temperature of the ice making water detected by the thermistor 4, the temperature of the ice making water during the water supply by opening the water supply valve 3 is low. At the same time, the water supply is interrupted and the temperature of the ice-making water immediately before the next water supply rises, so the temperature of the ice-making water detected within a short period of time changes, and the control action switches frequently and is not stable. There was a problem.
[0008]
The present invention has been made to solve the above problems, and an ice making machine capable of stabilizing the control of cooling capacity even if there is a difference in the temperature of ice making water at the time of water supply and immediately before water supply, and its It aims at providing the cooling capacity adjustment method.
[0009]
[Means for Solving the Problems]
To achieve the above object, an ice making machine according to the present invention uses ice making water in a water supply unit supplied in a predetermined water supply cycle, and in an ice making machine that manufactures ice in the ice making unit, ice making water in the water supply unit Temperature measurement means that measures temperature, and cooling capacity adjustment that adjusts the cooling capacity of the ice making part depending on whether or not the ice-making water temperature detected by the temperature detection means has continuously exceeded the reference temperature for a preset time longer than the water supply cycle Part.
In addition, the ice making unit has a refrigeration circuit including a condenser with a fan, and the cooling capacity adjustment unit drives the fan at its original operating rate when the ice making water temperature exceeds the reference temperature for a set time continuously. In addition, when the ice making water temperature does not continuously exceed the reference temperature for a set time, the fan may be operated at an operation rate lower than the original operation rate.
The method for adjusting the cooling capacity of an ice making machine according to the present invention is the method for adjusting the cooling capacity of an ice making machine that uses the ice making water of the water supply section supplied in a predetermined water supply cycle to produce ice in the ice making section. The ice making water temperature in the water supply section is detected, and the cooling capacity of the ice making section is adjusted according to whether the ice making water temperature detected by the temperature detection means has continuously exceeded the reference temperature for a predetermined set time longer than the water supply cycle. To do.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments according to the present invention will be described below with reference to the accompanying drawings.
The configuration of an auger type ice making machine according to the embodiment is shown in FIG. The ice making machine mainly includes an ice making unit 6 that produces ice from ice making water, a water supply unit 7 that supplies ice making water to the ice making unit 6, and an ice storage unit 8 that stores the ice produced by the ice making unit 6. . The water supply unit 7 includes a water supply tank 9 that stores ice-making water. A water supply pipe 10 that is connected to a water source such as a water supply and supplies the ice-making water to the water supply tank 9 is connected to the water supply tank 9. A water supply valve 11 for controlling the flow of ice-making water is attached to the water supply pipe 10, and the temperature of the ice-making water flowing inside the water supply pipe 10 is indirectly measured on the upstream side of the water supply valve 11 and on the outer peripheral surface of the water supply pipe 10. A thermistor 12 is attached as a temperature measuring means for measurement. Further, a float 13 for detecting the water level of the ice making water is disposed inside the water supply tank 9, and a water supply controller 14 for opening and closing the water supply valve 11 based on the water level detected by the float 13 is provided. Yes.
[0011]
The ice making unit 6 includes an ice making cylinder 16 connected from the water supply tank 9 by a pipe 15 and supplied with ice making water from the water supply tank 9. An evaporation pipe 17 that cools the ice making water in the ice making cylinder 16 is spirally wound around the outer peripheral surface of the ice making cylinder 16, and the evaporation pipe 17 is covered with a heat insulating material 18. The evaporation pipe 17 forms a refrigeration circuit together with the compressor 19, the condenser 20 and the expansion valve 21. The condenser 20 is provided with a fan 22 used for cooling the condenser 20 so as to be driven by a fan motor 22a. An auger 24 that is rotationally driven by a drive motor 23 is installed inside the ice making cylinder 16, and the spiral blade 25 that scrapes off the ice generated on the inner peripheral surface of the ice making cylinder 16 and conveys it to the upper part of the ice making cylinder 16. Is attached to the outer peripheral surface of the auger 24. An ice extrusion head 26 that presses and hardens the ice conveyed by the spiral blade 25 is provided above the ice making cylinder 16.
[0012]
The ice storage unit 8 includes an ice storage tank 27 that stores the ice produced by the ice making unit 6. A cutter 28 is attached to the upper end of the auger 24 in the ice storage tank 27. The cutter 28 divides the ice extruded from the ice extrusion head 26 into the ice storage tank 27 into chips. Further, an agitator 29 for agitating the ice stored in the ice storage tank 27 is attached above the cutter 28. An ice level detection plate 30 for detecting whether or not the ice in the ice storage tank 27 is full is attached to the upper part of the ice storage tank 27, and the operation of the refrigeration circuit is stopped when the ice storage tank 27 becomes full of ice. To do. In addition, an ice discharge port 32 is formed in the ice storage tank 27, and an open / close door 34 that is opened and closed by an opening / closing mechanism 33 is installed in the ice discharge port 32.
[0013]
In addition, the ice making machine includes a cooling capacity adjustment unit 35 that controls the rotation speed of the fan 22 and adjusts the cooling capacity of the refrigeration circuit based on the temperature of the ice making water detected by the thermistor 12 of the water supply unit 7. Is provided. The cooling capacity adjustment unit 35 is proportional to the timer 36 for measuring the set time β, the temperature determination unit 37 to which the temperature of the ice making water detected by the thermistor 12 is input, and the determination of the temperature determination unit 37. A fan speed control board (hereinafter referred to as “FSC”) 38 is provided that variably adjusts the energization rate to the fan motor 22a to 100% or less by control and adjusts the rotation speed of the fan 22. In the temperature determination unit 37, a reference temperature α is set, and it is determined whether the temperature of the ice making water input from the thermistor 12 has continuously exceeded the reference temperature α for the set time β.
[0014]
Next, an outline of the operation of the auger type ice making machine according to the present embodiment will be described. By opening the water supply valve 11, ice-making water is supplied from the water supply pipe 10 to the water supply tank 9. The ice making water stored in the water supply tank 9 is supplied into the ice making cylinder 16 through the pipe 15. By operating the compressor 19, the refrigeration circuit is operated, the ice making cylinder 16 is cooled by the low-temperature refrigerant in the evaporation pipe 17, the ice making water inside the ice making cylinder 16 is cooled, and ice is formed on the inner peripheral surface of the ice making cylinder 16. Is generated. These ices are scraped from the inner peripheral surface of the ice making cylinder 16 by the spiral blade 25 of the auger 24 rotated by the drive motor 23 and pushed into the ice pushing head 26. As a result, the ice is compressed and solidified in a columnar shape, and is fed into the ice storage tank 27 from the top of the ice extrusion head 26, divided into chips by the cutter 28, and stored in the ice storage tank 27. When it is detected via the ice level detection plate 30 that the ice storage tank 27 is full of ice, the operation of the refrigeration circuit is stopped and ice making stops. When the opening / closing door 34 is opened by the opening / closing mechanism 33, chip-shaped ice is discharged from the ice discharge port 32 to the outside.
[0015]
In the water supply unit 7, the supply of ice-making water to the water supply tank 9 is controlled by a water supply controller 14 that opens and closes the water supply valve 11. That is, when the controller 14 detects that the water level of the ice making water in the water supply tank 9 has dropped to the water supply position via the float 13, the water supply valve 11 is opened to supply ice making water. When it rises to the full water position, the water supply valve 11 is closed and the supply of ice making water is stopped. In the ice making unit 6, the time required for producing a predetermined amount of ice and the amount of ice-making water are constant, so that the amount of ice-making water supplied from the water supply tank 9 to the ice-making cylinder 16 at a predetermined time is also constant. For this reason, for example, immediately after the start of operation when there is no ice in the ice storage tank 27, that is, when ice production is continuously performed without stopping the ice making, the float 13 of the water supply tank 9 moves up and down at a constant cycle. The ice making water is supplied from the water supply pipe 10 to the water supply tank 9 in a constant water supply cycle. The water supply cycle starts from the supply start time of ice-making water to the water supply tank 9, ends after supply stop, and ends at the next supply start time, and takes time T per cycle.
[0016]
As shown in FIG. 2, generally, the temperature of the ice making water detected by the thermistor 12 of the water supply unit 7 changes during the time T of the water supply cycle. That is, the temperature of the ice making water detected when the ice making water is supplied is low, but the temperature of the ice making water after the water supply is stopped gradually increases and becomes high. And it falls when water supply is started again. As described above, the temperature of the ice making water increases immediately after the stop of the water supply until immediately before the next water supply. The ice making water stagnated in the water supply pipe 10 due to the closing of the water supply valve 11 drives the ice making machine, for example, compression. This is because it is heated by the heat generated by the drive of the machine 19 and the drive motor 23, and the temperature of the ice making water is lowered during the water supply. The original water temperature of the ice making water that is not heated by the heat generated by the ice making machine is detected. It is to be done.
[0017]
Here, using the graph showing the relationship between temperature and time shown in FIG. 3A and the flowchart shown in FIG. 4, the operation of the cooling capacity adjustment unit 35 used in the ice making machine according to this embodiment is described. explain. The temperature shown in FIG. 3A is the temperature of the ice making water detected by the thermistor 12 of the water supply unit 7 and input to the temperature determination unit 37. As shown in the figure, in addition to the temperature change within the time T of the water supply cycle, as shown in FIG. 3 (d), due to the temperature rise in the ice maker due to the continuous operation of the ice maker, the change in ambient temperature, etc. The original water temperature also changes with the passage of time after the start of driving the ice making machine (FIG. 3A illustrates the case of rising). Since supply of ice making water from the water supply pipe 10 to the water supply tank 9 is started at time Ta, the temperature of the ice making water detected by the thermistor 12 temporarily decreases to the original water temperature of the ice making water. When the float 13 in the water supply tank 9 rises to the full position, the supply stops, and the temperature of the ice making water rises with time from the time Ta.
[0018]
As shown in FIG. 3B, energization to the cooling capacity adjustment unit 35 is started at time Ta, and the temperature of the ice making water input from the thermistor 12 at the temperature determination unit 37 of the cooling capacity adjustment unit 35 is a reference. A determination is made whether the temperature α has been exceeded. That is, as shown in the flowchart of FIG. 4, the temperature determination unit 37 starts the measurement of the timer 36 in step S11, and the temperature of the ice making water detected by the thermistor 12 in step S12 and the reference temperature α. To determine whether or not the temperature of the ice making water has exceeded the reference temperature α.
[0019]
At time Ta, since the temperature of the ice making water does not exceed the reference temperature α as shown in FIG. 3A, the process proceeds from step S12 to step S13, the measurement of the timer 36 is stopped, and the measured value of the timer 36 is measured. To clear. In step S14, the fact that the temperature of the ice making water is equal to or lower than the reference temperature α is output to the FSC 38, and the process returns to step S11 again. When the fact that the temperature of the ice making water is below the reference temperature α is inputted to the FSC 38, the energization rate to the fan motor 22a is made less than 100% so as to reduce the operating rate of the fan 22 as one aspect of adjusting the cooling capacity. The cooling capacity of the refrigeration circuit in the ice making unit 6 is suppressed by decreasing and rotating the fan 22 at a low speed.
[0020]
When the temperature of the ice making water exceeds the reference temperature α at time Tb, the temperature determination unit 37 proceeds from step S11 to step S12, and then proceeds to step S15. In step S15, while returning to step S12 until the set time β elapses, the temperature of the ice making water input by the thermistor 12 in step S12 and the reference temperature α are compared each time, and the temperature of the ice making water is the reference. It is determined whether or not the temperature α is exceeded. The set time β is set to be longer than the water supply cycle time T and shorter than twice the water supply cycle time T. For this reason, at the time Tc at which the set time β does not elapse from the time Tb, the next water supply cycle is started and the water supply of the ice making water is started. Therefore, the temperature of the ice making water detected by the thermistor 12 is lowered to the reference temperature α. It becomes the following. As a result, since the elapsed time of the set time β is not realized, the process proceeds from step S12 to step S13, the measured value of the timer 36 is cleared, and in step S14, it is determined to the FSC 38 that the temperature of the ice making water is equal to or lower than the reference temperature α. As shown in FIG. 3 (c), the energization rate to the fan motor 22a continued from the time Ta is reduced in the FSC 38, and the control for suppressing the cooling capacity is continued.
[0021]
The process returns from step S14 to step S11 again, and the temperature of the ice making water is detected in step S12. From time Tc to time Td, the temperature of the ice making water is equal to or lower than the reference temperature α. Therefore, the processing from step S11 to step S14 is repeated, and the control for suppressing the cooling capacity is continued. At time Td, the process again proceeds from step S12 to step S15. Since the time Te at which the temperature of the ice making water is lowered to the reference temperature α or less after the water supply is started is before the set time β has elapsed from the time Td, the temperature of the ice making water is output to the FSC 38 when the temperature is below the reference temperature α and from the time Ta. Control for suppressing the continued cooling capacity is continued.
[0022]
When the temperature of the ice making water exceeds the reference temperature α at time Tf, the process proceeds from step S11 to step S15 via step S12. Since the ice making water is supplied at time Tg, the temperature of the ice making water detected by the thermistor 12 decreases, but does not drop below the reference temperature α due to the increase in the original water temperature of the ice making water. Accordingly, at time Th when the set time β has elapsed from time Tf, the process proceeds from step S15 to step S16, and the fact that the temperature of the ice making water is higher than the reference temperature α is output to the FSC 38. As a result, as shown in FIG. 3C, the FSC 38 sets the energization rate for the fan motor 22a to 100% and reduces the cooling capacity that has been maintained from the time Ta to the time Th from the original cooling capacity. Change the control to show it.
[0023]
Thus, since the temperature of the ice making water changes due to a change in the temperature of the day or the continuous operation of the ice making machine, the reference temperature α is set for the temperature of the ice making water, and the temperature of the ice making water is higher than the reference temperature α. In this case, the original cooling ability is exhibited, and when the temperature is equal to or lower than the reference temperature α, control for suppressing the original cooling ability is performed, so that ice making can be performed efficiently while preventing the ice making water from being overcooled.
[0024]
When such control is performed, when the original water temperature of the ice making water rises and reaches the vicinity of the reference temperature α, the temperature of the ice making water detected by the thermistor 12 within the time T of the water supply cycle is the reference temperature. Although a state in which the temperature of the ice making water is frequently raised and lowered with respect to α occurs, if the temperature of the detected ice making water is higher than the reference temperature α does not continue until the set time β of the timer 36, the temperature determination unit 37 performs the ice making water. Since it is not determined that the temperature is higher than the reference temperature α, stable rotation can be performed without switching the rotation speed of the fan 22 within a short time. That is, the occurrence of hunting can be prevented and the operation corresponding to the change in the temperature of the ice making water can be surely switched.
[0025]
In the ice maker according to the embodiment shown in FIG. 1, the cooling capacity adjustment unit 35 measures the temperature of the refrigerant passing through the center of the condenser 20 and the thermistor 39 that measures the temperature outside the ice maker. The thermistors 40 are connected to each other, and by detecting the respective temperatures together with the thermistors 12 provided in the water supply pipe 10, the cooling capacity adjustment unit 35 can change the number of rotations at which a more suitable cooling capacity can be implemented. It can be given to the fan 22.
For example, in winter, the temperature of the ice making water supplied is low, so that ice may be generated excessively in the ice making cylinder 16, and the drive motor 23 of the auger 24 provided with the spiral blade 25 for scraping ice is excessive. Although there is a possibility that abnormal noise may be generated when a load is applied, the cooling capacity adjusting unit 35 may detect that the thermistors 12, 39, and 40 detect that the temperature of the ice making water, the temperature, and the temperature of the refrigerant are low. Since the cooling capacity of the refrigeration circuit can be suppressed by lowering the rotation speed of the fan 22, it is possible to prevent the drive motor 23 from being overloaded and to prevent the generation of abnormal noise.
[0026]
In this embodiment, a method of adjusting the operating rate of the fan is adopted as an adjustment mode of the cooling capacity, but the method of adjusting the cooling capacity of the refrigeration circuit is not limited to this, for example, Other methods, such as adjusting the operating rate of the compressor that constitutes the refrigeration circuit, and preventing the temperature of the refrigerant in the evaporation pipe from excessively decreasing by attaching a heater to the evaporation pipe and heating it, etc. The method is fine. Furthermore, in the present embodiment, the fan operating rate is defined by the number of fan rotations, but the present invention is not limited to this, and may be, for example, the fan rotation time. Similarly, the operating rate of the compressor and the heating mode by the heater can be appropriately selected from methods such as the number of rotations, rotation time, heating temperature, and heating time.
Further, although the ice making machine according to the present embodiment is an auger type, the control method used in the present embodiment, that is, the water supply unit is also used in other forms of ice making machines such as a flow down type ice making machine. Only when the detected temperature of the ice-making water is higher than the reference temperature α continues for a set time β, the control to determine that the temperature of the ice-making water is higher than the reference temperature α and to improve the cooling capacity of the refrigeration circuit is applied. be able to.
[0027]
【The invention's effect】
As described above, according to the present invention, it is determined that the temperature of the ice making water is higher than the reference temperature only when the temperature of the ice making water detected by the water supply unit continuously exceeds the reference temperature for a set time. Control to demonstrate the original cooling capacity to the refrigeration circuit, and if the temperature does not exceed the reference temperature continuously for a set time, control the ice making water temperature to be below the reference temperature and lower the original cooling capacity Since the refrigeration circuit is used, even if the temperature immediately before water supply is higher than the reference temperature in the water supply section and the temperature at the time of water supply is below the reference temperature, the cooling capacity is stable without switching within a short time. The refrigeration circuit can perform the above operation.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of an auger type ice making machine according to an embodiment of the present invention.
FIG. 2 is a diagram showing a temperature change of ice making water in a water supply cycle of the auger type ice making machine of the present embodiment.
FIGS. 3A and 3B are diagrams showing an auger type ice making machine according to the present embodiment, in which FIG. 3A is a diagram showing a temperature change of ice making water, and FIG. 3B is a timing chart showing energization to a cooling capacity adjustment unit; ) Is a diagram showing the control of the FSC, and (d) is a diagram showing a change in temperature in the ice making machine.
FIG. 4 is a flowchart showing an operation of a cooling capacity adjustment unit in the auger type ice making machine of the present embodiment.
5A is a view showing a state where ice making water is supplied, and FIG. 5B is a view showing a state where supply of ice making water is stopped, regarding a water supply unit of a conventional ice making machine. (C) is a figure which shows the temperature change of the ice making water from the supply of ice making water to after a stop.
FIG. 6 is a flowchart showing the operation of a water supply unit of a conventional ice making machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 6 ... Ice making part, 7 ... Water supply part, 9 ... Water supply tank, 10 ... Water supply pipe, 11 ... Water supply valve, 12 ... Thermistor, 16 ... Ice-making cylinder, 17 ... Evaporation pipe, 19 ... Compressor, 20 ... Condenser, 21 ... Expansion valve, 22 ... Fan, 35 ... Cooling capacity adjustment unit, 36 ... Timer, 37 ... Temperature judgment unit, 38 ... Fan speed control board (FSC), T ... Water supply cycle time, α ... Reference temperature, β ... Setting time.

Claims (3)

所定の給水サイクルで供給される給水部の製氷水を用い、製氷部で氷の製造を行う製氷機において、
前記給水部の製氷水温度を測る検温手段と、
前記検温手段で検知された製氷水温度が、前記給水サイクルより長い所定の設定時間、連続して基準温度を超えたか否かにより、前記製氷部の冷却能力を調整する冷却能力調整部と
を備えることを特徴とする製氷機。
In an ice making machine that manufactures ice in an ice making unit using ice making water in a water supplying unit supplied in a predetermined water supply cycle,
Temperature measuring means for measuring the ice-making water temperature of the water supply unit;
A cooling capacity adjusting section that adjusts the cooling capacity of the ice making section according to whether or not the ice making water temperature detected by the temperature detecting means has continuously exceeded a reference temperature for a predetermined set time longer than the water supply cycle. An ice machine characterized by that.
前記製氷部は、ファンを有する凝縮器を含んだ冷凍回路を備え、前記冷却能力調整部は、製氷水温度が基準温度を設定時間、連続して超えた場合にファンを本来の稼動率で駆動させると共に、製氷水温度が基準温度を設定時間、連続して超えない場合に、該ファンを本来の稼動率より低い稼動率で駆動させることを特徴とする請求項1に記載の製氷機。The ice making unit includes a refrigeration circuit including a condenser having a fan, and the cooling capacity adjusting unit drives the fan at an original operation rate when the ice making water temperature continuously exceeds the reference temperature for a set time. The ice making machine according to claim 1, wherein the fan is driven at an operation rate lower than an original operation rate when the ice making water temperature does not continuously exceed the reference temperature for a set time. 所定の給水サイクルで供給される給水部の製氷水を用い、製氷部で氷の製造を行う製氷機の冷却能力調整方法において、
検温手段にて前記給水部の製氷水温度を検知し、
前記検温手段にて検知された製氷水温度が、前記給水サイクルより長い所定の設定時間、連続して基準温度を超えたか否かにより、前記製氷部の冷却能力を調整することを特徴とする製氷機の冷却能力調整方法。
In the method for adjusting the cooling capacity of an ice making machine that uses the ice making water of the water supply unit supplied in a predetermined water supply cycle to produce ice in the ice making unit,
The temperature measuring means detects the ice-making water temperature of the water supply section,
The ice making water temperature is adjusted by the ice making water temperature detected by the temperature detecting means, depending on whether or not the ice making water temperature continuously exceeds a reference temperature for a predetermined set time longer than the water supply cycle. Method of adjusting the cooling capacity of the machine.
JP2003047485A 2003-02-25 2003-02-25 Ice machine Expired - Fee Related JP4201618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047485A JP4201618B2 (en) 2003-02-25 2003-02-25 Ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047485A JP4201618B2 (en) 2003-02-25 2003-02-25 Ice machine

Publications (2)

Publication Number Publication Date
JP2004257626A JP2004257626A (en) 2004-09-16
JP4201618B2 true JP4201618B2 (en) 2008-12-24

Family

ID=33113730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047485A Expired - Fee Related JP4201618B2 (en) 2003-02-25 2003-02-25 Ice machine

Country Status (1)

Country Link
JP (1) JP4201618B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8297526B2 (en) 2007-08-10 2012-10-30 Honda Motor Co., Ltd. Low humidity detection system and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8297526B2 (en) 2007-08-10 2012-10-30 Honda Motor Co., Ltd. Low humidity detection system and method thereof
US8312918B2 (en) 2007-08-10 2012-11-20 Honda Motor Co., Ltd. Low humidity detection system and method thereof

Also Published As

Publication number Publication date
JP2004257626A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
US7743618B2 (en) Auger type ice making machine
US6725680B1 (en) Multi-compartment refrigerator control algorithm for variable speed evaporator fan motor
US7343749B2 (en) Method of operating auger ice-making machine
KR101643220B1 (en) A refrigerator comprising an ice making device and a control method thereof
US6532751B1 (en) Method of maximizing ice production in a refrigeration appliance
JP3828834B2 (en) Ice machine
JP4201618B2 (en) Ice machine
JP6767097B2 (en) Ice machine
US5894734A (en) Water-circulating type ice maker
JP2003329354A (en) Controller for refrigerator-freezer
JP3635932B2 (en) Operation control method of auger type ice machine
KR19990030144A (en) Refrigerator
JP2001255050A (en) Refrigerator
JP5308049B2 (en) Ice machine
JP2000356441A (en) Controller for auger type ice making machine
JP4435509B2 (en) Operation method of auger type ice machine
JP3717828B2 (en) Frozen dessert production equipment
JP3883748B2 (en) Frozen confectionery manufacturing equipment
JP3883749B2 (en) Frozen confectionery manufacturing equipment
JPH0674626A (en) Flowing down type ice making machine
WO2022143634A1 (en) Refrigerator
JP3685748B2 (en) Frozen dessert production equipment
JP2011033206A (en) Ice making machine
JP3942314B2 (en) Frozen confectionery manufacturing equipment
JP3685749B2 (en) Frozen dessert production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees