JP4199567B2 - LED lighting device - Google Patents

LED lighting device Download PDF

Info

Publication number
JP4199567B2
JP4199567B2 JP2003062133A JP2003062133A JP4199567B2 JP 4199567 B2 JP4199567 B2 JP 4199567B2 JP 2003062133 A JP2003062133 A JP 2003062133A JP 2003062133 A JP2003062133 A JP 2003062133A JP 4199567 B2 JP4199567 B2 JP 4199567B2
Authority
JP
Japan
Prior art keywords
circuit
led lighting
voltage
phase control
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003062133A
Other languages
Japanese (ja)
Other versions
JP2004273267A (en
Inventor
浩行 迫
教郎 金井
茂章 山崎
俊介 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2003062133A priority Critical patent/JP4199567B2/en
Publication of JP2004273267A publication Critical patent/JP2004273267A/en
Application granted granted Critical
Publication of JP4199567B2 publication Critical patent/JP4199567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LED点灯装置に関するものである。
【0002】
【従来の技術】
近年青色LEDの商品化によって白色の高輝度LEDが開発され、従来は主に表示などの用途で使用されていたLEDが照明用途にも使用されつつある。
【0003】
例えば数百個のLEDを平面状に並べて、あたかも平面光源のような形状にモジュール化した器具が提供されており、道路の信号灯や、踏切の警報信号灯などの用途にも用いられている(例えば特許文献1参照)。
【0004】
また白熱電球と置き換えることができるように、LEDをEベースの口金を有する電球型の本体に実装し、LEDの点灯回路を口金部分に収納した電球形のLED点灯装置も提供されている。
【0005】
このような電球形のLED点灯装置では、白熱電球を調光点灯させる場合によく利用される位相制御式の調光器と組み合わせて使用されることを考慮して、図10に示すように、位相制御された交流電圧を整流した脈流の直流電圧を直接LED点灯回路1に供給する回路方式が多く用いられている。
【0006】
本回路は、商用交流電源ACに直列に接続されたトライアックTRCと、入力端子間に商用交流電源AC及びトライアックTRCの直列回路が接続されたダイオードブリッジのような整流回路DBと、整流回路DBの出力端子間に接続されたLED点灯回路1とで構成される。またLED点灯回路1は、整流回路DBの出力端子間に電流制限用の抵抗R1を介して接続された発光ダイオードLD1〜LD4の直列回路と、整流回路DBの出力端子間に電流制限用の抵抗R2を介して接続された発光ダイオードLD5〜LD8の直列回路とで構成される。
【0007】
そして本回路では、図示しない調光器からのトリガ信号を受けてトライアックTRCで商用交流電源ACの電源電圧を位相制御した後、整流回路DBで整流して得た脈流電圧V2を、発光ダイオードLD1〜LD4及び抵抗R1の直列回路と、発光ダイオードLD5〜LD8及び抵抗R2の直列回路にそのまま印加しており、発光ダイオードLD1〜LD4に流れる電流は抵抗R1で、発光ダイオードLD5〜LD8に流れる電流は抵抗R2でそれぞれ決定される。
【0008】
ここで図11(a)(b)はトライアックTRCにより位相制御を行っている場合の各部の波形図であり、同図(a)は整流回路DBの出力電圧V2の波形図、同図(b)は発光ダイオードLD1〜LD8に流れる電流の波形図である。図11(a)(b)の波形はトライアックTRCのオン位相角を脈流電圧のピーク付近(90度)に設定した場合の波形であり、オン位相角を矢印A又はBの方向にずらすことで、発光ダイオードLD1〜LD8への供給電流を変化させて調光点灯している。
【0009】
【特許文献1】
特開2000−173304号公報(第6頁−第8頁、及び、第5図、第6図)
【0010】
【発明が解決しようとする課題】
上記構成のLED点灯装置では、発光ダイオードLD1〜LD8に流れる電流の波形が脈流波形となり(図11(b)参照)、また発光ダイオードLD1〜LD8自身にもオン電圧があって、整流回路DBの出力電圧V2がオン電圧以下になると点灯しなくなるので、脈流電圧V2の電圧値が低いところでは発光ダイオードLD1〜LD8の点灯維持電圧VONよりも低くなって発光ダイオードLD1〜LD8が消灯してしまうという問題があった。
【0011】
そのため発光ダイオードLD1〜LD8に安定した直流電圧を印加できるように、整流回路DBの出力電圧(脈流電圧)を平滑コンデンサで平滑し、平滑コンデンサで平滑した電圧を発光ダイオードLD1〜LD8に印加することも考えられるが、この場合はトライアックTRCのオフ期間にも平滑コンデンサの充電電荷によって発光ダイオードLD1〜LD8に電流が流れることになる。したがって、平滑コンデンサの容量次第では、オン位相角が0度から90度までの範囲で調光器のボリュームを回してトライアックTRCの位相角を変化させたとしても、平滑コンデンサに充分な電荷が充電されているために発光ダイオードLD1〜LD8に流れる電流が変化せず、その結果調光が行われなくなり、またトライアックTRCのオン位相角が90度から180度までの範囲では平滑コンデンサを充電しつつ、急激に調光制御してしまうから、不安定な調光になってしまうという問題があった。
【0012】
本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、位相制御式の調光器を用いて安定に調光することが可能なLED点灯装置を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明では、交流電源に直列に接続され位相制御調光器によってオン位相角が制御される位相制御素子と、入力端子間に交流電源及び位相制御素子の直列回路が接続され、交流電圧を整流して脈流直流電圧に変換する整流回路と、整流回路の出力を平滑する平滑コンデンサと、平滑コンデンサの出力を電源として1乃至複数の発光ダイオードを点灯させるLED点灯回路とを備えたLED点灯回路において、位相制御素子によって位相制御された交流電圧を検出することで位相制御素子のオン期間を検出する検出手段と、検出手段の検出結果をもとに位相制御素子のオフ期間に平滑コンデンサからLED点灯回路への電流供給を遮断する遮断手段とを設けて成ることを特徴とする。
【0014】
請求項2の発明では、交流電源に直列に接続され位相制御調光器によってオン位相角が制御される位相制御素子と、入力端子間に交流電源及び位相制御素子の直列回路が接続され、交流電圧を整流して脈流直流電圧に変換する整流回路と、整流回路の出力を平滑する平滑コンデンサと、平滑コンデンサにより平滑された直流電圧をスイッチング素子でスイッチングすることによって所望の電圧値の直流電圧に降圧する直流電源回路と、直流電源回路の出力を電源として1乃至複数の発光ダイオードを点灯させるLED点灯回路とを備えたLED点灯回路において、直流電源回路の出力を上記1乃至複数の発光ダイオードのオン電圧と略同じ電圧とし、位相制御素子によって位相制御された交流電圧を検出することで位相制御素子のオン期間を検出する検出手段と、検出手段の検出結果をもとに位相制御素子のオフ期間に平滑コンデンサからLED点灯回路への電流供給を遮断する遮断手段とを設けて成ることを特徴とする。
【0015】
請求項3の発明では、請求項2の発明において、上記直流電源回路は、上記スイッチング素子及びそのドライブ回路をワンチップ化したインテリジェントパワーデバイスを用いて構成した非絶縁型のチョッパ・レギュレータであることを特徴とする。
【0016】
請求項4の発明では、請求項2の発明において、上記直流電源回路は、絶縁トランスを用いて構成した1石式のスイッチング電源であることを特徴とする。
【0017】
請求項5の発明では、請求項1〜4の何れか1つの発明において、上記遮断手段は平滑コンデンサとLED点灯回路との間に接続されたスイッチ素子からなり、上記検出手段は、整流回路の出力端子間に接続された複数の抵抗の直列回路と、一端が複数の抵抗の接続点に接続されるとともに、他端がスイッチ素子の制御端子に接続されたトリガ素子からなり、整流回路の脈流出力を検出することで位相制御素子で位相制御された交流電圧を間接的に検出することを特徴とする。
【0018】
請求項6の発明では、請求項1〜4の何れか1つの発明において、上記遮断手段は平滑コンデンサとLED点灯回路との間に接続されたスイッチ素子からなり、上記検出手段は、整流回路の入力端子にアノードが接続されたダイオードと、当該ダイオードのカソードと整流回路の低電位側の出力端子との間に接続された複数の抵抗の直列回路と、一端が複数の抵抗の接続点に接続されるとともに、他端がスイッチ素子の制御端子に接続されたトリガ素子からなることを特徴とする。
【0019】
請求項7の発明では、請求項1〜4の何れか1つの発明において、上記遮断手段は平滑コンデンサとLED点灯回路との間に接続されたスイッチ素子からなり、上記検出手段は、整流回路の各入力端子にそれぞれアノードが接続されるとともにカソードが共通接続された一対のダイオードと、両ダイオードのカソードと整流回路の低電位側の出力端子との間に接続された複数の抵抗の直列回路と、一端が複数の抵抗の接続点に接続されるとともに、他端がスイッチ素子の制御端子に接続されたトリガ素子からなることを特徴とする。
【0020】
請求項8の発明では、請求項1〜7の何れか1つの発明において、上記LED点灯回路は、発光ダイオードに流れる電流を略一定にするミラー回路構成の定電流回路を具備して成ることを特徴とする。
【0021】
【発明の実施の形態】
本発明の実施の形態を図面に基づいて説明する。
【0022】
(実施形態1)
本発明の実施形態1を図1〜図3に基づいて説明する。
【0023】
図1は本実施形態のLED点灯装置の回路図であり、本装置は商用交流電源ACに直列に接続され位相制御式の調光器3からのトリガ信号によってオン位相角が制御されるトライアックTRCと、入力端子間に商用交流電源AC及びトライアックTRCの直列回路が接続されたダイオードブリッジのような整流回路DBと、整流回路DBの高電位側の出力端子にアノードが接続された逆流防止用のダイオードD1と、ダイオードD1のカソードと整流回路DBの低電位側の出力端子との間に接続された平滑コンデンサC0と、整流回路DBの低電位側の出力端子にエミッタが接続されたスイッチ素子としてのNPN形のトランジスタTr1と、平滑コンデンサC0の両端間にトランジスタTr1を介して接続されたLED点灯回路1と、トライアックTRCで位相制御された交流電圧を検出することによってトライアックTRCのオン状態を検出し、検出信号をトランジスタTr1の制御端(ベース)に与える検出回路2(検出手段)とを備える。尚、検出回路2では、トライアックTRCで位相制御された交流電圧を直接検出する代わりに、その交流電圧を整流回路DBで全波整流した脈流直流電圧を検出しており、脈流直流電圧からトライアックTRCのオン期間を検出している。
【0024】
またLED点灯回路1は、トランジスタTr1のコレクタに一端がそれぞれ接続された電流制限用の抵抗R1,R2と、ダイオードD1及びコンデンサC0の接続点と抵抗R1の他端との間に順方向に直列接続された20個の発光ダイオードLD1,LD2…LD20と、ダイオードD1及びコンデンサC0の接続点と抵抗R2の他端との間に順方向に直列接続された20個の発光ダイオードLD21,LD22…LD40とで構成される。
【0025】
また図2は検出回路2の具体回路であり、整流回路DBの出力端子間に接続された抵抗R10,R11の直列回路と、抵抗R10,R11の接続点に一端が接続されるとともに他端がトランジスタTr1のベースに接続されたトリガ素子Tとで構成される。ここで整流回路DBの出力端子に脈流電圧が発生して、抵抗R10,R11の接続点が所定のトリガレベルVaを超えると、トリガ素子Tが導通して、トランジスタTr1のベースに電圧が印加されて、トランジスタTr1がオンになる(図3(a)(b)参照)。而してトランジスタTr1は、トライアックTRCのオン期間にオンして発光ダイオードLD1〜LD40に電流を供給するとともに、トライアックTRCのオフ期間にオフして発光ダイオードLD1〜LD40への電流供給を遮断する。つまりトランジスタTr1により、検出回路2の検出結果をもとにトライアックTRCのオフ期間に平滑コンデンサC0からLED点灯回路1への電流供給を遮断する遮断手段が構成される。なお遮断手段としてトランジスタTr1からなるスイッチ素子を用いているが、スイッチ素子をトランジスタに限定する趣旨のものではなく、FETなどのスイッチ素子を用いても良いことは言うまでもない。
【0026】
次に本装置の動作について簡単に説明する。本装置では商用交流電源ACの交流電源電圧をトライアックTRCで位相制御するとともに、位相制御された脈流の交流電圧を整流回路DBで直流の脈流電圧に変換した後、平滑コンデンサC0で平滑して得た電圧を発光ダイオードLD1〜LD40に供給している。
【0027】
そして本装置の特徴は平滑コンデンサC0に20個分の発光ダイオードのオン電圧以上の電圧を発生させて、平滑コンデンサC0からLED点灯回路1へ安定した直流電圧を供給しつつ、整流回路DBの出力電圧を検出することによってトライアックTRCのオン状態を検出し、トライアックTRCのオフ時にはトランジスタTr1をオフさせて、LED点灯回路1への供給電流を強制的にカットしている。図3(a)(b)はトライアックTRCにより位相制御を行っている場合の各部の波形図であり、同図(a)は整流回路DBの出力電圧V2の波形図、同図(b)は発光ダイオードLD1〜LD40に流れる電流の波形図である。図3(a)(b)の波形はトライアックTRCのオン位相角を脈流電圧のピーク付近(90度)に設定した場合の波形であり、オン位相角を矢印A又はBの方向にずらすことで、発光ダイオードへの供給電流のパルス幅を変化させて調光点灯している。
【0028】
つまりLED点灯回路1には、平滑コンデンサC0によって安定化された直流電圧がトランジスタTr1を介して印加されており、トランジスタTr1のオン/オフに応じて発光ダイオードLD1〜LD40に流れる電流がオン/オフされるので、発光ダイオードLD1〜LD40に流れる電流は矩形波のパルス電流となって、トライアックTRCのオン位相角に応じてパルス幅が変化する。したがって、トライアックTRCの全位相角にわたって平滑コンデンサC0からLED点灯回路1に安定した電圧を供給することができ、従来のLED点灯装置のように発光ダイオードに印加する電圧がオン電圧(点灯維持電圧)よりも下がることがないから、LED点灯回路1に電流が供給される期間中発光ダイオードLD1〜LD40を点灯させることができる。
【0029】
また本回路は、図10に示す従来のLED点灯装置において、LED点灯回路1と直列に接続されるトランジスタTr1と、トライアックTRCのオン期間を検出する検出回路2とを追加しただけで、検出回路2は図2に示すように2個の抵抗R10,R11とトリガ素子Tのみで構成できるので、大きなコストアップとなることはない。
【0030】
尚、本実施形態では各20個の発光ダイオードLD1〜LD20、LD21〜LD40をそれぞれ直列に接続し、発光ダイオードLD1〜LD20の直列回路と発光ダイオードLD21〜LD40の直列回路を平滑コンデンサC0と並列に接続しているが、直列に接続する発光ダイオードの個数や、平滑コンデンサC0と並列に接続する発光ダイオードの直列回路の数を上記の数に限定する趣旨のものではなく、入力電圧に応じて適宜決定すれば良い。本実施形態では入力電圧が100Vの場合に効率良く点灯するように発光ダイオードの接続数を20個としている。また、平滑コンデンサC0と並列に接続する発光ダイオードの直列回路の数を2つにしているのは、平滑コンデンサC0の両端間に40個の発光ダイオードLD1〜LD40を全て直列に接続すると、その内の1個がオープン破壊した場合に残りの発光ダイオードが全て不点になるが、本回路では平滑コンデンサC0の両端間に発光ダイオードLD1〜LD20の直列回路(系統1)と、発光ダイオードLD21〜LD40の直列回路(系統2)とを並列に接続することで、40個の内の1個がオープン破壊しても、一方の系統の発光ダイオードが不点になるだけで、他の系統の20個の発光ダイオードが不点になるのを防止して、全ての発光ダイオードLD1〜LD40が不点になるのを防止している。
【0031】
(実施形態2)
本発明の実施形態2を図4及び図5に基づいて説明する。
【0032】
上述の実施形態1では検出回路2が整流回路DBの出力側の脈流直流電圧V2を検出することによって、トライアックTRCで位相制御された交流電圧を間接的に検出して、トライアックTRCのオン期間を求めているのに対して、本実施形態では図4に示すように検出回路2が整流回路DBの入力側の交流電圧V1を検出しており、トライアックTRCで位相制御された交流電圧V1を直接検出することで、トライアックTRCのオン期間を検出している。尚、検出回路2以外は実施形態1と同様であるので、共通する構成要素には同一の符号を付してその説明は省略する。
【0033】
図5は本実施形態の具体例を示し、検出回路2を、整流回路DBの各入力端子にそれぞれアノードが接続されるとともにカソードが共通接続された一対のダイオードD2,D3と、両ダイオードD2,D3のカソードに発生する電圧を検出することで交流電圧V2を検出して、トライアックTRCのオン期間を検出する検出部2aとで構成している。なお検出部2aは図2に示すような回路構成を有し、ダイオードD2,D3のカソードと整流回路DBの低電位側の出力端子との間に接続された抵抗R10,R11の直列回路と、抵抗R10,R11の接続点に一端が接続されるとともに他端がトランジスタTr1のベースに接続されたトリガ素子Tとで構成される。
【0034】
ここで検出回路2では、整流回路DBの入力電圧をダイオードD2,D3で整流して、抵抗R10,R11の直列回路に印加しており、抵抗R10,R11の接続点が所定のトリガレベルVaを超えると、トリガ素子Tが導通してトランジスタTr1のベースに電圧が印加され、トランジスタTr1がオンになる。而してトランジスタTr1は、トライアックTRCのオン期間にオンして発光ダイオードLD1〜LD40に電流を供給するとともに、トライアックTRCのオフ期間にオフして発光ダイオードLD1〜LD40への電流供給を遮断する。
【0035】
このように本実施形態においても、平滑コンデンサC0からLED点灯回路1へ安定した直流電圧を供給しつつ、位相制御された交流電圧V1を検出することによってトライアックTRCのオン状態を検出し、トライアックTRCのオフ時にはトランジスタTr1をオフさせて、LED点灯回路1への供給電流を強制的にカットしているので、発光ダイオードLD1〜LD40に流れる電流が矩形波のパルス電流となって、トライアックTRCのオン位相角に応じてパルス幅が変化し、発光ダイオードLD1〜LD40を調光することができる。したがって、トライアックTRCの全位相角にわたって平滑コンデンサC0からLED点灯回路1に安定した電圧を供給することができ、従来のLED点灯装置のように発光ダイオードに印加する電圧がオン電圧(点灯維持電圧)よりも下がることがないから、LED点灯回路1に電流が供給される期間中発光ダイオードLD1〜LD40を点灯させることができる。
【0036】
尚、本実施形態では検出回路2によりトライアックTRCで位相制御された交流電圧V1を検出しているので、整流回路DBとは別に交流電圧を整流して検出部2aに入力するためのダイオードD2,D3、もしくは絶縁する手段が必要になり、実施形態1のように整流回路DBの出力側の直流電圧を検出すことで、位相制御された交流電圧V1を間接的に検出する方がコスト的には有利である。
【0037】
(実施形態3)
本発明の実施形態3を図6〜図8に基づいて説明する。
【0038】
上述した実施形態1では、整流回路DBの出力を平滑コンデンサC0で平滑して、平滑コンデンサC0で平滑された直流電圧をLED点灯回路1に印加しているのに対して、本実施形態では、LED点灯回路1に供給する電圧を発光ダイオードの個数に応じた電圧に設定するため、図6に示すように平滑コンデンサC0で平滑された直流電圧をスイッチング素子でスイッチングすることによって発光ダイオードのオン電圧と略同じ電圧まで降圧する直流電源回路4を設け、直流電源回路4の低電位側の出力端子にトランジスタTr1のエミッタを接続し、直流電源回路4の高電位側の出力端子とトランジスタTr1のコレクタとの間にLED点灯回路1を接続している。尚、LED点灯回路1及び直流電源回路4以外は実施形態1と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。
【0039】
本実施形態ではLED点灯回路1を、トランジスタTr1のコレクタに一端がそれぞれ接続された電流制限用の抵抗R1,R2と、直流電源回路4の高電位側の出力端子と抵抗R1の他端との間に順方向に直列接続された10個の発光ダイオードLD1,LD2…LD10と、直流電源回路4の高電位側の出力端子と抵抗R2の他端との間に順方向に直列接続された10個の発光ダイオードLD11,LD12…LD20とで構成している。
【0040】
通常、発光ダイオードLD1〜LD20のオン電圧は約2〜4Vであるから、LED点灯回路1全体でオン電圧が4(V/個)×10(個)=40V程度となり、実施形態1に比べて低電圧に設定している。したがって、直流電源回路4では、商用交流電源ACを位相制御した電圧を整流回路DBで整流し、平滑コンデンサC0で平滑して得た電圧を約40V付近に降圧することで、LED点灯回路1に発光ダイオードの個数に応じた電圧を供給できる。
【0041】
尚、直流電源回路4の出力端子間に全ての発光ダイオードLD1〜LD20を直列接続した場合はその内の1個がオープン破壊すると、残りの発光ダイオードまで不点になるが、直流電源回路4の出力端子間に発光ダイオードLD1〜LD10の直列回路(系統1)と、発光ダイオードLD11〜LD20の直列回路(系統2)とを並列接続しているので、20個の発光ダイオードLD1〜LD2の内の1個がオープン破壊しても、一方の系統の発光ダイオードが不点になるだけで、他の系統の10個の発光ダイオードは点灯するので、全ての発光ダイオードLD1〜LD20が不点になるのを防止できる。
【0042】
ところで、図7及び図8は直流電源回路4の具体回路を示し、図7の例ではインテリジェントパワーデバイス(以下、IPD素子と言う)4aと、抵抗R5と、コンデンサC1〜C3と、インダクタL1と、ダイオードD4,D5と、ツェナーダイオードZD1とからなる非絶縁型のチョッパ・レギュレータで直流電源回路4を構成している。
【0043】
IPD素子4aはスイッチング素子としてのパワーMOSFET及びそのドライブ回路をワンチップ化したもので、出力電圧をツェナーダイオードZD1及びダイオードD4を介してコントロール端子Cにフィードバックしており、出力電圧が(VZD+VCS)となるように、内部のドライブ回路によりパワーMOSFETのオン/オフを制御している。但し、VZDはツェナーダイオードZD1のツェナー電圧、VCSはIPD素子4aのコントロール端子Cとソース端子Sとの間の電圧である。
【0044】
本回路ではスイッチング素子とそのドライブ回路をワンチップ化したIPD素子4aを用いているので、回路の小型化、低コスト化が図れるが、非絶縁型であるので安全性には注意が必要である。なお本回路ではスイッチング素子とそのドライブ回路をワンチップ化したIPD素子4aを用いているが、IPD素子4aの代わりにMOSFETなどのスイッチング素子を用いても良く、その場合は制御用の外付け部品が若干必要になる。
【0045】
また図8の例ではIPD素子4aと、絶縁トランスT1と、抵抗R6,R7と、コンデンサC4,C5と、フォトカプラPC1と、ダイオードD6〜D8と、ツェナーダイオードZD2,ZD3とからなる1石式のフライバック方式のスイッチング電源で直流電源回路4を構成している。
【0046】
本回路では、安全性を高めるために絶縁トランスT1を用いて入力側と出力側とを絶縁しており、絶縁された出力電圧をフォトカプラPC1で検出して、IPD素子のコントロール端子にフィードバックしている。なお本回路ではスイッチング素子とそのドライブ回路をワンチップ化したIPD素子4aを用いているが、IPD素子4aの代わりにMOSFETなどのスイッチング素子を用いても良く、その場合は制御用の外付け部品が若干必要になる。
【0047】
尚本実施形態では実施形態1のLED点灯装置に直流電源回路4を付加しているが、実施形態2において直流電源回路4を付加しても良く、上述と同様の効果が得られる。
【0048】
(実施形態4)
本発明の実施形態4を図9に基づいて説明する。
【0049】
本実施形態では、上述の実施形態3において、LED点灯回路1にミラー回路構成の定電流回路5を設けており、発光ダイオードLD1〜LD4に流れる電流を略一定に制御している。尚、LED点灯回路1及び定電流回路5以外の構成は実施形態3と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。
【0050】
LED点灯回路1は、トランジスタTr1のコレクタに一端がそれぞれ接続された電流制限用の抵抗R1,R2と、直流電源回路4の高電位側の出力端と抵抗R1の他端との間にトランジスタTr3を介して順方向に直列接続された2個の発光ダイオードLD1,LD2と、直流電源回路4の高電位側の出力端と抵抗R2の他端との間にトランジスタTr4を介して順方向に直列接続された2個の発光ダイオードLD3,LD4とで構成される。本回路では実施形態3に比べて発光ダイオードLD1…の接続個数を更に少なくしており、直流電源回路4の出力電圧を4(V/個)×2(個)=8(V)付近の低電圧に設定している。
【0051】
そして、一般的に発光ダイオードLD1…のオン電圧は順方向電圧Vfのセンター値に対して2割は変動するので、順方向電圧Vfが変動しても、発光ダイオードLD1…に流れる電流が変化しないように定電流回路5を設けている。
【0052】
定電流回路5は、直流電源回路4の高電位側の出力端に一端が接続された抵抗R8と、トランジスタTr1のコレクタに一端が接続された抵抗R9と、コレクタ−ベース間が短絡されるとともに抵抗R8の他端と抵抗R9の他端との間にコレクタ−エミッタ間が接続されたトランジスタTr2と、トランジスタTr2とベース同士が共通接続されたトランジスタTr3,Tr4と、からなるミラー電流回路で構成され、発光ダイオードLD1〜LD4に流れる電流を略一定にしているので、発光ダイオードLD1〜LD4を安定に点灯させることができる。
【0053】
尚、本実施形態では実施形態3においてLED点灯回路1に定電流回路5を付加しているが、実施形態1又は2においてLED点灯回路1に定電流回路5を付加しても良く、上述と同様の効果が得られる。
【0054】
【発明の効果】
上述のように、請求項1の発明は、交流電源に直列に接続され位相制御調光器によってオン位相角が制御される位相制御素子と、入力端子間に交流電源及び位相制御素子の直列回路が接続され、交流電圧を整流して脈流直流電圧に変換する整流回路と、整流回路の出力を平滑する平滑コンデンサと、平滑コンデンサの出力を電源として1乃至複数の発光ダイオードを点灯させるLED点灯回路とを備えたLED点灯回路において、位相制御素子によって位相制御された交流電圧を検出することで位相制御素子のオン期間を検出する検出手段と、検出手段の検出結果をもとに位相制御素子のオフ期間に平滑コンデンサからLED点灯回路への電流供給を遮断する遮断手段とを設けて成ることを特徴とし、検出手段により位相制御素子のオン状態を検出し、検出手段の検出結果をもとに位相制御素子のオフ期間は遮断手段が平滑コンデンサからLED点灯回路への電流供給を遮断しているので、位相制御素子のオン位相角に応じたパルス幅で発光ダイオードに電流を流して調光することができ、そのうえ平滑コンデンサの出力を1乃至複数の発光ダイオードのオン電圧以上として、平滑コンデンサの出力をLED点灯回路に供給しているので、位相制御素子の全位相角にわたってLED点灯回路に安定した電圧を供給できるから、位相制御式の調光器を用いて発光ダイオードを安定に調光できるという効果がある。
【0055】
請求項2の発明は、交流電源に直列に接続され位相制御調光器によってオン位相角が制御される位相制御素子と、入力端子間に交流電源及び位相制御素子の直列回路が接続され、交流電圧を整流して脈流直流電圧に変換する整流回路と、整流回路の出力を平滑する平滑コンデンサと、平滑コンデンサにより平滑された直流電圧をスイッチング素子でスイッチングすることによって所望の電圧値の直流電圧に降圧する直流電源回路と、直流電源回路の出力を電源として1乃至複数の発光ダイオードを点灯させるLED点灯回路とを備えたLED点灯回路において、直流電源回路の出力を上記1乃至複数の発光ダイオードのオン電圧と略同じ電圧とし、位相制御素子によって位相制御された交流電圧を検出することで位相制御素子のオン期間を検出する検出手段と、検出手段の検出結果をもとに位相制御素子のオフ期間に平滑コンデンサからLED点灯回路への電流供給を遮断する遮断手段とを設けて成ることを特徴とし、検出手段により位相制御素子のオン状態を検出し、検出手段の検出結果をもとに位相制御素子のオフ期間は遮断手段が平滑コンデンサからLED点灯回路への電流供給を遮断しているので、位相制御素子のオン位相角に応じたパルス幅で発光ダイオードに電流を流して調光することができ、そのうえ直流電源回路は平滑コンデンサで平滑した電圧を1乃至複数の発光ダイオードのオン電圧と略同じ電圧まで降圧し、その出力ををLED点灯回路に供給しているので、位相制御素子の全位相角にわたってLED点灯回路に安定した電圧を供給できるから、位相制御式の調光器を用いて発光ダイオードを安定に調光できるという効果がある。
【0056】
請求項3の発明は、請求項2の発明において、上記直流電源回路は、上記スイッチング素子及びそのドライブ回路をワンチップ化したインテリジェントパワーデバイスを用いて構成した非絶縁型のチョッパ・レギュレータであることを特徴とし、請求項2の発明と同様の効果を奏する。
【0057】
請求項4の発明は、請求項2の発明において、上記直流電源回路は、絶縁トランスを用いて構成した1石式のスイッチング電源であることを特徴とし、請求項2の発明と同様の効果を奏する。
【0058】
請求項5の発明は、請求項1〜4の何れか1つの発明において、上記遮断手段は平滑コンデンサとLED点灯回路との間に接続されたスイッチ素子からなり、上記検出手段は、整流回路の出力端子間に接続された複数の抵抗の直列回路と、一端が複数の抵抗の接続点に接続されるとともに、他端がスイッチ素子の制御端子に接続されたトリガ素子からなり、整流回路の脈流出力を検出することで位相制御素子で位相制御された交流電圧を間接的に検出することを特徴とし、抵抗の接続点の電位がトリガ素子のトリガレベルを超えると、トリガ素子が導通してスイッチ素子がオンするので、位相制御素子のオン/オフに応じてスイッチ素子をオン/オフさせて、発光ダイオードを調光することができる。
【0059】
請求項6の発明は、請求項1〜4の何れか1つの発明において、上記遮断手段は平滑コンデンサとLED点灯回路との間に接続されたスイッチ素子からなり、上記検出手段は、整流回路の入力端子にアノードが接続されたダイオードと、当該ダイオードのカソードと整流回路の低電位側の出力端子との間に接続された複数の抵抗の直列回路と、一端が複数の抵抗の接続点に接続されるとともに、他端がスイッチ素子の制御端子に接続されたトリガ素子からなることを特徴とし、ダイオードで交流電圧を整流して複数の抵抗の直列回路に印加しており、抵抗の接続点の電位がトリガ素子のトリガレベルを超えると、トリガ素子が導通してスイッチ素子がオンするので、位相制御素子のオン/オフに応じてスイッチ素子をオン/オフさせて、発光ダイオードを調光することができる。
【0060】
請求項7の発明は、請求項1〜4の何れか1つの発明において、上記遮断手段は平滑コンデンサとLED点灯回路との間に接続されたスイッチ素子からなり、上記検出手段は、整流回路の各入力端子にそれぞれアノードが接続されるとともにカソードが共通接続された一対のダイオードと、両ダイオードのカソードと整流回路の低電位側の出力端子との間に接続された複数の抵抗の直列回路と、一端が複数の抵抗の接続点に接続されるとともに、他端がスイッチ素子の制御端子に接続されたトリガ素子からなることを特徴とし、ダイオードで交流電圧を整流して複数の抵抗の直列回路に印加しており、抵抗の接続点の電位がトリガ素子のトリガレベルを超えると、トリガ素子が導通してスイッチ素子がオンするので、位相制御素子のオン/オフに応じてスイッチ素子をオン/オフさせて、発光ダイオードを調光することができる。
【0061】
請求項8の発明は、請求項1〜7の何れか1つの発明において、上記LED点灯回路は、発光ダイオードに流れる電流を略一定にするミラー回路構成の定電流回路を具備して成ることを特徴とし、定電流回路により発光ダイオードに流れる電流を略一定にすることで、発光ダイオードを安定して調光することができる。
【図面の簡単な説明】
【図1】実施形態1のLED点灯装置のブロック回路図である。
【図2】同上の要部の回路図である。
【図3】同上の位相制御時の各部の波形図であり、(a)は整流器の出力電圧の波形図、(b)は発光ダイオードに流れる電流の波形図である。
【図4】実施形態2のLED点灯装置のブロック回路図である。
【図5】同上のブロック回路図である。
【図6】実施形態3のLED点灯装置のブロック回路図である。
【図7】同上の直流電源回路の回路図である。
【図8】同上の別の直流電源回路の回路図である。
【図9】実施形態4のLED点灯装置のブロック回路図である。
【図10】従来のLED点灯装置のブロック回路図である。
【図11】同上の位相制御時の各部の波形図であり、(a)は整流器の出力電圧の波形図、(b)は発光ダイオードに流れる電流の波形図である。
【符号の説明】
1 LED点灯回路
2 検出回路
3 調光器
AC 商用交流電源
C0 平滑コンデンサ
DB 整流回路
LD1〜LD40 発光ダイオード
TRC トライアック
Tr1 トランジスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an LED lighting device.
[0002]
[Prior art]
In recent years, white high-brightness LEDs have been developed by commercialization of blue LEDs, and LEDs that have been used mainly for displays and the like are now being used for illumination.
[0003]
For example, a device in which hundreds of LEDs are arranged in a plane and modularized into a shape like a planar light source is provided, and is used for applications such as road signal lights and railroad crossing warning signal lights (for example, Patent Document 1).
[0004]
There is also provided a bulb-type LED lighting device in which an LED is mounted on a bulb-type main body having an E-based cap so that it can be replaced with an incandescent bulb, and an LED lighting circuit is housed in the cap portion.
[0005]
In such a bulb-shaped LED lighting device, considering that it is used in combination with a phase control type dimmer often used for dimming an incandescent bulb, as shown in FIG. A circuit system in which a pulsating DC voltage obtained by rectifying a phase-controlled AC voltage is directly supplied to the LED lighting circuit 1 is often used.
[0006]
This circuit includes a triac TRC connected in series to a commercial AC power supply AC, a rectifier circuit DB such as a diode bridge in which a series circuit of the commercial AC power supply AC and the triac TRC is connected between input terminals, and a rectifier circuit DB. The LED lighting circuit 1 is connected between the output terminals. The LED lighting circuit 1 includes a series circuit of light emitting diodes LD1 to LD4 connected between the output terminals of the rectifier circuit DB via the current limit resistor R1 and a current limit resistor between the output terminals of the rectifier circuit DB. It comprises a series circuit of light emitting diodes LD5 to LD8 connected via R2.
[0007]
In this circuit, a trigger signal from a dimmer (not shown) is received, the power supply voltage of the commercial AC power supply AC is phase-controlled by the triac TRC, and then the pulsating voltage V2 obtained by rectification by the rectifier circuit DB is converted into a light emitting diode. Immediately applied to the series circuit of LD1 to LD4 and resistor R1, and the series circuit of light emitting diodes LD5 to LD8 and resistor R2, the current flowing through the light emitting diodes LD1 to LD4 is the resistor R1, and the current flowing through the light emitting diodes LD5 to LD8. Are determined by the resistance R2.
[0008]
Here, FIGS. 11A and 11B are waveform diagrams of respective parts when phase control is performed by the triac TRC, and FIG. 11A is a waveform diagram of the output voltage V2 of the rectifier circuit DB, and FIG. ) Is a waveform diagram of currents flowing through the light emitting diodes LD1 to LD8. The waveforms in FIGS. 11A and 11B are waveforms when the ON phase angle of the TRIAC TRC is set near the peak of the pulsating voltage (90 degrees), and the ON phase angle is shifted in the direction of the arrow A or B. Thus, dimming is performed by changing the supply current to the light emitting diodes LD1 to LD8.
[0009]
[Patent Document 1]
JP 2000-173304 A (pages 6 to 8 and FIGS. 5 and 6)
[0010]
[Problems to be solved by the invention]
In the LED lighting device having the above configuration, the waveform of the current flowing through the light emitting diodes LD1 to LD8 becomes a pulsating waveform (see FIG. 11B), and the light emitting diodes LD1 to LD8 themselves have an on-voltage, and the rectifier circuit DB. When the output voltage V2 of the LED becomes lower than the ON voltage, the lighting is stopped. Therefore, the lighting sustaining voltage V of the light emitting diodes LD1 to LD8 is low when the pulsating voltage V2 is low. ON There is a problem that the light emitting diodes LD1 to LD8 are turned off.
[0011]
Therefore, the output voltage (pulsating voltage) of the rectifier circuit DB is smoothed by a smoothing capacitor so that a stable DC voltage can be applied to the light emitting diodes LD1 to LD8, and the voltage smoothed by the smoothing capacitor is applied to the light emitting diodes LD1 to LD8. In this case, a current flows through the light emitting diodes LD1 to LD8 by the charge of the smoothing capacitor even during the off period of the triac TRC. Therefore, depending on the capacity of the smoothing capacitor, even if the volume of the dimmer is turned and the phase angle of the TRIAC TRC is changed in the range of the ON phase angle from 0 to 90 degrees, sufficient charge is charged in the smoothing capacitor. Therefore, the current flowing through the light emitting diodes LD1 to LD8 does not change, and as a result, dimming is not performed, and the smoothing capacitor is charged when the on phase angle of the triac TRC is in the range from 90 degrees to 180 degrees. However, since the light control is suddenly controlled, there is a problem that the light control becomes unstable.
[0012]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an LED lighting device capable of stably dimming using a phase control type dimmer. is there.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a phase control element connected in series to an AC power source and controlled in phase angle by a phase control dimmer, and an AC power source and a phase control element between input terminals A rectifier circuit that rectifies an AC voltage and converts it into a pulsating DC voltage, a smoothing capacitor that smoothes the output of the rectifier circuit, and turns on one or more light emitting diodes using the output of the smoothing capacitor as a power source An LED lighting circuit comprising: a detecting means for detecting an ON period of the phase control element by detecting an AC voltage phase-controlled by the phase control element; and a detection result of the detecting means. The present invention is characterized in that a shut-off means for shutting off the current supply from the smoothing capacitor to the LED lighting circuit during the off period of the phase control element is provided.
[0014]
In the invention of claim 2, a phase control element connected in series to an AC power source and whose on phase angle is controlled by a phase control dimmer, and a series circuit of an AC power source and a phase control element are connected between input terminals, A rectifying circuit that rectifies the voltage to convert it into a pulsating DC voltage, a smoothing capacitor that smoothes the output of the rectifying circuit, and a DC voltage of a desired voltage value by switching the DC voltage smoothed by the smoothing capacitor with a switching element In an LED lighting circuit comprising: a DC power supply circuit that steps down to a voltage; and an LED lighting circuit that lights one or more light emitting diodes using the output of the DC power supply circuit as a power supply, the output of the DC power supply circuit is the one or more light emitting diodes. The on-period of the phase control element is determined by detecting the AC voltage phase-controlled by the phase control element. Detection means for output, characterized by comprising a detection result of the detecting means provided with blocking means for blocking the supply of current from the smoothing capacitor based on the off-period of the phase control element to the LED lighting circuit.
[0015]
According to a third aspect of the present invention, in the second aspect of the present invention, the DC power supply circuit is a non-insulated chopper regulator configured using an intelligent power device in which the switching element and its drive circuit are integrated into a single chip. It is characterized by.
[0016]
According to a fourth aspect of the present invention, in the second aspect of the present invention, the DC power supply circuit is a one-stone switching power supply configured using an insulating transformer.
[0017]
According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the blocking means comprises a switch element connected between a smoothing capacitor and an LED lighting circuit, and the detection means is a rectifier circuit. A series circuit of a plurality of resistors connected between the output terminals and a trigger element having one end connected to a connection point of the plurality of resistors and the other end connected to the control terminal of the switch element. By detecting the flow output, the AC voltage phase-controlled by the phase control element is indirectly detected.
[0018]
According to a sixth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the blocking means comprises a switch element connected between a smoothing capacitor and an LED lighting circuit, and the detection means is a rectifier circuit. A diode having an anode connected to the input terminal, a series circuit of a plurality of resistors connected between the cathode of the diode and the output terminal on the low potential side of the rectifier circuit, and one end connected to a connection point of the plurality of resistors The other end is composed of a trigger element connected to the control terminal of the switch element.
[0019]
According to a seventh aspect of the present invention, in any one of the first to fourth aspects of the present invention, the blocking means comprises a switch element connected between a smoothing capacitor and an LED lighting circuit, and the detection means is a rectifier circuit. A pair of diodes each having an anode connected to each input terminal and a cathode commonly connected; and a series circuit of a plurality of resistors connected between the cathodes of both diodes and the output terminal on the low potential side of the rectifier circuit; One end is connected to a connection point of a plurality of resistors, and the other end is composed of a trigger element connected to a control terminal of the switch element.
[0020]
According to an eighth aspect of the present invention, in any one of the first to seventh aspects of the present invention, the LED lighting circuit includes a constant current circuit having a mirror circuit configuration that makes a current flowing through the light emitting diode substantially constant. Features.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
[0022]
(Embodiment 1)
Embodiment 1 of this invention is demonstrated based on FIGS. 1-3.
[0023]
FIG. 1 is a circuit diagram of an LED lighting device according to this embodiment. This device is connected in series to a commercial AC power supply AC, and a triac TRC whose on-phase angle is controlled by a trigger signal from a phase control type dimmer 3. And a rectifier circuit DB such as a diode bridge in which a series circuit of a commercial AC power supply AC and a triac TRC is connected between the input terminals, and an anode connected to the output terminal on the high potential side of the rectifier circuit DB for preventing backflow. As a switching element having a diode D1, a smoothing capacitor C0 connected between the cathode of the diode D1 and the output terminal on the low potential side of the rectifier circuit DB, and an emitter connected to the output terminal on the low potential side of the rectifier circuit DB NPN type transistor Tr1, an LED lighting circuit 1 connected between both ends of the smoothing capacitor C0 via the transistor Tr1, Detecting the ON state of the triac TRC by detecting the AC voltage phase-controlled by the acknowledgment TRC, and a detection circuit 2 (detecting means) for providing a detection signal to the control terminal of the transistor Tr1 (base). The detection circuit 2 detects a pulsating DC voltage obtained by full-wave rectifying the AC voltage using the rectifier circuit DB instead of directly detecting the AC voltage phase-controlled by the TRIAC TRC. The on period of the triac TRC is detected.
[0024]
The LED lighting circuit 1 is connected in series in the forward direction between current-limiting resistors R1 and R2, one end of which is connected to the collector of the transistor Tr1, and a connection point between the diode D1 and the capacitor C0 and the other end of the resistor R1. ... 20 light emitting diodes LD1, LD2... LD20 and 20 light emitting diodes LD21, LD22... LD40 connected in series in the forward direction between the connection point of the diode D1 and the capacitor C0 and the other end of the resistor R2. It consists of.
[0025]
FIG. 2 shows a specific circuit of the detection circuit 2. One end of the series circuit of the resistors R10 and R11 connected between the output terminals of the rectifier circuit DB and the connection point of the resistors R10 and R11 are connected and the other end is connected. The trigger element T is connected to the base of the transistor Tr1. Here, when a pulsating voltage is generated at the output terminal of the rectifier circuit DB and the connection point of the resistors R10 and R11 exceeds a predetermined trigger level Va, the trigger element T is turned on and a voltage is applied to the base of the transistor Tr1. Thus, the transistor Tr1 is turned on (see FIGS. 3A and 3B). Thus, the transistor Tr1 is turned on during the on period of the triac TRC to supply current to the light emitting diodes LD1 to LD40, and is turned off during the off period of the triac TRC to cut off current supply to the light emitting diodes LD1 to LD40. That is, the transistor Tr1 constitutes a blocking means for blocking the current supply from the smoothing capacitor C0 to the LED lighting circuit 1 during the off period of the triac TRC based on the detection result of the detection circuit 2. Although the switching element composed of the transistor Tr1 is used as the blocking means, it is needless to say that the switching element is not limited to the transistor, and a switching element such as an FET may be used.
[0026]
Next, the operation of this apparatus will be briefly described. In this device, the AC power supply voltage of the commercial AC power supply AC is phase-controlled by the TRIAC TRC, and the phase-controlled pulsating AC voltage is converted to the DC pulsating voltage by the rectifier circuit DB and then smoothed by the smoothing capacitor C0. The voltage obtained in this way is supplied to the light emitting diodes LD1 to LD40.
[0027]
The feature of this device is that the smoothing capacitor C0 generates a voltage equal to or higher than the ON voltage of 20 light emitting diodes, and supplies a stable DC voltage from the smoothing capacitor C0 to the LED lighting circuit 1, while the output of the rectifier circuit DB. By detecting the voltage, the on state of the triac TRC is detected, and when the triac TRC is turned off, the transistor Tr1 is turned off to forcibly cut the supply current to the LED lighting circuit 1. FIGS. 3A and 3B are waveform diagrams of respective parts when phase control is performed by the triac TRC. FIG. 3A is a waveform diagram of the output voltage V2 of the rectifier circuit DB, and FIG. It is a wave form diagram of the electric current which flows into light emitting diode LD1-LD40. The waveforms in FIGS. 3A and 3B are waveforms when the ON phase angle of the triac TRC is set near the peak of the pulsating voltage (90 degrees), and the ON phase angle is shifted in the direction of the arrow A or B. Thus, dimming is performed by changing the pulse width of the current supplied to the light emitting diode.
[0028]
That is, a DC voltage stabilized by the smoothing capacitor C0 is applied to the LED lighting circuit 1 via the transistor Tr1, and currents flowing through the light emitting diodes LD1 to LD40 according to on / off of the transistor Tr1 are turned on / off. Therefore, the current flowing through the light emitting diodes LD1 to LD40 becomes a rectangular wave pulse current, and the pulse width changes according to the ON phase angle of the triac TRC. Therefore, a stable voltage can be supplied from the smoothing capacitor C0 to the LED lighting circuit 1 over the entire phase angle of the triac TRC, and the voltage applied to the light emitting diode as in the conventional LED lighting device is the on voltage (lighting sustain voltage). Therefore, the light emitting diodes LD <b> 1 to LD <b> 40 can be lit during the period when the current is supplied to the LED lighting circuit 1.
[0029]
Further, the present circuit is the same as the conventional LED lighting device shown in FIG. 10, except that a transistor Tr1 connected in series with the LED lighting circuit 1 and a detection circuit 2 for detecting the ON period of the triac TRC are added. 2 can be configured by only two resistors R10 and R11 and a trigger element T as shown in FIG.
[0030]
In this embodiment, each of the 20 light emitting diodes LD1 to LD20 and LD21 to LD40 is connected in series, and the series circuit of the light emitting diodes LD1 to LD20 and the series circuit of the light emitting diodes LD21 to LD40 are connected in parallel to the smoothing capacitor C0. Although connected, the number of light-emitting diodes connected in series and the number of series circuits of light-emitting diodes connected in parallel with the smoothing capacitor C0 are not limited to the above numbers, and are appropriately determined according to the input voltage. Just decide. In the present embodiment, the number of connected light emitting diodes is set to 20 so as to light up efficiently when the input voltage is 100V. Further, the number of series circuits of the light emitting diodes connected in parallel with the smoothing capacitor C0 is two because when all 40 light emitting diodes LD1 to LD40 are connected in series between both ends of the smoothing capacitor C0, The remaining light emitting diodes are all unsatisfactory when one of them is broken open, but in this circuit, the series circuit (system 1) of the light emitting diodes LD1 to LD20 and the light emitting diodes LD21 to LD40 between both ends of the smoothing capacitor C0. By connecting the series circuit (system 2) in parallel with each other, even if one of the 40 is open-destructed, only the light-emitting diode of one system becomes inconsequential, and 20 of the other system This prevents the light emitting diodes from becoming stigmatized and prevents all the light emitting diodes LD1 to LD40 from becoming stigmatized.
[0031]
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIGS.
[0032]
In the first embodiment described above, the detection circuit 2 detects the pulsating DC voltage V2 on the output side of the rectifier circuit DB, thereby indirectly detecting the AC voltage phase-controlled by the triac TRC, and the ON period of the triac TRC. In this embodiment, as shown in FIG. 4, the detection circuit 2 detects the AC voltage V1 on the input side of the rectifier circuit DB, and the AC voltage V1 phase-controlled by the triac TRC is used. By detecting directly, the ON period of the triac TRC is detected. In addition, since it is the same as that of Embodiment 1 except the detection circuit 2, the same code | symbol is attached | subjected to a common component and the description is abbreviate | omitted.
[0033]
FIG. 5 shows a specific example of this embodiment. The detection circuit 2 includes a pair of diodes D2 and D3, each having an anode connected to each input terminal of the rectifier circuit DB and a cathode commonly connected, and both diodes D2, D2. The detection unit 2a detects the AC voltage V2 by detecting the voltage generated at the cathode of D3, and detects the ON period of the triac TRC. The detection unit 2a has a circuit configuration as shown in FIG. 2, and a series circuit of resistors R10 and R11 connected between the cathodes of the diodes D2 and D3 and the output terminal on the low potential side of the rectifier circuit DB; One end is connected to the connection point of the resistors R10 and R11, and the other end is configured by a trigger element T connected to the base of the transistor Tr1.
[0034]
Here, in the detection circuit 2, the input voltage of the rectifier circuit DB is rectified by the diodes D2 and D3 and applied to the series circuit of the resistors R10 and R11, and the connection point of the resistors R10 and R11 has a predetermined trigger level Va. When exceeded, the trigger element T becomes conductive, a voltage is applied to the base of the transistor Tr1, and the transistor Tr1 is turned on. Thus, the transistor Tr1 is turned on during the on period of the triac TRC to supply current to the light emitting diodes LD1 to LD40, and is turned off during the off period of the triac TRC to cut off current supply to the light emitting diodes LD1 to LD40.
[0035]
As described above, also in the present embodiment, the triac TRC is turned on by detecting the phase-controlled AC voltage V1 while supplying a stable DC voltage from the smoothing capacitor C0 to the LED lighting circuit 1, and the triac TRC. Since the transistor Tr1 is turned off and the supply current to the LED lighting circuit 1 is forcibly cut off, the current flowing through the light emitting diodes LD1 to LD40 becomes a rectangular pulse current, and the triac TRC is turned on. The pulse width changes according to the phase angle, and the light emitting diodes LD1 to LD40 can be dimmed. Therefore, a stable voltage can be supplied from the smoothing capacitor C0 to the LED lighting circuit 1 over the entire phase angle of the triac TRC, and the voltage applied to the light emitting diode as in the conventional LED lighting device is the on voltage (lighting sustain voltage). Therefore, the light emitting diodes LD <b> 1 to LD <b> 40 can be lit during the period when the current is supplied to the LED lighting circuit 1.
[0036]
In the present embodiment, since the detection circuit 2 detects the AC voltage V1 phase-controlled by the triac TRC, the diode D2 for rectifying the AC voltage separately from the rectification circuit DB and inputting it to the detection unit 2a. D3 or means for insulation is required, and it is more costly to indirectly detect the phase-controlled AC voltage V1 by detecting the DC voltage on the output side of the rectifier circuit DB as in the first embodiment. Is advantageous.
[0037]
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIGS.
[0038]
In the first embodiment described above, the output of the rectifier circuit DB is smoothed by the smoothing capacitor C0 and the DC voltage smoothed by the smoothing capacitor C0 is applied to the LED lighting circuit 1, whereas in the present embodiment, In order to set the voltage supplied to the LED lighting circuit 1 to a voltage corresponding to the number of light emitting diodes, the DC voltage smoothed by the smoothing capacitor C0 is switched by a switching element as shown in FIG. A DC power supply circuit 4 that steps down to substantially the same voltage as that of the DC power supply circuit 4 is connected to the output terminal on the low potential side of the DC power supply circuit 4, the output terminal on the high potential side of the DC power supply circuit 4 and the collector of the transistor Tr1. The LED lighting circuit 1 is connected between the two. In addition, since it is the same as that of Embodiment 1 except LED lighting circuit 1 and DC power supply circuit 4, the same code | symbol is attached | subjected to a common component and the description is abbreviate | omitted.
[0039]
In the present embodiment, the LED lighting circuit 1 includes a current limiting resistor R1, R2 having one end connected to the collector of the transistor Tr1, a high potential side output terminal of the DC power supply circuit 4, and the other end of the resistor R1. 10 light emitting diodes LD1, LD2,... LD10 connected in series in the forward direction between them, and 10 connected in series in the forward direction between the output terminal on the high potential side of the DC power supply circuit 4 and the other end of the resistor R2. The light emitting diodes LD11, LD12,.
[0040]
Normally, the on-voltage of the light emitting diodes LD1 to LD20 is about 2 to 4 V, and thus the on-voltage of the entire LED lighting circuit 1 is about 4 (V / piece) × 10 (pieces) = 40 V, which is compared with the first embodiment. Low voltage is set. Therefore, in the DC power supply circuit 4, the voltage obtained by phase-controlling the commercial AC power supply AC is rectified by the rectifier circuit DB, and the voltage obtained by smoothing the voltage by the smoothing capacitor C 0 is stepped down to about 40 V, so that the LED lighting circuit 1 A voltage corresponding to the number of light emitting diodes can be supplied.
[0041]
In addition, when all the light emitting diodes LD1 to LD20 are connected in series between the output terminals of the DC power supply circuit 4, if one of them is broken open, the remaining light emitting diodes become inconsequential. Since the series circuit (system 1) of the light emitting diodes LD1 to LD10 and the series circuit (system 2) of the light emitting diodes LD11 to LD20 are connected in parallel between the output terminals, of the 20 light emitting diodes LD1 to LD2. Even if one of them breaks open, only the light emitting diodes of one system become unsatisfactory, and the ten light emitting diodes of the other system light up, so all the light emitting diodes LD1 to LD20 become unsuccessful. Can be prevented.
[0042]
7 and 8 show specific circuits of the DC power supply circuit 4. In the example of FIG. 7, an intelligent power device (hereinafter referred to as an IPD element) 4a, a resistor R5, capacitors C1 to C3, an inductor L1, and the like. The DC power supply circuit 4 is composed of a non-insulated chopper regulator composed of diodes D4 and D5 and a Zener diode ZD1.
[0043]
The IPD element 4a is a one-chip power MOSFET as a switching element and its drive circuit. The output voltage is fed back to the control terminal C via the Zener diode ZD1 and the diode D4, and the output voltage is (V ZD + V CS The power MOSFET is controlled to be turned on / off by an internal drive circuit. However, V ZD Is the Zener voltage of Zener diode ZD1, V CS Is a voltage between the control terminal C and the source terminal S of the IPD element 4a.
[0044]
Since this circuit uses the IPD element 4a in which the switching element and its drive circuit are made into one chip, the circuit can be reduced in size and cost, but since it is a non-insulated type, attention must be paid to safety. . In this circuit, the switching element and its drive circuit are used as the one-chip IPD element 4a. However, a switching element such as a MOSFET may be used in place of the IPD element 4a. Need a little.
[0045]
Further, in the example of FIG. 8, a one-stone type comprising an IPD element 4a, an insulating transformer T1, resistors R6 and R7, capacitors C4 and C5, a photocoupler PC1, diodes D6 to D8, and Zener diodes ZD2 and ZD3. The DC power supply circuit 4 is composed of a flyback switching power supply.
[0046]
In this circuit, the isolation transformer T1 is used to insulate the input side from the output side in order to increase safety. The insulated output voltage is detected by the photocoupler PC1 and fed back to the control terminal of the IPD element. ing. In this circuit, the switching element and its drive circuit are used as the one-chip IPD element 4a. However, a switching element such as a MOSFET may be used in place of the IPD element 4a. Need a little.
[0047]
In the present embodiment, the DC power supply circuit 4 is added to the LED lighting device of the first embodiment. However, the DC power supply circuit 4 may be added in the second embodiment, and the same effect as described above can be obtained.
[0048]
(Embodiment 4)
A fourth embodiment of the present invention will be described with reference to FIG.
[0049]
In the present embodiment, the constant current circuit 5 having a mirror circuit configuration is provided in the LED lighting circuit 1 in the above-described third embodiment, and the current flowing through the light emitting diodes LD1 to LD4 is controlled to be substantially constant. Since the configuration other than the LED lighting circuit 1 and the constant current circuit 5 is the same as that of the third embodiment, common components are denoted by the same reference numerals, and description thereof is omitted.
[0050]
The LED lighting circuit 1 includes a transistor Tr3 between the current limiting resistors R1 and R2 each connected at one end to the collector of the transistor Tr1, and the output terminal on the high potential side of the DC power supply circuit 4 and the other end of the resistor R1. Between the two light emitting diodes LD1 and LD2 connected in series in the forward direction via the transistor and the output terminal on the high potential side of the DC power supply circuit 4 and the other end of the resistor R2 in series in the forward direction via the transistor Tr4. It consists of two connected light emitting diodes LD3 and LD4. In this circuit, the number of connected light-emitting diodes LD1... Is further reduced as compared with the third embodiment, and the output voltage of the DC power supply circuit 4 is low around 4 (V / piece) × 2 (piece) = 8 (V). The voltage is set.
[0051]
In general, the ON voltage of the light emitting diodes LD1... Fluctuates by 20% with respect to the center value of the forward voltage Vf. Therefore, even if the forward voltage Vf varies, the current flowing through the light emitting diodes LD1. A constant current circuit 5 is provided as described above.
[0052]
The constant current circuit 5 includes a resistor R8 having one end connected to the output terminal on the high potential side of the DC power supply circuit 4, a resistor R9 having one end connected to the collector of the transistor Tr1, and a short circuit between the collector and the base. A mirror current circuit including a transistor Tr2 having a collector-emitter connected between the other end of the resistor R8 and the other end of the resistor R9, and transistors Tr3 and Tr4 having a base commonly connected to the transistor Tr2. In addition, since the current flowing through the light emitting diodes LD1 to LD4 is substantially constant, the light emitting diodes LD1 to LD4 can be lit stably.
[0053]
In this embodiment, the constant current circuit 5 is added to the LED lighting circuit 1 in the third embodiment. However, the constant current circuit 5 may be added to the LED lighting circuit 1 in the first or second embodiment. Similar effects can be obtained.
[0054]
【The invention's effect】
As described above, the invention of claim 1 is a series circuit of an AC power supply and a phase control element connected between an input terminal and a phase control element that is connected in series to an AC power supply and whose on-phase angle is controlled by a phase control dimmer. Is connected, and a rectifier that rectifies an AC voltage and converts it into a pulsating DC voltage, a smoothing capacitor that smoothes the output of the rectifier circuit, and an LED that lights one or more light emitting diodes using the output of the smoothing capacitor as a power source And a phase control element based on the detection result of the detection means in the LED lighting circuit including the circuit, the detection means detecting the ON period of the phase control element by detecting the AC voltage phase-controlled by the phase control element And a shut-off means for shutting off the current supply from the smoothing capacitor to the LED lighting circuit during the off-period of the phase control element. Based on the detection result of the detection means, the cutoff means cuts off the current supply from the smoothing capacitor to the LED lighting circuit during the OFF period of the phase control element, so the pulse according to the ON phase angle of the phase control element The light can be dimmed by passing a current through the light emitting diode with a width, and the output of the smoothing capacitor is set to be equal to or higher than the ON voltage of one or more light emitting diodes, and the output of the smoothing capacitor is supplied to the LED lighting circuit. Since a stable voltage can be supplied to the LED lighting circuit over the entire phase angle of the control element, there is an effect that the light emitting diode can be stably dimmed using a phase control type dimmer.
[0055]
According to the second aspect of the present invention, a phase control element connected in series to an AC power source and whose on-phase angle is controlled by a phase control dimmer, and a series circuit of the AC power source and the phase control element are connected between input terminals. A rectifying circuit that rectifies the voltage to convert it into a pulsating DC voltage, a smoothing capacitor that smoothes the output of the rectifying circuit, and a DC voltage of a desired voltage value by switching the DC voltage smoothed by the smoothing capacitor with a switching element In an LED lighting circuit comprising: a DC power supply circuit that steps down to a voltage; and an LED lighting circuit that lights one or more light emitting diodes using the output of the DC power supply circuit as a power supply, the output of the DC power supply circuit is the one or more light emitting diodes. The on-period of the phase control element is detected by detecting the AC voltage phase-controlled by the phase control element. And detecting means for cutting off the current supply from the smoothing capacitor to the LED lighting circuit during the OFF period of the phase control element based on the detection result of the detecting means. The on-state of the control element is detected, and during the OFF period of the phase control element based on the detection result of the detection means, the cutoff means cuts off the current supply from the smoothing capacitor to the LED lighting circuit. The light can be dimmed by supplying a current to the light emitting diode with a pulse width corresponding to the phase angle, and the DC power supply circuit steps down the voltage smoothed by the smoothing capacitor to a voltage substantially equal to the on voltage of one or more light emitting diodes. Since the output is supplied to the LED lighting circuit, a stable voltage can be supplied to the LED lighting circuit over the entire phase angle of the phase control element. There is an effect that can be stably dimming a light emitting diode using a dimmer.
[0056]
According to a third aspect of the present invention, in the second aspect of the present invention, the DC power supply circuit is a non-insulated chopper regulator configured by using an intelligent power device in which the switching element and its drive circuit are integrated into a single chip. The same effects as those of the invention of claim 2 are achieved.
[0057]
According to a fourth aspect of the present invention, in the second aspect of the present invention, the DC power supply circuit is a one-stone type switching power supply configured by using an insulating transformer, and has the same effect as the second aspect of the invention. Play.
[0058]
According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the blocking means comprises a switch element connected between a smoothing capacitor and an LED lighting circuit, and the detection means is a rectifier circuit. A series circuit of a plurality of resistors connected between the output terminals and a trigger element having one end connected to a connection point of the plurality of resistors and the other end connected to the control terminal of the switch element. It is characterized in that the AC voltage phase-controlled by the phase control element is detected indirectly by detecting the current output, and when the potential at the connection point of the resistor exceeds the trigger level of the trigger element, the trigger element becomes conductive. Since the switch element is turned on, the light emitting diode can be dimmed by turning the switch element on / off in accordance with the on / off of the phase control element.
[0059]
According to a sixth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the blocking means comprises a switch element connected between a smoothing capacitor and an LED lighting circuit, and the detecting means is a rectifier circuit. A diode having an anode connected to the input terminal, a series circuit of a plurality of resistors connected between the cathode of the diode and the output terminal on the low potential side of the rectifier circuit, and one end connected to a connection point of the plurality of resistors The other end is composed of a trigger element connected to the control terminal of the switch element, and an AC voltage is rectified by a diode and applied to a series circuit of a plurality of resistors. When the potential exceeds the trigger level of the trigger element, the trigger element is turned on and the switch element is turned on. Therefore, the switch element is turned on / off according to the on / off state of the phase control element, and the light is emitted. Diode can be dimming.
[0060]
According to a seventh aspect of the present invention, in the invention according to any one of the first to fourth aspects, the blocking means comprises a switch element connected between a smoothing capacitor and an LED lighting circuit, and the detection means is a rectifier circuit. A pair of diodes each having an anode connected to each input terminal and a cathode commonly connected; and a series circuit of a plurality of resistors connected between the cathodes of both diodes and the output terminal on the low potential side of the rectifier circuit; A series circuit of a plurality of resistors by rectifying an AC voltage with a diode and having a trigger element connected at one end to a connection point of a plurality of resistors and the other end connected to a control terminal of a switch element When the potential at the connection point of the resistor exceeds the trigger level of the trigger element, the trigger element becomes conductive and the switch element is turned on. The switching elements are turned on / off, the light emitting diode can be the dimming in accordance with the.
[0061]
According to an eighth aspect of the present invention, in any one of the first to seventh aspects of the present invention, the LED lighting circuit includes a constant current circuit having a mirror circuit configuration that makes a current flowing through the light emitting diode substantially constant. As a feature, by making the current flowing through the light emitting diode substantially constant by the constant current circuit, the light emitting diode can be dimmed stably.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram of an LED lighting device according to a first embodiment.
FIG. 2 is a circuit diagram of the main part of the above.
FIG. 3 is a waveform diagram of each part during phase control, wherein (a) is a waveform diagram of an output voltage of a rectifier, and (b) is a waveform diagram of a current flowing through a light emitting diode.
4 is a block circuit diagram of an LED lighting device of Embodiment 2. FIG.
FIG. 5 is a block circuit diagram of the above.
FIG. 6 is a block circuit diagram of an LED lighting device according to a third embodiment.
FIG. 7 is a circuit diagram of the above-described DC power supply circuit.
FIG. 8 is a circuit diagram of another DC power supply circuit same as above.
FIG. 9 is a block circuit diagram of an LED lighting device according to a fourth embodiment.
FIG. 10 is a block circuit diagram of a conventional LED lighting device.
11A and 11B are waveform diagrams of respective parts during phase control, wherein FIG. 11A is a waveform diagram of an output voltage of a rectifier, and FIG. 11B is a waveform diagram of a current flowing through a light emitting diode.
[Explanation of symbols]
1 LED lighting circuit
2 detection circuit
3 Dimmer
AC commercial AC power supply
C0 smoothing capacitor
DB rectifier circuit
LD1 to LD40 Light emitting diode
TRC Triac
Tr1 transistor

Claims (8)

交流電源に直列に接続され位相制御調光器によってオン位相角が制御される位相制御素子と、入力端子間に交流電源及び位相制御素子の直列回路が接続され、交流電圧を整流して脈流直流電圧に変換する整流回路と、整流回路の出力を平滑する平滑コンデンサと、平滑コンデンサの出力を電源として1乃至複数の発光ダイオードを点灯させるLED点灯回路とを備えたLED点灯回路において、位相制御素子によって位相制御された交流電圧を検出することで位相制御素子のオン期間を検出する検出手段と、検出手段の検出結果をもとに位相制御素子のオフ期間に平滑コンデンサからLED点灯回路への電流供給を遮断する遮断手段とを設けて成ることを特徴とするLED点灯装置。A phase control element connected in series to the AC power source and whose on phase angle is controlled by the phase control dimmer, and a series circuit of the AC power source and the phase control element are connected between the input terminals, and the AC voltage is rectified to pulsate Phase control in an LED lighting circuit comprising a rectifying circuit for converting to a DC voltage, a smoothing capacitor for smoothing the output of the rectifying circuit, and an LED lighting circuit for lighting one or more light emitting diodes using the output of the smoothing capacitor as a power source Detecting means for detecting the ON period of the phase control element by detecting an AC voltage phase-controlled by the element, and from the smoothing capacitor to the LED lighting circuit during the OFF period of the phase control element based on the detection result of the detecting means An LED lighting device comprising: a blocking means for blocking current supply. 交流電源に直列に接続され位相制御調光器によってオン位相角が制御される位相制御素子と、入力端子間に交流電源及び位相制御素子の直列回路が接続され、交流電圧を整流して脈流直流電圧に変換する整流回路と、整流回路の出力を平滑する平滑コンデンサと、平滑コンデンサにより平滑された直流電圧をスイッチング素子でスイッチングすることによって所望の電圧値の直流電圧に降圧する直流電源回路と、直流電源回路の出力を電源として1乃至複数の発光ダイオードを点灯させるLED点灯回路とを備えたLED点灯回路において、直流電源回路の出力を上記1乃至複数の発光ダイオードのオン電圧と略同じ電圧とし、位相制御素子によって位相制御された交流電圧を検出することで位相制御素子のオン期間を検出する検出手段と、検出手段の検出結果をもとに位相制御素子のオフ期間に平滑コンデンサからLED点灯回路への電流供給を遮断する遮断手段とを設けて成ることを特徴とするLED点灯装置。A phase control element connected in series to the AC power source and whose on phase angle is controlled by the phase control dimmer, and a series circuit of the AC power source and the phase control element are connected between the input terminals, and the AC voltage is rectified to pulsate A rectifier circuit for converting to a DC voltage; a smoothing capacitor for smoothing the output of the rectifier circuit; a DC power supply circuit for stepping down the DC voltage smoothed by the smoothing capacitor to a DC voltage of a desired voltage value by switching with a switching element; In an LED lighting circuit comprising an LED lighting circuit that lights one or more light emitting diodes using the output of the DC power circuit as a power source, the output of the DC power circuit is substantially the same voltage as the on-voltage of the one or more light emitting diodes. And detecting means for detecting an ON period of the phase control element by detecting an AC voltage phase-controlled by the phase control element; Detecting means for detecting the result LED lighting apparatus characterized by comprising providing a cutoff unit for cutting off the supply of current from the smoothing capacitor based on the off-period of the phase control element to the LED lighting circuit. 上記直流電源回路は、上記スイッチング素子及びそのドライブ回路をワンチップ化したインテリジェントパワーデバイスを用いて構成した非絶縁型のチョッパ・レギュレータであることを特徴とする請求項2記載のLED点灯装置。3. The LED lighting device according to claim 2, wherein the DC power supply circuit is a non-insulated chopper regulator configured using an intelligent power device in which the switching element and its drive circuit are integrated into a single chip. 上記直流電源回路は、絶縁トランスを用いて構成した1石式のスイッチング電源であることを特徴とする請求項2記載のLED点灯装置。3. The LED lighting device according to claim 2, wherein the DC power supply circuit is a one-stone type switching power supply configured using an insulating transformer. 上記遮断手段は平滑コンデンサとLED点灯回路との間に接続されたスイッチ素子からなり、上記検出手段は、整流回路の出力端子間に接続された複数の抵抗の直列回路と、一端が複数の抵抗の接続点に接続されるとともに、他端がスイッチ素子の制御端子に接続されたトリガ素子からなり、整流回路の脈流出力を検出することで位相制御素子で位相制御された交流電圧を間接的に検出することを特徴とする請求項1〜4の何れか1つに記載のLED点灯装置。The blocking means comprises a switching element connected between the smoothing capacitor and the LED lighting circuit, and the detecting means includes a series circuit of a plurality of resistors connected between the output terminals of the rectifier circuit, and one end having a plurality of resistors. The other end is composed of a trigger element connected to the control terminal of the switch element and the other end is indirectly connected to the AC voltage phase-controlled by the phase control element by detecting the pulsating flow output of the rectifier circuit. The LED lighting device according to any one of claims 1 to 4, wherein the LED lighting device is detected. 上記遮断手段は平滑コンデンサとLED点灯回路との間に接続されたスイッチ素子からなり、上記検出手段は、整流回路の入力端子にアノードが接続されたダイオードと、当該ダイオードのカソードと整流回路の低電位側の出力端子との間に接続された複数の抵抗の直列回路と、一端が複数の抵抗の接続点に接続されるとともに、他端がスイッチ素子の制御端子に接続されたトリガ素子からなることを特徴とする請求項1〜4の何れか1つに記載のLED点灯装置。The blocking means includes a switching element connected between the smoothing capacitor and the LED lighting circuit, and the detection means includes a diode having an anode connected to an input terminal of the rectifier circuit, a cathode of the diode, and a low voltage of the rectifier circuit. A series circuit of a plurality of resistors connected between the output terminal on the potential side and a trigger element having one end connected to a connection point of the plurality of resistors and the other end connected to the control terminal of the switch element The LED lighting device according to any one of claims 1 to 4. 上記遮断手段は平滑コンデンサとLED点灯回路との間に接続されたスイッチ素子からなり、上記検出手段は、整流回路の各入力端子にそれぞれアノードが接続されるとともにカソードが共通接続された一対のダイオードと、両ダイオードのカソードと整流回路の低電位側の出力端子との間に接続された複数の抵抗の直列回路と、一端が複数の抵抗の接続点に接続されるとともに、他端がスイッチ素子の制御端子に接続されたトリガ素子からなることを特徴とする請求項1〜4の何れか1つに記載のLED点灯装置。The blocking means comprises a switching element connected between a smoothing capacitor and an LED lighting circuit, and the detecting means is a pair of diodes having an anode connected to each input terminal of the rectifier circuit and a cathode commonly connected And a series circuit of a plurality of resistors connected between the cathodes of both diodes and the output terminal on the low potential side of the rectifier circuit, one end being connected to a connection point of the plurality of resistors and the other end being a switch element The LED lighting device according to claim 1, further comprising a trigger element connected to the control terminal. 上記LED点灯回路は、発光ダイオードに流れる電流を略一定にするミラー回路構成の定電流回路を具備して成ることを特徴とする請求項1〜7の何れか1つに記載のLED点灯装置。8. The LED lighting device according to claim 1, wherein the LED lighting circuit includes a constant current circuit having a mirror circuit configuration that makes a current flowing through the light emitting diode substantially constant.
JP2003062133A 2003-03-07 2003-03-07 LED lighting device Expired - Fee Related JP4199567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062133A JP4199567B2 (en) 2003-03-07 2003-03-07 LED lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062133A JP4199567B2 (en) 2003-03-07 2003-03-07 LED lighting device

Publications (2)

Publication Number Publication Date
JP2004273267A JP2004273267A (en) 2004-09-30
JP4199567B2 true JP4199567B2 (en) 2008-12-17

Family

ID=33124143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062133A Expired - Fee Related JP4199567B2 (en) 2003-03-07 2003-03-07 LED lighting device

Country Status (1)

Country Link
JP (1) JP4199567B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624220A (en) * 2011-01-28 2012-08-01 松下电器产业株式会社 Switching power circuit, and lighting device for semiconductor light-emitting element and illumination apparatus using same
US8400079B2 (en) 2010-02-05 2013-03-19 Sharp Kabushiki Kaisha LED drive circuit, dimming device, LED illumination fixture, LED illumination device, and LED illumination system
TWI468075B (en) * 2011-10-07 2015-01-01 Wafly Ltd A dimming device
TWI471060B (en) * 2009-06-30 2015-01-21 Linear Techn Inc Method and system for dimming an offline led driver

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2449616B8 (en) * 2007-03-30 2009-07-30 Light Ltd E Improvements relating to lighting systems
KR100850249B1 (en) 2007-04-05 2008-08-04 (주)온앤오프 Lighting dimming apparatus
JP2009105016A (en) * 2007-10-25 2009-05-14 Panasonic Electric Works Co Ltd Led lighting system
TWI586216B (en) 2008-10-08 2017-06-01 Holdip Ltd Improvements relating to lighting systems
JP4943402B2 (en) * 2008-10-09 2012-05-30 シャープ株式会社 LED drive circuit, LED illumination lamp, LED illumination device, and LED illumination system
JP5280913B2 (en) * 2009-03-27 2013-09-04 パナソニック株式会社 Lighting device
JP2011034728A (en) * 2009-07-30 2011-02-17 Rohm Co Ltd Light source device for illumination
JP5333769B2 (en) * 2009-09-04 2013-11-06 東芝ライテック株式会社 LED lighting device and lighting device
CN102083254B (en) * 2009-11-30 2013-09-18 成都芯源系统有限公司 WLED driving circuit and driving method suitable for three-terminal controlled silicon dimmer
KR20120115400A (en) 2010-02-12 2012-10-17 마벨 월드 트레이드 리미티드 Dimmer circuit for electronic loads
JP5374757B2 (en) * 2010-03-25 2013-12-25 星和電機株式会社 Power supply device, LED device, and light source device
JP5682949B2 (en) * 2010-07-22 2015-03-11 新電元工業株式会社 LED lighting device
JP2013254558A (en) * 2010-08-09 2013-12-19 Yoji Mukuda Power control method and power control device capable of adjusting brightness of led lighting tool
US8462003B2 (en) * 2010-09-21 2013-06-11 Avago Technologies General Ip (Singapore) Pte. Ltd. Transmitting and receiving digital and analog signals across an isolator
WO2012112750A1 (en) 2011-02-17 2012-08-23 Marvell World Trade Ltd. Triac dimmer detection
JP5740570B2 (en) * 2011-03-04 2015-06-24 パナソニックIpマネジメント株式会社 Lighting system
JP5210419B2 (en) * 2011-07-01 2013-06-12 パナソニック株式会社 Switching power supply device and lighting apparatus using the same
US9544962B2 (en) 2011-08-01 2017-01-10 Philips Lighting Holding B.V. Driver device and driving method for driving an LED unit
JP2013186944A (en) * 2012-03-05 2013-09-19 Toshiba Lighting & Technology Corp Power supply for illumination, and illuminating fixture
ES2733752T3 (en) * 2012-03-09 2019-12-02 Signify Holding Bv LED light source
JP2013239347A (en) * 2012-05-15 2013-11-28 Panasonic Corp Lighting device and illuminating device
TW201349927A (en) * 2012-05-23 2013-12-01 Luxul Technology Inc Flicker-free LED driver circuit with high power factor
JP2013247720A (en) * 2012-05-24 2013-12-09 Shihen Tech Corp Dc power supply
JP2014002867A (en) 2012-06-15 2014-01-09 Panasonic Corp Lighting device and illuminating fixture
JP2012195307A (en) * 2012-07-10 2012-10-11 Moriyama Sangyo Kk Light emitting diode dimmer drive device
GB201309340D0 (en) 2013-05-23 2013-07-10 Led Lighting Consultants Ltd Improvements relating to power adaptors
GB201322022D0 (en) 2013-12-12 2014-01-29 Led Lighting Consultants Ltd Improvements relating to power adaptors
US9900944B2 (en) 2014-12-12 2018-02-20 Rohm Co., Ltd. Lighting device
JP6382092B2 (en) * 2014-12-12 2018-08-29 ローム株式会社 Lighting device
JP6374783B2 (en) * 2014-12-12 2018-08-15 ローム株式会社 Lighting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471060B (en) * 2009-06-30 2015-01-21 Linear Techn Inc Method and system for dimming an offline led driver
US8400079B2 (en) 2010-02-05 2013-03-19 Sharp Kabushiki Kaisha LED drive circuit, dimming device, LED illumination fixture, LED illumination device, and LED illumination system
CN102624220A (en) * 2011-01-28 2012-08-01 松下电器产业株式会社 Switching power circuit, and lighting device for semiconductor light-emitting element and illumination apparatus using same
CN102624220B (en) * 2011-01-28 2014-12-10 松下电器产业株式会社 Switching power circuit, and lighting device for semiconductor light-emitting element and illumination apparatus using same
TWI468075B (en) * 2011-10-07 2015-01-01 Wafly Ltd A dimming device

Also Published As

Publication number Publication date
JP2004273267A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4199567B2 (en) LED lighting device
US10506675B2 (en) Power supply system, lighting device, and illumination system
US8810135B2 (en) LED drive circuit, LED illumination component, LED illumination device, and LED illumination system
KR102136773B1 (en) Dim-to-Warm Controller for LEDs
US8471483B2 (en) Multi-channel LED driving system
US8432103B2 (en) LED drive circuit, LED illumination fixture, LED illumination device, and LED illumination system
JP5163590B2 (en) LED lighting device and marker lamp system
Carraro Solving high-voltage off-line HB-LED constantcurrent contro-circuit issues
JP2006319172A (en) Adapter device for light control of led lamp
US8569964B2 (en) Control circuit of light-emitting element
US20110012523A1 (en) Method and current control circuit for operating an electronic gas discharge lamp
CN109769321B (en) LED lamp circuit with delayed light-off function
JP2003059676A (en) Power supply device of light-emitting diode
US20100060192A1 (en) Circuit for Driving Light Sources and Related Method
KR102274342B1 (en) Dim to warm controller for leds
KR20110102523A (en) Led drive circuit and led lighting device
JP5473377B2 (en) Light emitting element control circuit
KR20180015999A (en) LED lamp control circuit compatible type fluorescent and lighting the use
JP2013030390A (en) Power supply device and lighting apparatus having power supply device
EP2552179B1 (en) Lighting device and illumination apparatus using same
JP2012160284A (en) Led lighting device, luminaire, and lighting control system
CN211531389U (en) LED drive circuit and LED lamp
CN109275222B (en) Three-way omnidirectional LED lamp driver circuit
CN218634337U (en) Electrodeless dimming circuit of switch
JP5624390B2 (en) LED lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4199567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees