JP4199122B2 - 再生式トランスポンダシステムを含むアナログ再生式トランスポンダ - Google Patents

再生式トランスポンダシステムを含むアナログ再生式トランスポンダ Download PDF

Info

Publication number
JP4199122B2
JP4199122B2 JP2003559035A JP2003559035A JP4199122B2 JP 4199122 B2 JP4199122 B2 JP 4199122B2 JP 2003559035 A JP2003559035 A JP 2003559035A JP 2003559035 A JP2003559035 A JP 2003559035A JP 4199122 B2 JP4199122 B2 JP 4199122B2
Authority
JP
Japan
Prior art keywords
transponder
frequency
signal
present
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003559035A
Other languages
English (en)
Other versions
JP2005514852A (ja
JP2005514852A5 (ja
Inventor
モンセン バビック,ゲイル
Original Assignee
モンセン バビック,ゲイル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NO20020112A external-priority patent/NO324356B1/no
Application filed by モンセン バビック,ゲイル filed Critical モンセン バビック,ゲイル
Publication of JP2005514852A publication Critical patent/JP2005514852A/ja
Publication of JP2005514852A5 publication Critical patent/JP2005514852A5/ja
Application granted granted Critical
Publication of JP4199122B2 publication Critical patent/JP4199122B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/59Responders; Transponders

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Transceivers (AREA)

Description

本発明は、添付の請求項1のプリアンブル部で述べるとおりの一般的種類のトランスポンダ、このようなトランスポンダのネットワークにおける利用、ならびに、添付の請求項33のプリアンブル部で述べるとおりのネットワークにおけるトランスポンダシステムに関する。
トランスポンダシステムでは、無線周波数信号がトランスポンダに伝送され、トランスポンダがその信号を、しばしば変調した形で、すなわち、トランスポンダからの情報と重畳して転送する。よって、トランスポンダの目的は、トランスポンダに関連する情報を何らかの方法で搬送または検索することであるといえる。トランスポンダは通常、入力信号をオリジナル情報のみと共に中継することを予定されたものではない。トランスポンダには、間接的に働くものもあれば、直接的に働くものもある。間接転送の場合、信号の受信と転送が逐次行われる。転送を、受信信号の周波数帯と異なる周波数帯で行うことが望ましい場合がある。レピータとも呼ばれる最新のディジタル通信トランスポンダは、信号をディジタル処理してから情報を転送することが知られている。この既知の技術は、複雑性、高コスト、そして、狭小な情報帯域幅という犠牲の下に動作する。
最新のディジタルデータ通信は、ツーウェイアクセスネットワーク(ラストマイル)におけるインフラストラクチャの拡張と改良とが極めて必要であることを提示してきた。これは、長距離(遠距離)通信(ファーストマイル)にも部分的に当てはまる。サテライトアクセスネットワークでは、低コストの帰路チャネル容量が求められ続けているが、今までは、電話線ネットワークに依存するところが大きかった。
近年の、通信距離の延伸、帯域幅および信頼性に係る革新は、主に、ディジタル信号処理技術の新規な応用、およびそのアプローチ方法の改良に関するものであり、アナログ信号処理が常にあらゆる通信システムまたは送信システムの物理的基層であることは、忘れられまたは無視されていたようだった。ディジタル信号処理にありとあらゆる種類の改善があっても、得られる結果は、結局、アナログ信号処理パラメータによって制限されると思われる。アナログ信号処理に同等の注意を払わなければ、信号処理全体の巨大な改善と新たな時代を獲得することはできないと結論づけてよい。
無線通信では、一般的に、パス損失は80dBから130dBまで変化し得る。ケーブル通信および有線通信では、一般的に、より高い周波数帯を使用しようとするときの損失は30dBから80dBまで変化し得る。一方で、固有のまたは導入された特性により最適に分離されていない回路間の絶縁は、一般的に0dBから15dBまででしかない。
それゆえ、例外なく、最新の高周波搬送ディジタル送信用のトランスポンダまたはレピータは、回線利得の点で類似する、高周波チャネル、帯域内チャネルまたは隣接チャネルを使っていない。この種の二重信号反復は、ほとんどのシステムにおいて不安定になるので、従来の技術を使って実現させることはできない。それゆえ、この種の問題の解答は教本にない。最新のこの種の問題の代表的なものの1つが、ケーブルモデムシステムにおける上流増幅と下流増幅である。ここでの問題は、信号を2方向において1つの同軸ケーブルに通し、その信号をある一定の間隔で増幅することである。既知の技術を使ったこの問題の解決手段は、一方の方向のための増幅器と他の方向のためのバイパスフィルタとを単に組み合わせたいわゆる双方向増幅器である。解決手段は、両信号方向の周波数差によって異なるが、この周波数差は、デバイスの2つのメインポートの間の絶縁が制限されていることから生じる安定性を最適化すべく大きくなっている。他のケーブル通信および有線通信では、ポート間の高度の絶縁が何らかの理由から実現できないとき、アナログ利得の解決手段は簡単に存在しない。一般的な例の1つは、接続の入り切りが電力レールで直接行われるために、容認できる増幅器ポート絶縁が妨げられざるをえない電力回路グリッド接続箱である。同様に、電力グリッド変圧所では、低圧回路、変圧器および中圧回路を介する信号漏洩により、容認できる絶縁が妨げられる。インターネットアクセス用のPLC(Power Line Communication電力線通信)システムが、信号/ノイズ比保持のために、分散形アナログ利得ブロックを今まで使用していない理由はそこにある。低損失同軸ケーブルを使用するケーブルモデムシステムでは、分散カスケード形の利得ブロックが基本である。かなり高い減衰特性を持つ電力グリッドでも、相応の利得ブロックが必要であることに変わりはなく、ほとんどの点で技術的な難しさがかなり大きい。カスケード形にもできる電力グリッドにおいてアナログ利得ブロックを使用することは、明らかに、PLCシステムでは現実的、実際的であるとみなされなかった。この深刻な欠点のあるPLCアクセスシステムは、信頼し得る大きい帯域幅を、これを規制する諸規則に従って作り出すことができないという問題があった。既知のPLCアクセスシステムはすべて、専用の交換対称通信プロトコルを使用する。これは、従来の利得ブロックに対して利得ブロックが双方向でなければならないという更なる難問があることを意味する。その結果、PLCシステム設計者は、所望の通信距離を確保するために、帯域幅を狭めるディジタルレピータを使用するか、過剰な励起レベルと相対的に低い搬送周波数を使用することが強いられる。信号の切り替え特性は、まさしく輻射の問題をより深刻にしている。遅延時間の長いことも、このシステムの代表的欠点の1つで、IP電話のような、即時性が要求される用途への利用を難しくしている。これは、特に顧客数の多い大規模システムに当てはまるであろう。PLCシステムは、インフラストラクチャによる輻射特性と耐力(immunity)特性とを改善して高い搬送周波数を使用する能力、減衰反射の利益を享受する能力、及び帯域内群遅延リプルを減じる能力の不足を特徴としている。PLCシステムにおいて使用される周波数が低ければ低いほど、伝達特性の変動は大きくなる。技術的に解説すれば、PLCアクセスシステムが過去5〜10年にわたって注目に値するほど採用されなかった理由はそこにある。
無線通信システムでも、帯域内双方向のトランスポンダまたはレピータを必要とする対称交換システムを使用する状況は似ている。2つ以上のアンテナを使ってある程度の利得を獲得することはできる。しかしながら、この利得は通常、損失を補償した上に所要の正味の利得を獲得するにはほど遠い。これまで、トランスポンダまたはレピータによる関連データ伝送の問題を解決する上で、帯域幅を狭めて高コストを追加する以外の方途を見出すことができなかった理由は、そこにある。高いポート絶縁が実際的でない局面において安価で単純なハイカスケード形アナログ高周波利得を許容するシステム技術や新たなコア技術の必要性は、ディジタル通信ならびにアナログ通信の多数の領域に存在する。
トランスポンダを単純な注入同期発振器で実現できることは、すでに明らかにされている。この種のトランスポンダの使用は、今まで、トランスポンダ変調応答を得る目的だけに制限されており、信号を反復する目的には供されなかった。注入同期発振器の最大の欠点は、同期周波数帯が極めて狭く、感度が極めて低いことである。注入同期発振器を改良し、その用途を拡大する技術が必要である。
フレミングの真空管の発明とアームストロングの超再生式検出器の発明があった後、数年の間に、この技術を通信網において活用する様々な試みがなされた。その幾つかは特許を付与された。そのほとんどは、再生回路を受信のためだけに使用することを特徴とするが、トランスポンダ変調応答を得るために使用する例も幾つかある。これには、まさしく、半導体素子を基礎にした最近の特許が幾つか含まれる。ごく僅かながら、信号反復またはカスケード形再生利得を提案したものがあったが、そこで述べられた使用例は時代遅れであったり、極めて狭小であったり、今日のニーズにとってあまりに制限されていたり、提案された解決手段と提案された用途のいくつかとの間に重大な矛盾があったりした。これらすべてに共通しているのは、とにかく、真空管を使用し、半導体利得素子を使用していないことである。真空管の使用は、野外使用において技術の信頼性を立証する妨げにもなった。その上、真空管を使用することで、必要な工夫、反復性、信頼性および容認可能なコストが制限または阻害された。これらすべてに共通しているのは、信頼できる通信帯域幅が狭小であること、そして、耐力および不要輻射に関する今日の標準に合致すべく入力信号と出力信号の両方をフィルタリングする狭帯域フィルタが欠如していることである。そうなって以降、これらの技術は忘れられ、または無視されてきた。業界は、大幅に改良された仕様とコストファクターを持つ最新の半導体素子がアームストロングの発明に完璧に新たな光を当て得たことを認めるのを怠ってきた。これはすべて、最新のディジタル通信において新規のアナログ利得ブロックによる解決が未解決ながら必要であることを示している。これはまた、無視された技術または忘れられた技術が、新規用途開拓によって、また、最新の素子技術を基礎にした新規のアーキテクチャを使用することによって、前記ニーズを満たすのに貢献し得ることも示している。
データ通信がブロードバンド配信および顧客との他の通信を目的とするいわゆるアクセスネットワークを含むこととしている配信回路での電力線監視通信(PLC)では、通信距離が今まで信号損失のゆえに100〜300メートルに制限されていたようである。この制限距離では、不要輻射が依然深刻な問題を露呈しかねない。線路増幅器は製造および据付のコストが極めて高く、間接レピータはデータ帯域幅が狭められる。これは高圧ケーブルにも当てはまることで、今まで利用できたのは、帯域幅の極端に狭いシステムだけであった。結局、既知の技術は、光通信、銅線通信、衛星通信または無線通信によってリンクしなければならない小規模システムに制限されていた。それゆえ、電力グリッドネットワークのインフラストラクチャ一式をケーブル通信網または有線通信網として共に結合できるようにする新規技術が必要である。既知の技術をもってしては、電力網において複雑に配置された埋込分離装置、すなわち、変圧所または配線盤なしに、単純な信頼できる反復可能な、かつ、安価方法で信号を中継できる解決手段は存在しない。アナログ利得を供給できると同時に電力グリッド構造の部分同士を橋渡しできる新規の解決手段が必要である。電力線での広帯域通信に供される既存システムは、容認可能な減衰レベルを獲得するために無線周波数スペクトルの下部分を使用し、それゆえ、低周波ノイズと周波数変動から深刻な不利を被っている。それは、20MHzまでの低圧線においてかなりの程度であり、電力グリッドの幾つかの部分ではかなり高くなる。電力線ノイズは、系統ノイズ特性と白色ノイズ特性の両方を示し、様々なスペクトル拡散技術の効率を可変的にし、ときには予測不能にする。多数の異なる回路を持つ電力グリッドには、下部領域の高周波特性が場所によって、また、時間によって著しく変化することがよくある。そこで、PLC設計者は、容認できないレベルの放射電力を生じさせる高レベルの信号励起電力を使用することも強いられた。それゆえ、インフラストラクチャの改良をほとんど、または全く必要としない単純な方法を使って、アクセスデータネットワークとして使用される電力網においてアナログ利得ブロックの新規技術が必要である。それは、中圧システムにも高圧システムにも適用でき、無線アナログおよび無線ディジタルの通信およびブロードキャスティングにおいて大いに関わり合いを持つことのできるような技術ということになる。
よって、本発明の主たる目的は、容認可能なポート絶縁が従来から現実的でない、または本来的に妨げられている箇所で通信に使用され、または有用な既存および新規のシステムおよびインフラストラクチャに、実質的に高周波のアナログカスケード利得の使用を容易にするトランスポンダ、レピータ、トランスポンダシステム、レピータシステム、結合配列、相互結合配列ならびにその改良型を提供することである。本発明の目的はまた、多数の高周波アプリケーションのために双方向利得を、帯域内か別々の周波数帯かどちらかにおいて可能とすることである。よって、本発明の重大な目的は、既存の通信インフラストラクチャを改善し、または、そうでなければ、通信インフラストラクチャとしての使用が目論まれていなかったインフラストラクチャを使って通信を容易にするような新規の解決策を提供することである。
本発明の続いての目的は、シングル形またはカスケード形を基礎にした、汎用の、同時に費用のかからない無線周波数信号反復システムを提供することである。これは、据付および受電が容易にでき、かつ、インフラストラクチャの改良をほとんど、または全く必要とせず、従って、何らかの理由によりインフラストラクチャがほとんど改良できないときの要件に合致する単一または複数の再生式のトランスポンダまたはレピータならびに結合配列を通して実現させられる。よって、本発明の目的は、そうでなければ、それが不可能であったり、現実的でなかったり、費用がかかりすぎたりしそうな長距離通信および広帯域通信を容易にすることである。
本発明の別の目的は、そうでなければ、実現不可能であったり費用がかかりすぎたりしそうな、本発明の単純さと高性能を基礎にした新しいタイプの通信システムを実現させる手段を提供することである。
本発明の更に別の目的は、単方向、双方向および多方向の通信に使用できるカスケード形システム再生利得ブロックを提供することである。本発明の別の目的は、アップリンク用の周波数帯とダウンリンク用の周波数帯とがオーバラップするとき、ならびに、それが分離または隣接するとき、両方とも機能させることである。本発明の更なる目的は、信号の強弱がアップリンクとダウンリンクとにおいて、また、異なる方向において同様であるとき、ならびに、それが著しく異なるとき、両方とも機能させることである。
本発明の更なる目的は、伝送媒体とアナログシステムコンポーネントの間の相互連絡を容易にすることである。また、同軸ケーブルシステム、ファイバケーブルシステムおよびハイブリッドファイバ/同軸システム(HFC)を、電力線グリッドまたは伝送媒体に類似する他の使用可能なインフラストラクチャに向けて容易に拡張できるようにすることも、本発明の目的の1つである。
よって、本発明の目的は、既存の通信システムまたはブロードキャスティングシステムのための新しい無線周波数信号パスの設置または既存の無線周波数信号パスの改良を容易にすることである。例を挙げれば、高圧用、中圧用、低圧用、街路灯用および制御用のケーブルおよびワイヤを含む電力線グリッドにおいてケーブルモデムまたは長距離イーサネット技術を使用することがそれである。本発明のもう1つの適用例は、無線LAN通信レンジまたは類似のものの拡張である。
また、無線ナビゲーション、無線測位、無線方向探知、無線レンジ測定、電波方式認識(RFID)および電磁波妨害活動(ECM)の用途のための新規の、改良された、または代替のトランスポンダの幾つかを解決手段として提供することも、本発明の目的の1つである。
本発明の目的の幾つかは、第1の態様において、添付の請求項1に記載されたとおりのトランスポンダをもって達成される。更に、有利な特徴が添付の従属請求項に記載されている。
上で述べた更なる目的は、第2の態様において、添付の請求項33に記載されたとおりのトランスポンダをもって達成される。
システムの更なる特徴が添付の従属請求項に記載されている。
本発明の第1の態様を詳細に実現させる方法から全く関係なく、本発明の原理は、再生利得ブロック、あるいは超再生(super regenerative)タイプの再生利得ブロックであると述べてよく、好適には、1つのポートが負抵抗を持つ再生利得ブロックとしてよい。本発明におけるクェンチング(quenched)発振器と技術的に同一または類似のものが、クェンチング増幅器(quenched amplifier)またはスイッチング増幅器(switched amplifier)である。それは、安定性基準が内部特徴によって決定されるだけでなく、外部パラメータによっても同様に決定されるからである。従って、定義によれば、クェンチング増幅器そのものがクェンチング発振器である。
本発明の明白な特徴の1つが、高い変換利得を示す単純なトランスポンダで、相応の性能を持つトランスポンダは、受信した信号を増幅した形で同じ周波数帯で転送しても、シフトした周波数帯で転送してもよく、また、1ポート増幅器として動作してよく、従って、途切れない信号パスの中で直接動作するように使用されてよい。よって、これは、電力ケーブルなどの伝送線において臨界放射レベルを超えないように信号/ノイズ比を維持するのに好適である。本発明によるクェンチング発振器トランスポンダの利点は、ダイナミックレンジおよび帯域幅をカスタマイズすべく利用できる選択肢を有することである。その1つの例は、帯域幅エネルギー全体または冗長性も追加する有用側波帯全部を使用することである。別の例は、フィルタ処理によって選択的に補強される1つ以上の側波帯を使用することである。超再生原理を使用するときの本発明の明白な特徴は、入出力用の狭帯域フィルタを使って、近年の、耐力および不要輻射に関する要求を支援し、広帯域通信特性を高いクェンチ周波数によって支援できることである。これは、まさしく先進的なフィルタ設計を要求し、そこでは、通過帯域内伝達特性と帯域外伝達特性の両方に最大の注意を払わなければならない。これは、高い同帯域(チャネル)利得と隣接帯域(チャネル)利得が共に要求されるために重要である。
本発明は、構成要素内のおよび構造体内の浮遊容量がしばしば、本発明におけるトランスポンダの満足すべき結合リンクであることを特徴としてよく、本発明によれば、これが、浮遊結合(stray coupling)の効率を高めるより高い周波数を使用できることによって支援される。要するに、本発明による大きい増幅度が、そうでなければ技術的、経済的な理由から到底思いつかない結合器配置を容易にする。このように本発明によって容易になることの1つの例が、中圧施設において高周波搬送信号伝達のために“エラスチモールド(Elastimold)”の電力網ステーションの容量性電圧プローブと接続ケーブルを使用することである。エラスチモールドおよび後続システムと結び付いたケーブルは、1つ以上の内部導体と1つの外部シールドを持つ同軸ケーブル構造に類するPexケーブルと呼ばれるものであってよい。エラスチモールドおよび類似システムの容量性ディバイダは、周波数と共に効率が増す特徴を有する。容量性ディバイダプローブは、しばしば、無線周波数信号センサとして十分な働きをするが、励起のためには機能しないかもしれない。外部シールドが結合コンデンサとして使用されるとき、本発明の容量性ディバイダ結合器の改良バージョンが現れる。これは、本発明では、フェライト粉スリーブまたは鉄粉スリーブまたはトロイドコアをケーブル端末からある程度の間隔をあけてケーブルにクランプ締めすれば、更に改良される。同様に、本発明では、内部導体と共通電位の間の浮遊容量を結合コンデンサとして利用してよく、これで、シールドと共通電位の間で信号が結合できることになる。本発明では、効率的な共通高周波電位を達成し、それで、不要なコモンモード輻射の抑制と耐力を支援するために指定の配置の浮遊コンデンサを使用してよい。本発明では、少なくとも2本のケーブルまたは基準としてアースを付けたケーブルまたは2つの組み合わせを使って異なる仕方で注入またはサンプリングされる無線周波数信号を利用してよい。
よって、本発明は、いわゆるPLC(Power Line Communication電力線通信)システムより高い搬送周波数を電力グリッド回路において使用できるようにする。ケーブル側のシステムエネルギーと、電力線ノイズから十分に離れたところで高い搬送周波数と組み合わせてケーブルによってピックアップされた無線周波数妨害信号の両方に放射損を利用することにより、極めて低い信号レベルが要求され、他のサービスを配給する危険は無くなる。より高い搬送周波数における無線周波数妨害は、周波数ドメインにおける冗長性を使って最小限に抑えることができる。本発明では、冗長性が要求されるとき、すなわち、電力線ノイズが重大な問題になっている家屋および建物の低圧電力線において、冗長性を提供する多数の組み合わせを可能にする。冗長性はまた、システム帯域幅全体を増大させる目的で追加することができる。すなわち、通信チャネルの数を増やすことによって追加することができる。冗長性は更に、通信システムが妨害などの環境変化に適応できるよう、システム内のトランスポンダまたはレピータのプロパティを遠隔で、または自動的に制御し、または切換えることによって適宜利用することができる。
本発明では、超再生式レピータ(トランスポンダ)の周波数シフト特性または周波数転移特性をその高い変換利得と共に利用してよい。そのとき、周波数シフトは、中心周波数のどちらかの側に向かってクェンチ周波数に、またはその倍数に等しくてよい。同様に、別の新規解決として、本発明は、周波数変換器またはミクサを増幅器と直列で使用する従来的ながら、より多くの費用がかかり、より多くの電力を消費する技術を使用できるが、この場合、ミクサ/増幅器の連鎖の入力と出力が共に結合させられ、1ポートとして使用され、または、ミクサ−増幅器間の絶縁が本来的に厳しく制限される。この技術は、ケーブルシステムまたはワイヤシステムにおいて、ノイズ許容範囲、変化するケーブルタイプ、ケーブル長およびケーブル損への適応度を増大させるべく、周波数シフトを含めて1ポートの増幅または限られた2ポートの増幅を使って適用してよい。この両実施態様の基本的機能は同じであり、周波数転移型の1ポートの増幅器として説明することができる。両者の間の実際的な差は、本発明の解決手段として超再生方式が隣接チャネルの選択性に依存しないのに対し、ミクサ方式が高度のフィルタリングを必要とすることにある。これは、有用または有効な周波数帯が制限されるとき、考慮すべき重要な点である。
本発明の別の特徴は、再生式および超再生式の発振器または増幅器を双方向スーパヘテロダイン信号ブロックと組み合わせた形で改良することである。これは、共通の局部発振器を備えた1つ以上の周波数ミクサからなる。これは両方向についての利得段階を包含してよく、その目的は、損失を補償し、トランスポンダの信号ダイナミクスを獲得するのを助けることである。これにより、再生式発振器は、トランスポンダ周波数帯と異なる周波数帯において最適化でき、例えば、極めて高いクェンチ周波数を大きいトランスポンダ帯域幅のために使用することに関して最適化できることになる。これで、局部発振器の周波数を変えることによって本発明のトランスポンダの周波数帯が容易に変更できることになる。本発明のトランスポンダの周波数帯と再生式デバイスの周波数帯の両方においてフィルタを含んでよい。また、クェンチ周波数高調波抑制が改良されるので、ダイナミックレンジも増大する。また、スーパヘテロダインブロックにおける許容利得を増大させる方向性結合器も含んでよい。スーパヘテロダインネット利得は、アクティブミクサによって達成されてよい。感知できるほどの外部ポート絶縁が存在するとき、トランスポンダは、方向ごとにヘテロダイン利得を分離する2ポートタイプとして使用してよい。非対称システムと同様に単方向システム利得を、この方法で供用してよい。アップリンクおよびダウンリンクを本発明によるデュアルトランスポンダまたは2つのトランスポンダと組み合わせてよい。中程度の高周波利得が要求されるとき、本発明の更に別の新規特徴が現れる。そこで、ミクサによる固有絶縁が本発明に加わることによって再生式発振器は省略できることになり、それで、スーパヘテロダインの連鎖の相互接続によってスーパヘテロダイン利得自体が十分な再生を可能にする。
本発明による超再生式発振器は、信号なしでは、1クェンチ周期の間に全発振状態に達しないような仕方で動作する。再生範囲は、主としてバイアス条件とクェンチング機能によって決定される。クェンチング機能の最も重要な属性はヘルツ未満の周波数(1/f)のとき、再生は中程度で、自己安定度を欠く。極めて高いクェンチ周波数のとき、利得が低下する反面、安定度は良好なまま留まる。中位のクェンチ周波数のとき、利得は高く、安定度は良好であるが、帯域幅は有用でないかもしれない。本発明は、これらファクターの最適な組み合わせを容易にする。より長い、高電流、高圧のシールド電力ケーブルにおいてより高い搬送周波数を使用することも、本発明によって容易にできるようになる。ここでの利点は、低周波領域のノイズが回避でき、また、通信周波数帯内の群遅延リプルが低減できることである。伝達特性の変化が小さい特性は、大サイズ電力ケーブルと小サイズ電力ケーブルの両方において可能な限り高い搬送周波数を使用できる点で大きな長所の1つである。本発明はこれを多くの方法で容易にする。1つは、大きい有効増幅利得を利用し、途切れない回路と非ガルバニック結合に利得を導入する潜在的可能性を利用する方法である。電力ケーブル通信システムにおいて自由空間ノイズや不要放射を消去することさえも、本発明の一部である。おそらく、本発明の最も興味深い側面は、低コストのシステムが実現できることである。
一般に本発明によれば、より高い搬送周波数、多重チャネルおよび双方向1ポート反復を使用すべく通信網を円滑化することにより、非搬送波または低周波搬送波を基礎にした通信プロトコルが本発明を利用できるようにもなる。1つの例として、イーサネットプロトコルを、ケーブルモデムプロトコルの使用と同様の仕方で搬送波へと変調してよい。長距離イーサネットは、ケーブルモデムシステム、DocsisおよびEurodocsisと同様にQAMを使用するので、本発明と共に使用する上で特に興味深いプロトコルである。PLCプロトコルやPLC信号フォーマットも、同様の仕方で使用してよい。本発明は、ほとんどのタイプの通信プロトコルおよび変調に使用することができる。独自の通信プロトコルおよび変調スキームも適用してよい。例を挙げれば、通信プロトコルおよび変調の種類は、周波数スペクトル拡散OFDM、時間周波数スペクトル拡散DSSS、QAM、QPSK、および、ケーブルモデムDOCSISおよびEURODOCSIS、IEEE802.11x、Bluetooth、TETRA、GSM、GPRS、GSM、UMTS、IP電話および他の種類の電話などのプロトコルである。要件に応じて、本発明によって扱われる信号は、両側波帯であっても単側波帯であってもよい。繰り返すと、媒体における減衰が高反射減衰レベルから無視できるレベルまでの間である高周波を利用でき、これが、本発明によって容易になる極めて重要な点であると言える。
電力グリッド回路のようなグローバルなインフラストラクチャにおいて広帯域通信を容易にすることにより、移動体通信などのための新しいコンセプトが可能になる。1つの例として、どこにでも存在する電力インフラストラクチャでは、本発明により、多数の縮小エリア通信セルを、大きく減じられた全システムコストと改良された全通信範囲で実現させることができる。電力ケーブルまたは電力線が存在するところであれば何処でも、本発明は、例えばUMTS基地局のような基地局のためにバックボーンのインフラストラクチャを提供することを可能にする。無線レピータとして使用されるとき、本発明は、基地局の無線通信範囲を極めてリーズナブルなコストで拡張することを可能にする。
以下、本発明を添付図面に示す例に則して詳細に説明する。
図1に示してあるのは、アナログユニット22およびディジタルユニット23からなる代表的なトランスポンダデバイス18である。アナログ部分は、アンテナ1および無線周波数トランスポンダ24を有する。トランスポンダ24は、被変調送信器またはトランスポンダ18からの被変調応答とともに入力搬送波を転送することのできるトランスポンダであってよい。これはしばしば、ダウンリンクレシーバ25およびウェイクアップレシーバ26ならびに制御ユニット25を含むように設計される。ディジタル部分がトランスポンダデバイス18に含まれるとき、これは、インタフェース29と通常組み合わされた情報ユニット28からなる。トランスポンダデバイス18はまた、最も普通に電池170から作り上げられた電源からなる。
トランスポンダデバイス18の最重要部分は、アップリンク用トランスポンダ24である。ダウンリンク情報レシーバ25は、トランスポンダデバイス18と別個の部分であるか、ウェイクアップレシーバ26と部分的に統合されているか、どちらかである。ディジタルユニット23の情報デバイス28がトランスポンダデバイス18を識別し、ディジタルユニットは、情報処理能力を有してもよく、制御インタフェース27を通じてアナログユニット22における機能の制御を実行してもよい。ディジタルユニット23はまた、ユーザ、センサまたはアクチュエータのための物理的インタフェース29を含んでよい。
図2に示してあるのは、いかなる情報ユニットも含まない本発明によるトランスポンダ19のブロック図で、ここに、本発明を使って転送を行う単純な方法が図解してある。ここに示した本発明による解決手段は、信号の反復、照会および伝送に使用してよい。それは、アンテナ1と帯域フィルタ3の間に双方向結合器2を包含し、双方向結合器4が、再生回路5につながる単一信号パスまたは二重信号パスであり、前記再生回路は、セパレート部分を含むか、トランスポンダ19の要求に応じて1つの回路に統合されているか、どちらかである。
再生回路5は、基本的に不安定な増幅器と同一のランダム型発振器回路を含んでよく、接続点30は、基本的に前記発振器内の1つ以上のポイントを含み、ここで、再生回路の内と外のエネルギーの必要な結合が達せられる。これにより、トランスポンダが目指す目的にとって十分な再生増幅または超再生増幅が得られる。バイアス回路6は、バイポーラトランジスタまたは電界効果形トランジスタを含む発振器5に、トランスポンダにおいて短波レンジからcm波およびmm波(マイクロ波)のレンジに至るバイアスを供給してよい。再生回路5は、発振器だけの場合、1つのトランジスタからなるが、基本的に、コイルおよびコンデンサ以外の共振素子が使用されるときのように2つ以上含んでよく、または、集積回路、すなわち、MMIC(マイクロ波集積回路)を含んでよい。再生回路5はまた、帯域幅および利得を獲得するために多数の発振器からなってよい。ダイオードやトランジスタによって構成されてよい電子制御素子7が2つの主要な位置を有する。一方が発振状態を与え、他方が発振状態を消す。このようなスイッチを上記接続の形で使用することを“クェンチング”と呼ぶ。再生式発振器の場合、トランスポンダの動作原理は、再生回路5の発振器が連続的に発振するのを制御素子が決して許さないことである。
図3に示してあるのは、トランスポンダ19を包含する本発明の第2の実施例のブロック図で、トランスポンダ19により、帯域幅、不要放射および電力消費の制御を改善するために、それぞれ情報65、スイッチング31を変調する別々の変調器87、17が導入されている。変調機能またはクェンチング機能38は、局部発振器信号として働いてよく、それで、第2変換機能又はヘテロダイン機能を再生回路5に加えてよい。その目的は、帯域フィルタ3に再生回路5と異なる周波数通過帯域を持たせることである。信号39または67は、別々の発振器、プロセッサ、フェーズロックループ(PLL)、または高周波信号を発生させることのできる類似配列からの信号であってよく、または、より危険の少ない用途においては、発振器5における自励発振(自己クェンチング)として発生させられてよい。この場合、前記発振器は、受信信号60、62に重畳された何らかの機能によってクェンチ作用の単純な同期化も可能にする。変調器が情報用とスイッチング用と別々であるため、パルス形成回路網9を信号39の周波数と共に使用できることになり、変調器17の機能は、再生回路5の高周波通過帯域を成形するなどのトランスポンダ19の様々な特性を制御することができる。
図4は、本発明によるトランスポンダの第3の設計バージョンのブロック図で、検出器11ならびに受信用の増幅器12を導入しており(ダウンリンク)、ここで、トランスポンダは信号の反復、照会および送受信に使用できるようになっている。ここに示した解決策は、ウェイクアップのための周波数弁別増幅器またはレベル弁別増幅器13も含み、この設計バージョンは、T/R(送受信)スイッチも含む。
情報レシーバ(ダウンリンク)の動作原理は、信号パス2に比較的弱く結合(疎結合)された信号35を結合器95によって、アンテナ1で受信された被変調信号を復調する検出器11(すなわち、ショットキーダイオード)に導き、発振器5によって増幅することである。受信回路は、そこで帯域フィルタ3の選択度を利用して、再生回路5からの出力によって生じさせられた相互変調歪みを減じる。
図5は、本発明によるトランスポンダの第4の設計バージョンのブロック図で、ここでは “アナログユニット”120として示してあり、マイクロ波ASIC(カスタマ指定の集積回路)651またはMMIC(マイクロ波集積回路)の形で本発明を実現している。この実現例は、無線周波数トランスポンダ120のみからなるか、ディジタルユニット125、クロック発振器135および入出力端末を含むか、どちらかである。
図6に示す実施態様は、図2に示したのに酷似しており、図3および図4に示したのとも類似してよいが、アンテナ1は、より一般的なタイプの結合素子として一般化されている。更に示してあるのが、特殊タイプのフィルタ3、すなわち、2つの信号パスの相異なる濾過特性に対して周波数シフト転送信号を達成することのできるフィルタである。これは、ときには、周波数転移、転移または変換として知られる。
図7において、関数発生器は、二次クェンチング信号または二次変調信号、または、クェンチング発振器18、19、5、601〜606を再生増幅に加えて周波数を上げ下げする周波数変換器として働けるようにする搬送波を含んでよい。これにより、所望のクェンチ周波数間隔およびダイナミック特性を達成する上で好ましい周波数帯において再生機能が実行できる一方、通信周波数帯は、再生回路5の周波数通過帯域から十分に間隔をあけたどんな周波数帯であってもよい。加えて、入力絶縁もまた、周波数帯の差、入力フィルタ3および再生デバイス5、601〜606の選択にも帰因する。その結果、周波数を上げ下げ変換された被増幅信号は、出力と入力が完全に対称であるので同相となる。周波数源の外部同期化は、外部同期化信号31への同期化またはネットワーク内の対応するトランスポンダ511の間接クェンチ信号(implicit quench signal)32への同期化によって達成される。
図8は、図7に従い、本発明が特に再生カスケード利得に関して新規使用の目的で提供する様々な媒体および伝送媒体インタフェース方法を示す。これは以下のものを含む。
真空、気体、液体または固体の材料の中でアンテナまたはプローブを使用する自由空間伝搬400。
マルチリード電気ケーブル、または、少なくとも3線式により改良形コモンモード除去のために差動伝送線モードが可能とされるインフラストラクチャのようなケーブルからなる伝送線410。
伝送線を包含する撚り線式または非撚り線式の金属構造である2つ以上の導体を含む開放形電気線または開放形電気線に相当する配列からなる伝送線420、または、2線式以上の進行波アンテナ線システム430を包含する伝送線または伝送線システムで、ここで、伝送波は大地を基準とし、自励振と単線励振の両方が可能である。進行波アンテナとは、例えば水平V形アンテナ、ロンビックアンテナおよびビバレッジアンテナのことである。
波長の短いとき、波が線近傍にトラップされた状態に保たれ、僅かしか減衰させられず、既知の方法を使って励起でき、タッピングできる、開放表面を持つ導波管として機能する伝送線440(いわゆるレッヘル線)閉鎖形導波管であり、金属管で代用してよい伝送線450、および、伝送媒体としての光導波管であり、電気媒体への非ガルバニック接続路として働くことのできる伝送線460。
本発明において使用される線への接続は、誘導配列(磁気、H磁界)141、容量配列(電気、E電界)142、抵抗配列143(ガルバニック結合)またはマイクロストリップの形の伝送線のように前記3配列の組み合わせを使って、差動(対称)結合または非対称結合として実現させてよい。タイプ141、142および143の結合配列は、ホスティング・インフラストラクチャからトランスポンダに電力を供給すべく、場合々々に応じて単独で使用しても組み合わせて使用してもよい。実際には、非ガルバニック結合は異なる形を取ってよい。容量結合142の新規例の1つは、本発明によって提供される高信号利得と結び付けた“エラスチモールド”高圧電力ケーブル端末の容量性プローブ結合である。本発明における容量結合142の別の新規例は、ケーブルの1つ以上の内部導体に対してケーブルシールドを結合コンデンサとして使用することである。高圧コンパートメント内部の“アンテナ”が、本発明によって可能にされるインタフェース結合の更に別の例である。本発明における信号励起にとって、このアンテナは、磁気ループ141の形の近傍界アンテナより効率的である。但し、近傍界アンテナでも、三相ケーブル端末の2相を容易に差動結合できるようにすることにより、本発明の更なる新規性とすることができる。小さい自己出力形トランスポンダが高圧電力ケーブル端末に直接設けてあれば、これが外界に対する、またはインフラストラクチャにおける相互接続のための非ガルバニック結合を与える本発明の更に別の例ということになる。
本発明によれば、図8に示した通りの相異なる媒体への/からの結合はすべて、信号を媒体内の信号パスに沿って維持し、媒体を励起し、または媒体から出力する目的に関係してよい。
図9は、図7および8に準じるトランスポンダ512を示す。ここで、再生回路355において出力ポート305、306が限定され、ポート303、304が入力または入出力両方とされ、ポート305、306の方がより高いレベルの出力、より低い感度の入力とされている。この配列は、再生回路355の信号利得/出力レベル達成能力を利用することによって高ダイナミック信号を獲得する働きをする。再生回路はまた、目標の再生ダイナミックレンジのために高周波利得ブロックを含んでもよい。ポート303、304および305、306は、情報の転送71、81のための、情報の受信72、82および送信71、81のための、また、可能であれば同期化/ロッキング72、82の受信72、82のための、また、可能であれば同期化/ロッキングの送信71、81のための、信号の送受信のために接続された配列221、222を有する。結合配列221、222は、方向性結合器をもって相互接続しても、配列221、222が結合させられる相手の媒体の絶縁を利用してもよい。
図10は、同期化タイプまたは非同期化タイプの多数のトランスポンダまたは再生回路213が、1つ以上の方向150、151における信号のダイナミック特性を改善するために、共通の結合配列90を使って、または、相互間で減衰を見せる別々の結合配列210、211、212を使って結合配列210の中で共に接続してあり、かつ、伝送媒体または伝送路に沿って多様なポイントを構成する本発明の一実施態様を示す。これに対応する本発明の別の一実施態様では、多数のトランスポンダまたは再生回路214、215、216が帯域幅およびダイナミクスを増大すべく配置してあり、共通の結合90を使って結合配列210に共に接続してあってよく、それで、多極再生帯域フィルタを構成してよい。トランスポンダまたは再生回路213を210、211、212と共に使用するのに応じて、210、211、212も同様にトランスポンダまたは再生回路214、215、216と共に使用してよく、トランスポンダまたは再生回路214、215、216は、可能であれば、多数のチャネル、双方向アーキテクチャ、相異なるサービス、冗長性または複数のチャネル特性によって提供される他の目的を受け入れるためにそれぞれ仕様が異なっていてもよい。
図11は、本発明に従い、如何にして多数のトランスポンダユニット216、217、218が共通の結合または伝送線90を使って共に接続してあるか、それで、如何にして結合配列210、222が、信号161、162を、また、信号171、172を物理的位置221と異なる物理的位置222の間で、例えば1つの空間221から別の空間へ伝送できるようになっているかを示す。物理的位置221、222は、または、どれだけの数の物理的位置でも、無線伝送を使用する自由空間の中にあってよく、レンジが過剰であるとき、またはシャドウゾーン内にあるとき、通信を容易にすることができる。
図12は、本発明による新規解決の1つとして、ケーブルグリッドまたはワイヤグリッドを、高周波信号を長距離にわたって収容し得る効率的な信号網に変容させる一般的な例を示す。トランスポンダまたはレピータを表す再生回路219を、伝送線として働くインフラストラクチャグリッド91全体に分配する。ガルバニック結合器または非ガルバニック結合器121を、グリッドの入力または出力としてグリッド全体の中で適当などこのポイントに挿入してよい。シールドケーブルのような閉鎖形の構造をもって、トランスポンダ219を最も便利な形で配線盤内部などの既存の端末ポイントに挿入する。場合によっては、アンテナ配列95を使った無線結合により、トランスポンダ120を使ってグリッドの入力または出力または入出力両方として働かせてもよい。トランスポンダ219を使った場合、本発明は、例えばケーブルの挿入、ガルバニック結合または非ガルバニック結合を使った配置にも適している。
図13は、図7と関連して、二次クェンチ信号が同相双方向ヘテロダイン機能を達成した、本発明の別の一実施例を示す。ここに示した実施例のトランスポンダは、若干の複雑さと引き替えに入力絶縁を追加されている。所望のダイナミクス特性は、双方向周波数変換器750が、入出力信号のためのポート751と再生デバイス18、19、5、601〜606の間で等位相シフトと逆位相シフトを見せるように配置してある場合にしか得られない。これを達成する最も単純な方法は、シングルダイオードミクサ、すなわち、ショットキーダイオードを使用することである。帯域フィルタ、高域フィルタまたは低域フィルタ753を使って十分なフィルタリングを達成することができる。双方向周波数変換器750における周波数ドリフトおよび位相ドリフトは、単純なシングルダイオードミクサのように双方向対称が正しく保たれるとき、自動的に補正される。例えば周波数の観点から実際的である場合は、双方向変換器750、754において、特性を改善する平衡型ミクサを含めてより精巧なミクサを使用してよい。詳述するならば、周波数変換器750と比べて信号強弱を高めた周波数変換器754は、入力信号と出力信号についてそれぞれ増幅器761、762および帯域フィルタ759、760をもって別々の連鎖を含む。増幅器761、762は、ミクサ回路755における損失を補償し、必要な出力信号レベル757を提供してよい。ミクサ回路755は、局部発振器を備えた単一の平衡型ミクサであってよい。ミクサ回路755はまた、信号連鎖絶縁を追加するために入力信号と出力信号についてそれぞれ別々のミクサを含んでもよい。ミクサ回路755はまた、双方向ポート763に追加の結合器絶縁を含んでもよい。双方向帯域フィルタ758は、信号強弱を大いに改善する。入力756と出力757は、1ポート形トランスポンダを実現させるべく方向性結合器に接続してよく、また、相当な出力/入力絶縁が得られる場合は別々に使用してよい。
図14は、基本的に周波数転移再生式トランスポンダと同一の機能を持つが、よりコストの高い、より複雑な、より多くの電力を消費する形で実現した本発明の一実施例を示す。これは、入力フィルタ871、周波数変換器752、出力フィルタ872および高利得増幅器860からなる。出力は、端末825において1ポート形周波数転移増幅器に供されるべく入力826に直接、または方向性ハイブリッド結合器を通じて結合させられる。これは、電力ケーブルシステムまたは電力線システムならびに無線システムにおいて、周波数シフトを含めて1ポート増幅を使って、ノイズ許容幅、変化するケーブルタイプ、ケーブル長およびケーブル損への適応度を増大させるのに適用してよい。ここでは、周波数変換チャネルが入力チャネルに隣接できるようにするためにシャープな等損失フィルタを利用してよい。これは、電力ケーブルなどの伝送線において臨界放射レベルを超えないように信号/ノイズ比を維持するのに好適である。他の解決手段、スーパヘテロダインのように、これは、ダブルヘテロダインとして実現させてよく、そうすることにより、可変発振器によって制御でき、容易に遠隔制御できるいわゆるパスバンドチューニングが可能となる。出力827は、入力826および共通ポイント825に直接結合させる代わりに、前記ポイント825に対して幾らか絶縁を示すインフラストラクチャまたは通信媒体の中のポイント828に別個に接続してよい。
図15は、如何にして双方向周波数転移830〜832および1ポート双方向増幅840〜842が対称通信信号801、802、803、804に適用し得るかを示す。伝送媒体810は、821、822、すなわち、他のケーブルを通じて他の媒体に接続された損失のある電力線ケーブルであってよい。本発明によれば、1ポート形周波数変換器830〜832を使用することができる。周波数変換器830〜832はまた、伝送媒体810を中断することができれば、多ポート形周波数転移デバイスであってもよい。長い、または大きい減衰信号パスは、幾つかの中間デバイス831、841をもって補償することができる。同じ原理は、相異なるアップリンク周波数帯とダウンリンク周波数帯を使って単純に実施段階で冗長性を加えることにより、非対称通信に適用することができる。これは、非対称通信システムおよび対称通信システムの両方にとって、電力ケーブルシステムまたは電力線システムならびに無線システムにおいて、周波数シフトを含めて1ポート増幅を使って、ノイズ許容幅、変化するケーブルタイプ、ケーブル長およびケーブル損への適応度を増大させるのに適用してよい。これは、電力ケーブルなどの伝送線において臨界放射レベルを超えないように信号/ノイズ比を維持するのに好適である。
図16は、如何にして本発明が非対称通信に関して、すなわち、ケーブルモデム信号伝送に関して部分的にまたは大部分を、相異なる周波数帯において方向性結合950、951および選択的周波数転移910、921を使って実現できるか1010を示す。十分な電力が入手可能であるとき、低コストの大型増幅器と方向性結合器を使用し、より高い搬送周波数を使って、すなわち、損失のある電力線810および電力ケーブル810において、信号/ノイズ比を維持することができる。本発明のこの実施例をもってすれば、実現可能な様々な接続スキーム1011〜1014により、かつて業界が長距離にわたって大きい帯域幅を達成しようと試みた課題を極めて低いコストで克服することができる。高い搬送周波数を使えば、接続スキーム1011〜1014のいずれかによって効率的な結合と絶縁を達成できる一方、高利得増幅が許容し得ることから、搬送周波数における高レベルの損失は補償される。周波数帯は、電流損失のある伝送媒体、すなわち、電力ケーブルに合わせて選択でき、また、信号が両方向において低周波ノイズから離れ、乱されることなく動作できるように、かつ、減衰反射と群遅延リプルの減少から利益を得られるように選択できる。第1の接続スキーム1011では、方向性結合器935、936と、1010における帯域フィルタ、高域フィルタまたは低域フィルタとの複合減衰により、結合器935、936の共通ポート935、936を共に結合させ、更に、無条件の安定性を得させる一方、有用な利得を獲得させることができる。絶縁ポート945〜946、955〜956は、1010の入出力930〜931、940〜941に結合させられる。媒体915は、損失のある電力ケーブルであってもよい。接続スキーム1012も前記接続スキームと同様、伝送媒体が中断を許容する。接続スキーム1013は、伝送媒体に対して非ガルバニック結合975、976、985、986を使用し、これが1つ以上の電力線ケーブルであってよい。結合975、976、985、986は、代表的に容量性タイプ142、すなわち、“エラスチモールド”電力線ステーション内の容量性テスト結合、または高圧電力スイッチ・セルコンパートメント内部の浮遊容量結合または“アンテナ”配列であってよい。本発明におけるアンテナ配列は、効率的に磁気ループアンテナの形を取ってよく、これもまた、新規解決として、特に高圧ケーブルおよび中圧ケーブルの対称的な差動励振およびタッピングを容易にする。光ファイバケーブルに基づく高圧ケーブルおよび中圧ケーブルへのインタフェースを用いる新規解決方法が本発明によって容易にされ、この場合、高圧ケーブルとファイバケーブルの間で使用される再生利得ブロックには、ファイバケーブルを通じて、または高圧ケーブルから電力を誘導形または容量形で取り出すことによって光パワーを供給することができる。同時に、2つのそのような配列がディファレンシャル方式を提供し得ることから、双方向の能力を持たせることができる。接続スキーム1014は、スキーム1011〜1013の組み合わせを利用している。これは特に高圧電力ケーブルと低圧電力ケーブルの間での双方向信号の遷移に適用できる。この場合は、接続線985、986、すなわち、高圧側の接続線が互いに結合していないことによって絶縁を補助するのに対し、接続線965の方は、相互接続用の同軸ケーブルを使って1つ以上の220V電力ケーブルへと経由させてよい。
図17は、ノイズプローブ配列1120から放射された信号1050およびノイズ1051を、結合器1130を経由して、直結された信号および1105と結合させ、1011〜1014の形式としてよい接続スキーム1110を使って、ケーブル1101に基づくシステムにおいてピックアップされた放射信号および放射ノイズを消去できるようにした本発明の新規実施例を示す。結合器1130は、アナログ信号処理タイプまたはディジタル信号処理タイプであってよく、いずれかのタッピング信号パスまたは注入信号パス1140において放射システム信号の最小レベルおよびシステムノイズの最小レベルに合わせて調整すべき位相/振幅関係1135の自動調整によってコモンモードノイズ消去を可能にする。プローブ配列1120は、複数のプローブまたはアンテナを含んでよく、その場合、H磁界プローブが変圧所内のコモンモード耐力にとって最も効率的なものとなり、平面波輻射および耐力のためにE電界プローブ、H磁界プローブ、アンテナまたはエミッタが必要となり得る。図17は、旧式の電力グリッド変圧施設において大抵直面している問題を扱う。これは、大抵、スクリーニングのためだけでなく個人と公共の安全の目的のためにも金属シールドまたは鋼シールドを持つ電力グリッドの電磁界分布にさほど関連しない。1つ以上のプローブ1120のパッシブ部分は、ケーブルシールドまたは類似物によって構成されてよい。
図18は本発明の相異なる実施例を示し、595が、本発明によって容易にされる新規タイプのアクセスシステムの概観図である。このアクセスシステムは、多数の変調タイプおよび通信プロトコルの1つ以上を使用してよく、また、例えばケーブルモデムに基づくものであってよい。本発明は、地域内の電力ケーブルおよび電力線のストラクチャ全体を本発明の様々な実施態様を通じて通信網として容易に使用できるようにし、それで、カスケード形アナログ利得の獲得、相互接続、双方向性およびインフラストラクチャの高周波容量の最適使用を可能にする。これは、高圧526/中圧変圧所525、中圧/低圧変圧所521、三相中圧シールド接地ケーブル528、三相または単相の低圧ケーブル530、531、532、556、マスト537を取り付けた中圧線591、マスト537を取り付けた低圧ケーブルまたは低圧線592、低圧配線箱529、ホームヒューズ盤533、ビルの主配線盤539および副配線盤538、街路灯マスト528および配線527を含み、電力グリッドインフラストラクチャの戦略上重要なポイントにおいてHFC(Hybrid Fibre Coax)方式で535信号を1方向または双方向で分配すべく、アナログファイバインタフェース536を使ってファイバリングインフラストラクチャ590と結合してあってよい。カスタマ宅内機器(CPE)534がヒューズ盤の中または近傍に据え付けてあってよい。ディジタル/アナログ変換器およびアナログ/ディジタル変換器(A/D−D/A)524は、電力グリッドアーキテクチャ内のどのポイントに据え付けてあってもよく、また、ときには、1つのファイバ接続523がアクセスネットワーク全体に供用される高圧/中圧変圧所522において最も好都合かつ経済的に据え付けてあってもよい。ファイバリング590はまた、それが経済的であれば、ディジタル信号を様々な場所にある様々なA/D−D/A変換器524に分配してもよい。図18において、本発明の一実施例である596は、如何にして信号が中圧変圧所596の変圧器521を迂回し得るかを示す。本発明による単方向または双方向の再生式レピータが、幾つかの結合器の間の変圧器を経由して必要かつ安定的な信号利得ならびに多重チャネル能力を提供する。結合器は、できれば、中圧コンパートメント544および低圧配線室553においてそれぞれ平衡不平衡変成器543、554の形であるのが好ましい。何らかのスイッチング配列を持つレール544は、開放形、シールド形またはエラスチモールドタイプまたは類似タイプであってよい。上に準じて、597は本発明の別の実施例で、ここでは、ポイント557とポイント566の間に高品位のアナログ信号パスを単方向および双方向の形で設けるべく、再生利得561および接続可能な手段559、565を接続箱、配線盤または他の何らかのケーブル端末ポイントに適用してよい。この解決は、ストラップ、ヒューズまたは他のもの564およびレール563を通じて常に存在する限られた固有高周波絶縁を追加し、561において再生アナログ利得を通じて安定的な利得を提供する。
図19は、本発明の様々な実施例として、様々な電圧レベルからなり、相異なる電圧のケーブルのカスケード構造を利用する電力グリッド通信システムにおいてアナログ利得を適用すると共に中圧ケーブルまたは高圧ケーブルへの/からの高周波信号を伝送する方法を示す。635は、エラスチモールドまたは類似システムの電圧プローブポイント、特に本発明において信号センサポイントとして使用してよい電圧プローブポイントの等価回路図を示す。このプローブポイント635と共に適当なネットワーク638を使用していよく、または、信号を高インピーダンス前置増幅器の中に直接タッピングしてもよい。本発明の一実施例637では、高周波の浮遊容量を使って励振をより効率的に実行することができる。ケーブル581は変圧器577で終端してよく、この変圧器には、高効率の固有高周波浮遊容量が中心導体581と高周波共通電位578の間に存在し、前記ケーブルの終端箇所においてケーブルシールドと内部導体の間の浮遊容量を利用してよい。これにより、設備の信号パスの残りに接続された2端子カプラ584を使って、ケーブル582、583にクランプ締めされたコンデンサスリーブとケーブルシールドの安全接地線586の間で励振を、またはタッピングすら行うことが可能になる。ケーブル579にクランプ締めされたトロイドコアが、前記原理を改善し得る。カプラ584は、トロイド579の巻線を介して同様に接続してもよい。このトロイドはまた、ケーブルシールド580の端末と結合した接地線にクランプ締めしてあってもよく、両方の場所で使用してよい。三相設備636において、2本のケーブル574〜576を増大した容量に合わせて別々に使用しても、ディファレンシャル方式でペアで使用してもよい。カプラ584はまた、スリーブ582を使用する代わりにケーブルシールド安全接地線ポイント586と高周波共通電位ポイント587の間に接続してあってもよく、トロイドが前記接地線にクランプ締めしてあってもよく、このようにして固有浮遊容量を変圧器577の共通電位に利用した上で、カプラが最後に述べたトロイドの巻線に接続してあってもよい。また、変圧器640、641内部の浮遊容量を結合ネットワークとして使用し、そこで可能であれば、638におけると同様の種類の整合ネットワークを使って、高周波信号が前記変圧器を通過するようにしてもよい。また、変圧器624の中性端子と大地の間のインピーダンス630を使用することによって、またはこのインピーダンスを増大させ、このインピーダンスを横断する形でカプラ633を接続することによって、高周波信号が変圧器642を通過するようにしてもよい。643は、ディファレンシャル方式を許容しないが、十分にシールドされていて低いノイズレベルを示す高圧コンパートメントにおいて依然中程度に有用な本発明の一実施例で、固有浮遊容量655を利用する。これはまた、導入された浮遊容量666を利用してもよい。低損失の開放形レール657からの影響を減じるため、直列インピーダンスを、可能であれば磁性材料系のクランプ659の形で導入してよい。浮遊容量は、ケーブルシールド接地線662とケーブルシールドの間に接続されたカプラ664を通じて励振およびタッピングを可能にし、接地高周波インピーダンス659は、磁性材料系のクランプを使って増大させてよい。そうすると、高周波エネルギーは、浮遊容量655、666を介してケーブルにシールドのところで、また、内部導体のところで結合させられる。図18に一般的に示した通りの二相および三相の低圧ケーブルへのガルバニック結合は、本発明の実施例647における通りのディファレンシャル方式をカプラ683を通じて使用してよく、このカプラは、低圧ケーブル670の1対の位相685を使用する1つ以上の平衡不平衡変成器を含んでよく、また、磁性材料系のクランプ659を使って、ケーブルを接続した低圧レールまたは他の何らかの終端デバイスに対する絶縁を顕著に増大させてよい。
アナログユニットとディジタルユニットによって構成された、既知技術による代表的トランスポンダシステムのブロック図である。 本発明に基づいて実施し得る最も単純な転送方法を示す本発明の第1の実施態様のブロック図である。 トランスポンダの帯域幅、不要放射およびエネルギー消費をもって制御を改善するために別個の発振器信号を導入した実施態様のブロック図である。 受信用の増幅器および検出器(ダウンリンク)を配置し、多様な受信レベルをTRスイッチで制御できるようにした別の設計バージョンのブロック図である。 本発明の基礎をなすマイクロ波技術コンセプトの単純さのゆえにトランスポンダをマイクロ波ASICに導入し、また、マイクロ波ASICおよびMMICで単純に低コストで実現できるようにした、更に別の設計バージョンのブロック図である。 図2の設計バージョンと相違し、アンテナの代わりに異なる結合素子を配置し、発振器への/からの信号パスの中に分割双方向フィルタの形のフィルタを設けた実施態様のブロック図である。 超再生式トランスポンダがネットワークアーキテクチャの一部として働く本発明の第2の実施態様を示すブロック図である。 ネットワーク内のトランスポンダを接続してよい様々な信号伝送媒体を示す図である。 本発明によるトランスポンダがネットワークと協働することを目指した特殊な設計バージョンを示す図である。 多数のトランスポンダが様々な仕方でネットワークと連絡して共に働く実施態様を示す図である。 多数のトランスポンダが共に働く更に別の実施態様を示す図である。 トランスポンダを伝送線または線容量増強用の導波管に沿って配置した一実施例を示す図である。 ポート端末と再生回路の間の絶縁を改良すると同時に再生式トランスポンダをもって所望の信号強弱および帯域幅を達成する一方法を示す図である。 従来技術を使って1ポート形の周波数転移トランスポンダまたは増幅器を実現させる方法で、電力線通信のある一定のエリアにおいて十分な信頼できる電力が入手可能であるとき、本発明に適用できる一方法を示す図である。 如何にして双方向周波数転移および1ポート双方向増幅がIEEE802.11bのような対称通信システムに適用し得るかを示し、同じ原理が、相異なるアップリンク周波数帯とダウンリンク周波数帯を使って単純に実施段階で冗長性を加えることにより、非対称通信に適用することができることを示す図である。 如何にして本発明が非対称通信に関して、すなわち、ケーブルモデム信号伝送に関して部分的にまたは大部分、方向性結合および周波数転移を使って実現できるかを示し、十分な電力が入手可能であるとき、大型増幅器と方向性結合器を使用し、より高い搬送周波数を使って、すなわち、損失のある電力線および電力ケーブルにおいて信号/ノイズ比を維持することができることを示す図である。 アンテナ配列およびプローブ配列から放射された信号およびノイズと直接結合された信号とを組み合わせ、それで、有線システムにおいて放射信号およびコモンモードノイズおよび妨害を消去できるようにする本発明の一実施例を示す図である。 電力グリッド通信アクセスシステムに関し、本発明によって容易にされる新規タイプのアクセスシステムの概観図を示し、配線箱において利得を加えるための新規解決に加えて、中圧局用の新規解決を示し、また、他の端末ポイントも示す図である。 主に、高周波を変圧器に通すコンデンサネットワークの一部としての変圧器、ならびに、低圧ケーブルを付けたガルバニック差動結合器を使って、如何にして結合器を中圧ケーブルに接続するかという本発明の幾つかの方法を示す図である。

Claims (1)

  1. 通信インフラストラクチャシステムであって、
    所定の通信プラットフォームに対する接続性及び利用可能な通信帯域が予測できない信号媒体と、
    トランスポンダを用いる信号調整手段であって、少なくともトランスポンダ、結合器、搬送周波数変換器、および前記トランスポンダの出力レベルの制御手段を含む信号調整手段と、を備え
    前記信号調整手段は、前記所定の通信プラットフォームに対する予測可能な接続性及び通信帯域の実現を容易にするように分散配置される、通信インフラストラクチャシステム。
JP2003559035A 2002-01-09 2003-01-09 再生式トランスポンダシステムを含むアナログ再生式トランスポンダ Expired - Fee Related JP4199122B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20020112A NO324356B1 (no) 2001-01-09 2002-01-09 Infrastruktursystem for telekommunikasjon med transpondere
PCT/NO2003/000004 WO2003058835A1 (en) 2002-01-09 2003-01-09 Analogue regenerative transponders, including regenerative transponder systems

Publications (3)

Publication Number Publication Date
JP2005514852A JP2005514852A (ja) 2005-05-19
JP2005514852A5 JP2005514852A5 (ja) 2006-10-05
JP4199122B2 true JP4199122B2 (ja) 2008-12-17

Family

ID=19913210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003559035A Expired - Fee Related JP4199122B2 (ja) 2002-01-09 2003-01-09 再生式トランスポンダシステムを含むアナログ再生式トランスポンダ

Country Status (10)

Country Link
US (1) US20050068223A1 (ja)
EP (1) EP1472800A1 (ja)
JP (1) JP4199122B2 (ja)
KR (1) KR20040101204A (ja)
CN (2) CN101572575A (ja)
AU (2) AU2003201515A1 (ja)
BR (1) BR0306849A (ja)
CA (1) CA2472968A1 (ja)
EA (1) EA200400923A1 (ja)
WO (1) WO2003058835A1 (ja)

Families Citing this family (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110311A1 (en) * 2001-02-14 2002-08-15 Kline Paul A. Apparatus and method for providing a power line communication device for safe transmission of high-frequency, high-bandwidth signals over existing power distribution lines
AU2002230794A1 (en) * 2000-12-15 2002-06-24 Current Technologies, Llc Interfacing fiber optic data with electrical power systems
US7224272B2 (en) * 2002-12-10 2007-05-29 Current Technologies, Llc Power line repeater system and method
US7321291B2 (en) * 2004-10-26 2008-01-22 Current Technologies, Llc Power line communications system and method of operating the same
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US20060205442A1 (en) * 2005-03-10 2006-09-14 Neil Phillips Bi-directional amplifier with non-interruptible port
US7912431B2 (en) * 2005-03-10 2011-03-22 Commscope, Inc. Of North Carolina Signal amplifiers having non-interruptible communication paths
US20100117728A1 (en) * 2005-03-10 2010-05-13 Robert Ryan Riggsby Signal Amplifiers Having Communications Paths that Automatically Terminate to a Matched Termination in Response to a Power Interruption and Related Methods
US7265664B2 (en) * 2005-04-04 2007-09-04 Current Technologies, Llc Power line communications system and method
US7856032B2 (en) * 2005-04-04 2010-12-21 Current Technologies, Llc Multi-function modem device
US7358808B2 (en) * 2005-06-21 2008-04-15 Current Technologies, Llc Method and device for amplification of data signals over power lines
US7259657B2 (en) * 2005-06-21 2007-08-21 Current Technologies, Llc Multi-subnet power line communications system and method
US20070036171A1 (en) * 2005-08-10 2007-02-15 Magin Gregory A Bridging coaxial cable networks
US7417516B2 (en) * 2005-11-14 2008-08-26 Honeywell International Inc. Monolithic microwave integrated circuit providing power dividing and power monitoring functionality
US20080012724A1 (en) * 2006-01-30 2008-01-17 Corcoran Kevin F Power line communications module and method
US7852207B2 (en) * 2006-02-14 2010-12-14 Current Technologies, Llc Method for establishing power line communication link
US7796025B2 (en) 2006-03-27 2010-09-14 Current Technologies, Llc Power line communication device and method
US7764943B2 (en) * 2006-03-27 2010-07-27 Current Technologies, Llc Overhead and underground power line communication system and method using a bypass
US7859646B2 (en) * 2007-01-24 2010-12-28 Adelphi University Interferometric method for improving the resolution of a lithographic system
US7974586B2 (en) * 2007-09-14 2011-07-05 Extreme Broadband Engineering, Llc Constant input port impedance for CATV amplifier with passive modem port
FR2945119B1 (fr) * 2009-04-30 2011-04-08 Commissariat Energie Atomique Detecteur bolometrique d'un rayonnement electromagnetique dans le domaine du terahertz et dispositif de detection matriciel comportant de tels detecteurs
US9118393B2 (en) * 2009-11-27 2015-08-25 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappeluk Onderzoek Tno Enhancing a push-to-talk communication system
US9385782B1 (en) 2010-01-08 2016-07-05 Qualcomm Incorporated Communication between network nodes
US8908779B2 (en) * 2011-04-29 2014-12-09 Linear Technology Corporation Isolated communications interface
US8483291B2 (en) * 2011-06-30 2013-07-09 Broadcom Corporation Analog to digital converter with increased sub-range resolution
WO2013074474A1 (en) * 2011-11-15 2013-05-23 University Of Florida Research Foundation, Inc. Offset generative receiver
KR101945178B1 (ko) * 2012-01-04 2019-02-07 삼성전자주식회사 초저전력 초재생 수신 장치 및 방법
US8971792B2 (en) 2012-06-25 2015-03-03 Commscope, Inc. Of North Carolina Signal amplifiers that switch to an attenuated or alternate communications path in response to a power interruption
US9094101B2 (en) 2012-06-25 2015-07-28 Commscope, Inc. Of North Carolina Signal amplifiers that switch to an attenuated or alternate communications path in response to a power interruption
US9450745B2 (en) * 2012-10-11 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for radio frequency (RF) pulse synchronization in super regenerative receiver (SRR)
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9702970B2 (en) * 2013-08-30 2017-07-11 Maxim Integrated Products, Inc. Time of arrival delay cancellations
EP2854310B1 (en) 2013-09-30 2017-07-12 Alcatel Lucent Optical line terminal for a passive optical wavelength division multiplex network
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9699516B2 (en) 2014-01-21 2017-07-04 Commscope, Inc. Of North Carolina Signal amplifiers that support MoCA communications at both active and passive output ports
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9824506B2 (en) * 2014-12-19 2017-11-21 Bendix Commercial Vehicle Systems Llc Apparatus, system and method for communicating a fault in a combination vehicle
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
CN105700457B (zh) * 2016-02-23 2018-03-30 上海昂泰兰捷尔信息科技股份有限公司 一种智能控制和自动监测短波通信网遥控线的方法
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
CN107994871A (zh) * 2016-10-27 2018-05-04 北京遥感设备研究所 一种用于引信的调幅调相电路
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN109428747B (zh) * 2017-08-25 2022-03-04 展讯通信(上海)有限公司 本地振荡器带宽调整方法、接收机、计算机介质及系统
US10917067B2 (en) 2018-04-10 2021-02-09 Commscope, Inc. Of North Carolina RF signal amplifier with combined active and passive port
CN110703243A (zh) * 2019-09-29 2020-01-17 天津大学 新基于再生接收原理的硅基太赫兹主动式阵列成像技术
US11476953B1 (en) 2021-05-14 2022-10-18 Charter Communications Operating, Llc Passive noise dampeners
CN114614845B (zh) * 2022-04-02 2023-03-14 中国科学技术大学 唤醒接收机
CN114826381B (zh) * 2022-04-26 2024-02-27 上海航天测控通信研究所 星载可再生转发的解调调制系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL71621C (ja) * 1943-03-13
US2644155A (en) * 1945-11-21 1953-06-30 Jr Robert A Emmett Blind landing system
US2790165A (en) * 1946-02-13 1957-04-23 Jesse R Lien Super-regenerative receiver
NL87379C (ja) * 1951-02-07
US2812427A (en) * 1951-06-27 1957-11-05 Alexander F Passive radio communication system
US2899546A (en) * 1954-05-25 1959-08-11 hollmann
US2812428A (en) * 1954-09-27 1957-11-05 Radio Patents Company Passive responder radio system
US3434063A (en) * 1966-04-01 1969-03-18 Gen Electric Self-quenching negative resistance superregenerative diode detector
US3474350A (en) * 1966-11-28 1969-10-21 Jack R Harris Amplification by periodically quenching an unstable system
US3883809A (en) * 1967-05-11 1975-05-13 Massachusetts Inst Technology Superregenerative mixers and amplifiers
US3621465A (en) * 1968-07-22 1971-11-16 Rfd Inc Superregenerative amplifier oscillator with tunnel diode
US4786903A (en) * 1986-04-15 1988-11-22 E. F. Johnson Company Remotely interrogated transponder
US4755772A (en) * 1987-06-05 1988-07-05 Avantek, Inc. Switchable microwave oscillator
IL106746A (en) * 1993-08-19 1997-02-18 News Datacom Ltd CATV systems
US5630216A (en) * 1994-09-06 1997-05-13 The Regents Of The University Of California Micropower RF transponder with superregenerative receiver and RF receiver with sampling mixer
US5712614A (en) * 1995-05-09 1998-01-27 Elcom Technologies Corporation Power line communications system
US5963557A (en) * 1997-04-11 1999-10-05 Eng; John W. High capacity reservation multiple access network with multiple shared unidirectional paths
US5986600A (en) * 1998-01-22 1999-11-16 Mcewan; Thomas E. Pulsed RF oscillator and radar motion sensor
US6490727B1 (en) * 1999-10-07 2002-12-03 Harmonic, Inc. Distributed termination system for two-way hybrid networks
JP2003526990A (ja) * 2000-03-01 2003-09-09 ヴァヴィク、ゲイル・モンセン トランスポンダおよびトランスポンダシステム

Also Published As

Publication number Publication date
EP1472800A1 (en) 2004-11-03
KR20040101204A (ko) 2004-12-02
BR0306849A (pt) 2004-11-09
US20050068223A1 (en) 2005-03-31
EA200400923A1 (ru) 2005-02-24
JP2005514852A (ja) 2005-05-19
AU2008261135A1 (en) 2009-01-15
WO2003058835A1 (en) 2003-07-17
AU2003201515A1 (en) 2003-07-24
CN101572575A (zh) 2009-11-04
CA2472968A1 (en) 2003-07-17
CN1639994A (zh) 2005-07-13

Similar Documents

Publication Publication Date Title
JP4199122B2 (ja) 再生式トランスポンダシステムを含むアナログ再生式トランスポンダ
US8059576B2 (en) Signal repeater system
JP5383749B2 (ja) 通信装置及び通信装置のためのカプラー
US8010061B2 (en) Combining multimedia signaling and wireless network signaling on a common communication medium
JP2005514852A5 (ja)
EA006284B1 (ru) Высокочастотная сетевая мультиплексированная передача данных по различным линиям с использованием множества модулированных несущих частот
KR20080017006A (ko) 고주파 신호 허브
US8816794B2 (en) Signal branching filter, electronic device using the same, antenna apparatus, and signal transmission system used in all of the above
WO2003044981A1 (en) Method and system for high-speed communication over power line
US11689346B2 (en) Switched amplifier for data transmission
CZ305996A3 (en) Method of transmitting telecommunication signals and a telecommunication network for making the same
US2229078A (en) Radio relaying system
US10972149B2 (en) Surface wave interference reduction
US3979673A (en) Radiating telecommunication systems switching
KR20010006780A (ko) 무선통신망에서 전력선을 이용한 중계 시스템
US20120019077A1 (en) Power grid signal coupler system
US20190238165A1 (en) Antenna feed in a wireless communication network node
JP3795768B2 (ja) ネットワークシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080407

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees