JP4196209B2 - Signal processing method and pulse photometer using the same - Google Patents

Signal processing method and pulse photometer using the same Download PDF

Info

Publication number
JP4196209B2
JP4196209B2 JP2004191297A JP2004191297A JP4196209B2 JP 4196209 B2 JP4196209 B2 JP 4196209B2 JP 2004191297 A JP2004191297 A JP 2004191297A JP 2004191297 A JP2004191297 A JP 2004191297A JP 4196209 B2 JP4196209 B2 JP 4196209B2
Authority
JP
Japan
Prior art keywords
signal
pulse wave
noise
light
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004191297A
Other languages
Japanese (ja)
Other versions
JP2005095581A (en
Inventor
和正 伊藤
勝 鎗田
哲也 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kohden Corp
Original Assignee
Nihon Kohden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kohden Corp filed Critical Nihon Kohden Corp
Priority to JP2004191297A priority Critical patent/JP4196209B2/en
Publication of JP2005095581A publication Critical patent/JP2005095581A/en
Application granted granted Critical
Publication of JP4196209B2 publication Critical patent/JP4196209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

複数の波長で測定した光電脈波を用いて生体情報を測定する装置、特に呼吸器・循環器系の診断に用いられるパルスフォトメータの改良に関する。   The present invention relates to an improvement in an apparatus for measuring biological information using photoelectric pulse waves measured at a plurality of wavelengths, particularly a pulse photometer used for diagnosis of a respiratory / circulatory system.

医療に際し、血液に含まれる吸光物質濃度測定として、酸素飽和度SpO2の測定、一酸化炭素ヘモグロビンやMetヘモグロビン等の特殊ヘモグロビンの濃度測定、注入色素濃度の測定を目的としたパルスフォトメータが知られている。
酸素飽和度SpO2の測定装置を特にパルスオキシメータと呼んでいる。
In medical practice, pulse photometers for measuring the concentration of light-absorbing substances in blood, measuring oxygen saturation SpO2, measuring the concentration of special hemoglobin such as carbon monoxide hemoglobin and Met hemoglobin, and measuring the concentration of injected dye are known. ing.
The measuring device for oxygen saturation SpO2 is called a pulse oximeter.

パルスオキシメータの原理は、対象物質への吸光特性が異なる複数の波長の光を生体組織に透過させ、その透過光の光量を連続的に測定することで得られる脈波から対象物質の濃度を求めるものである。
本出願人は、特許第3270917号(特許文献1)において、異なる2つの波長の光を生体組織に照射して透過光から得られる2つの脈波のそれぞれの大きさを縦軸、横軸としてグラフを描き、その回帰直線を求め、その回帰直線の傾きに基づいて、動脈血中の酸素飽和度ないし吸光物質濃度を求めることを提案している。
この発明により、測定精度を高め、低消費電力化することができた。
しかし、各波長の脈波についての多くのサンプリングデータを用いて回帰直線ないしその傾きを求めるためには、なお多くの計算処理を要していた。
The principle of the pulse oximeter is that the concentration of the target substance is determined from the pulse wave obtained by transmitting light of multiple wavelengths with different absorption characteristics to the target substance through the living tissue and continuously measuring the amount of the transmitted light. It is what you want.
In the patent No. 32701717 (Patent Document 1), the applicant of the present invention uses the two pulse waves obtained from the transmitted light by irradiating light of two different wavelengths to the living tissue as the vertical axis and the horizontal axis. It has been proposed to draw a graph, find the regression line, and obtain the oxygen saturation or light-absorbing substance concentration in arterial blood based on the slope of the regression line.
According to the present invention, measurement accuracy can be improved and power consumption can be reduced.
However, in order to obtain a regression line or its slope using a large amount of sampling data for pulse waves of each wavelength, a lot of calculation processing is still required.

特許第3270917号 (請求項1、2、図2、図4)Japanese Patent No. 3,270,917 (Claims 1, 2, 2, 4)

次に、本発明の前提である、動脈血酸素飽和度を測定するパルスオキシメータを例に挙げて原理を説明する。
なお、この技術は、パルスオキシメータに限られず、特殊ヘモグロビン(一酸化炭素ヘモグロビン、Metヘモグロビンなど)、血中に注入された色素などの血中吸光物質をパルスフォトメトリーの原理を用いて測定する装置(パルスフォトメータ)に適用できる。
Next, the principle will be described by taking as an example a pulse oximeter that measures arterial oxygen saturation, which is the premise of the present invention.
This technique is not limited to pulse oximeters, but measures blood absorption substances such as special hemoglobin (carbon monoxide hemoglobin, Met hemoglobin, etc.) and dye injected into blood using the principle of pulse photometry. Applicable to equipment (pulse photometer).

図 1に装置のブロック図を示す。パルスオキシメータを例にして説明する。
通常、測定は被測定部にプローブ1が装着される。
演算処理・制御部8で、異なる波長の光を発生する発生手段(LEDs)2、赤色発光ダイオード(以下R-LED)及び赤外光発光ダイオード(以下IR-LED)の発光タイミングが生成され、発光ダイオード駆動部4によってプローブ内のR-LED及びIR-LEDが交互に発光する。
LEDs2によって発せられた光は、プローブ装着部が装着された被測定部を透過しプローブ内の受光部PD(Photo Diode)3で受光される。
受光部PD3で光から電気に変換された信号は入力部5にて電圧に変換される。
この受光信号には、被測定部での脈動の光学特性を反映した成分がAC成分として現れる。
受光部PD3から得られた信号を、復調回路6で赤外光(IR)及び赤色光(R)の波長に分離・復調処理して、AD変換回路7によりそれぞれデジタル化された信号を演算処理・制御部8に与えて演算処理することによって、例えば、酸素飽和度SpO2を算出するものである。
Figure 1 shows a block diagram of the device. A pulse oximeter will be described as an example.
Usually, the measurement is performed by attaching the probe 1 to the part to be measured.
The arithmetic processing / control unit 8 generates the light emission timings of the generating means (LEDs) 2 for generating light of different wavelengths, the red light emitting diode (hereinafter R-LED) and the infrared light emitting diode (hereinafter IR-LED), The light emitting diode drive unit 4 alternately emits R-LEDs and IR-LEDs in the probe.
The light emitted by the LEDs 2 passes through the part to be measured on which the probe mounting part is mounted, and is received by a light receiving part PD (Photo Diode) 3 in the probe.
A signal converted from light to electricity in the light receiving unit PD3 is converted into a voltage in the input unit 5.
In this received light signal, a component that reflects the optical characteristics of pulsation at the measured portion appears as an AC component.
The signal obtained from the light receiving unit PD3 is separated and demodulated by the demodulation circuit 6 into the wavelengths of infrared light (IR) and red light (R), and the digitized signals are respectively processed by the AD conversion circuit 7. For example, the oxygen saturation SpO2 is calculated by giving to the control unit 8 and performing arithmetic processing.

前記AD変換回路7によってデジタル化された赤外光(IR)及び赤色光(R)に対応する信号が、それぞれの測定脈波データを形成している。
組織の透過光の吸光度Aは、血液の減光度をAb、その他の組織の減光度をAtとすると、次式で表わされる。
Signals corresponding to infrared light (IR) and red light (R) digitized by the AD conversion circuit 7 form respective measured pulse wave data.
The absorbance A of the transmitted light of the tissue is expressed by the following equation, where Ab is the light attenuation of blood and At is the light attenuation of other tissues.

Figure 0004196209
Figure 0004196209

Iout:透過光強度
Iin:入射光強度
E:血液の吸光係数
C:血中のヘモグロビン濃度
D:血液の厚み
血液の動脈により血液の厚みがD+ΔDとなったとき、(1)式は次のようになる。
Iout: transmitted light intensity Iin: incident light intensity E: blood extinction coefficient C: blood hemoglobin concentration D: blood thickness When the blood thickness becomes D + ΔD due to the blood artery, equation (1) is as follows: become.

Figure 0004196209
Figure 0004196209

(2)式―(1)式 (2) Formula-(1) Formula

Figure 0004196209
Figure 0004196209

波長λ1,λ2それぞれについて(3)式は次のようになる。 For each of the wavelengths λ1 and λ2, equation (3) is as follows.

Figure 0004196209
Figure 0004196209

添字1,2はそれぞれ波長λ1,λ2に関するものであることを示している。(4)式÷(5)式=ΦSとすると、 Subscripts 1 and 2 indicate that they are related to wavelengths λ1 and λ2, respectively. (4) ÷ (5) = Φ S

Figure 0004196209
Figure 0004196209

となり、Δln(Iout1) ,Δln(Iout2)を測定してΦSを求め酸素飽和度SpO2を Then, Δln (Iout1) and Δln (Iout2) are measured to obtain Φ S and the oxygen saturation SpO2 is calculated.

Figure 0004196209
Figure 0004196209

として求められる。 As required.

このΔln(Iout1) ,Δln(Iout2)に脈動を反映した成分以外に、体動等の影響が重畳すると各波長の吸光度は In addition to the component that reflects pulsation in Δln (Iout1) and Δln (Iout2), if the influence of body motion is superimposed, the absorbance at each wavelength is

Figure 0004196209
Figure 0004196209

En:ノイズ源の吸光係数
Cn:ノイズ源の濃度
Dn:ノイズ源の厚み変化
で表現され、脈動成分を反映した波形(脈波)のみは得られず、ノイズが重畳した信号が観測される。
この場合の吸光度比Φ’は
En: Noise absorption coefficient of the noise source Cn: Concentration of the noise source Dn: A waveform (pulse wave) that is expressed by a change in the thickness of the noise source and reflects the pulsation component cannot be obtained, and a signal superimposed with noise is observed.
In this case, the absorbance ratio Φ ′ is

Figure 0004196209
Figure 0004196209

となり、動脈血酸素飽和度とは一致しない。
図2(a)は各波長での所定時間毎の透過光強度データの対数を取り、その平均値をゼロとする処理もしくは低域除去フィルタ処理を行った波形である。
図2(a)のほぼ同時刻(脈波の周波数成分に比べて十分短い)に測定された波形データを用いて、横軸に赤外光の振幅、縦軸に赤色光の振幅として表したグラフを図2(b)に示す。
観測データが脈波成分のみを反映していれば、このグラフはほぼ直線上にのり、この直線の傾きが吸光度比Φsを表す。
しかし、図3(a)に示すようにノイズが重畳した場合、ノイズは脈波成分とは異なり、ノイズの吸光度比と動脈の吸光度比の合成された結果となる(図3(b))。
And does not match the arterial oxygen saturation.
FIG. 2A shows a waveform obtained by taking a logarithm of transmitted light intensity data for each predetermined time at each wavelength and performing a process of making the average value zero or a low-pass removing filter process.
Using the waveform data measured at approximately the same time in FIG. 2A (which is sufficiently shorter than the frequency component of the pulse wave), the horizontal axis represents the infrared light amplitude and the vertical axis represents the red light amplitude. The graph is shown in FIG.
If the observation data reflects only the pulse wave component, this graph is almost on a straight line, and the slope of this straight line represents the absorbance ratio Φs.
However, when noise is superimposed as shown in FIG. 3 (a), the noise is different from the pulse wave component, resulting in a combined result of the noise absorbance ratio and the arterial absorbance ratio (FIG. 3 (b)).

上述の如く、測定された脈波データにノイズが含まれていると正確な吸光度比の測定ができないので、ノイズを除去する必要がある。
このノイズの除去の手法としては、従来から周波数解析手法及び独立成分分析が知られている。
As described above, if noise is included in the measured pulse wave data, it is not possible to accurately measure the absorbance ratio, so it is necessary to remove the noise.
As a method for removing this noise, a frequency analysis method and an independent component analysis are conventionally known.

しかし、周波数解析手法では、測定された脈波データの信号成分の基本波或いはその高調波とノイズの周波数が重なった場合には、信号成分の抽出が困難になるという問題があった。
また、独立成分分析手法では、測定信号が測定脈波データ以上の独立成分に分解できないため、複数ノイズ源が存在した場合に分離が困難であるという問題があった。
However, the frequency analysis method has a problem that it is difficult to extract the signal component when the fundamental wave of the signal component of the measured pulse wave data or its harmonic and the frequency of the noise overlap.
In addition, the independent component analysis method has a problem that separation is difficult when a plurality of noise sources are present because the measurement signal cannot be decomposed into independent components higher than the measured pulse wave data.

本願発明の課題(目的)は、ノイズの重畳した観測信号から容易にノイズを除去して脈波データを抽出して、吸光度比を求めることにある。
また、ノイズを除去した脈波データを用いたパルスフォトメータを提供することにある。
An object (object) of the present invention is to easily remove noise from an observation signal on which noise is superimposed, extract pulse wave data, and obtain an absorbance ratio.
Another object of the present invention is to provide a pulse photometer using pulse wave data from which noise is removed.

前記課題を解決するために、異なる2つの波長の光を生体組織に照射して透過または反射した各波長の光を電気信号に変換して得られた各波長の測定脈波データに対して前処理を施すステップと、
前記各波長の測定脈波データを複数の周波数帯域毎に分割して、各周波数帯域毎の吸光度比を求めるステップと、
前記各周波数帯域毎の吸光度比の同一性の有無により、測定脈波データのノイズの混入の有無を判定するステップとで測定脈波データの信号処理を実行する。(請求項1)
In order to solve the above-mentioned problem, the measured pulse wave data of each wavelength obtained by irradiating a living tissue with light of two different wavelengths and converting the light of each wavelength transmitted or reflected into an electrical signal is previously transmitted. Processing steps,
Dividing the measured pulse wave data of each wavelength into a plurality of frequency bands, and obtaining an absorbance ratio for each frequency band; and
The signal processing of the measured pulse wave data is executed in the step of determining the presence or absence of noise in the measured pulse wave data based on the presence or absence of the absorbance ratio for each frequency band. (Claim 1)

また、前記各周波数帯域毎の吸光度比の同一性の有無の判定は、分割後の周波数帯域の全てで吸光度比が所定範囲内であった場合、或いは分割後のパワーが支配的な周波数帯域での吸光度比が所定範囲内であった場合に、測定脈波データの信号処理を行なう。(請求項2)   In addition, the determination of the presence or absence of the same absorbance ratio for each frequency band is performed when the absorbance ratio is within a predetermined range in all the divided frequency bands, or in a frequency band in which the power after the division is dominant. When the absorbance ratio is within a predetermined range, signal processing of the measured pulse wave data is performed. (Claim 2)

また、異なる2つの波長の光を生体組織に照射して透過または反射した各波長の光を電気信号に変換して得られた各波長の測定脈波データからノイズを除去する方法であって、
前記各波長の測定脈波データに対して、既知の或いは予め求められた吸光度比を用いたアフィン変換により測定脈波データを白色化処理を
、以下の式

Figure 0004196209
(ここでSは信号成分であり、Nはノイズ成分である。s1は第1の電気信号、s2は第2の電気信号、φ=tan −1 Φ。Φは吸光度比、θは−φからπ/2−φの範囲で変化)により実行し、θは信号成分Sのノルムを最小とする。(請求項3)
また、請求項2に記載の方法で求めたノイズの混入が無いと判定された吸光度比を、前記既知の吸光度比として用いる。(請求項4) Further, it is a method of removing noise from measured pulse wave data of each wavelength obtained by irradiating a living tissue with light of two different wavelengths and transmitting or reflecting light of each wavelength converted into an electrical signal,
For the measured pulse wave data of each wavelength, the measured pulse wave data is whitened by affine transformation using a known or previously obtained absorbance ratio.
Figure 0004196209
(Where S is a signal component, N is a noise component, s1 is a first electrical signal, s2 is a second electrical signal, φ = tan −1 Φ, Φ is an absorbance ratio, and θ is from −φ. (change in the range of π / 2−φ), and θ minimizes the norm of the signal component S. (Claim 3)
In addition, an absorbance ratio determined by the method according to claim 2 to determine that there is no noise mixing is used as the known absorbance ratio. (Claim 4)

また、異なる2つの波長の光を生体組織に照射して透過または反射した各波長の光を電気信号に変換して得られた各波長の測定脈波データに対して前処理を施すステップと、前記各波長の測定脈波データを複数の周波数帯域毎に分割して、各周波数帯域毎に白色化処理をするステップとを含み、脈波信号とノイズ信号とを分離する。(参考例)
A step of pre-processing the measurement pulse wave data of each wavelength obtained by irradiating a living tissue with light of two different wavelengths and converting the light of each wavelength transmitted or reflected into an electrical signal; Dividing the measured pulse wave data of each wavelength into a plurality of frequency bands and whitening each frequency band, and separating the pulse wave signal and the noise signal. (Reference example)

また、前記白色化処理に独立成分分析を用いる。(参考例)
また、前記請求項3又は4のいずれかの方法で、異なる2つの波長の光を生体組織に照射して透過または反射した各波長の光を電気信号に変換して得られた各波長の測定脈波データを処理して分離した脈波信号とノイズ信号との周波数解析により、各周波数成分毎のS/N比を得る。(請求項
Further, independent component analysis is used for the whitening treatment. (Reference example)
Further, measurement of each wavelength obtained by irradiating a living tissue with light of two different wavelengths and converting the light of each wavelength transmitted or reflected by the method according to any one of claims 3 and 4 into an electrical signal. The S / N ratio for each frequency component is obtained by frequency analysis of the pulse wave signal and the noise signal separated by processing the pulse wave data. (Claim 5 )

また、前記請求項3乃至5のいずれかの方法で、異なる2つの波長の光を生体組織に照射して透過または反射した各波長の光を電気信号に変換して得られた各波長の測定脈波データを処理してノイズ成分と信号成分を分離するパルスフォトメータ。(請求項
また、前記分離された信号成分から、脈拍波形を得るパルスフォトメータ。(請求項
また、前記分離された信号成分から、脈の検出或いは周波数解析から脈拍数を算出するパルスフォトメータ。(請求項8)
Further, measurement of each wavelength obtained by irradiating a living tissue with light of two different wavelengths and converting the light of each wavelength transmitted or reflected by the method according to any one of claims 3 to 5 into an electrical signal. A pulse photometer that processes pulse wave data and separates noise and signal components. (Claim 6 )
A pulse photometer that obtains a pulse waveform from the separated signal components. (Claim 7 )
A pulse photometer that calculates a pulse rate from pulse detection or frequency analysis from the separated signal components. (Claim 8)

なお、請求項1乃至5に係る発明は、手順(ステップ)を限定した方法の発明であるが、各手順(ステップ)それぞれの機能を達成する手段として、装置の発明とすることも可能である。
The inventions according to claims 1 to 5 are inventions of a method in which a procedure (step) is limited. However, it is also possible to make an apparatus invention as a means for achieving the function of each procedure (step). .

本発明では、予め既知の吸光度比を用いることで、脈波信号とノイズ信号とを分離、ノイズの軽減された脈波信号を取得することが可能である。
また、既知の吸光度比の利用にはアフィン変換を用い、観測信号を白色化(whitening)し、脈波信号とノイズ信号とを分離、ノイズの軽減された脈波信号を取得することが可能である。
また、脈波信号周波数帯域内を複数の範囲に分離し、周波数帯域毎の吸光度比主成分を求め、その同一性を利用することで観測信号にノイズが混入していないかを判定することができる。
また、既知の吸光度比を利用したアフィン変換は、既知の吸光度比を利用した一回目の回転と、ノイズを除去するのに適した係数を決定でき、ノイズの軽減された脈波信号を取得することが可能である。
また、ノイズの軽減された脈波信号から、脈の検出或いは周波数解析から脈拍数を求めることができる。
また、脈波信号周波数帯域内を複数の範囲に分離する事で、信号源の数を減らし、周波数範囲毎に白色化(whitening)する事で、脈波信号の吸光度比とノイズ信号の吸光度比とを求めることができる。
また、脈波信号とノイズ信号とを分離して得られるので、周波数毎のS/N比が求められ、信号の評価指標に利用できる。
In the present invention, by using a known absorbance ratio in advance, it is possible to separate a pulse wave signal and a noise signal and obtain a pulse wave signal with reduced noise.
In addition, the affine transformation is used to use the known absorbance ratio, the observation signal is whitened, the pulse wave signal and the noise signal are separated, and the pulse wave signal with reduced noise can be obtained. is there.
In addition, it is possible to determine whether or not noise is mixed in the observation signal by separating the pulse wave signal frequency band into a plurality of ranges, obtaining an absorbance ratio principal component for each frequency band, and using the identity. it can.
In addition, affine transformation using a known absorbance ratio can determine the first rotation using a known absorbance ratio and a coefficient suitable for removing noise, and obtain a pulse wave signal with reduced noise. It is possible.
Further, the pulse rate can be determined from pulse detection or frequency analysis from the pulse wave signal with reduced noise.
Also, by dividing the pulse wave signal frequency band into multiple ranges, the number of signal sources is reduced and whitening is performed for each frequency range, so that the pulse wave signal absorbance ratio and the noise signal absorbance ratio are Can be requested.
Further, since the pulse wave signal and the noise signal are obtained separately, an S / N ratio for each frequency is obtained and can be used as a signal evaluation index.

・既知の吸光度比を利用して信号成分とノイズ成分を分離する方法
先ず、図1の構成のプローブ内の受光部PD(Photo Diode)3で受光した光を入力部5にて電圧に変換される。
この受光信号には、被測定部での脈動の光学特性を反映した成分がAC成分として現れる。
受光部PD3から得られた信号を、復調回路6で赤外光(IR)及び赤色光(R)の波長に分離・復調処理して、AD変換回路7によりそれぞれデジタル化する。
A method for separating a signal component and a noise component using a known absorbance ratio First, light received by a light receiving part PD (Photo Diode) 3 in the probe having the configuration shown in FIG. The
In this received light signal, a component that reflects the optical characteristics of pulsation at the measured portion appears as an AC component.
The signal obtained from the light receiving unit PD3 is separated and demodulated into wavelengths of infrared light (IR) and red light (R) by the demodulation circuit 6, and digitized by the AD conversion circuit 7, respectively.

この赤外光観測信号のデータを
IR={IRi;i=0,1,2,・・・・・}(11)
赤色光観測信号のデータを
R={Ri;i=0,1,2,・・・・・}(12)
観測信号の脈波成分を
S={Si;i=0,1,2,・・・・・}(13)
観測信号のノイズ成分を
N={Ni;i=0,1,2,・・・・・}(14)
とする。
図4に示すように、脈波成分の傾きをφ、ノイズ成分の傾きをψとすると、得られた観測信号(IRi,Ri)
This infrared light observation signal data
IR = {IRi; i = 0,1,2, ...} (11)
Red light observation signal data
R = {Ri; i = 0,1,2, ...} (12)
The pulse wave component of the observed signal is S = {Si; i = 0,1,2, ...} (13)
N = {Ni; i = 0,1,2, ...} (14)
And
As shown in FIG. 4, when the slope of the pulse wave component is φ and the slope of the noise component is ψ, the obtained observation signals (IRi, Ri)

Figure 0004196209
Figure 0004196209

は信号成分:Si,雑音成分:Niの合成ベクトルXiとして表現される。
従って、
Is expressed as a composite vector Xi of signal component: Si and noise component: Ni.
Therefore,

Figure 0004196209
Figure 0004196209

Figure 0004196209
Figure 0004196209

Wの逆行列Aを観測データに作用させれば信号成分:Sと雑音成分:Nが分離できる。
これは、信号(S)成分を横軸へ、ノイズ(N)成分を縦軸へ変換することを表しており、白色化を実現する変換行列Aを求めると、
If the inverse matrix A of W is applied to the observation data, the signal component: S and the noise component: N can be separated.
This indicates that the signal (S) component is converted to the horizontal axis and the noise (N) component is converted to the vertical axis, and when a conversion matrix A for realizing whitening is obtained,

Figure 0004196209
Figure 0004196209

となる。従って、  It becomes. Therefore,

Figure 0004196209
Figure 0004196209

を得る。
吸光度比Φは信号成分の傾きである。
傾きφと吸光度比Φの関係は、Φ=tanφである。
脈拍数に比べて十分短い時間内であれば、直前の値(例えば、10msec前)或いはノイズの混入がないと判断された過去の吸光度を既知の値として扱える。
また、後に記すような手法で求めたφの候補を用いる事も可能である。
次に、θは、
θ=ψ―φ(20)
で表され、ψが不明なため、−φからπ/2−φの範囲でθの値を変化させ横(S)軸方向のノルムを最小となる角度として決定する。
得られたφ、θを用いた変換行列Aで観測信号を処理すると、横軸に信号成分、縦軸にノイズ成分が得られる。
具体的には、(19)式で表現される行列変換は、図3(b)に示される2種の観測信号IR、Rを座標軸として選んだ第1の座標系から図3(c)に示される信号成分およびノイズ成分を座標軸として選んだ第2の座標系への座標変換を意味している。
図4にはある時点t=tiにおける観測値(IRi、Ri)が示されており、当該観測値を表すベクトルXiは、信号成分ベクトルSiおよびノイズ成分ベクトルNiの合成ベクトルとなっている。上記の座標変換を実行するにあたり、まず信号成分ベクトルSiを変換後の座標系における横軸に一致させる操作を行なう。具体的には図4におけるベクトルSiを角度φだけ時計回りに回転させる操作を行なう。φの値は既知のΦの値を用いて上式より得られる。
(19)式におけるθはノイズ成分ベクトルNiを変換後の座標系における縦軸に一致させる操作に対応する係数である。図3(b)に示す波形は上記の観測値の集合であり、φの値を固定的にすれば当然にθの値は観測値毎に異なる。変換係数としてのθを単一値として定めるために、−φからπ/2−φの範囲でθを変化させ、横軸(信号成分)方向の値のばらつき度合い(ノルム)の変化を調べ、ノルムが最小となる値として最終的な値を決定する。
図3(b)を変換行列Aの処理によって得られたグラフを図3(c)に示す。
また、この処理によってノイズが分離されて得られた波形を図3(d)に示す。
処理前の周波数解析によって得られた赤外光及び赤色光のスペクトルを図5に示し、対応する処理後の信号成分及びノイズ成分の周波数解析によって得られたスペクトルを図6に示す。
Get.
The absorbance ratio Φ is the slope of the signal component.
The relationship between the slope φ and the absorbance ratio Φ is Φ = tanφ.
If it is within a time sufficiently shorter than the pulse rate, the previous absorbance (eg, 10 msec before) or the past absorbance determined to be free of noise can be treated as a known value.
It is also possible to use φ candidates obtained by a method as described later.
Next, θ is
θ = ψ-φ (20)
Since ψ is unknown, the value of θ is changed in the range of −φ to π / 2−φ, and the norm in the horizontal (S) axis direction is determined as the minimum angle.
When the observation signal is processed with the obtained transformation matrix A using φ and θ, a signal component is obtained on the horizontal axis and a noise component is obtained on the vertical axis.
Specifically, the matrix transformation expressed by the equation (19) is performed from the first coordinate system in which two types of observation signals IR and R shown in FIG. 3B are selected as coordinate axes to FIG. 3C. This means coordinate conversion to the second coordinate system in which the signal component and noise component shown are selected as coordinate axes.
FIG. 4 shows observed values (IRi, Ri) at a certain time point t = ti, and a vector Xi representing the observed value is a combined vector of the signal component vector Si and the noise component vector Ni. In executing the above coordinate conversion, first, an operation of matching the signal component vector Si with the horizontal axis in the coordinate system after conversion is performed. Specifically, an operation of rotating the vector Si in FIG. 4 clockwise by an angle φ is performed. The value of φ is obtained from the above equation using the known value of Φ.
In equation (19), θ is a coefficient corresponding to an operation for causing the noise component vector Ni to coincide with the vertical axis in the coordinate system after conversion. The waveform shown in FIG. 3 (b) is a set of the observed values described above, and naturally the value of θ differs for each observed value if the value of φ is fixed. In order to determine θ as a conversion coefficient as a single value, θ is changed in the range of −φ to π / 2−φ, and a change in the variation degree (norm) of the value in the horizontal axis (signal component) direction is examined. The final value is determined as the value with the smallest norm.
FIG. 3C shows a graph obtained by processing the transformation matrix A in FIG.
Further, FIG. 3D shows a waveform obtained by separating noise by this processing.
FIG. 5 shows spectra of infrared light and red light obtained by frequency analysis before processing, and FIG. 6 shows spectra obtained by frequency analysis of corresponding signal components and noise components after processing.

・脈拍数の算出方法
上記の変換処理によって抽出した信号波形からpeak-peakインターバルTs(図3(d))を求めることで、容易に脈拍数=1/Ts×60[beats/min]を求めることができる。
あるいは、処理前の周波数解析によって得られたスペクトル(図5)に比べ処理後の信号から周波数解析によって得られたスペクトル(図6)は、脈波の基本周波数fsが明確になる事から、脈拍数=fs×60[beats/min]として計算できる。
・ Pulse rate calculation method By calculating the peak-peak interval Ts (Fig. 3 (d)) from the signal waveform extracted by the above conversion processing, the pulse rate = 1 / Ts x 60 [beats / min] is easily obtained. be able to.
Alternatively, the spectrum (FIG. 6) obtained by frequency analysis from the signal after processing compared to the spectrum obtained by frequency analysis before processing (FIG. 5) makes the fundamental frequency fs of the pulse wave clear. The number can be calculated as fs × 60 [beats / min].

・観測信号にノイズが混入していないかを判定する方法
観測信号を、所定の周波数範囲毎に分離する。
分離は連続した周波数範囲毎でも良いし、離散範囲の合成毎でも良い。
各周波数範囲毎に横軸(或いは縦軸)に赤外光の成分、それと直交する軸に赤色光の成分をとる。
図7は、横軸に赤外光の成分、縦軸に赤色光の成分をとったグラフである。
脈波周波数帯域全体及び分離後の周波数範囲毎に主成分に相当する傾きを求め、その値の同一性から単一信号か複数信号の合成かを判断する。
具体的に単一信号と判断する方法として、脈波周波数帯域全体及び分離後の周波数範囲全てが所定範囲内である事や、或いはパワー(power)の支配的な範囲の値と脈波周波数帯域全体の値とが所定範囲内である事などがある。
具体例として、図7,図8は、脈波周波数帯域全体と0.5Hz〜6Hz迄の範囲を0.5Hz毎分割したときを表しており、タイトル部に主成分の傾きを記してある。
図7は、0.5-1Hz:0.54 3.5-4.0Hz:0.84 4.0-4.5:0.84と大きなPowerを示している範囲で異なる値を示しており、複数信号の合成が観測されたと判断できる。
図8は、大きなPowerを示している範囲1−1.5Hz、2−2.5Hz、2.5−3Hzで同じ0.50値を示しており、単一信号と判断する。
-Method for judging whether noise is mixed in the observation signal The observation signal is separated for each predetermined frequency range.
Separation may be performed for each continuous frequency range or for each synthesis of discrete ranges.
For each frequency range, the horizontal axis (or vertical axis) takes the infrared light component, and the axis orthogonal to it takes the red light component.
FIG. 7 is a graph in which the horizontal axis represents the infrared light component and the vertical axis represents the red light component.
A slope corresponding to the principal component is obtained for the entire pulse wave frequency band and for each frequency range after separation, and it is determined whether a single signal or a plurality of signals are combined based on the identity of the values.
Specifically, as a method of determining a single signal, the entire pulse wave frequency band and the separated frequency range are all within a predetermined range, or the value of the dominant power range and the pulse wave frequency band The overall value may be within a predetermined range.
As a specific example, FIG. 7 and FIG. 8 show the case where the entire pulse wave frequency band and the range from 0.5 Hz to 6 Hz are divided every 0.5 Hz, and the inclination of the main component is shown in the title part.
FIG. 7 shows different values in the range showing a large power of 0.5-1 Hz: 0.54 3.5-4.0 Hz: 0.84 4.0-4.5: 0.84, and it can be determined that the synthesis of multiple signals was observed.
FIG. 8 shows the same 0.50 value in the range of 1-1.5 Hz, 2-2.5 Hz, and 2.5-3 Hz indicating a large power, and is determined as a single signal.

・酸素飽和度候補(吸光度比)算出
前記ノイズ混入の判定と同様に、脈波信号周波数帯域内を複数の範囲に分離する。分離した周波数範囲毎に独立成分分析を行う。
観測信号縦ベクトルをX,転置をTとすると、(11)式,(12)式より、
-Oxygen saturation candidate (absorbance ratio) calculation The pulse wave signal frequency band is separated into a plurality of ranges in the same manner as the determination of the noise contamination. Independent component analysis is performed for each separated frequency range.
If the observed signal vertical vector is X and the transpose is T, from Equations (11) and (12),

Figure 0004196209
Figure 0004196209

Figure 0004196209
Figure 0004196209

観測信号ベクトルXの分散共分散行列Hは、   The variance-covariance matrix H of the observed signal vector X is

Figure 0004196209
Figure 0004196209

その固有値対角行列をΛ,固有ベクトル行列をΓとする。
独立成分Yは、変換行列をUとすれば、
Let the eigenvalue diagonal matrix be Λ and the eigenvector matrix be Γ.
The independent component Y can be represented by U as the transformation matrix.

Figure 0004196209
Figure 0004196209

として求められ、独立成分に分解される。
分離した周波数範囲に信号成分が存在すれば、図3(c)に示すような信号成分−ノイズ成分平面に変換できる。
固有ベクトル行列を変換行列Uの逆行列U-1で変換すると、IR−R平面にベクトルが投影され、信号成分を表すベクトルの傾きがΦs、ノイズ成分を表すベクトルの傾きがΦnとして得られる。
図2の観測信号に対して、図8の周波数範囲毎に傾きを求めた結果が図10であり、吸光度比1が各周波数で近い(0.5±0.02)ことが解る。
図7を処理した結果が図9であり、図6のfsを含む範囲にΦsを示す結果が得られている。
酸素飽和度SpO2はΦsの関数
SpO2 = f(Φs)
として得られる。
And is decomposed into independent components.
If a signal component exists in the separated frequency range, it can be converted into a signal component-noise component plane as shown in FIG.
When the eigenvector matrix is transformed by the inverse matrix U −1 of the transformation matrix U, the vector is projected onto the IR-R plane, and the slope of the vector representing the signal component is obtained as Φs, and the slope of the vector representing the noise component is obtained as Φn.
FIG. 10 shows the result of obtaining the slope for each frequency range in FIG. 8 with respect to the observation signal in FIG. 2, and it can be seen that the absorbance ratio 1 is close to each frequency (0.5 ± 0.02).
The result of processing FIG. 7 is FIG. 9, and the result showing Φs in the range including fs in FIG. 6 is obtained.
Oxygen saturation SpO2 is a function of Φs
SpO2 = f (Φs)
As obtained.

次に、図1に示す装置ブロックの処理部の動作を以下詳述する。
図11は処理フローを示すフローチャートである。
S1:測定開始すると、赤色光・赤外光で観測されたデジタル信号を前処理する。ここでは、Lambert-Beerの法則に基づく対数演算や脈波帯域フィルタ処理などを行う。
S2:それぞれの信号をバンドパスフィルタを用いて所定の周波数範囲(例えば、0.5Hz刻み)に分割し、周波数範囲毎の吸光度比(IR-R平面上での主成分の傾き)を求める。
S3:周波数範囲毎に求めた吸光度比の同一性を判定し、脈波の吸光度比候補を求める。候補は複数あってもよい。
S4:S3の結果から、信号源が単一か複数かを判定する。
S5:単一信号の場合、その吸光度比から酸素飽和度を、また、S1の処理結果から基本周期を求め、脈拍数を算出する。
S6:S3で得られた吸光度比候補或いは、直前のSpO2値に対応した吸光度比の結果(脈拍数に比較して十分早い:例えば10msec前)或いはノイズの混入がないと判断された過去の吸光度比を用い、アフィン変換する。 変換行列は、(19)式を用い、φ(吸光度比に対応した値)にて回転させ、θはφ軸方向のノルム値が最小となる角度として求める。
S7:S6のφ方向で得られた信号の時間軸での周期或いは周波数解析により基本周期を求め、脈拍数を得る。また、周波数毎のS/Nを求め吸光度比の信頼性を評価する指標の1つとする。
S8:S2で分割された各周波数範囲の時間領域データを使い、独立成分分析を行う。
S9:S8で得られた固有ベクトルのIR-R平面での傾きを求め、各周波数範囲の間の同一性を判定し、吸光度比候補を求める。候補は複数あってもよい。
S10:S3,S5,S7,S9の出力と過去の吸光度比・帯域を比較し、その共通項、継続性、信頼性(S7出力)とから、現在の酸素飽和度を決定する。必要に応じて平均処理をした後、酸素飽和度及び脈拍数を出力する。
S11:測定を継続するときは、S1に戻り処理を繰り返し、継続しない場合は、測定を終了する。
Next, the operation of the processing unit of the apparatus block shown in FIG.
FIG. 11 is a flowchart showing a processing flow.
S1: When measurement starts, preprocess digital signals observed with red and infrared light. Here, logarithmic calculation based on Lambert-Beer's law, pulse wave band filter processing, and the like are performed.
S2: Each signal is divided into a predetermined frequency range (for example, in increments of 0.5 Hz) using a bandpass filter, and an absorbance ratio (inclination of the main component on the IR-R plane) for each frequency range is obtained.
S3: The identity of the absorbance ratio obtained for each frequency range is determined, and a pulse wave absorbance ratio candidate is obtained. There may be a plurality of candidates.
S4: Determine whether the signal source is single or plural from the result of S3.
S5: In the case of a single signal, the oxygen saturation is obtained from the absorbance ratio, and the basic period is obtained from the processing result of S1, and the pulse rate is calculated.
S6: Absorbance ratio candidate obtained in S3 or the result of the absorbance ratio corresponding to the previous SpO2 value (sufficiently early compared to the pulse rate: for example 10 msec before) or past absorbance determined to be free of noise Affine transformation is performed using the ratio. The transformation matrix is rotated by φ (value corresponding to the absorbance ratio) using equation (19), and θ is obtained as an angle at which the norm value in the φ axis direction is minimized.
S7: The basic period is obtained by the period or frequency analysis of the signal obtained in the φ direction of S6, and the pulse rate is obtained. In addition, the S / N for each frequency is obtained and used as one index for evaluating the reliability of the absorbance ratio.
S8: Independent component analysis is performed using the time domain data of each frequency range divided in S2.
S9: Obtain the slope of the eigenvector obtained in S8 on the IR-R plane, determine the identity between each frequency range, and obtain the absorbance ratio candidate. There may be a plurality of candidates.
S10: The output of S3, S5, S7, and S9 is compared with the past absorbance ratio / bandwidth, and the current oxygen saturation is determined from the common terms, continuity, and reliability (S7 output). After averaging as necessary, the oxygen saturation and pulse rate are output.
S11: When continuing the measurement, return to S1 to repeat the process, and when not continuing, end the measurement.

本発明のパルスオキシメータの構成を示すブロック図である。It is a block diagram which shows the structure of the pulse oximeter of this invention. (a)は、各測定波長での平均値をゼロとする処理もしくは低域除去フィルタ処理を行った波形である。(b)は、横軸に赤外光の振幅、縦軸に赤色光の振幅として表したグラフである。(a) is the waveform which performed the process which makes the average value in each measurement wavelength zero, or the low-pass removal filter process. (b) is a graph with the horizontal axis representing infrared light amplitude and the vertical axis representing red light amplitude. (a)は、ノイズの重畳した観測(測定)波形である。(b)は、横軸に赤外光の振幅、縦軸に赤色光の振幅として表したグラフである。(c)は、(b)を変換行列Aの処理によって得られたグラフである。(d)は、この処理によってノイズが分離されて得られた波形である。(a) is an observation (measurement) waveform on which noise is superimposed. (b) is a graph with the horizontal axis representing infrared light amplitude and the vertical axis representing red light amplitude. (c) is a graph obtained by processing (b) by the processing of the transformation matrix A. (d) is a waveform obtained by separating noise by this processing. 信号成分とノイズ成分の関係を示す図である。It is a figure which shows the relationship between a signal component and a noise component. 処理前の図3(a)の波形の周波数解析によって得られた赤外光及び赤色光のスペクトル図である。It is a spectrum figure of infrared light and red light obtained by frequency analysis of the waveform of Drawing 3 (a) before processing. 図3(d)の波形の周波数解析によって得られたスペクトル図である。It is the spectrum figure obtained by the frequency analysis of the waveform of FIG.3 (d). 横軸に赤外光の成分、縦軸に赤色光の成分をとったグラフである。(ノイズ重畳)It is the graph which took the component of the infrared light on the horizontal axis, and took the component of the red light on the vertical axis. (Noise superimposition) 横軸に赤外光の成分、縦軸に赤色光の成分をとったグラフである。(単一信号)It is the graph which took the component of the infrared light on the horizontal axis, and took the component of the red light on the vertical axis. (Single signal) 独立成分分析により図7の周波数範囲毎に傾きを求めた結果である。It is the result of calculating | requiring the inclination for every frequency range of FIG. 7 by the independent component analysis. 独立成分分析により図8の周波数範囲毎に傾きを求めた結果である。It is the result of having calculated | required the inclination for every frequency range of FIG. 8 by independent component analysis. 図1に示されたパルスオキシメータで行なわれた処理フローを示すフローチャートである。It is a flowchart which shows the processing flow performed with the pulse oximeter shown in FIG.

符号の説明Explanation of symbols

1 プローブ
2 発光部(LEDs)
3 受光部(PD)
4 発光ダイオード駆動部
5 入力部
6 復調回路
7 AD変換
8 演算処理・制御部
1 Probe 2 Light emitting part (LEDs)
3 Light receiver (PD)
4 Light-emitting diode drive unit 5 Input unit 6 Demodulation circuit 7 AD conversion 8 Arithmetic processing / control unit

Claims (8)

異なる2つの波長の光を生体組織に照射して透過または反射した各波長の光を電気信号に変換して得られた各波長の測定脈波データに対して前処理を施すステップと、
前記各波長の測定脈波データを複数の周波数帯域毎に分割して、各周波数帯域毎の吸光度比を求めるステップと、
前記各周波数帯域毎の吸光度比の同一性の有無により、測定脈波データのノイズの混入の有無を判定するステップと、
を含むことを特徴とする測定脈波データの信号処理方法。
Pre-processing the measured pulse wave data of each wavelength obtained by irradiating a living tissue with light of two different wavelengths and converting the light of each wavelength transmitted or reflected into an electrical signal;
Dividing the measured pulse wave data of each wavelength into a plurality of frequency bands, and obtaining an absorbance ratio for each frequency band; and
Determining the presence or absence of noise in the measured pulse wave data according to the presence or absence of the absorbance ratio for each frequency band; and
A signal processing method of measured pulse wave data.
前記各周波数帯域毎の吸光度比の同一性の有無の判定は、分割後の周波数帯域の全てで吸光度比が所定範囲内であった場合、或いは分割後のパワーが支配的な周波数帯域で吸光度比が所定範囲内であった場合に、測定脈波データにノイズの混入が無いと判定することを特徴とする請求項1に記載の測定脈波データの信号処理方法。 The determination of the presence or absence of the same absorbance ratio for each frequency band is performed when the absorbance ratio is within a predetermined range in all the divided frequency bands, or in the frequency band where the power after the division is dominant. 2. The signal processing method of measured pulse wave data according to claim 1, wherein it is determined that noise is not mixed in the measured pulse wave data when the signal is within a predetermined range. 異なる2つの波長の光を生体組織に照射して透過または反射した各波長の光を電気信号に変換して得られた各波長の測定脈波データからノイズを除去する方法であって、
前記各波長の測定脈波データに対して、既知の或いは予め求められた吸光度比を用いたアフィン変換により測定脈波データを白色化処理を
、以下の式
Figure 0004196209
(ここでSは信号成分であり、Nはノイズ成分である。s1は第1の電気信号、s2は第2の電気信号、φ=tan −1 Φ。Φは吸光度比、θは−φからπ/2−φの範囲で変化)により実行し、θは信号成分Sのノルムを最小とする信号処して、脈波信号とノイズ信号とに分離することを特徴とする信号処理方法。
A method of removing noise from measured pulse wave data of each wavelength obtained by irradiating a living tissue with light of two different wavelengths and converting the light of each wavelength transmitted or reflected into an electrical signal,
For the measured pulse wave data of each wavelength, the measured pulse wave data is whitened by affine transformation using a known or previously obtained absorbance ratio.
Figure 0004196209
(Where S is a signal component, N is a noise component, s1 is a first electrical signal, s2 is a second electrical signal, φ = tan −1 Φ, Φ is an absorbance ratio, and θ is from −φ. The signal processing method is characterized in that the signal processing is executed in accordance with a change in the range of π / 2−φ, and θ is a signal processing that minimizes the norm of the signal component S and is separated into a pulse wave signal and a noise signal.
請求項2に記載の方法で求めたノイズの混入が無いと判定された吸光度比を、前記既知の吸光度比として用いることを特徴とする請求項3に記載の信号処理方法。
The signal processing method according to claim 3, wherein an absorbance ratio determined by the method according to claim 2 to determine that there is no noise mixing is used as the known absorbance ratio .
前記請求項3又は4のいずれかの方法で、異なる2つの波長の光を生体組織に照射して透過または反射した各波長の光を電気信号に変換して得られた各波長の測定脈波データを処理して分離した脈波信号とノイズ信号との周波数解析により、各周波数成分毎のS/N比を得ることを特徴とする信号処理方法。 5. A measurement pulse wave of each wavelength obtained by irradiating a living tissue with light of two different wavelengths and converting the light of each wavelength transmitted or reflected into an electrical signal by the method of claim 3 or 4 A signal processing method characterized in that an S / N ratio for each frequency component is obtained by frequency analysis of a pulse wave signal and a noise signal separated by processing data. 前記請求項3乃至5のいずれかの方法で、異なる2つの波長の光を生体組織に照射して透過または反射した各波長の光を電気信号に変換して得られた各波長の測定脈波データ列を処理してノイズ成分と信号成分を分離することを特徴とするパルスフォトメータ。 6. A measurement pulse wave of each wavelength obtained by irradiating a living tissue with light of two different wavelengths and converting the light of each wavelength transmitted or reflected by the method according to any one of claims 3 to 5 into an electrical signal A pulse photometer that processes a data string to separate a noise component and a signal component. 前記分離された信号成分から、脈拍波形を得ることを特徴とする請求項に記載のパルスフォトメータ。 The pulse photometer according to claim 6 , wherein a pulse waveform is obtained from the separated signal component. 前記分離された信号成分から、脈の検出或いは周波数解析から脈拍数を算出することを特徴とする請求項に記載のパルスフォトメータ。 The pulse photometer according to claim 6 , wherein the pulse rate is calculated from the separated signal component by pulse detection or frequency analysis.
JP2004191297A 2003-06-30 2004-06-29 Signal processing method and pulse photometer using the same Active JP4196209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004191297A JP4196209B2 (en) 2003-06-30 2004-06-29 Signal processing method and pulse photometer using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003187324 2003-06-30
JP2004191297A JP4196209B2 (en) 2003-06-30 2004-06-29 Signal processing method and pulse photometer using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008086627A Division JP4632143B2 (en) 2003-06-30 2008-03-28 Signal processing method and pulse photometer using the same

Publications (2)

Publication Number Publication Date
JP2005095581A JP2005095581A (en) 2005-04-14
JP4196209B2 true JP4196209B2 (en) 2008-12-17

Family

ID=34466610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004191297A Active JP4196209B2 (en) 2003-06-30 2004-06-29 Signal processing method and pulse photometer using the same

Country Status (1)

Country Link
JP (1) JP4196209B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570078A1 (en) 2011-09-13 2013-03-20 Nihon Kohden Corporation Biological signal measuring apparatus
EP2923639A1 (en) 2014-03-28 2015-09-30 Nihon Kohden Corporation Pulse wave photometer
EP3064137A1 (en) 2015-03-04 2016-09-07 Nihon Kohden Corporation Pulse photometer and method for calculating concentration of light absorber in blood
EP3135198A1 (en) 2015-08-31 2017-03-01 Nihon Kohden Corporation Pulse photometer and method for evaluating reliability of calculated value of blood light absorber concentration
EP3315070A1 (en) 2016-10-27 2018-05-02 Nihon Kohden Corporation Medical photometer and medical photometer control method
EP3315065A1 (en) 2016-10-27 2018-05-02 Nihon Kohden Corporation Medical photometer and medical photometer control method
EP3315066A1 (en) 2016-10-27 2018-05-02 Nihon Kohden Corporation Medical photometer and medical photometer control method
EP3459458A1 (en) 2017-09-20 2019-03-27 Nihon Kohden Corporation Medical photometer and medical photometry system
WO2021002266A1 (en) 2019-07-02 2021-01-07 Nihon Kohden Corporation Medical photometer
EP3912549A2 (en) 2020-05-20 2021-11-24 Nihon Kohden Corporation Pulse photometer, pulse photometry system and computer program
US11331046B2 (en) 2017-08-29 2022-05-17 Nihon Kohden Corporation Pulse oximeter

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881029B2 (en) * 2005-02-14 2012-02-22 セイコーインスツル株式会社 Biological information measurement apparatus, biological information processing server, biological information measurement system, biological information measurement method, operation state determination method, reliability determination method, and program
JP4561524B2 (en) * 2005-08-08 2010-10-13 株式会社島津製作所 Signal analysis apparatus and signal analysis method
JP4830693B2 (en) 2005-08-24 2011-12-07 日本光電工業株式会社 Oxygen saturation measuring apparatus and measuring method
JP2007054471A (en) 2005-08-26 2007-03-08 Nippon Koden Corp Pulse rate measuring apparatus and pulse rate measuring method
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
JP5374835B2 (en) * 2007-06-06 2013-12-25 セイコーエプソン株式会社 Biological information measuring apparatus and control method thereof
JP4911409B2 (en) 2007-07-19 2012-04-04 日本光電工業株式会社 Method and apparatus for measuring pulse rate and oxygen saturation during exercise
JP5115855B2 (en) * 2008-06-19 2013-01-09 日本光電工業株式会社 Pulse oximetry and pulse oximeter
WO2010073908A1 (en) * 2008-12-26 2010-07-01 コニカミノルタセンシング株式会社 Biological information signal processing apparatus, biological information signal processing method and biological information measuring apparatus
US8855749B2 (en) 2009-09-24 2014-10-07 Covidien Lp Determination of a physiological parameter
JP2012019968A (en) * 2010-07-15 2012-02-02 Nippon Koden Corp Noise removing method and pulse photometer
JP2012019966A (en) * 2010-07-15 2012-02-02 Nippon Koden Corp Noise removing method and pulse photometer
JP2012019967A (en) * 2010-07-15 2012-02-02 Nippon Koden Corp Noise removing method and pulse photometer
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
JP5745265B2 (en) * 2010-12-22 2015-07-08 株式会社ソニー・コンピュータエンタテインメント Signal processing apparatus, touch panel unit, information processing apparatus, and signal processing method
US9124777B2 (en) 2011-01-05 2015-09-01 Koninklijke Philips N.V. Device and method for extracting information from characteristic signals
US9770210B2 (en) 2011-09-23 2017-09-26 Nellcor Puritan Bennett Ireland Systems and methods for analyzing a physiological sensor signal
EP2745240A2 (en) * 2011-09-29 2014-06-25 Koninklijke Philips N.V. Distortion reduced signal detection
JP6270287B2 (en) * 2012-11-23 2018-01-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Device and method for extracting physiological information
US11385168B2 (en) 2015-03-31 2022-07-12 Nec Corporation Spectroscopic analysis apparatus, spectroscopic analysis method, and readable medium
JP2019080873A (en) * 2017-10-31 2019-05-30 旭化成株式会社 Detection device and driver monitoring system
CN116952940A (en) * 2018-10-30 2023-10-27 夏普株式会社 Pulse wave detection device, pulse wave detection method, and computer-readable storage medium
JP2022057749A (en) 2020-09-30 2022-04-11 日本光電工業株式会社 Biological parameter calculating device, computer program and non-transitory computer-readable medium

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570078A1 (en) 2011-09-13 2013-03-20 Nihon Kohden Corporation Biological signal measuring apparatus
US9125605B2 (en) 2011-09-13 2015-09-08 Nihon Kohden Corporation Biological signal measuring apparatus
EP2923639A1 (en) 2014-03-28 2015-09-30 Nihon Kohden Corporation Pulse wave photometer
US9854999B2 (en) 2014-03-28 2018-01-02 Nihon Kohden Corporation Pulse photometer
US10702196B2 (en) 2014-03-28 2020-07-07 Nihon Kohden Corporation Pulse photometer
EP3064137A1 (en) 2015-03-04 2016-09-07 Nihon Kohden Corporation Pulse photometer and method for calculating concentration of light absorber in blood
US10524704B2 (en) 2015-03-04 2020-01-07 Nihon Kohden Corporation Pulse photometer and method for calculating concentration of light absorber in blood
EP3135198A1 (en) 2015-08-31 2017-03-01 Nihon Kohden Corporation Pulse photometer and method for evaluating reliability of calculated value of blood light absorber concentration
US10561375B2 (en) 2015-08-31 2020-02-18 Nihon Kohden Corporation Pulse photometer and method for evaluating reliability of calculated value of blood light absorber concentration
US10342465B2 (en) 2016-10-27 2019-07-09 Nihon Kohden Corporation Medical photometer and medical photometer control method
EP3315066A1 (en) 2016-10-27 2018-05-02 Nihon Kohden Corporation Medical photometer and medical photometer control method
EP3315065A1 (en) 2016-10-27 2018-05-02 Nihon Kohden Corporation Medical photometer and medical photometer control method
EP3315070A1 (en) 2016-10-27 2018-05-02 Nihon Kohden Corporation Medical photometer and medical photometer control method
US10722154B2 (en) 2016-10-27 2020-07-28 Nihon Kohden Corporation Medical photometer and medical photometer control method
US10722153B2 (en) 2016-10-27 2020-07-28 Nihon Kohden Corporation Medical photometer and medical photometer control method
US11331046B2 (en) 2017-08-29 2022-05-17 Nihon Kohden Corporation Pulse oximeter
EP3459458A1 (en) 2017-09-20 2019-03-27 Nihon Kohden Corporation Medical photometer and medical photometry system
US11642053B2 (en) 2017-09-20 2023-05-09 Nihon Kohden Corporation Medical photometer and medical photometry system
WO2021002266A1 (en) 2019-07-02 2021-01-07 Nihon Kohden Corporation Medical photometer
EP3912549A2 (en) 2020-05-20 2021-11-24 Nihon Kohden Corporation Pulse photometer, pulse photometry system and computer program

Also Published As

Publication number Publication date
JP2005095581A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP4632143B2 (en) Signal processing method and pulse photometer using the same
JP4196209B2 (en) Signal processing method and pulse photometer using the same
JP4830693B2 (en) Oxygen saturation measuring apparatus and measuring method
JP4352315B2 (en) Signal processing method / apparatus and pulse photometer using the same
Wang et al. Noninvasive hemoglobin measurement using unmodified smartphone camera and white flash
US6650918B2 (en) Cepstral domain pulse oximetry
US5127406A (en) Apparatus for measuring concentration of substances in blood
US20040039273A1 (en) Cepstral domain pulse oximetry
EP0870465B1 (en) Method and apparatus for the non-invasive determination of the concentration of a component
US7440787B2 (en) Systems and methods for determining blood oxygen saturation values using complex number encoding
US7438688B2 (en) Apparatus and method for measuring pulse rate
JP3124073B2 (en) Blood oxygen saturation monitor
EP1498070A1 (en) Noninvasive blood component value measuring instrument and method
EP1437087A1 (en) Method of removing abnormal data and blood component spectroscopy analysis system employing the same
JPS6392335A (en) Method and apparatus for monitoring oxygen saturation degree in blood
JPH06178767A (en) Highly reliable and non-invasion type method for measuring blood gas
JP4831111B2 (en) Signal processing method and pulse photometer using the same
JP2002541892A (en) Method of improved calibration of blood monitoring devices
JP4470056B2 (en) Signal processing method used for pulse photometer and pulse photometer using the same
CN111631733B (en) Arterial blood spectrum detection method and device
JP4807598B2 (en) Pulse photometer
RU2793540C1 (en) Portable device and method for non-invasive measurement of blood elements
JPH11216133A (en) Method and device for pulse oximetry removed in body movement noise
JP2012019967A (en) Noise removing method and pulse photometer
JP2012019966A (en) Noise removing method and pulse photometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4196209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250