JP4189987B2 - Battery pack and external host device system using the battery pack as a power source - Google Patents

Battery pack and external host device system using the battery pack as a power source Download PDF

Info

Publication number
JP4189987B2
JP4189987B2 JP2001117950A JP2001117950A JP4189987B2 JP 4189987 B2 JP4189987 B2 JP 4189987B2 JP 2001117950 A JP2001117950 A JP 2001117950A JP 2001117950 A JP2001117950 A JP 2001117950A JP 4189987 B2 JP4189987 B2 JP 4189987B2
Authority
JP
Japan
Prior art keywords
switch
control
external host
host device
battery pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001117950A
Other languages
Japanese (ja)
Other versions
JP2002315225A (en
Inventor
浩三 石川
智 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2001117950A priority Critical patent/JP4189987B2/en
Publication of JP2002315225A publication Critical patent/JP2002315225A/en
Application granted granted Critical
Publication of JP4189987B2 publication Critical patent/JP4189987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パルス放電の大電流期間に対応した電池パック及び該電池パックを電源とする外部ホスト機器システムに関する。
【0002】
【従来の技術】
図3は従来の電池パックの構成概要を示す図であり、11は二次電池、12はモニタ回路、13は制御回路、14は充放電用FET、17は通信ライン、18はバス、19はコネクタを示す。
【0003】
電池パックは、例えば図3に示すように充電式の二次電池11、それらをモニタするモニタ回路12、外部との通信や電池パック内の制御を行う制御回路13、充放電を直接制御するスイッチ素子である充放電用FET14、外部との接続を行うコネクタ19等からなる。
【0004】
モニタ回路12は、二次電池11の充放電状態を監視するものであり、例えば電圧検出回路、温度検出回路などを有し、異常電圧や異常温度を検出した場合には充放電用FET14を制御して充放電電流を遮断し過充電保護、過放電保護を行う。
【0005】
制御回路13は、モニタ回路12で検出した充放電状態を示すデータを取り込み、外部ホスト機器システムとの通信によりデータやコマンドを授受し充放電用FET14を制御する例えば制御ICである。
【0006】
【発明が解決しようとする課題】
電池パックの放電容量は、放電電流をできるだけ一定にし、電池電圧の変動を抑えた方が大きくとれるが、パルス放電した場合には、大電流放電時、電池電圧が低下するため放電時間が減少するという問題がある。また、低温時においては、電池の内部インピーダンスが大きくなるため、本来の放電容量を取り出せなくなる。このように電池パックでは、高負荷接続時や低温時、放電容量の低下時の内部インピーダンス等の影響により急激な出力低下が生じ、二次電池の放電容量を有効に使い切ることができないなどの問題がある。
【0007】
そこで、従来の二次電池を供給源とする電池パックにおいては、電圧が低下しても二次電池の放電容量を有効に使えるようにするため、二次電池の電圧を昇圧した後レギュレータで調整して使用するように昇圧回路を設けて対応する提案がなされている(例えば特開平6−291710号公報、特開平7−334257号公報参照)。しかし、このような昇圧回路とレギュレータを組み合わせた従来の対応では、回路構成及び制御が煩雑になるという問題がある。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するものであって、簡単な回路構成と制御によりパルス放電の大電流期間の電圧低下を抑え、放電容量を有効に引き出すようにするものである。
【0009】
そのために本発明は、二次電池と、該二次電池の充放電電流をオン/オフする制御スイッチと、コンデンサとリアクトルとスイッチ素子からなり前記二次電池から一時的に電力を蓄えて前記制御スイッチを通る放電電流経路と並列に出力する一時電力貯蔵回路と、外部ホスト機器からの制御信号に基づき前記制御スイッチ及び一時電力貯蔵回路を制御する制御回路とを備え、前記制御スイッチは、充電FETと放電FETからなり、前記制御回路は、前記一時電力貯蔵回路のコンデンサに電力を蓄えてから前記外部ホスト機器からの制御信号に基づき前記コンデンサの電力を前記リアクトルに蓄えて出力するように前記スイッチ素子を制御すると共に、前記充電FETをオフにして前記制御スイッチを通る放電電流経路と並列に前記一時電力貯蔵回路から電力を出力することを特徴とするものである。
【0011】
また、電池パックと該電池パックから電源供給を受ける外部ホスト機器からなる外部ホスト機器システムとして、電池パックと該電池パックから電源供給を受ける外部ホスト機器からなる外部ホスト機器システムにおいて、前記電池パックは、二次電池と、該二次電池の充放電電流をオン/オフする制御スイッチと、コンデンサとリアクトルとスイッチ素子からなり前記二次電池から一時的に電力を蓄えて前記制御スイッチを通る放電電流経路と並列に出力する一時電力貯蔵回路と、前記外部ホスト機器からの制御信号に基づき前記制御スイッチ及び一時電力貯蔵回路を制御する制御回路とを備え、前記外部ホスト機器は、パルス放電の大電流期間の直前に前記制御信号を前記電池パックに与え、前記制御回路は、前記一時電力貯蔵回路のコンデンサに電力を蓄えてから前記制御信号に基づき前記コンデンサの電力を前記リアクトルに蓄えて出力するように前記スイッチ素子を制御することを特徴とするものである。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係る電池パックの実施の形態を示す図であり、1は二次電池、2は制御IC、3は放電FET、4は充電FET、C1はコンデンサ、L1はリアクトル、R1は抵抗、SW1、SW2はスイッチ、ZD1はツェナーダイオードを示す。
【0013】
図1において、二次電池1は、リチウムイオン電池やリチウムポリマー電池などの化学セルである。制御IC2は、過充電や過放電の保護を行うため電池電圧を検出し、電池電圧が予め設定されたある一定の電圧(設定電圧)以上か、あるいは一定の電圧以下か、に応じて放電FET3のオン/オフ、充電FET4のオン/オフを制御することにより、過充電や過放電のとき充放電電流を遮断し過充電保護、過放電保護を行う保護回路である。
【0014】
コンデンサC1、リアクトルL1、スイッチSW1、SW2は、二次電池1から一時的に電力を蓄え、放電FET3、充電FET4からなる制御スイッチを通る放電電流経路と並列に出力する一時電力貯蔵回路を構成するものであり、抵抗R1は、電流制限用抵抗である。この一時電力貯蔵回路は、抵抗R1とともにスイッチSW1とリアクトルL1とツェナーダイオードZD1との直列回路を放電FET3と充電FET4との直列回路に並列に接続し、リアクトルL1の入力側と−側との間にコンデンサC1を接続し、出力側と−側との間にスイッチSW2を接続して、DC/DCコンバータとして動作させている。
【0015】
上記一時電力貯蔵回路に対して、制御IC2は、スイッチSW1をオン、スイッチSW2をオフにすることにより二次電池からコンデンサC1に電力を蓄える。そして、パルス放電を行う大電流期間の直前に外部ホスト機器からPD信号を受けてスイッチSW1をオフ、スイッチSW2をオンにし、コンデンサC1の電力をリアクトルL1に蓄え、パルス放電の大電流が流れ始める時点をPD信号の立ち下がりとしてスイッチSW2をオフにすることにより、ツェナーダイオードZD1を通してリアクトルL1に蓄えた電力を出力する。
【0016】
図2は図1に示す回路の動作タイミングを説明するための図である。上記の動作をさらに具体的に説明する。いま、外部ホスト機器における放電電流は、小電流が流れつつ大電流期間が図2(A)に示すようにある。外部ホスト機器から大電流期間の直前に図2(F)に示すようなパルスのPD信号が制御IC2に与えられる。このPD信号に対応して、制御IC2は、その立ち上がりで図2(C)に示すようにスイッチSW2をオンにする。スイッチSW2のオンにより、コンデンサC1からリアクトルL1にスイッチSW2を通して図2(D)に示すように電流が流れ増大する。
【0017】
次に、PD信号が立ち下がり大電流期間になると、PD信号の立ち下がりで図2(C)に示すようにスイッチSW2をオフにする。このスイッチSW2がオフになったことにより、それまでスイッチSW2に流れていたリアクトルL1の電流は、図2(E)に示すようにツェナーダイオードZD1を通して出力され、外部ホスト機器へ供給される。したがって、このツェナーダイオードZD1を通して出力される電流により、大電流期間に二次電池1から放電FET3を通して直接外部ホスト機器へ供給する電流を少なくすることができるので、電池電圧は、図2(B)に示す実線から点線のように大電流期間における低下を小さくすることができる。
【0018】
なお、スイッチSW1は、コンデンサC1に電力を蓄えるためオンにするので、スイッチSW2がオフの間に、コンデンサC1に電力を蓄えるのに必要な一定期間だけオンにするように制御してもよいし、スイッチSW2がオンからオフになった後、図2(C)に示すように大電流期間の経過後からスイッチSW2がオンになる直前までオンにするように制御してもよい。
【0019】
また、制御IC2は、電池電圧が所定値以上である場合に、スイッチSW2をオフのままとし、リアクトルL1への電力の貯蔵は行わず、所定値未満になると、上記のように外部ホスト機器からのPD信号の立ち上がりに応じてスイッチSW1をオフ、スイッチSW2をオンにするように制御してもよい。これによって、スイッチSW2に電流が流れ、コンデンサC1からリアクトルL1に電力が蓄えられ、PD信号が立ち下がると、スイッチSW2をオフにする。このとき、リアクトルL1には逆起電力が発生し、ツェナーダイオードZD1に電流が流れ、パルス放電の大電流を部分的に補うことができる。
【0020】
さらに、電池に密着させてサーミスタを設け、このサーミスタの抵抗値を計測することによって、電池の温度を検出し、電池の温度が所定値、例えば0℃以下でかつ電池電圧が所定値、例えば3V以下になったときスイッチSW2を数十kHzでオン/オフし、DC/DCコンバータとして動作させて電池電圧を昇圧するように制御してもよい。この場合においても、外部ホスト機器の入力部には、通常コンデンサが挿入されているため、出力電圧は安定する。
【0021】
このとき、制御ICの過放電検出電圧を電池温度に応じて、例えば通常2.5Vとすると、0℃では2Vとするように、電池電圧が低くなればなるほど過放電検出電圧を低くするように変化させると、電池の内部インピーダンスが高くなったとしても電池に蓄えられているエネルギーを取り出すことができる。
【0022】
スイッチSW2をオフにする時には、充電FET4もオフにすると、二次電池1が再充電されるのを防ぐことができ、外部ホスト機器へ電流が供給されるようになる。そして、所定の期間が経過した時点で、充電FET4をオン、スイッチSW1をオンにし、コンデンサC1に電荷を蓄える。このようにすることによって、小電流期間に過大な負荷がかからずにコンデンサC1に電荷を蓄えることができる。
【0023】
なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態では、放電FET3と充電FET4を+側に挿入しているが、これを−側に挿入した形態でもよい。また、一時電力貯蔵回路の出力側にツェナーダイオードを接続したが、ダイオードその他の整流素子を用いてもよい。外部ホスト機器からのPD信号は、パルス信号を用いてスイッチSW2を、その立ち上がりでオンにし、立ち下がりでオフにしたが、外部ホスト機器から1つのタイミング信号だけ受けて、その後は一定の設定されたタイムスケジュールにしたがってオフのタイミング、また、スイッチSW1のオン/オフのタイミングを制御してもよい。
【0024】
【発明の効果】
以上の説明から明らかなように、本発明によれば、二次電池と、該二次電池の充放電電流をオン/オフする制御スイッチと、コンデンサとリアクトルとスイッチ素子からなり二次電池から一時的に電力を蓄えて制御スイッチを通る放電電流経路と並列に出力する一時電力貯蔵回路と、外部ホスト機器からの制御信号に基づき制御スイッチ及び一時電力貯蔵回路を制御する制御回路とを備え、制御スイッチは、充電FETと放電FETからなり、制御回路は、一時電力貯蔵回路のコンデンサに電力を蓄えてから外部ホスト機器からの制御信号に基づきコンデンサの電力をリアクトルに蓄えて出力するようにスイッチ素子を制御すると共に、充電FETをオフにして制御スイッチを通る放電電流経路と並列に一時電力貯蔵回路から電力を出力し、また、電池パックと該電池パックから電源供給を受ける外部ホスト機器からなる外部ホスト機器システムとして、電池パックと該電池パックから電源供給を受ける外部ホスト機器からなる外部ホスト機器システムにおいて、電池パックは、二次電池と、該二次電池の充放電電流をオン/オフする制御スイッチと、コンデンサとリアクトルとスイッチ素子からなり二次電池から一時的に電力を蓄えて制御スイッチを通る放電電流経路と並列に出力する一時電力貯蔵回路と、外部ホスト機器からの制御信号に基づき制御スイッチ及び一時電力貯蔵回路を制御する制御回路とを備え、外部ホスト機器は、パルス放電の大電流期間の直前に制御信号を電池パックに与え、制御回路は、一時電力貯蔵回路のコンデンサに電力を蓄えてから制御信号に基づきコンデンサの電力をリアクトルに蓄えて出力するようにスイッチ素子を制御するので、簡単な回路構成と制御によりパルス放電の大電流期間に二次電池の出力と併せて一時電力貯蔵回路の出力も使うことができ、電池電圧の低下を抑え、二次電池の放電容量を有効に引き出すことができる。
【0025】
しかも、一時電力貯蔵回路の電力を無駄にすることなく、有効に使うことができ、また、電池温度や電池電圧に応じた制御を行うことができる。
【図面の簡単な説明】
【図1】 本発明に係る電池パックの実施の形態を示す図である。
【図2】 図1に示す回路の動作タイミングを説明するための図である。
【図3】 従来の電池パックの構成概要を示す図である。
【符号の説明】
1…二次電池、2…制御IC、3…放電FET、4…充電FET、C1…コンデンサ、L1…リアクトル、R1…抵抗、SW1、SW2…スイッチ、ZD1…ツェナーダイオード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery pack corresponding to a large current period of pulse discharge and an external host device system using the battery pack as a power source.
[0002]
[Prior art]
FIG. 3 is a diagram showing a configuration outline of a conventional battery pack. 11 is a secondary battery, 12 is a monitor circuit, 13 is a control circuit, 14 is a charge / discharge FET, 17 is a communication line, 18 is a bus, 19 is Indicates a connector.
[0003]
For example, as shown in FIG. 3, the battery pack includes a rechargeable secondary battery 11, a monitor circuit 12 that monitors them, a control circuit 13 that performs communication with the outside and controls the battery pack, and a switch that directly controls charging and discharging. It comprises a charge / discharge FET 14 which is an element, a connector 19 for connecting to the outside, and the like.
[0004]
The monitor circuit 12 monitors the charge / discharge state of the secondary battery 11 and has, for example, a voltage detection circuit, a temperature detection circuit, and the like, and controls the charge / discharge FET 14 when an abnormal voltage or an abnormal temperature is detected. The charge / discharge current is cut off, and overcharge protection and overdischarge protection are performed.
[0005]
The control circuit 13 is, for example, a control IC that takes in data indicating the charge / discharge state detected by the monitor circuit 12, exchanges data and commands through communication with an external host device system, and controls the charge / discharge FET 14.
[0006]
[Problems to be solved by the invention]
The discharge capacity of the battery pack can be increased by keeping the discharge current as constant as possible and suppressing fluctuations in the battery voltage. However, in the case of pulse discharge, the discharge time decreases because the battery voltage decreases during high current discharge. There is a problem. Further, since the internal impedance of the battery becomes large at low temperatures, the original discharge capacity cannot be taken out. As described above, in battery packs, problems such as a sudden drop in output due to the effects of internal impedance, etc., when connected to high loads, at low temperatures, or when the discharge capacity is reduced, cannot effectively use up the discharge capacity of the secondary battery. There is.
[0007]
Therefore, in a battery pack using a conventional secondary battery as a supply source, the secondary battery voltage is boosted and adjusted with a regulator in order to effectively use the discharge capacity of the secondary battery even if the voltage drops. A proposal has been made to provide a booster circuit so that it can be used (see, for example, JP-A-6-291710 and JP-A-7-334257). However, the conventional correspondence that combines such a booster circuit and a regulator has a problem that the circuit configuration and control become complicated.
[0008]
[Means for Solving the Problems]
The present invention solves the above-described problems, and suppresses a voltage drop during a large current period of pulse discharge by a simple circuit configuration and control so as to effectively draw out a discharge capacity.
[0009]
For this purpose, the present invention comprises a secondary battery, a control switch for turning on / off the charge / discharge current of the secondary battery, a capacitor, a reactor, and a switch element, and temporarily stores electric power from the secondary battery for the control. A temporary power storage circuit that outputs in parallel with a discharge current path passing through the switch, and a control circuit that controls the control switch and the temporary power storage circuit based on a control signal from an external host device, the control switch comprising a charge FET And the discharge FET, and the control circuit stores the power in the capacitor of the temporary power storage circuit and then stores the power of the capacitor in the reactor based on a control signal from the external host device and outputs the switch. controls the device, the one o'clock power in parallel with the discharge current path through the control switch to turn off the charging FET It is characterized in that the output power from the built circuit.
[0011]
Further, as an external host device system including a battery pack and an external host device receiving power supply from the battery pack, in the external host device system including a battery pack and external host device receiving power supply from the battery pack, the battery pack includes: A secondary battery, a control switch for turning on / off a charge / discharge current of the secondary battery, a capacitor, a reactor, and a switch element, and a discharge current that temporarily stores power from the secondary battery and passes through the control switch A temporary power storage circuit that outputs in parallel with a path; and a control circuit that controls the control switch and the temporary power storage circuit based on a control signal from the external host device, wherein the external host device has a large current for pulse discharge. giving the control signal immediately before the period in the battery pack, the control circuit, the co temporary power storage circuit Is characterized in that for controlling the switching element so that the power of the capacitor to output stored in the reactor based on the control signal from the stored power to the capacitor.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a battery pack according to the present invention, where 1 is a secondary battery, 2 is a control IC, 3 is a discharge FET, 4 is a charge FET, C1 is a capacitor, L1 is a reactor, and R1 is Resistors, SW1 and SW2 are switches, and ZD1 is a Zener diode.
[0013]
In FIG. 1, a secondary battery 1 is a chemical cell such as a lithium ion battery or a lithium polymer battery. The control IC 2 detects the battery voltage in order to protect overcharge and overdischarge, and the discharge FET 3 according to whether the battery voltage is higher than a predetermined voltage (set voltage) or lower than a predetermined voltage. Is a protection circuit that controls overcharge protection and overdischarge protection by cutting off the charge / discharge current in the case of overcharge or overdischarge by controlling on / off of the charge FET4.
[0014]
Capacitor C1, reactor L1, and switches SW1 and SW2 constitute a temporary power storage circuit that temporarily stores power from secondary battery 1 and outputs it in parallel with a discharge current path that passes through a control switch including discharge FET3 and charge FET4. The resistor R1 is a current limiting resistor. In this temporary power storage circuit, a series circuit of a switch SW1, a reactor L1, and a Zener diode ZD1, together with a resistor R1, is connected in parallel to a series circuit of a discharge FET 3 and a charge FET 4, and between the input side and the negative side of the reactor L1. The capacitor C1 is connected to the switch SW2, and the switch SW2 is connected between the output side and the negative side to operate as a DC / DC converter.
[0015]
For the temporary power storage circuit, the control IC 2 stores power from the secondary battery to the capacitor C1 by turning on the switch SW1 and turning off the switch SW2. Then, immediately before the large current period in which pulse discharge is performed, the PD signal is received from the external host device, the switch SW1 is turned off, the switch SW2 is turned on, the electric power of the capacitor C1 is stored in the reactor L1, and the large current of pulse discharge begins to flow. By turning off the switch SW2 with the time point falling as the PD signal, the electric power stored in the reactor L1 is output through the Zener diode ZD1.
[0016]
FIG. 2 is a diagram for explaining the operation timing of the circuit shown in FIG. The above operation will be described more specifically. Now, the discharge current in the external host device is such that a small current flows and a large current period is as shown in FIG. A pulse PD signal as shown in FIG. 2F is supplied to the control IC 2 immediately before the large current period from the external host device. In response to the PD signal, the control IC 2 turns on the switch SW2 at the rising edge as shown in FIG. When the switch SW2 is turned on, a current flows from the capacitor C1 to the reactor L1 through the switch SW2 and increases as shown in FIG.
[0017]
Next, when the PD signal falls and enters a large current period, the switch SW2 is turned off at the fall of the PD signal as shown in FIG. Since the switch SW2 is turned off, the current of the reactor L1 that has been flowing through the switch SW2 is output through the Zener diode ZD1 and supplied to the external host device as shown in FIG. Accordingly, since the current output through the Zener diode ZD1 can reduce the current supplied directly from the secondary battery 1 to the external host device through the discharge FET 3 during the large current period, the battery voltage is as shown in FIG. As shown by the solid line to the dotted line in FIG.
[0018]
Since the switch SW1 is turned on to store power in the capacitor C1, the switch SW1 may be controlled to be turned on only for a certain period required to store power in the capacitor C1 while the switch SW2 is turned off. After the switch SW2 is turned off, the control may be performed so that the switch SW2 is turned on after the large current period elapses and immediately before the switch SW2 is turned on as shown in FIG.
[0019]
Further, when the battery voltage is equal to or higher than the predetermined value, the control IC 2 keeps the switch SW2 off, does not store the power to the reactor L1, and when the battery voltage becomes lower than the predetermined value, The switch SW1 may be turned off and the switch SW2 may be turned on in response to the rise of the PD signal. As a result, current flows through the switch SW2, power is stored in the reactor L1 from the capacitor C1, and the switch SW2 is turned off when the PD signal falls. At this time, a counter electromotive force is generated in the reactor L1, a current flows through the Zener diode ZD1, and the large current of the pulse discharge can be partially compensated.
[0020]
Furthermore, a thermistor is provided in close contact with the battery, and the temperature of the battery is detected by measuring the resistance value of the thermistor. The battery temperature is a predetermined value, for example, 0 ° C. or less, and the battery voltage is a predetermined value, for example, 3V. When the following condition is reached, the switch SW2 may be turned on / off at several tens of kHz and operated as a DC / DC converter to increase the battery voltage. Even in this case, the output voltage is stabilized because a capacitor is usually inserted in the input section of the external host device.
[0021]
At this time, if the overdischarge detection voltage of the control IC is normally 2.5 V, for example, depending on the battery temperature, the overdischarge detection voltage is lowered as the battery voltage becomes lower, such as 2 V at 0 ° C. If it is changed, the energy stored in the battery can be taken out even if the internal impedance of the battery increases.
[0022]
When the switch SW2 is turned off, if the charging FET 4 is also turned off, the secondary battery 1 can be prevented from being recharged, and current is supplied to the external host device. Then, when the predetermined period has elapsed, the charging FET 4 is turned on and the switch SW1 is turned on to store the charge in the capacitor C1. By doing so, electric charge can be stored in the capacitor C1 without applying an excessive load during a small current period.
[0023]
In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above embodiment, the discharge FET 3 and the charge FET 4 are inserted on the + side, but may be inserted on the − side. Further, although a Zener diode is connected to the output side of the temporary power storage circuit, a diode or other rectifying element may be used. For the PD signal from the external host device, the switch SW2 is turned on at the rising edge and turned off at the falling edge using a pulse signal. However, only one timing signal is received from the external host device, and then the constant is set. The off timing and the on / off timing of the switch SW1 may be controlled according to the time schedule.
[0024]
【The invention's effect】
As is apparent from the above description, according to the present invention, a secondary battery, a control switch for turning on / off the charge / discharge current of the secondary battery, a capacitor, a reactor, and a switching element are temporarily included in the secondary battery. A temporary power storage circuit for storing electric power and outputting in parallel with a discharge current path passing through the control switch, and a control circuit for controlling the control switch and the temporary power storage circuit based on a control signal from an external host device The switch is composed of a charge FET and a discharge FET, and the control circuit stores the power in the capacitor of the temporary power storage circuit and then stores the power of the capacitor in the reactor based on the control signal from the external host device and outputs it. And turning off the charge FET to output power from the temporary power storage circuit in parallel with the discharge current path through the control switch, In addition, as an external host device system including a battery pack and an external host device receiving power supply from the battery pack, in the external host device system including a battery pack and an external host device receiving power supply from the battery pack, the battery pack includes: A secondary battery, a control switch for turning on / off the charging / discharging current of the secondary battery, and a discharge current path that temporarily stores power from the secondary battery and passes through the control switch, which is composed of a capacitor, a reactor, and a switch element And a control circuit for controlling the control switch and the temporary power storage circuit based on a control signal from the external host device. The external host device controls the control signal immediately before the large current period of the pulse discharge. The control circuit stores power in the capacitor of the temporary power storage circuit and then based on the control signal. Since the switch element is controlled so that the power of the capacitor is stored and output in the reactor, the output of the temporary power storage circuit should be used together with the output of the secondary battery during the high current period of pulse discharge with a simple circuit configuration and control. Therefore, it is possible to suppress the decrease in battery voltage and to effectively draw out the discharge capacity of the secondary battery.
[0025]
In addition, the temporary power storage circuit can be used effectively without wasting power, and control according to the battery temperature and battery voltage can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a battery pack according to the present invention.
FIG. 2 is a diagram for explaining the operation timing of the circuit shown in FIG. 1;
FIG. 3 is a diagram showing a configuration outline of a conventional battery pack.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Secondary battery, 2 ... Control IC, 3 ... Discharge FET, 4 ... Charge FET, C1 ... Capacitor, L1 ... Reactor, R1 ... Resistor, SW1, SW2 ... Switch, ZD1 ... Zener diode

Claims (2)

二次電池と、
該二次電池の充放電電流をオン/オフする制御スイッチと、
コンデンサとリアクトルとスイッチ素子からなり前記二次電池から一時的に電力を蓄えて前記制御スイッチを通る放電電流経路と並列に出力する一時電力貯蔵回路と、
外部ホスト機器からの制御信号に基づき前記制御スイッチ及び一時電力貯蔵回路を制御する制御回路と
を備え、前記制御スイッチは、充電FETと放電FETからなり、前記制御回路は、前記一時電力貯蔵回路のコンデンサに電力を蓄えてから前記外部ホスト機器からの制御信号に基づき前記コンデンサの電力を前記リアクトルに蓄えて出力するように前記スイッチ素子を制御すると共に、前記充電FETをオフにして前記制御スイッチを通る放電電流経路と並列に前記一時電力貯蔵回路から電力を出力することを特徴とする電池パック。
A secondary battery,
A control switch for turning on / off the charge / discharge current of the secondary battery;
A temporary power storage circuit comprising a capacitor, a reactor and a switch element, temporarily storing power from the secondary battery and outputting in parallel with a discharge current path passing through the control switch;
And a control circuit that controls the control switch and the temporary power storage circuit based on a control signal from an external host device, the control switch includes a charge FET and a discharge FET, and the control circuit includes a control circuit for the temporary power storage circuit. Based on a control signal from the external host device after storing power in a capacitor, the switch element is controlled to store and output the power of the capacitor in the reactor, and the control switch is turned off by turning off the charging FET. A battery pack , wherein power is output from the temporary power storage circuit in parallel with a discharge current path passing therethrough .
電池パックと該電池パックから電源供給を受ける外部ホスト機器からなる外部ホスト機器システムにおいて、
前記電池パックは、
二次電池と、
該二次電池の充放電電流をオン/オフする制御スイッチと、
コンデンサとリアクトルとスイッチ素子からなり前記二次電池から一時的に電力を蓄えて前記制御スイッチを通る放電電流経路と並列に出力する一時電力貯蔵回路と、
前記外部ホスト機器からの制御信号に基づき前記制御スイッチ及び一時電力貯蔵回路を制御する制御回路とを備え、
前記外部ホスト機器は、パルス放電の大電流期間の直前に前記制御信号を前記電池パックに与え、
前記制御回路は、前記一時電力貯蔵回路のコンデンサに電力を蓄えてから前記制御信号に基づき前記コンデンサの電力を前記リアクトルに蓄えて出力するように前記スイッチ素子を制御することを特徴とする電池パックを電源とする外部ホスト機器システム。
In an external host device system comprising a battery pack and an external host device that receives power supply from the battery pack,
The battery pack is
A secondary battery,
A control switch for turning on / off the charge / discharge current of the secondary battery;
A temporary power storage circuit comprising a capacitor, a reactor and a switch element, temporarily storing power from the secondary battery and outputting in parallel with a discharge current path passing through the control switch;
A control circuit for controlling the control switch and the temporary power storage circuit based on a control signal from the external host device,
The external host device gives the control signal to the battery pack immediately before a large current period of pulse discharge,
The control circuit controls the switch element to store power in the capacitor of the temporary power storage circuit and then to store and output the power of the capacitor in the reactor based on the control signal. External host equipment system that uses as a power source.
JP2001117950A 2001-04-17 2001-04-17 Battery pack and external host device system using the battery pack as a power source Expired - Lifetime JP4189987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001117950A JP4189987B2 (en) 2001-04-17 2001-04-17 Battery pack and external host device system using the battery pack as a power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001117950A JP4189987B2 (en) 2001-04-17 2001-04-17 Battery pack and external host device system using the battery pack as a power source

Publications (2)

Publication Number Publication Date
JP2002315225A JP2002315225A (en) 2002-10-25
JP4189987B2 true JP4189987B2 (en) 2008-12-03

Family

ID=18968411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001117950A Expired - Lifetime JP4189987B2 (en) 2001-04-17 2001-04-17 Battery pack and external host device system using the battery pack as a power source

Country Status (1)

Country Link
JP (1) JP4189987B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346325A1 (en) 2003-10-06 2005-05-04 Siemens Ag Switching device for bidirectional charge equalization between energy stores
US8886152B2 (en) * 2010-09-29 2014-11-11 Qualcomm Incorporated Emergency override of battery discharge protection
JP2014068486A (en) * 2012-09-26 2014-04-17 Panasonic Corp Drive control circuit and power tool
JP6566314B2 (en) * 2015-09-09 2019-08-28 国立大学法人茨城大学 Secondary battery current control device

Also Published As

Publication number Publication date
JP2002315225A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
JP3937358B2 (en) Battery system, battery protection system, and battery charging method
US8860372B2 (en) Multiple cell battery charger configured with a parallel topology
EP0982826B1 (en) Battery protection circuit and electronic device
US7391184B2 (en) Systems and methods for integration of charger regulation within a battery system
CN100533912C (en) Systems and methods for regulating pre-charge current in a battery system
KR101418129B1 (en) Power surge filtering in over-current and short circuit protection
US7659699B2 (en) Battery
JP2861879B2 (en) Battery pack
KR101030885B1 (en) Secondary battery
US7652450B2 (en) Secondary battery charging device
EP2317597A1 (en) Battery pack
US10199844B2 (en) Power-supplying device
US6456046B1 (en) Protection circuit for terminating trickle charge when the battery terminal voltage is greater than a predetermined value
JP2007110820A (en) Battery pack
KR20180050960A (en) The battery pack and a vacuum cleaner including the same
KR20210061235A (en) System for lead-acid battery replacement
KR20060078967A (en) Balance charging control method of 2nd-series battery pack
JP2004364387A (en) Charging method of secondary battery, charger, and charge control program thereof
JP3796918B2 (en) Battery device
JP4189987B2 (en) Battery pack and external host device system using the battery pack as a power source
JP2002208443A (en) Battery pack
JP2009044923A (en) Power supply system
JP2000069689A (en) Battery pack device
JPH11164489A (en) Charging controller built in secondary battery pack
KR20180114321A (en) System for controlling a switching device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4189987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term