JP4186270B2 - Nucleic acid synthesis method - Google Patents

Nucleic acid synthesis method Download PDF

Info

Publication number
JP4186270B2
JP4186270B2 JP26679398A JP26679398A JP4186270B2 JP 4186270 B2 JP4186270 B2 JP 4186270B2 JP 26679398 A JP26679398 A JP 26679398A JP 26679398 A JP26679398 A JP 26679398A JP 4186270 B2 JP4186270 B2 JP 4186270B2
Authority
JP
Japan
Prior art keywords
pcr
added
reaction solution
blood
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26679398A
Other languages
Japanese (ja)
Other versions
JP2000093176A (en
Inventor
宏司 外池
浩一 児嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP26679398A priority Critical patent/JP4186270B2/en
Priority to EP99118116A priority patent/EP0989192A3/en
Publication of JP2000093176A publication Critical patent/JP2000093176A/en
Application granted granted Critical
Publication of JP4186270B2 publication Critical patent/JP4186270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は核酸合成法、特に、ポリメラーゼ連鎖反応(Polymerase Chain Reaction:以下PCRと略す)法による核酸合成法に関する。
【0002】
【従来の技術】
PCR法は、DNA鎖の1本鎖への解離、DNA鎖の中の特定の領域をはさんだプライマーの結合、DNAポリメラーゼによるDNA合成反応を繰り返すことによって、目的のDNA断片を数十万倍にも増幅できる方法である。PCR法は、マリス氏らの発明である特開昭61−274697号公報に述べられている。
【0003】
PCR法は種々の試料中の核酸の高感度分析法として使用可能で、特に動物体液由来の試料中の核酸の分析法に使用できる。従って、PCR法は感染症や遺伝病やガンの診断等に利用される。さらに、PCR法は移植や親子鑑定の際のDNAタイピングの検査にも適した方法である。これらの場合末梢血液が検査対象に選ばれる場合が多い。
【0004】
PCR法の1つの欠点は、色素、たんぱく、糖類あるいは未知の夾雑物によって反応が阻害されることである。すなわち、代表的な耐熱性DNAポリメラーゼであるThermus aquaticus 由来のTaqDNAポリメラーゼをはじめ、多くのDNAポリメラーゼは、微量の体液由来の夾雑物がPCR反応液中に混在しても、PCRが強く阻害されることが広く知られている。
【0005】
そこで、PCR法によるDNA増幅に先立って、被験物から細胞、細菌、ウィルス等(以下、遺伝子包含体と称する)を分離し、次に、その遺伝子包含体から核酸を抽出する過程が必要となる。その方法としては、酵素、界面活性剤、カオトロピック剤等により遺伝子包含体を分解し、その後、フェノールあるいはフェノール・クロロホルム等を用いて、遺伝子包含体の分解物から核酸を抽出する方法が従来より使用されている。
最近では核酸抽出の過程において、イオン交換樹脂、ガラスフィルター、ガラスビーズあるいはタンパク凝集作用を有する試薬等が使用されている。
【0006】
【発明が解決しようとする課題】
しかし、これらの方法を用いて試料中の核酸の精製を行っても、不純物の完全な除去は困難であり、かつ試料中の核酸の回収量が一定しない場合も多く、このため引き続く核酸合成が、とりわけ試料中の目的とする核酸の含量が少ない場合には、うまくできない場合もある。また、これら精製法は操作が煩雑で時間を要し、また操作中のコンタミネーションの機会が高い。
従って、これらの問題点を解決するためには、より簡便で、かつ効果的な試料前処理法が望まれる。
【0007】
そこで、本発明は、PCR阻害物質の作用を抑制して、試料中のDNAを効率よく増幅させる新規な方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
通常、血液抗凝固剤として用いられるヘパリンはPCR阻害物質として知られ、試料に添加するのに好ましくない物質とされる。しかし我々はこれらの現象を鋭意検討した結果、ヘパリンが生体試料中のPCR阻害物質の作用を抑制することを見いだした。また、ヘパリンのみでなくデキストランサルフェイト等硫酸化多糖が同様の作用を示すことをも見いだし本発明をなすに至ったのである。本発明は、上記課題を解決するため、血液、血漿、血清由来の試料中の目的とする遺伝子をPCR法によって増幅する核酸合成法において、遺伝子増幅反応液に血液、血漿、血清由来の試料及び0.4μg/ml〜3.2μg/mlのヘパリン及びその塩を添加することを特徴とする。
【0009】
ここで、ヘパリン及びその塩は、試料に加えてから、遺伝子増幅反応液に添加しても、遺伝子増幅反応液に直接添加してもよい。また、ヘパリン及びその塩は、遺伝子増幅反応液に均一に入っていない状態(たとえば試料に硫酸化多糖を加えて、この試料を反応液に攪拌せずに添加した場合など)でも同様の効果がある。
【0010】
本発明において、試料は生体由来試料中の遺伝子包含体もしくは生体由来試料そのものをいい、生体由来試料とは、動植物組織、体液、排泄物等をいい、遺伝子包含体とは、細胞、細菌、ウィルス等をいう。体液には血液、唾液、髄液、尿、乳が含まれ、細胞には血液から分離した白血球が含まれるが、これらに限定されるものではない。生体由来試料中の遺伝子包含体もしくは生体由来試料は、特別な前処理なしに直接遺伝子増幅反応液に添加される。
【0011】
遺伝子増幅反応液は、通常、pH緩衝液並びにMgCl、KCl等の塩類、プライマー、デオキシリボヌクレオチド類及び耐熱酵素を含むものである。また、上記の塩類は適宜他の塩類に変更して使用されている。また、ゼラチン、アルブミン等のタンパク、ジメチルスルホキシド、界面活性剤等種々の物質が添加される場合がある。
【0012】
pH緩衝液は、トリス(ヒドロキシメチル)アミノメタンと塩酸、硝酸、硫酸等の鉱酸の組合せであり、鉱酸の中で望ましいものは塩酸である。また、トリシン、CAPSO(3ーNーCyclohexylamino −2 −hydroxypropanesulfonic acid )あるいはCHES(2ー(Cyclohexylamino )ethanesulfonic acid )と苛性ソーダ、苛性カリとの組み合わせによるpH緩衝液等種々のpH緩衝液が使用され得る。pH調整された緩衝液は、遺伝子増幅反応液の中で10mMから100mMの間の濃度で使用される。
【0013】
プライマーは、核酸と増幅用試薬等の存在下に合成の開始点として働くオリゴヌクレオチドをいう。プライマーは一本鎖であることが望ましいが、二本鎖も使用できる。もし、プライマーが二本鎖の場合には、増幅反応に先立って一本鎖にすることが望ましい。プライマーは、公知の方法により合成することができるし、また、生物界から単離することもできる。
【0014】
耐熱酵素は、プライマー付加による核酸を合成する酵素、あるいはかような化学合成系を意味する。適切な耐熱酵素としては、E.coliのDNAポリメラーゼI、E.coliのDNAポリメラーゼのクレノーフラグメント、T4DNAポリメラーゼ、TaqDNAポリメラーゼ、T.litoralisDNAポリメラーゼ、TthDNAポリメラーゼ、PfuDNAポリメラーゼそして逆転写酵素などがあるが、これらにのみ限定されるものではない。
【0015】
また、本発明では遺伝子増幅反応液のpHを調節することにより、相乗効果が得られる。例えば、pHは、25℃の温度条件下で8.1以上、好ましくは8.5〜9.5である。
また、本発明では、遺伝子増幅反応液にポリアミンを添加してもよい。
【0016】
なお、本発明の核酸合成法の手順は、ヘパリン及びその塩を添加する以外、通常の方法と何ら変わらない。すなわち、先ず、増幅しようとする目的の2本鎖DNA断片を熱変性により、1本鎖のDNAにする(ディナチュレーション工程)。次に増幅させたい領域を挟むプライマーをハイブリダイズさせる(アニーリング工程)。次に4種類のデオキシリボヌクレオチド類(dATP、dGTP、dCTP、dTTP)の共存下にDNAポリメラーゼを作用させ、プライマーの伸長反応を行う(ポリメライゼーション工程)。
【0017】
【実施例】
(実験例1)
PCR反応液(50μl)にヒトクエン酸処理したヒト血漿を1μl添加し、PCRを行った。また、PUC18プラスミドDNA3fgをPCR反応液(50μl)に添加し鋳型DNAとした。PCRのプライマーはPUC18プラスミドDNAのplus鎖の塩基配列をもつオリゴヌクレオチド(RV−M;配列番号1)及びminus 鎖の塩基配列をもつオリゴヌクレオチド(M13−47;配列番号2)であり、配列は次の通りである。この2種類のプライマーを用いたPCRの結果、150bp の増幅産物を得ることができる。
RV−M: 5’GAGCGGATAACAATTTCACACAGG3’
M13−47:5’CGCCAGGGTTTTCCCAGTCACGAC3’
【0018】
PCR反応液には、10mM Tris-HCl, 50mM KCl,1.5mM MgCl2 , 200 μM のdATP,dCTP,dGTP及びdTTP, 各0.4 μM のprimer, 1.25units/50μl のTaq DNA ポリメラーゼ(TaKaRa Taq: Takara shuzo, Kyoto, Japan)反応液を用いた。
PCRは、94℃、3分のプレヒーティングの後、94℃ 30秒間、55℃1分間、72℃ 1分間の条件で40サイクル、最後に72℃ 7分間のポリメライゼーションを行った。PCR終了後、反応液5μlを用いて、2.5%アガロースを含む、0.5μg/ ml臭化エチジウム添加TAE(40mM Tris-acetate, 1mM EDTA) 液中で電気泳動を行い検出した。
【0019】
ヘパリンナトリウム(和光純薬製)をPCR反応液に直接添加して、PCRを行ったときの増幅産物の電気泳動図を図1に示す。図中Mはサイズマーカー(HincIIで切断した250ng のφ X174-RF DNA)、1はヘパリン無添加、2は0.025μg/ml添加、3は0.05μg/ml添加、4は0.1μg/ml添加、5は0.2μg/ml添加、6は0.4μg/ml添加、7は0.8μg/ml添加、8は1.6μg/ml添加、9は3.2μg/ml添加、10は6.4μg/ml添加、11は12.8μg/ml添加、12は25.6μg/ml添加、13は51.2μg/ml添加、14は102.4μg/ml添加したものを示している。
結果、ヘパリンを添加することによって、PCR増幅産物が得られることがわかった。ヘパリンを0.1μg/ml以上、特に0.4μg〜25.6μg/ml添加するのが良好である。
【0020】
(実験例2)
本例は、実験例1で増幅効率の良かったヘパリン0.8μg/mlを反応液に加えた場合と加えない場合において、血液を段階希釈してPCRを行った実験である。反応に用いたPCR反応液の組成およびPCRの条件、PCR後の電気泳動の条件は実験例1と同様である。
【0021】
PCRのプライマーはヒトのβ−グロビン遺伝子領域内に位置するplus鎖の塩基配列をもつオリゴヌクレオチド(GH20;配列番号3)及びminus 鎖の塩基配列をもつオリゴヌクレオチド(GH21;配列番号4)であり、配列は次の通りである。この2種類のプライマーを用いたPCRの結果、408bp の増幅産物を得ることができる。
GH20:5’GAAGAGCCAAGGACAGGTAC3’
GH21:5’GGAAAATAGACCAATAGGCAG3’
【0022】
実験結果(電気泳動図)を図2に示す。図2中Mは分子量マーカー、1、5は血液0.5%添加、2、6は血液0.25%添加、3、7は血液0.125%添加、4、8は血液無添加のものを示す。なお1〜4はヘパリン無添加、5〜8はヘパリン添加したものである。
図より、本発明では、ヘパリンを添加することによって、血液を直接に鋳型として用いてもPCR阻害物質の作用を抑制し、高感度に検出できることがわかる。
【0023】
(実験例3)
本例は、PCR反応液(50μl)にヒト血清を1μl添加し、PCRを行った。また、PUC18プラスミドDNA3fgをPCR反応液(50μl)に添加し鋳型DNAとした。PCRのプライマーは実験例1と同様にRV−M、M13−47を用いた。0.0023ng から 100μg までの様々な量のデキストランサルフェイト(平均分子量5、500)を添加して、ヒト血清によるPCR反応の阻害をデキストランサルフェイトが抑制し、反応を回復させる効果を検討した。反応に用いたPCR反応液の組成およびPCR後の電気泳動の条件は実験例1と同様である。PCRは94℃、4分30秒間のプレヒーティングの後、94℃を30秒間、58℃を1分間、72℃を1分間の条件で40サイクル、最後に72℃のポリメライゼーションを7分間行った。実験結果(電気泳動図)を図3に示す。
【0024】
その結果、ヒト血清、デキストランサルフェイトの両方とも添加しない14の場合には、pUC18 plasmid DNAが鋳型となって、150塩基対の反応産物が得られる。この50μlの反応液に1μlのヒト血清を添加した13場合には反応が阻害されて産物は検出されていない。更にデキストランサルフェイトを12の場合の0.023ng、11の場合の0.095ng、10の場合の0.38ng、9の場合の1.52ngを添加しても、産物は検出されていないが、8の場合の6.1ng、7の場合の24ng、6の場合の97ng、5の場合の390ngを添加した場合には、デキストランサルフェイトの効果により、反応産物が検出されている。更に4の場合の1.6μg、3の場合の6.3μg、2の場合の25μg、1の場合の100μgを添加した場合には、産物は検出されていない。
以上の結果から、デキストランサルフェイトが血清の反応阻害の作用を抑制し、反応を回復させる効果のあることが明らかとなった。
【0025】
この実施例で効果の認められた濃度は、0.12μg/ml から7.8μg/mlの範囲であったが、他の実験から、使用するデキストランサルフェイトの分子量や血清の添加量で、有効な濃度範囲が変動することを確認しているので、効果のある濃度範囲を前記の範囲に限定するのもではない。
【0026】
(実験例4)
50μlのPCR反応液に、0.05μlのヒト血液と様々な濃度のデキストランサルフェイトを添加して、血液に含まれるヒトのDNAを増幅するPCR反応において、デキストランサルフェイトがその反応効率を高める効果を検討した。
PCRのプライマーは実験例2と同様にGH20、GH21を用いた。反応に用いたPCR反応液の組成およびPCR後の電気泳動の条件は実験例1と同様である。
【0027】
この反応液に0.05μlのヒト血液と0.61ng から 10μg までの様々な量のデキストランサルフェイト(平均分子量10、000)を添加した。PCRは94℃、4分30秒間のプレヒーティングの後、94℃を30秒間、55℃を1分間、72℃を1分間の条件で40サイクル、最後に72℃のポリメライゼーションを7分間行った。実験結果を図4(電気泳動図)に示す。
【0028】
その結果、血液を0.05μlとデキストランサルフェイトを加えない2の場合、10の0.61ngを添加した場合には反応産物は得られていないが、9の場合の2.44ng、8の場合の9.76ng、7の場合の39ng、6の場合の156ngを添加した場合には、血液中に含まれるヒトDNAを鋳型にして、408塩基対の反応産物が得られている。更に5の場合の0.625μg、4の場合の2.5μg、3の場合の10μgを添加した場合には、産物は検出されていない。1の場合は血液も添加していないので反応産物は得られるはずはない。
【0029】
以上の結果から、血液を試料とするPCRにおいて、デキストランサルフェイトが反応の効率を高める効果のあることが明らかとなった。
この実施例で効果の認められた濃度は、0.049μg/ml から3.1μg/mlの範囲であったが、他の実験から、使用するデキストランサルフェイトの分子量や血液の添加量で、有効な濃度範囲が変動することを確認しているので、効果のある濃度範囲を前記の範囲に限定するものではない。
【0030】
【発明の効果】
本発明により、核酸の分離・精製の過程を経ずに、血清・血漿・血液等のPCR阻害物質を多く含んだ試料から、直接、目的のDNAを効率よく増幅することが可能となった。また、本発明により、簡便、迅速に核酸合成の操作を行えるようになり、コンタミネーションの機会の軽減が可能となった。
【配列表】

Figure 0004186270

【図面の簡単な説明】
【図1】PCR反応液(50μl)にヒトクエン酸処理したヒト血漿を1μl、および濃度の異なるヘパリンを添加し、PCRを行った電気泳動図
【図2】実験例1で増幅効率の良かったヘパリン0.8μg/mlを反応液に加えた場合と加えない場合において、血液を段階希釈してPCRを行った電気泳動図
【図3】PCR反応液(50μl)にヒト血清を1μl、および濃度の異なるデキストランサルフェイトを添加し、PCRを行った電気泳動図
【図4】PCR反応液(50μl)にヒト血液を0.05μl、および濃度の異なるデキストランサルフェイトを添加し、PCRを行った電気泳動図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nucleic acid synthesis method, and more particularly to a nucleic acid synthesis method by a polymerase chain reaction (hereinafter abbreviated as PCR) method.
[0002]
[Prior art]
The PCR method is intended to multiply the target DNA fragment several hundred thousand times by repeating the dissociation of the DNA strand into a single strand, the binding of a primer across a specific region in the DNA strand, and the DNA synthesis reaction by DNA polymerase. Can be amplified. The PCR method is described in Japanese Patent Laid-Open No. 61-274697 which is an invention of Maris et al.
[0003]
The PCR method can be used as a high-sensitivity analysis method for nucleic acids in various samples, and can be used particularly for analysis methods for nucleic acids in samples derived from animal body fluids. Therefore, the PCR method is used for diagnosis of infectious diseases, genetic diseases and cancer. Furthermore, the PCR method is also suitable for DNA typing examinations during transplantation and parentage testing. In these cases, peripheral blood is often selected for testing.
[0004]
One disadvantage of the PCR method is that the reaction is inhibited by dyes, proteins, sugars or unknown contaminants. That is, many DNA polymerases, including Taq DNA polymerase derived from Thermus aquaticus, which is a typical thermostable DNA polymerase, strongly inhibits PCR even if a small amount of contaminants derived from body fluids are mixed in the PCR reaction solution. It is widely known.
[0005]
Therefore, prior to DNA amplification by the PCR method, it is necessary to separate cells, bacteria, viruses, etc. (hereinafter referred to as gene inclusions) from the test substance, and then extract nucleic acids from the gene inclusions. . As the method, a method in which a gene inclusion body is decomposed with an enzyme, a surfactant, a chaotropic agent, etc., and then a nucleic acid is extracted from the decomposition product of the gene inclusion body using phenol or phenol / chloroform is conventionally used. Has been.
Recently, in the process of nucleic acid extraction, ion exchange resins, glass filters, glass beads, reagents having a protein aggregating action, and the like are used.
[0006]
[Problems to be solved by the invention]
However, even if nucleic acid in a sample is purified using these methods, it is difficult to completely remove impurities, and the amount of recovered nucleic acid in the sample is often not constant. In particular, it may not be successful if the content of the target nucleic acid in the sample is low. In addition, these purification methods are complicated and require time, and there is a high chance of contamination during operation.
Therefore, in order to solve these problems, a simpler and more effective sample pretreatment method is desired.
[0007]
Accordingly, an object of the present invention is to provide a novel method for efficiently amplifying DNA in a sample by suppressing the action of a PCR inhibitor.
[0008]
[Means for Solving the Problems]
Usually, heparin used as a blood anticoagulant is known as a PCR inhibitor and is not preferable for addition to a sample. However, as a result of intensive studies on these phenomena, we have found that heparin suppresses the action of PCR inhibitors in biological samples. Moreover, it was found that not only heparin but also sulfated polysaccharides such as dextran sulfate exhibited the same action, and the present invention was made. The present invention for solving the above problems, blood, plasma, in a nucleic acid synthesis method the gene of interest in a sample of serum from amplified by PCR, blood gene amplification reaction solution, plasma, serum-derived samples and 0.4 μg / ml to 3.2 μg / ml heparin and its salts are added.
[0009]
Here, heparin and its salt may be added to the gene amplification reaction solution after being added to the sample, or may be added directly to the gene amplification reaction solution. Also, heparin and its salts have the same effect even when they are not uniformly contained in the gene amplification reaction solution (for example, when sulfated polysaccharide is added to the sample and this sample is added to the reaction solution without stirring). is there.
[0010]
In the present invention, a sample refers to a gene inclusion body in a biological sample or a biological sample itself, and the biological sample refers to animal and plant tissue, body fluid, excrement, etc., and a gene inclusion includes cells, bacteria, viruses Etc. Body fluids include blood, saliva, spinal fluid, urine, and milk, and cells include, but are not limited to, leukocytes separated from blood. The gene inclusion body in the biological sample or the biological sample is directly added to the gene amplification reaction solution without any special pretreatment.
[0011]
The gene amplification reaction solution usually contains a pH buffer solution, salts such as MgCl 2 and KCl, primers, deoxyribonucleotides and a thermostable enzyme. Further, the above salts are used by appropriately changing to other salts. In addition, various substances such as proteins such as gelatin and albumin, dimethyl sulfoxide, and surfactants may be added.
[0012]
The pH buffer is a combination of tris (hydroxymethyl) aminomethane and a mineral acid such as hydrochloric acid, nitric acid, sulfuric acid and the like, and a desirable mineral acid is hydrochloric acid. Various pH buffer solutions such as a pH buffer solution using a combination of tricine, CAPSO (3-N-Cyclohexylamino-2-hydroxypropanesulfonic acid) or CHES (2- (Cyclohexylamino) ethanesulfonic acid) with caustic soda and caustic potash can be used. The pH-adjusted buffer is used in the gene amplification reaction solution at a concentration between 10 mM and 100 mM.
[0013]
A primer refers to an oligonucleotide that serves as a starting point for synthesis in the presence of a nucleic acid and an amplification reagent. The primer is preferably single-stranded, but double-stranded can also be used. If the primer is double-stranded, it is desirable to make it single-stranded prior to the amplification reaction. The primer can be synthesized by a known method, or can be isolated from the biological world.
[0014]
The thermostable enzyme means an enzyme that synthesizes nucleic acid by adding a primer, or such a chemical synthesis system. Suitable thermoenzymes include E. coli. DNA polymerase I, E. coli Examples include, but are not limited to, the Klenow fragment of Escherichia coli DNA polymerase, T4 DNA polymerase, Taq DNA polymerase, T. litoralis DNA polymerase, Tth DNA polymerase, Pfu DNA polymerase, and reverse transcriptase.
[0015]
In the present invention, a synergistic effect can be obtained by adjusting the pH of the gene amplification reaction solution. For example, the pH is 8.1 or more, preferably 8.5 to 9.5 under a temperature condition of 25 ° C.
In the present invention, a polyamine may be added to the gene amplification reaction solution.
[0016]
In addition, the procedure of the nucleic acid synthesis method of the present invention is not different from a normal method except that heparin and a salt thereof are added. That is, first, the target double-stranded DNA fragment to be amplified is converted into single-stranded DNA by heat denaturation (dynalation step). Next, a primer sandwiching the region to be amplified is hybridized (annealing step). Next, a DNA polymerase is allowed to act in the presence of four types of deoxyribonucleotides (dATP, dGTP, dCTP, dTTP) to perform a primer extension reaction (polymerization step).
[0017]
【Example】
(Experimental example 1)
1 μl of human citrate-treated human plasma was added to the PCR reaction solution (50 μl), and PCR was performed. Further, 3 fg of PUC18 plasmid DNA was added to a PCR reaction solution (50 μl) to obtain a template DNA. PCR primers are oligonucleotides (RV-M; SEQ ID NO: 1) having a plus strand base sequence of PUC18 plasmid DNA and oligonucleotides (M13-47; SEQ ID NO: 2) having a minus strand base sequence. It is as follows. As a result of PCR using these two kinds of primers, an amplification product of 150 bp can be obtained.
RV-M: 5′GAGCGGATAACAATTTCACACAGGG3 ′
M13-47: 5′CGCCAGGGTTTCCCAGTCACGAC3 ′
[0018]
The PCR reaction solution contained 10 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl 2 , 200 μM dATP, dCTP, dGTP and dTTP, 0.4 μM each primer, 1.25 units / 50 μl Taq DNA polymerase (TaKaRa Taq: Takara shuzo , Kyoto, Japan).
PCR was performed at 94 ° C. for 3 minutes, followed by 40 cycles of 94 ° C. for 30 seconds, 55 ° C. for 1 minute, 72 ° C. for 1 minute, and finally 72 ° C. for 7 minutes. After completion of the PCR, 5 μl of the reaction solution was used for electrophoresis and detection in a 0.5 μg / ml ethidium bromide-added TAE (40 mM Tris-acetate, 1 mM EDTA) solution containing 2.5% agarose.
[0019]
FIG. 1 shows an electrophoretogram of amplification products when heparin sodium (manufactured by Wako Pure Chemical Industries) is directly added to the PCR reaction solution and PCR is performed. In the figure, M is a size marker (250 ng φX174-RF DNA cleaved with HincII), 1 is no heparin added, 2 is added 0.025 μg / ml, 3 is 0.05 μg / ml added, 4 is 0.1 μg / ml added, 5 is 0.2 μg / ml, 6 is 0.4 μg / ml, 7 is 0.8 μg / ml, 8 is 1.6 μg / ml, 9 is 3.2 μg / ml, 10 is 6.4 μg / ml, 11 is 12.8 μg / ml added, 12 added 25.6 μg / ml, 13 added 51.2 μg / ml, and 14 added 102.4 μg / ml.
As a result, it was found that a PCR amplification product was obtained by adding heparin. It is preferable to add heparin in an amount of 0.1 μg / ml or more, particularly 0.4 μg to 25.6 μg / ml.
[0020]
(Experimental example 2)
This example is an experiment in which PCR was performed by serially diluting blood in cases where heparin 0.8 μg / ml, which had good amplification efficiency in Experimental Example 1, was added to the reaction solution. The composition of the PCR reaction solution used for the reaction, PCR conditions, and electrophoresis conditions after PCR are the same as in Experimental Example 1.
[0021]
PCR primers are an oligonucleotide having a plus chain base sequence (GH20; SEQ ID NO: 3) and an oligonucleotide having a minus chain base sequence (GH21; SEQ ID NO: 4) located within the human β-globin gene region. The sequence is as follows. As a result of PCR using these two kinds of primers, an amplification product of 408 bp can be obtained.
GH20: 5'GAAGAGCCAAGGACAGGTAC3 '
GH21: 5′GGAAAATAGCCAATAGGGCAG3 ′
[0022]
The experimental results (electrophoresis diagram) are shown in FIG. In FIG. 2, M is a molecular weight marker, 1 and 5 are blood 0.5% added, 2, 6 are blood 0.25% added, 3 and 7 are blood 0.125% added, and 4 and 8 are no blood added. In addition, 1-4 do not add heparin, and 5-8 add heparin.
From the figure, it can be seen that in the present invention, by adding heparin, even if blood is directly used as a template, the action of the PCR inhibitor is suppressed and detection can be performed with high sensitivity.
[0023]
(Experimental example 3)
In this example, 1 μl of human serum was added to a PCR reaction solution (50 μl), and PCR was performed. Further, 3 fg of PUC18 plasmid DNA was added to a PCR reaction solution (50 μl) to obtain a template DNA. RV-M and M13-47 were used as PCR primers in the same manner as in Experimental Example 1. Various effects of dextran sulfate (average molecular weight 5,500) from 0.0023 ng to 100 μg were added, and the effect of dextran sulfate suppressing the inhibition of the PCR reaction by human serum and restoring the reaction was examined. The composition of the PCR reaction solution used for the reaction and the electrophoresis conditions after PCR are the same as in Experimental Example 1. PCR is 94 ° C for 4 minutes 30 seconds, followed by 40 cycles of 94 ° C for 30 seconds, 58 ° C for 1 minute, 72 ° C for 1 minute, and finally 72 ° C polymerization for 7 minutes. It was. The experimental results (electrophoretic diagram) are shown in FIG.
[0024]
As a result, in the case of 14 in which neither human serum nor dextran sulfate is added, a reaction product of 150 base pairs is obtained using pUC18 plasmid DNA as a template. When 13 μl of 1 μl human serum was added to the 50 μl reaction, the reaction was inhibited and no product was detected. Further, when dextran sulfate was added at 0.023 ng in case of 12, 0.095 ng in case of 11; 0.38 ng in case of 10, 1.52 ng in case of 9, no product was detected. When 6.1 ng, 24 in the case of 7, 97 ng in the case of 6, 390 ng in the case of 5, and 390 ng in the case of 5, a reaction product is detected due to the effect of dextran sulfate. Further, when 1.6 μg in the case of 4, 6.3 μg in the case of 3, 3 μg in the case of 2, 2 μg in the case of 1, and 100 μg in the case of 1, the product is not detected.
From the above results, it was clarified that dextran sulfate has an effect of suppressing the reaction inhibition effect of serum and recovering the reaction.
[0025]
The concentration at which the effect was observed in this example was in the range of 0.12 μg / ml to 7.8 μg / ml. However, from other experiments, the concentration of dextran sulfate used and the amount of serum added were effective. Since it has been confirmed that the range fluctuates, the effective concentration range is not limited to the above range.
[0026]
(Experimental example 4)
In a PCR reaction in which 0.05 μl of human blood and various concentrations of dextran sulfate are added to 50 μl of the PCR reaction solution to amplify human DNA contained in the blood, dextran sulfate has the effect of increasing the reaction efficiency. investigated.
As in PCR Example 2, GH20 and GH21 were used as PCR primers. The composition of the PCR reaction solution used for the reaction and the electrophoresis conditions after PCR are the same as in Experimental Example 1.
[0027]
0.05 μl of human blood and various amounts of dextran sulfate (average molecular weight 10,000) from 0.61 ng to 10 μg were added to the reaction solution. PCR is 94 ° C for 4 minutes 30 seconds, followed by 40 cycles of 94 ° C for 30 seconds, 55 ° C for 1 minute, 72 ° C for 1 minute, and finally 72 ° C polymerization for 7 minutes. It was. The experimental results are shown in FIG. 4 (electrophoresis diagram).
[0028]
As a result, in the case of 2 without adding 0.05 μl of blood and dextran sulfate, no reaction product was obtained when 0.61 ng of 10 was added, but 2.44 ng in case of 9 and 9.76 ng in case of 8 When 39 ng in the case of 7 and 156 ng in the case of 6 are added, a reaction product of 408 base pairs is obtained using human DNA contained in blood as a template. Further, when 0.625 μg in the case of 5, 2.5 μg in the case of 4, and 10 μg in the case of 3, the product was not detected. In the case of 1, no reaction product should be obtained because no blood is added.
[0029]
From the above results, it was revealed that dextran sulfate has an effect of increasing the efficiency of the reaction in PCR using blood as a sample.
The concentration at which the effect was observed in this example was in the range of 0.049 μg / ml to 3.1 μg / ml. However, other experiments showed that effective concentrations were determined depending on the molecular weight of dextran sulfate used and the amount of blood added. Since it has been confirmed that the range fluctuates, the effective concentration range is not limited to the above range.
[0030]
【The invention's effect】
According to the present invention, it has become possible to efficiently amplify a target DNA directly from a sample containing a large amount of PCR-inhibiting substances such as serum, plasma, blood, etc., without going through the process of separation and purification of nucleic acids. In addition, according to the present invention, nucleic acid synthesis can be performed simply and quickly, and the chance of contamination can be reduced.
[Sequence Listing]
Figure 0004186270

[Brief description of the drawings]
1 is an electrophoretic diagram obtained by adding 1 μl of human citrate-treated human plasma and heparin having different concentrations to a PCR reaction solution (50 μl). FIG. 2 is an electrophoretic diagram obtained by performing PCR in Experimental Example 1. Electrophoresis diagram in which PCR was performed by serially diluting blood with and without adding 0.8 μg / ml to the reaction solution. FIG. 3 shows 1 μl of human serum in PCR reaction solution (50 μl) and different concentrations. Electrophoresis diagram with dextran sulfate added and PCR performed. Fig. 4 Electrophoresis diagram with PCR performed by adding 0.05 μl of human blood and dextran sulfate with different concentrations to the PCR reaction solution (50 μl).

Claims (1)

血液、血漿、血清由来の試料中の目的とする遺伝子をPCR法によって増幅する核酸合成法において、遺伝子増幅反応液に血液、血漿、血清由来の試料及び0.4μg/ml〜3.2μg/mlのヘパリン及びその塩を添加することを特徴とする核酸合成法。 In a nucleic acid synthesis method for amplifying a gene of interest in a sample derived from blood, plasma, or serum by PCR , the gene amplification reaction solution contains a sample derived from blood, plasma, or serum and 0.4 μg / ml to 3.2 μg / ml. A method for synthesizing nucleic acid, comprising adding heparin and a salt thereof.
JP26679398A 1998-09-21 1998-09-21 Nucleic acid synthesis method Expired - Lifetime JP4186270B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26679398A JP4186270B2 (en) 1998-09-21 1998-09-21 Nucleic acid synthesis method
EP99118116A EP0989192A3 (en) 1998-09-21 1999-09-10 Method for synthesis of nucleic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26679398A JP4186270B2 (en) 1998-09-21 1998-09-21 Nucleic acid synthesis method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008125186A Division JP4187057B2 (en) 2008-05-12 2008-05-12 Nucleic acid synthesis method

Publications (2)

Publication Number Publication Date
JP2000093176A JP2000093176A (en) 2000-04-04
JP4186270B2 true JP4186270B2 (en) 2008-11-26

Family

ID=17435776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26679398A Expired - Lifetime JP4186270B2 (en) 1998-09-21 1998-09-21 Nucleic acid synthesis method

Country Status (1)

Country Link
JP (1) JP4186270B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724321B2 (en) * 2000-03-21 2005-12-07 株式会社島津製作所 Nucleic acid synthesis method
JP2008531039A (en) * 2005-02-28 2008-08-14 バイオクエスト インク Direct enzymatic reaction method involving nucleic acid molecules
EP1944364B1 (en) 2005-11-02 2012-09-12 Shimadzu Corporation Rna extraction method and rna detection method
JP2018164421A (en) * 2017-03-28 2018-10-25 東洋紡株式会社 Nucleic acid amplification method

Also Published As

Publication number Publication date
JP2000093176A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
US5935825A (en) Process and reagent for amplifying nucleic acid sequences
JP4735645B2 (en) RNA detection method
EP1069190B1 (en) Method for amplification of RNA
JP7067483B2 (en) Modified thermostable DNA polymerase
US20160017315A1 (en) Methods for one step nucleic acid amplification of non-eluted samples
JP3452717B2 (en) Nucleic acid synthesis method
US6962780B2 (en) Method for synthesis of nucleic acids
JP4470275B2 (en) Nucleic acid synthesis method
JPH1080280A (en) Synthesis of nucleic acid
JP4186270B2 (en) Nucleic acid synthesis method
EP0989192A2 (en) Method for synthesis of nucleic acids
CN114391043A (en) Methylation detection and analysis of mammalian DNA
EP0751226B1 (en) Process for amplifying nucleic acid sequences
JP4186269B2 (en) Nucleic acid synthesis method
JP4503712B2 (en) Nucleic acid synthesis method
WO2003070986A1 (en) Removal of nucleic acid contaminants
JP4187057B2 (en) Nucleic acid synthesis method
JP4629167B2 (en) Nucleic acid synthesis method
JP3724321B2 (en) Nucleic acid synthesis method
JP2003310265A (en) Method for extracting nucleic acid
JP2001008685A (en) Method for synthesizing nucleic acid
JP2001008680A (en) Synthesis of nucleic acid
CN110945141B (en) Methanesulfonate-based premix
JP2005323617A (en) Method for synthesizing nucleic acid
AU2003205424B2 (en) Removal of nucleic acid contaminants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

EXPY Cancellation because of completion of term