JP4182555B2 - Iontophoresis element for transdermal administration - Google Patents

Iontophoresis element for transdermal administration Download PDF

Info

Publication number
JP4182555B2
JP4182555B2 JP32145797A JP32145797A JP4182555B2 JP 4182555 B2 JP4182555 B2 JP 4182555B2 JP 32145797 A JP32145797 A JP 32145797A JP 32145797 A JP32145797 A JP 32145797A JP 4182555 B2 JP4182555 B2 JP 4182555B2
Authority
JP
Japan
Prior art keywords
layer
drug
conductive mineral
insulating layer
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32145797A
Other languages
Japanese (ja)
Other versions
JPH11151303A (en
Inventor
宏之 笠野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polytronics Inc
Original Assignee
Polytronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polytronics Inc filed Critical Polytronics Inc
Priority to JP32145797A priority Critical patent/JP4182555B2/en
Publication of JPH11151303A publication Critical patent/JPH11151303A/en
Application granted granted Critical
Publication of JP4182555B2 publication Critical patent/JP4182555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)
  • Electrotherapy Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被浸透薬剤イオンを電界加速して皮下浸透せしめるイオントフォレシス型の経皮投薬用素子に関する。
【0002】
【従来の技術】
経皮投薬は、薬剤の血中濃度一定化や局所投与性にすぐれ、患者の負担が少ないので、望ましい投薬方法として開発が続けられている。このうち、高分子の薬剤では接皮するだけで皮下浸透することが困難なため、種々の浸透促進法が検討されている。この中で有力な方法として注目されているのがイオントフォレシスである。イオントフォレシスは、可溶性の被浸透薬剤イオンを電気的に偏倚することによって、通電路の一部である皮内に電界加速して引き込むもので、主に毛穴や汗腺、皮脂腺が浸透径路になると考えられている。直流電界駆動の場合をイオントフォレシス、パルス電界駆動の場合をエレクトロポレーションと区別する場合がある。エレクトロポレーションでは、皮膚細胞の電位の瞬間的変化の際、細胞膜に穴が開き薬剤が浸入するという考え方も行われている。
【0003】
イオントフォレシスは電気泳動現象を利用するため電界や電流の印加が不可欠であり、連続投与の場合通電電極下の皮膚が損傷を受けることが多い。特に高分子の薬剤である程浸透しにくくなるので、高い電界強度、高い電流密度が要求されて皮膚損傷が起きやすくなる。これを緩和するために、パルス通電方法が一般に用いられるようになってきた。
ところで、これらイオントフォレシスを行うためには架電用電源が必要であり、古くは給電線電源(100V又は200V交流)が多く用いられてきた。しかし、利便性や安全性の点で次第に小型化が進み、近年は電池電源駆動が行われている。必要な電気回路もIC化され、可搬型装置として利用可能となった。
【0004】
一方、外部電源を利用しないで皮膚で発電しながら薬剤を浸透させようとする、いわば内部電源型イオントフォレシスも提案されている。例えば、標準単極電位の高い金属の塩と低い金属とを同時に皮接して電気的閉回路を形成し、化学的ポテンシャルの差を利用して発電することにより金属塩を構成する薬剤を経皮吸収させようとするものであり、具体的には銀塩(銀電極)とMg合金の例が示されている(特願昭59−59244号)。これに対して、化学的ポテンシャルの差を安定的に接続させて酸化還元反応を継続させる生体電池として、標準単極電位の高い金属と低い半導体をそれぞれ電極とし、前記標準単極電位の高い金属とは無関係な陰イオン薬剤を配置した内部電源型イオントフォレシス素子が当出願人から出願された(特願平1−150654号)。この方法は更に正極/薬剤層/分離層/負極の積層型ワンシートディスポーザブルタイプ(特願平6−220193号)へと発展した。加えて、皮接電極(不関電極)の形状に関する工夫による薬剤浸透効率向上と、陽イオン、陰イオンのいずれの薬剤にも適用できるタイプの登場(特願平8−310848号)によって皮膚発電型イオントフォレシスの適用範囲は大きく拡大した。
この内部電源型のデバイスでは、更に外部容量とダイオードの組み合わせを利用することによってパルスタイプの経皮投薬素子を可能としている(特願平8−24245号)。このパルスタイプ素子では、パルス通電周波数帯を、皮下浅部に分布する、末梢神経シナプスに与えられる繰り返し微小電圧刺激によってシナプスの可塑性を高め、その結果当該領域の皮膚の生理活性化が惹起する長期増強効果誘起領域に設定することによって、更に薬剤の取り込み効率を促進しうる利点を持つ。
【0005】
【発明が解決しようとする課題】
前記したイオントフォレシス型経皮投薬用素子のうち、外部電源方式は、電源回路、制御回路、パルス回路等の回路部分及び電源部分がコストアップの要因を形成する。また、これら電気回路を有する経皮投薬素子は電子装置に属するため、実用化する際医療用具の認可を受ける必要がある。一方、装荷する薬剤は医薬品の認可を必要とするため、両分野にまたがる認可を要し、実用化の大きな障害となる。
更に外部電源方式では、制御回路で過電流を防止しても生体皮膚面の電極下で生ずる還元作用によるpH変化を緩和することができず、皮膚損傷を避けるのは困難である。この傾向は特に直流型で著しい。
【0006】
一方、内部電源方式においても、標準単極電位の高い金属塩(正極)と低い金属(負極)の組み合わせでは負極の水酸化反応を防ぐことができず、負極が急速に劣化するので、安定に起電力を保持することができないという大きな問題点がある。
また内部電源方式では、正負極を構成する両物質の電子親和力の差で原理的に最大起電力が定められるが、外部電源方式に比べて電解質効果が小さいので、当然利用しうる最大起電力は小さい。しかるに、ペプチドや蛋白質など分子量の大きな被浸透薬剤を経皮投薬する場合、内部電源方式では起電力不足で有効な浸透濃度が得られない薬剤も多い。
【0007】
本発明の目的は、比較的低い起電力の内部電源(生体電池)を用いても分子量の大きな被浸透薬剤を効果的に皮下浸透せしめ得るイオントフォレーゼ型の経皮投薬用素子を提供することである。
【0008】
【課題を解決するための手段】
本発明は、被浸透薬剤をゲル状の基材又はプラスチック等の基材に分散させた薬剤層と
この薬剤層に積層され、薬剤層と反対側の面が皮接面となり、かつ貫通孔を有する絶縁層と、
この絶縁層の貫通孔に挿通し、両側開放端の一端が上記薬剤層に接し、他端が絶縁層より外側に突出した中空絶縁体針と、
上記絶縁層の皮接面に設けられ皮接面の一部をなす金属または半導体Aから成り自由表面を有する第1の導電性鉱物と、
上記薬剤層に接して設けられ、かつ第1の導電性鉱物と電気的につながり、前記Aとは異なる電子親和力を有する金属または半導体Bから成り、自由表面を有する第2の導電性鉱物と、
より成ると共に、
上記絶縁層は、素子皮接時に薬剤層を含む領域への押圧によって体積変化するものとし、これによって前記中空絶縁体針の中空部位を負圧になるようにしたイオントフォレシス型の経皮投薬素子を開示する。
【0009】
更に本発明は、被浸透薬剤をゲル状の基材又はプラスチック等の基材に分散させた薬剤層と、
この薬剤層に積層され、薬剤層と反対側の面が皮接面となり、かつ貫通孔を有する絶縁層と、
この絶縁層の貫通孔に挿通し、両側開放端の一端が上記薬剤層に接し、他端が絶縁層より外側に突出した中空絶縁体針と、
上記絶縁層の皮接面に設けられ皮接面の一部をなす金属または半導体Aから成り自由表面を有する第1の導電性鉱物と、
上記薬剤層に接して設けられ、かつ第1の導電性鉱物と電気的につながり、前記Aとは異なる電子親和力を有する金属または半導体Bから成り、自由表面を有する第2の導電性鉱物と、
より成ると共に、
上記薬剤層の側面に絶縁層を設け、この絶縁層は素子皮接時に薬剤層を含む領域への押圧によって体積変化するものとし、これによって中空絶縁体針の中空部位を負圧にするようにしたイオントフォレシス型の経皮投薬素子を開示する。
【0010】
更に本発明は、前記中空絶縁体針の中空部位に、あらかじめ導電性液を充填させて成る経皮投薬素子を開示する。
【0011】
本発明によれば、中空絶縁体針を表皮顆粒層以下の深部まで穿皮することによって、中空絶縁体針内での負圧作用により、体液と被浸透薬剤とが導電的に接触する。使用にあって第1の導電性鉱物が接皮すると、生体電池が形成されて、第1の導電性鉱物→第2の導電性鉱物→薬剤層→皮内→第1の導電性鉱物の閉回路に電流が流れ、薬剤層中に分散した薬剤イオンがイオントフォレシス効果により中空絶縁体針に充満した導電性液(体液)を介して選択的に且つ急速に皮内に浸透する。
【0012】
【発明の実施の形態】
図1は本発明のイオントフォレシス型経皮投薬用素子の一例を示す断面図である。この素子は、薬剤分散基材層3と、その上部に設けた第2の導電性鉱物層8と、その下部に設けた絶縁体層2と、この絶縁体層2の一部の皮接面に設けた第1の導電性鉱物層1と、絶縁体層2に設けた複数個(図は4個)の中空絶縁体針4(4A〜4D)と、基材層3を細分化する絶縁体20より成る(その中の端部絶縁体は、外部遮蔽化の機能を持つ)。第1、第2の導電性鉱物層1と8とは点線で示す如く電気的なつながり(リード線又は両者を直接に接触させる)を持つ。
中空絶縁体針4の一端は薬剤分散基材層3の下部へとつながり、他端は外部に突出している。針4の突出長は、皮膚の表面から、皮脂層、角質層を経て顆粒層/有棘層/基底層のいずれかに至る系路長であり、例えば1〜2mmである。薬剤分散基材層3には、体内に挿入すべき薬剤が分散充填されている。薬剤分散基材層3は、被浸透薬を内部に持つ層であり、薬剤ゲルそのものが封入又はプラスチック等で分散された状態となっている。その底面層2Aは開放又は薬剤ゲルが出し入れの可能な浸透材質より成る。この底面層2Aが中空絶縁体針4の内部へと液体を介してつながる。
第1、第2の導電性鉱物層1、8は、それぞれ少なくともその自由表面が金属又は半導体A、Bより成り、且つ第2の導電性鉱物8は、第1の導電性鉱物1と異なる電子的親和力を有するように選ぶ。
図2は、図1の素子の使用時の様子を示す。尚、表皮領域は実際の倍率よりも拡大して描いてある。この素子を皮膚面に圧接した上で、針4を顆粒層/有棘層/基底層から成る表皮下部領域7のいずれかの層に穿皮する。尚、6は皮脂層及び角質層より成る表皮上部領域である。領域7は、この領域6の下部(深部)に存在する領域である。
【0013】
穿皮された中空絶縁体針4は、少なくとも表皮上部領域(皮脂層/角質層)6を突き抜け、表皮領域5の顆粒層以深領域、即ち表皮下部領域(顆粒層/有棘層/基底層)7に到達している。穿皮深さは高々1〜2mmであり、従って穿皮時わずかな疼痛感があるのみで使用中患者に持続的苦痛が伴わないで済むという特徴がある。
中空絶縁体針4内は穿皮前に予め導電性液、例えば生理的食塩水などが充填されているか或いは穿皮時に薬剤分散基材層3と絶縁体層2との界面2Aで圧力変化を生じて中空絶縁体針4内が負圧になるように設定されている。この結果、図示したように表皮の顆粒層以深領域から毛管現象によって体液が中空絶縁体針4内を上昇してくる。体液は、イオン導電性の性質を持つ。これによって、中空絶縁体針4を介して薬剤分散基材層3とイオン導電性体液が接触する。
表皮領域5は、物理的性質によって2つの領域に分けられる。表皮上部領域(皮脂層/角質層)6は電気的に極めて高抵抗(数百KΩ〜数MΩ)であり、導電成分は、汗が表面に分布していない場合主に角質層に含有される水分である。一方、表皮下部領域(顆粒層/有棘層/基底層)7は電気的に低抵抗(数百Ωかそれ以下)であり、導電成分は細胞間を潤しているイオン性体液である。イオン性体液は水分も含有するが、白血球、リンパ液等血管外侵出性血液成分も重要な構成要素である。
【0014】
導電性鉱物1が中空絶縁体針4の穿皮と同時に接皮されると、本経皮投薬用素子と皮膚間に電気的閉回路(鉱物1→鉱物8→薬剤分散基材層3→針4内部→皮膚内部→表皮→鉱物1)が形成され、金属または半導体A及びB間の電子親和力差による起電力が生じて回路電流が流れる。穿皮された中空絶縁体針4は、いわば人工毛穴を形成するが、生物由来の毛穴とは異なり内部の電気抵抗が著しく小さいので、回路電流は局所的にこの径路を流れる。即ち、イオントフォレシスによる薬剤の皮内への浸透は、選択的に中空絶縁体針4内部を通して行われる。前記したAとBの電子親和力差による起電力は、コストや安全性、安定性を考慮すると高々1.5乃至る2ボルトが限度である。通常の経皮吸収の場合、高抵抗の皮脂層や角質層による電位降下と異物浸透阻止効果によって、ペプタイドや蛋白質など経皮投薬が必要な多くの高分子薬剤は、前記のような低電圧では有効な血中濃度を確保することが困難である。しかし、本発明の装置を使えば、充分量の浸透が可能となる。
【0015】
本発明の方法によれば、表皮領域、特に皮脂層や角質層で分解される一部薬剤、例えばデキサメタゾンやプロスタグランジンなどの経皮投与も可能となる。中空絶縁体針4は、必要に応じて真皮や皮下組織まで深く刺すことが可能である。硬質樹脂などで作られた中空絶縁体針4は、勿論使用前滅菌状態で密封されており、太さは0.1〜0.2mmΦ程度の外径を持つ。通常は高々1〜2mmの深さまでしか穿刺されないため、患者はほとんど痛痒を感じることがなく、また使用後に経皮投薬用素子を皮膚から取り去ると、血がにじむこともなく穿刺個所の皮膚は再び閉じるので、ウィルス感染を防ぐことができる。従って、深部穿刺の特殊な場合を除けば身体表面の様々な部位の皮膚に貼付することが可能である。
【0016】
被浸透薬剤は針4内部に充満する導電性体液を介してのみ生体と接触する。針の外形部は絶縁性であるので、導電性鉱物1と薬剤分散基材層3との皮膚部位における分離は、中空絶縁体針4を用いない従来の積層型ワンシートタイプ素子よりはるかに容易になる。従って素子を長時間連用しても、使用中に導電性鉱物1と薬剤分散基材層3とが皮膚上で短絡して発電が停止し、イオントフォレシスが惹起しなくなるという事故を防ぐことができる。このような事故は皮膚表面の著しい発汗や薬剤分散基材のゲルが軟化する場合に、従来の積層型ワンシートタイプ素子で散見された。
【0017】
以下、本発明を具体例に沿ってより詳しく述べる。
(その1)
図3は、実施例による経皮投薬用素子の構造概略を示す。図3(A)は下面図(皮接側からみた底面図)、同(B)は断面図である。図において、1は第1の導電性鉱物、2は絶縁体層、20は基材層3を細分化するための分離用絶縁体、3は薬剤分散基材層、4は中空絶縁体針、8は第2の導電性鉱物である。更に、図3では正極/薬剤層/分離層/負極を積層ワンシート化したディスポーザブル内部電源型経皮投薬用素子として形成した。この実施例では極間分離が容易になり、皮膚表面での極間接触による局所的通電停止事故を抑制することができて効率的な薬剤送達が可能にするねらいがある。
導電性鉱物1は、絶縁体2上に設けた、略L字形の6個のストライプ片1A〜1Fより成り、各ストライプ片1A〜1Fが裏面で導電性鉱物8に接続されている。ストライプ片1A〜1Fで囲まれた、絶縁層20で区分された4つの絶縁層21〜24は、それぞれ縦横に規則的に配列した6個の中空絶縁体針4を持つ。その断面は図3(B)に示すとおりである。導電性鉱物1は、厚さ30μmの亜鉛メッキ鉄フィルムの表面を酸化して表面に酸素欠陥型酸化亜鉛半導体Aを形成したものである。分離用絶縁体20は厚さ2mmの発砲ポリエチレン、絶縁層2は厚さ100μmフッ素樹脂板、薬剤分散基材層3は0.01NのKOHとヒトインシュリンを分散させた導電性ゲルである。中空絶縁体針4は絶縁体層2と同一素材で作られており、例えば熱可塑状態でフッ素樹脂をプレスして中空針に仕上げたものであり、絶縁体層2と一体化している。素子外に突出している中空針の長さは約1mm、外径は約150μm、内径は約80μmである。また、導電性鉱物8は厚さ30μmの金メッキ鉄フィルムである。メッキ層(金)の厚みは約3μmである。
【0018】
本実施例の経皮投薬用素子のサイズは例えば、25×25mm2である。この素子は、皮膚貼着前に一旦圧縮すると発砲ポリエチレンの絶縁体2がたわみ、同時に薬剤分散基材層3から導電性ゲルが中空絶縁体針4の中空部位まで滲みだしてくる。
次に素子を圧迫皮接後伴創膏等で貼付すると、前記発砲ポリエチレンが圧縮状態から解放されるため刺皮した中空絶縁体針4内部は負圧状態となり、果粒層以深まで到達している中空絶縁体針4の先端開口個所から体液が針内を上昇し、毛管現象も加わって針上部にまで浸入している導電性薬剤ゲルと接触する。この結果、導電性鉱物1→導電性鉱物8→薬剤分散基材層3→中空絶縁体針4内部→皮膚(内部を含む)→導電性鉱物1の閉回路が形成されて、金と酸化亜鉛をそれぞれ正負極とする化学電池による発電が惹起し、回路電流が流れる。
【0019】
ストレプトゾトシンを投与して予め高血糖化したヘアレスラットの背部に本実施例の経皮投薬用素子を装着し、60分、120分、180分、240分後にラット血中のグルコース濃度を測定した。
比較のために、図3で示した素子から絶縁体2及び中空絶縁体針4を除いた素子(それ以外は全く同じパターン、サイズ、材料で構成した経皮投薬用素子)を作成し、同様に高血糖化したヘアレスラット背部に装着して血中グルコース濃度の変化を調べた。
各群3匹として平均値をとったデータを図4に示す。いずれの場合もインシュリン投与前の血中グルコース濃度を100として規格化してある。240分経過後、本実施例においてもまた比較例においても皮膚損傷は確認されなかった。
【0020】
図4は、いずれの場合もインシュリンの経皮吸収が生じていることを示すが、比較例に比べて実施例の場合に著しいグルコース血中濃度の低下が短時間に得られることがわかる。また、比較例の場合は、相対血中グルコース濃度が投与前の50〜55%で飽和する傾向がみられ、長時間のインシュリン経皮投与によっても、必ずしも充分な治癒効果が得られないことを示唆している。これに対して、実施例の場合は、皮下注射に匹敵する効果が得られることがわかった。
即ち、主成分が6量体であり、分子量が15.000以上のヒトインシュリンの如き高分子薬剤も、本発明によれば、低電圧で効果的にイオントフォレシスできることがわかった。
【0021】
(その2)
ビーカーに0.05%NaCl(pH7.2)を満たし、その上にICRヌードマウス背部摘出皮膚膜を張ってin vitroのイオントフォレシスを行った。皮膚膜の下面は前記水溶液に接触しており、その上面に本発明の経皮投薬用素子を装荷した。本実施例においても図1のパターン、寸法の素子を用いたが、導電性鉱物1は厚さ30μmの金メッキ銅フィルム、薬剤分散基材層3は1%の塩化デカリニウム(Dequalinium Chloride)C3040Cl24を分散させた寒天ゲル、導電性鉱物8は厚さ30μmの錫メッキ鉄フィルムの表面を酸化させて表層にSnO2(n型半導体)を形成したもの、にそれぞれ変更した点が、前実施例の場合と異なっている。
本実施例の経皮投薬用素子は、中空絶縁体針4を穿皮する場合、皮膚膜を貫通して針が直接NaCl水溶液に接触しないよう特に注意した。
【0022】
また、比較例として、絶縁体層2及び中空絶縁体針4を除く以外は前記した本実施例の場合と全く同じ材料、パターン、サイズの経皮投薬用素子を作成し、別のヌードマウス摘皮膚膜に貼付した。
いずれの場合も実験用開始後ビーカー内の水溶液を経時的にサンプリングしてNaCl水溶液中の塩化デカリニウム濃度を測定した。1時間毎に測定したデータを、図5に示す。比較例に対して本実施例の場合非常に高い(約5.5倍)イオントフォレシス効果が示された。in vitroの場合、通電による皮膚の生理活性化がなく、従って経皮浸透の主要径路である毛穴や汗腺が開く効果が期待できない状況下でのイオントフォレシスであるため、比較例のように単に角質層上に貼付する場合は、in vivoの場合より薬剤イオンの浸透効率が低下する。しかるに本発明の場合は角質層より下のイオン伝導領域で体液(又は生理的食塩水などの擬似体液)を介して薬剤層にイオントフォレシスが惹起するので、高い浸透効率が保持されるのである。この高浸透効率は薬剤浸透径路のバリアが低下したためだけでなく、このために生じる起電力の内部損失低下により実質的に高い電界が薬剤イオンに印加されてドリフト速度が高まることによっても得られると考えられる。
このように本発明によれば、電気的に非常に高抵抗であり、且つキャパシタンスの大きな皮脂層や角質層の影響を実質的に除外してイオントフォレシスを行うことができるので、単に低電圧駆動で皮膚損傷を回避できるとか高い浸透効率が得られるというだけでなく、一方向電圧印加によって生ずるといわれる電気分極の影響を最小限に押さえることができる。
【0023】
(その3)
図6は、本発明の更に別の実施例における経皮投薬用素子の構造を示す図、(A)は底面図、(B)はM−M′断面図である。この素子は、図1に示した素子の導電性鉱物1と導電性鉱物8とを短絡する電気的経路、即ち外部導線80に、容量9とダイオード10の並列負荷を挿入している。このタイプの素子は皮接時に生ずる化学電池を電源とし、通電電流を単極性パルス化することができる(特願平8−24245号)。素子サイズは30×30mm2とした。
導電性鉱物1は、自由表面がメッキ処理して形成した金属亜鉛である厚さ30μmの鉄フィルムである。導電性鉱物8は、表面が白金メッキされた厚さ30μmの鉄フィルムである。分離用絶縁体20は発砲ポリウレタンで厚み3mm、絶縁体層2と中空絶縁体針4はポリカーボネート製である。針長は約1.5mmとなっている。薬剤分散基材層3は0.1%NaN3含有の硬質尿素クリームに2%のL−アスコルビン酸を分散させたものである。容量9は20pF、ダイオード10の逆耐圧は0.6Vである。
【0024】
HWY系ヘアレスラットの背部に導電性鉱物1を圧接すると共に中空絶縁体針4を穿皮して絆創膏で固定し、一定時間毎にビタミンCの血中濃度を調べた。血中濃度は一群3匹とし、その平均値をとった。素子装荷時、導電性鉱物1と導電性鉱物8との間で測定した起電圧のピーク値は0.85Vであり周波数300〜360Hgの鋸子状波パルス電流が観測された。
比較のために、図6の素子から絶縁体層2及び中空絶縁体針4のみを除き、それ以外は全く同じ材料、デザイン、サイズで構成した経皮投薬用素子を作成し、HWY系ヘアレスラットによるビタミンCのイオントフォレシスを行った。この場合も前記したと同様周波数300〜360Hzの鋸菌状波パルス電流が回路に流れた。
【0025】
本実施例と比較例で得られたビタミンCの皮下浸透濃度を経時的に示したのが図7である。本実施例及び比較例で用いたパルス周波数は、末梢神経シナプスの可塑性を高めて長期増強効果(LTP効果)を発揮し、以て皮膚の生理活性化を惹起する周波数帯に属する。図示してないが、同一材料、デザイン、サイズの直流型経皮投薬用素子(容量9とダイオード10から成る並列負荷をはずした中空絶縁体針4なしの従来型素子)を用いてビタミンCを投与すると、3時間装荷した場合比較例の約60%しか浸透していないことがわかった。
図7から本実施例の素子は比較例の素子の2倍以上高い浸透能力を示すことがわかる。また比較例では時間経過と共に血中濃度が飽和していく傾向が示された。これは皮膚表面のpHが経皮投与中に変化し、薬剤の等電点との差が小さくなった影響とも考えられる。しかるに本実施例では5時間経過後も飽和はみられず、皮膚表面のpH変化の影響が回避できる可能性を示している。
【0026】
以上の実施例を用いて本発明を詳しく述べたが、本発明は、上記実施例にとどまるものではない。例えば穿皮する中空絶縁体針は金属製とし、その外側を有機または無機の絶縁皮膜でコートしたものであってもよい。また、穿皮する深さも原理的には角質層まで穿皮すればよいので表面から0.5mm程度入れば最小限目的を達成することができる。しかし、深く穿皮する程薬剤の浸透速度が大きくなることも事実である。身体の深部に局所投与したい場合には、例えば押圧式の注射(含点滴)を用いると、穿刺する針径が太いので患者に苦痛を与えるが、本発明の方法によれば針径は鍼灸で用いられる程度の外径で済むため、患者の苦痛は大幅に軽減される。
また、生体電池起電力の大きさは基本的には、第1の導電性鉱物の自由表面を形成するAと第2の導電性鉱物の自由表面を形成するBとの電子親和力差によって決められるが、本発明によれば、上記した各実施例の場合より更に低い起電力しか惹起しないAとBの組み合わせを用いた場合でも高分子薬剤の浸透が可能となる。例えば、ヒトインシュリンの場合、生体電池の外部回路で測定してわずか0.1Vという低い電圧の経皮投薬用素子を用いた場合でも経皮投薬させうることが確かめられた。
通電電流をパルス化する電源として、上記実施例では生体電池を用いたが、勿論制御回路と共に外部電源を用いることも可能である。この場合には鋸菌状波パルス以外にも矩形波や三角波など様々な形状のパルスを用いうることはいうまでもない。また、針4の数を複数個としたが1個の例もありうる。また、針4のみを取り外し可能とするとか、絶縁層と針とを含めて取り外し可能とするとかの構造もある。更に、針4のある小領域(図3の21〜24)用の針つき絶縁体層を作っておき、これを分散基材層3の下部にはりつける如きやり方もある。更に、分離用絶縁体20をなくして一様な基材層3にしてもよい。但し、その際は、基材層3から薬剤が側部の外側に逃げないような側部の絶縁体だけは残しておく。
【0027】
【発明の効果】
以上述べたように、本発明によれば、皮膚に損傷を与えない程度の低起電力惹起の内部電源型イオントフォレシス素子を用いても、高分子薬剤を効率よく皮下浸透させうる。また、皮膚表面の物理的化学的作用、例えばpH変化の影響や皮脂層、角質層での薬剤の化学的変化の影響を極小に抑制しつつ薬剤を効果的に経皮吸収させうる。更に、正極/薬剤層/分離層/負極を積層ワンシート化したディスポーザブル内部電源型経皮投薬用素子において、極間分離が容易になり皮膚表面での極間接触による局所的通電停止事故を抑制することができて効率的な薬剤送達が可能となるという利点がある。
【図面の簡単な説明】
【図1】本発明の経皮投薬用素子を示す図である。
【図2】経皮投薬用素子の使用状況を示す図である。
【図3】本発明の実施の態様を示す図である。
【図4】実施例による薬剤皮内浸透効果を比較例の場合と対比して示した図である。
【図5】別の実施例による薬剤浸透速度を比較例の場合と対比して示した図である。
【図6】更に別の実施態様における経皮投薬用素子を示す図である。
【図7】図6の経皮投薬用素子による薬剤浸透速度を比較例の場合と対比して示した図である。
【符号の説明】
1 導電性鉱物
2 絶縁体層
3 薬剤分散基材層
4 中空絶縁体針
5 表皮領域
6 皮脂層/角質層
7 顆粒層/有棘層/基底層領域
8 導電性鉱物
9 容量
10 ダイオード
11 絆創膏
20 絶縁体
A、B 金属または半導体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an iontophoresis-type transdermal drug delivery device in which permeation drug ions are accelerated by electric field and permeated subcutaneously.
[0002]
[Prior art]
Transdermal medication has been developed as a desirable medication method because it has excellent blood concentration of the drug and local administration, and has a low patient burden. Among these, various penetration promoting methods are being studied because high molecular weight drugs are difficult to penetrate subcutaneously only by skin contact. Among them, iontophoresis is attracting attention as a promising method. Iontophoresis is a method in which soluble permeated drug ions are electrically biased and drawn into the skin, which is part of the current path, by accelerating the electric field, and mainly when pores, sweat glands, and sebaceous glands become osmotic pathways. It is considered. The case of DC electric field driving may be distinguished from iontophoresis, and the case of pulse electric field driving may be distinguished from electroporation. In electroporation, the idea is that a hole is opened in a cell membrane and a drug enters when a potential of a skin cell changes instantaneously.
[0003]
Since iontophoresis uses an electrophoretic phenomenon, application of an electric field or current is indispensable. In continuous administration, the skin under the energized electrode is often damaged. In particular, the higher the drug is, the more difficult it is to penetrate. Therefore, high electric field strength and high current density are required, and skin damage is likely to occur. In order to alleviate this, a pulse energization method has been generally used.
By the way, in order to perform these iontophoresiss, a power supply for a call is necessary, and power supply power (100V or 200V alternating current) has been often used in the past. However, miniaturization has gradually progressed in terms of convenience and safety, and in recent years, battery power drive has been performed. Necessary electric circuits are also integrated into an IC, and can be used as a portable device.
[0004]
On the other hand, so-called internal power source type iontophoresis, which attempts to penetrate the drug while generating electricity with the skin without using an external power source, has been proposed. For example, a metal salt with a high standard unipolar potential is contacted with a low metal at the same time to form an electrical closed circuit, and the difference in chemical potential is used to generate electricity. Specifically, examples of silver salts (silver electrodes) and Mg alloys are shown (Japanese Patent Application No. 59-59244). On the other hand, as a biological battery in which the redox reaction is continued by stably connecting the difference in chemical potential, a metal having a high standard monopolar potential and a metal having a low standard monopolar potential are used as electrodes, respectively. An internal power supply type iontophoresis element in which an anionic drug unrelated to the invention is arranged has been filed by the present applicant (Japanese Patent Application No. 1-150654). This method was further developed into a positive electrode / drug layer / separation layer / negative electrode laminated one-sheet disposable type (Japanese Patent Application No. 6-220193). In addition, skin power generation is achieved by improving the drug penetration efficiency by devising the shape of the skin electrode (indifferent electrode) and the appearance of a type that can be applied to both cation and anion drugs (Japanese Patent Application No. 8-310848). The application range of type iontophoresis has greatly expanded.
In this internal power supply type device, a pulse-type transdermal drug delivery device is made possible by utilizing a combination of an external capacitor and a diode (Japanese Patent Application No. 8-24245). In this pulse-type element, the pulse energization frequency band is distributed in the subcutaneous region, and the synaptic plasticity is increased by repeated micro-stimulation applied to the peripheral nerve synapse, resulting in long-term physiological activation of the skin in the region. By setting the enhancement effect inducing region, there is an advantage that the drug uptake efficiency can be further promoted.
[0005]
[Problems to be solved by the invention]
Among the iontophoretic transdermal dosing elements described above, in the external power supply method, the power supply circuit, the control circuit, the circuit part such as the pulse circuit, and the power supply part form a factor of cost increase. In addition, since the transdermal administration device having these electric circuits belongs to an electronic device, it is necessary to obtain approval for a medical device when put into practical use. On the other hand, since the drug to be loaded requires the approval of the medicine, the approval across both fields is required, which is a big obstacle to practical use.
Further, in the external power supply system, even if the overcurrent is prevented by the control circuit, the pH change due to the reducing action generated under the electrode on the living body skin cannot be relieved, and it is difficult to avoid skin damage. This tendency is particularly remarkable in the direct current type.
[0006]
On the other hand, even in the internal power supply system, the combination of a metal salt with a high standard unipolar potential (positive electrode) and a low metal (negative electrode) cannot prevent the hydroxylation reaction of the negative electrode, and the negative electrode deteriorates rapidly. There is a big problem that the electromotive force cannot be maintained.
In the internal power supply method, the maximum electromotive force is determined in principle by the difference in electron affinity between the two substances constituting the positive and negative electrodes. However, the electrolyte effect is small compared to the external power supply method, so naturally the maximum electromotive force that can be used is small. However, when percutaneous drugs with large molecular weights such as peptides and proteins are administered transdermally, there are many drugs that cannot obtain an effective osmotic concentration due to insufficient electromotive force in the internal power supply system.
[0007]
An object of the present invention is to provide an iontophoresis-type transdermal drug delivery device capable of effectively infiltrating a permeation drug having a large molecular weight subcutaneously even when an internal power source (biological battery) having a relatively low electromotive force is used. It is.
[0008]
[Means for Solving the Problems]
  The present inventionA drug layer in which a permeation drug is dispersed on a gel-like substrate or a plastic substrate;,
  Laminated on this drug layer, the surface opposite to the drug layer is a skin contact surface, and an insulating layer having a through-hole,
  A hollow insulator needle that is inserted through the through-hole of this insulating layer, one end of both open ends is in contact with the drug layer, and the other end protrudes outside the insulating layer;
  the aboveProvided on the skin contact surface of the insulation layer,Made of metal or semiconductor A that forms part of the skin contact surface,A first conductive mineral having a free surface;
  A second conductive mineral that is provided in contact with the drug layer and is electrically connected to the first conductive mineral and is made of a metal or semiconductor B having an electron affinity different from A, and has a free surface;
  Consisting of
  The insulating layer changes its volume when pressed against the region including the drug layer when contacting the element, whereby an iontophoresis-type transdermal drug is applied so that the hollow portion of the hollow insulator needle is at a negative pressure. An element is disclosed.
[0009]
  Furthermore, the present invention providesA drug layer in which a permeation drug is dispersed on a gel-like substrate or a substrate such as plastic,
  Laminated on this drug layer, the surface opposite to the drug layer is a skin contact surface, and an insulating layer having a through-hole,
  A hollow insulator needle that is inserted through the through-hole of this insulating layer, one end of both open ends is in contact with the drug layer, and the other end protrudes outside the insulating layer;
  the aboveProvided on the skin contact surface of the insulation layer,Made of metal or semiconductor A that forms part of the skin contact surface,A first conductive mineral having a free surface;
  A second conductive mineral that is provided in contact with the drug layer and is electrically connected to the first conductive mineral and is made of a metal or semiconductor B having an electron affinity different from A, and has a free surface;
  Consisting of
  An insulating layer is provided on the side surface of the drug layer, and the volume of the insulating layer is changed by pressing the region including the drug layer when the element is in contact with the element so that the hollow portion of the hollow insulator needle is negatively pressured. An iontophoretic transdermal dosage element is disclosed.
[0010]
  Furthermore, the present invention discloses a transdermal administration device in which a hollow portion of the hollow insulator needle is filled with a conductive liquid in advance.
[0011]
  According to the present invention, the bodily fluid and the permeated drug are conductively contacted by the negative pressure action in the hollow insulator needle by puncturing the hollow insulator needle to a depth below the epidermal granule layer. In use, when the first conductive mineral touches, a biological battery is formed, and the first conductive mineral → second conductive mineral → drug layer → intradermal → close of the first conductive mineral A current flows through the circuit, and drug ions dispersed in the drug layer selectively and rapidly permeate into the skin through the conductive liquid (body fluid) filled in the hollow insulator needle by the iontophoresis effect.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view showing an example of an iontophoretic element for transdermal administration of the present invention. This element includes a drug-dispersed substrate layer 3, a second conductive mineral layer 8 provided thereon, an insulator layer 2 provided thereunder, and a part of the skin contact surface of the insulator layer 2. The first conductive mineral layer 1 provided on the substrate, the plurality of (four in the figure) hollow insulator needles 4 (4A to 4D) provided on the insulator layer 2, and the insulation that subdivides the base material layer 3 It consists of the body 20 (the end insulator in it has the function of external shielding). The first and second conductive mineral layers 1 and 8 are electrically connected (lead wires or both are in direct contact) as indicated by dotted lines.
One end of the hollow insulator needle 4 is connected to the lower part of the drug dispersion base material layer 3 and the other end protrudes to the outside. The protruding length of the needle 4 is a system length from the surface of the skin to the granule layer / spine layer / basal layer through the sebum layer and the stratum corneum, and is, for example, 1 to 2 mm. The drug dispersion base layer 3 is filled with a drug to be inserted into the body. The drug dispersion base material layer 3 is a layer having a permeation drug inside, and the drug gel itself is encapsulated or dispersed in plastic or the like. The bottom layer 2A is made of a penetrating material that can be opened or a drug gel can be taken in and out. This bottom layer 2A is connected to the inside of the hollow insulator needle 4 via a liquid.
The first and second conductive mineral layers 1 and 8 each have at least a free surface made of a metal or a semiconductor A or B, and the second conductive mineral 8 is an electron different from the first conductive mineral 1. Choose to have a good affinity.
FIG. 2 shows a state of using the device of FIG. The epidermis region is drawn larger than the actual magnification. After this element is pressed against the skin surface, the needle 4 is punctured in any layer of the subepidermal region 7 composed of a granular layer / spinned layer / basal layer. Reference numeral 6 denotes an upper skin region composed of a sebum layer and a stratum corneum. The region 7 is a region existing in the lower part (deep part) of the region 6.
[0013]
The perforated hollow insulator needle 4 penetrates at least the upper epidermis region (sebum layer / keratin layer) 6 and is deeper than the granule layer of the epidermis region 5, that is, the subepidermal region (granular layer / spinous layer / basal layer). 7 has been reached. The depth of skin penetration is at most 1 to 2 mm. Therefore, there is a feature that only a slight pain is felt at the time of skin penetration, and the patient is not sustained during use.
The hollow insulator needle 4 is pre-filled with a conductive liquid, for example, physiological saline before percutaneous, or the pressure changes at the interface 2A between the drug dispersion base material layer 3 and the insulator layer 2 at the time of percutaneous. The hollow insulator needle 4 is generated so as to have a negative pressure. As a result, as shown in the figure, the body fluid rises in the hollow insulator needle 4 by the capillary action from the region deeper than the granule layer of the epidermis. Body fluids have ionic conductivity properties. As a result, the drug-dispersed substrate layer 3 and the ion conductive body fluid come into contact with each other through the hollow insulator needle 4.
The epidermal region 5 is divided into two regions according to physical properties. The upper epidermis region (sebum layer / keratin layer) 6 is electrically extremely high resistance (several hundred KΩ to several MΩ), and the conductive component is mainly contained in the stratum corneum when sweat is not distributed on the surface. It is moisture. On the other hand, the subepidermal region (granular layer / spinous layer / basal layer) 7 has an electrically low resistance (several hundred Ω or less), and the conductive component is an ionic fluid that moistens cells. Ionic body fluids also contain water, but extravasating blood components such as leukocytes and lymph are also important components.
[0014]
When the conductive mineral 1 is touched simultaneously with the perforation of the hollow insulator needle 4, an electrical closed circuit (mineral 1 → mineral 8 → drug-dispersed base material layer 3 → needle) is formed between the transdermal dosage element and the skin. 4 inside → inside skin → skin → mineral 1) is formed, an electromotive force is generated due to the difference in electron affinity between the metal or semiconductor A and B, and a circuit current flows. The perforated hollow insulator needle 4 forms an artificial pore, so to speak, unlike an organism-derived pore, the internal electrical resistance is remarkably small, so that the circuit current locally flows through this path. That is, the penetration of the drug into the skin by iontophoresis is selectively performed through the inside of the hollow insulator needle 4. The above-mentioned electromotive force due to the difference in electron affinity between A and B is limited to at most 1.5 to 2 volts in consideration of cost, safety and stability. In the case of normal percutaneous absorption, many polymer drugs that require transdermal medication such as peptides and proteins due to the potential drop due to the high resistance sebum layer and stratum corneum and the effect of blocking foreign body penetration It is difficult to ensure an effective blood concentration. However, with the apparatus of the present invention, a sufficient amount of penetration is possible.
[0015]
According to the method of the present invention, it is possible to transdermally administer some drugs that are decomposed in the epidermis region, particularly the sebum layer and the stratum corneum, such as dexamethasone and prostaglandin. The hollow insulator needle 4 can be deeply pierced to the dermis and subcutaneous tissue as necessary. The hollow insulator needle 4 made of hard resin or the like is, of course, sealed in a sterilized state before use and has an outer diameter of about 0.1 to 0.2 mmΦ. Since the puncture is usually performed only to a depth of 1 to 2 mm at most, the patient feels almost no pain, and when the transdermal dosage element is removed from the skin after use, the skin at the puncture site is again without bleeding. Since it is closed, virus infection can be prevented. Therefore, it can be affixed to the skin of various parts of the body surface except in the special case of deep puncture.
[0016]
The permeation drug comes into contact with the living body only through the conductive body fluid filling the inside of the needle 4. Since the outer portion of the needle is insulative, the separation of the conductive mineral 1 and the drug-dispersed substrate layer 3 at the skin site is much easier than the conventional laminated one-sheet type element that does not use the hollow insulator needle 4. become. Therefore, even if the device is used continuously for a long time, the conductive mineral 1 and the drug-dispersed base material layer 3 are short-circuited on the skin during use to stop power generation and prevent an accident that iontophoresis does not occur. it can. Such accidents have been observed with conventional laminated one-sheet type elements when the skin surface is significantly sweated or the gel of the drug dispersion base material softens.
[0017]
Hereinafter, the present invention will be described in more detail with reference to specific examples.
(Part 1)
FIG. 3 shows a schematic structure of a transdermal administration device according to an embodiment. FIG. 3A is a bottom view (a bottom view seen from the skin contact side), and FIG. 3B is a cross-sectional view. In the figure, 1 is a first conductive mineral, 2 is an insulator layer, 20 is a separation insulator for subdividing the substrate layer 3, 3 is a drug-dispersed substrate layer, 4 is a hollow insulator needle, Reference numeral 8 denotes a second conductive mineral. Further, in FIG. 3, a positive electrode / drug layer / separation layer / negative electrode was formed as a disposable internal power supply type transdermal administration element in a single sheet. In this embodiment, the separation between the electrodes is facilitated, and a local energization stop accident due to the contact between the electrodes on the skin surface can be suppressed, thereby enabling efficient drug delivery.
The conductive mineral 1 is composed of six substantially L-shaped stripe pieces 1A to 1F provided on the insulator 2, and each stripe piece 1A to 1F is connected to the conductive mineral 8 on the back surface. The four insulating layers 21 to 24 surrounded by the stripe pieces 1A to 1F and divided by the insulating layer 20 have six hollow insulator needles 4 regularly arranged vertically and horizontally. The cross section is as shown in FIG. The conductive mineral 1 is obtained by oxidizing the surface of a galvanized iron film having a thickness of 30 μm to form an oxygen-deficient zinc oxide semiconductor A on the surface. The separating insulator 20 is a foamed polyethylene having a thickness of 2 mm, the insulating layer 2 is a fluororesin plate having a thickness of 100 μm, and the drug-dispersing base layer 3 is a conductive gel in which 0.01 N KOH and human insulin are dispersed. The hollow insulator needle 4 is made of the same material as that of the insulator layer 2. For example, the hollow insulator needle 4 is formed by pressing a fluororesin in a thermoplastic state to finish the hollow needle, and is integrated with the insulator layer 2. The length of the hollow needle protruding outside the element is about 1 mm, the outer diameter is about 150 μm, and the inner diameter is about 80 μm. The conductive mineral 8 is a gold-plated iron film having a thickness of 30 μm. The thickness of the plating layer (gold) is about 3 μm.
[0018]
The size of the device for transdermal administration of this example is, for example, 25 × 25 mm.2It is. When this element is compressed once before being attached to the skin, the foamed polyethylene insulator 2 bends, and at the same time, the conductive gel oozes from the drug-dispersed substrate layer 3 to the hollow portion of the hollow insulator needle 4.
Next, when the element is attached with an adhesive bandage after contact with the pressure skin, the foamed polyethylene is released from the compressed state, so that the inside of the hollow insulator needle 4 which has been stabbed is in a negative pressure state and reaches deeper than the grain layer. The body fluid rises in the needle from the tip opening portion of the hollow insulator needle 4 and comes into contact with the conductive drug gel that has penetrated to the upper part of the needle due to capillary action. As a result, a closed circuit of conductive mineral 1 → conductive mineral 8 → drug dispersed base material layer 3 → hollow insulator needle 4 inside → skin (including the inside) → conductive mineral 1 is formed, and gold and zinc oxide Power generation by a chemical battery having positive and negative electrodes, respectively, causes a circuit current to flow.
[0019]
The transdermal dosing element of this example was attached to the back of a hairless rat that had been hyperglycemic in advance by administering streptozotocin, and the glucose concentration in the rat blood was measured 60 minutes, 120 minutes, 180 minutes, and 240 minutes later.
For comparison, an element obtained by removing the insulator 2 and the hollow insulator needle 4 from the element shown in FIG. 3 (other elements for transdermal administration composed of exactly the same pattern, size, and material) was prepared. A change in blood glucose concentration was examined by wearing it on the back of hairless rats with high blood sugar.
The data which took the average value as 3 animals in each group are shown in FIG. In either case, the blood glucose concentration before insulin administration is normalized to 100. After 240 minutes, no skin damage was observed in this example or the comparative example.
[0020]
FIG. 4 shows that percutaneous absorption of insulin occurs in any case, but it can be seen that a significant decrease in glucose blood concentration can be obtained in a shorter time than in the comparative example. In the case of the comparative example, the relative blood glucose concentration tends to saturate at 50 to 55% before administration, and a sufficient healing effect cannot always be obtained even by prolonged insulin transdermal administration. Suggests. On the other hand, in the case of the Example, it turned out that the effect equivalent to subcutaneous injection is acquired.
That is, it was found that a polymer drug such as human insulin having a main component of hexamer and a molecular weight of 15,000 or more can also be effectively iontophoresed at a low voltage according to the present invention.
[0021]
(Part 2)
A beaker was filled with 0.05% NaCl (pH 7.2), and an ICR nude mouse dorsal skin was placed on the beaker for in vitro iontophoresis. The lower surface of the skin membrane was in contact with the aqueous solution, and the transdermal dosing element of the present invention was loaded on the upper surface. In this embodiment, the element having the pattern and dimensions shown in FIG. 1 was used. The conductive mineral 1 was a 30 μm-thick gold-plated copper film, and the drug-dispersed substrate layer 3 was 1% Decalinium Chloride C.30H40Cl2NFourThe agar gel and the conductive mineral 8 in which the surface of the tin-plated iron film having a thickness of 30 μm is oxidized to form SnO on the surface layer.2The difference from the previous embodiment is that the n-type semiconductor is formed.
In the transdermal drug delivery device of this example, when the hollow insulator needle 4 was punctured, special care was taken not to penetrate the skin membrane and directly contact the NaCl aqueous solution.
[0022]
As a comparative example, an element for transdermal administration having the same material, pattern, and size as those in the above-described embodiment except for the insulator layer 2 and the hollow insulator needle 4 was prepared, and another nude mouse was removed. Affixed to the skin membrane.
In either case, the aqueous solution in the beaker was sampled over time after the start of the experiment, and the concentration of decalinium chloride in the aqueous NaCl solution was measured. Data measured every hour is shown in FIG. Compared with the comparative example, this example showed a very high (about 5.5 times) iontophoresis effect. In the case of in vitro, there is no physiological activation of the skin due to energization, and therefore iontophoresis in a situation where the effect of opening pores and sweat glands, which are the main pathways of percutaneous penetration, cannot be expected. When applied on the stratum corneum, the penetration efficiency of drug ions is lower than in vivo. However, in the case of the present invention, iontophoresis is induced in the drug layer via a body fluid (or a simulated body fluid such as physiological saline) in the ion conduction region below the stratum corneum, so that high penetration efficiency is maintained. . This high penetration efficiency can be obtained not only because the barrier of the drug permeation path is lowered, but also because the substantially higher electric field is applied to the drug ions due to the lower internal loss of the electromotive force generated thereby, and the drift velocity is increased. Conceivable.
As described above, according to the present invention, iontophoresis can be performed by substantially excluding the influence of the sebum layer and the stratum corneum having a very high electrical resistance and a large capacitance. Not only can skin damage be avoided by driving and high penetration efficiency can be obtained, but also the influence of electrical polarization, which is said to be caused by application of a unidirectional voltage, can be minimized.
[0023]
(Part 3)
6A and 6B are views showing the structure of a transdermal drug delivery device in still another embodiment of the present invention, FIG. 6A is a bottom view, and FIG. 6B is a cross-sectional view taken along line MM ′. In this element, a parallel load of a capacitor 9 and a diode 10 is inserted in an electrical path for short-circuiting the conductive mineral 1 and the conductive mineral 8 of the element shown in FIG. This type of element uses a chemical battery generated at the time of skin contact as a power source, and the energization current can be converted into a unipolar pulse (Japanese Patent Application No. 8-24245). Element size is 30x30mm2It was.
The conductive mineral 1 is an iron film having a thickness of 30 μm, which is metallic zinc formed by plating the free surface. The conductive mineral 8 is an iron film having a thickness of 30 μm and having a surface plated with platinum. The insulator 20 for separation is a foamed polyurethane with a thickness of 3 mm, and the insulator layer 2 and the hollow insulator needle 4 are made of polycarbonate. The needle length is about 1.5 mm. The drug-dispersed substrate layer 3 is 0.1% NaNThree2% L-ascorbic acid is dispersed in the contained hard urea cream. The capacitor 9 is 20 pF, and the reverse breakdown voltage of the diode 10 is 0.6V.
[0024]
The conductive mineral 1 was pressed against the back of the HWY hairless rat, the hollow insulator needle 4 was perforated and fixed with a bandage, and the blood concentration of vitamin C was examined at regular intervals. The blood concentration was 3 per group, and the average value was taken. When the element was loaded, the peak value of the electromotive voltage measured between the conductive mineral 1 and the conductive mineral 8 was 0.85 V, and a sawtooth wave pulse current having a frequency of 300 to 360 Hg was observed.
For comparison, except for the insulator layer 2 and the hollow insulator needle 4 except for the insulator layer 2 and the hollow insulator needle 4, an element for transdermal administration composed of exactly the same material, design and size was prepared, and the HWY hairless rat Vitamin C iontophoresis was carried out. In this case as well, a sawtooth wave pulse current having a frequency of 300 to 360 Hz flowed through the circuit as described above.
[0025]
FIG. 7 shows the subcutaneous penetration concentration of vitamin C obtained in this example and the comparative example over time. The pulse frequency used in this example and the comparative example belongs to a frequency band that enhances the plasticity of peripheral nerve synapses and exhibits a long-term potentiating effect (LTP effect), thereby causing physiological activation of the skin. Although not shown in the figure, vitamin C can be obtained using a direct current type transdermal medication device (conventional device without a hollow insulator needle 4 with a parallel load consisting of a capacitor 9 and a diode 10) of the same material, design and size. When administered, it was found that only about 60% of the comparative example penetrated when loaded for 3 hours.
It can be seen from FIG. 7 that the device of this example exhibits a penetration capability that is at least twice as high as that of the device of the comparative example. In the comparative example, the blood concentration saturated with time. This is also considered to be the effect that the pH of the skin surface changed during transdermal administration, and the difference from the isoelectric point of the drug became smaller. However, in this example, no saturation was observed even after 5 hours, indicating the possibility of avoiding the influence of pH change on the skin surface.
[0026]
Although the present invention has been described in detail using the above embodiments, the present invention is not limited to the above embodiments. For example, the hollow insulator needle to be punctured may be made of metal and the outside thereof may be coated with an organic or inorganic insulating film. Further, in principle, the depth to be punctured should be punctured up to the stratum corneum, so that the minimum purpose can be achieved by entering about 0.5 mm from the surface. However, it is also true that the penetration rate of the drug increases as the skin is deeply penetrated. When it is desired to administer locally to the deep part of the body, for example, when a pressure injection (instillation drip) is used, the diameter of the needle to puncture is painful to the patient, but according to the method of the present invention, the needle diameter is Because only the outer diameter used is sufficient, the patient's pain is greatly reduced.
The magnitude of the bioelectromotive force is basically determined by the difference in electron affinity between A that forms the free surface of the first conductive mineral and B that forms the free surface of the second conductive mineral. However, according to the present invention, even when a combination of A and B that causes only a lower electromotive force than in the above-described embodiments is used, it is possible to penetrate the polymer drug. For example, in the case of human insulin, it has been confirmed that transdermal administration can be performed even when a transdermal administration element having a voltage as low as 0.1 V as measured by an external circuit of a biological battery is used.
In the above embodiment, the biological battery is used as the power source for pulsing the energization current. However, it is of course possible to use an external power source together with the control circuit. In this case, it goes without saying that various shaped pulses such as a rectangular wave and a triangular wave can be used in addition to the sawtooth wave pulse. Further, although the number of needles 4 is plural, there may be one example. There are also structures such that only the needle 4 can be removed, or the insulating layer and the needle can be removed. Further, there is a method in which an insulator layer with needles for a small region (21 to 24 in FIG. 3) with the needles 4 is made and this is adhered to the lower part of the dispersion base material layer 3. Further, the separating insulator 20 may be eliminated to form a uniform base material layer 3. However, in that case, only the insulator on the side portion from which the drug does not escape from the base material layer 3 to the outside of the side portion is left.
[0027]
【The invention's effect】
As described above, according to the present invention, a polymer drug can be efficiently permeabilized subcutaneously even when an internal power-source iontophoresis element with low electromotive force that does not damage the skin is used. In addition, the drug can be effectively percutaneously absorbed while minimizing the influence of the physical and chemical action on the skin surface, for example, the influence of pH change and the chemical change of the drug in the sebum layer and stratum corneum. Furthermore, in a disposable internal power supply type transdermal drug delivery device that has a positive electrode / drug layer / separation layer / negative electrode layered into a single sheet, separation between the electrodes is facilitated, and local energization interruption due to contact between the electrodes on the skin surface is suppressed. There is an advantage that efficient drug delivery is possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing an element for transdermal administration of the present invention.
FIG. 2 is a diagram showing a use state of a transdermal administration element.
FIG. 3 is a diagram showing an embodiment of the present invention.
FIG. 4 is a diagram showing the effect of penetration into a drug skin according to an example as compared with the case of a comparative example.
FIG. 5 is a graph showing the drug penetration rate according to another example in comparison with the comparative example.
FIG. 6 is a diagram showing an element for transdermal administration in still another embodiment.
7 is a graph showing the drug penetration rate by the transdermal administration device of FIG. 6 in comparison with the comparative example.
[Explanation of symbols]
1 Conductive mineral
2 Insulator layer
3 Drug dispersion base material layer
4 Hollow insulator needle
5 Epidermis area
6 Sebum layer / stratum corneum
7 Granule layer / spiny layer / basal layer region
8 Conductive minerals
9 capacity
10 Diode
11 Bandage
20 Insulator
A, B Metal or semiconductor

Claims (6)

被浸透薬剤をゲル状の基材又はプラスチック等の基材に分散させた薬剤層と
この薬剤層に積層され、薬剤層と反対側の面が皮接面となり、かつ貫通孔を有する絶縁層と、
この絶縁層の貫通孔に挿通し、両側開放端の一端が上記薬剤層に接し、他端が絶縁層より外側に突出した中空絶縁体針と、
上記絶縁層の皮接面に設けられ皮接面の一部をなす金属または半導体Aから成り自由表面を有する第1の導電性鉱物と、
上記薬剤層に接して設けられ、かつ第1の導電性鉱物と電気的につながり、前記Aとは異なる電子親和力を有する金属または半導体Bから成り、自由表面を有する第2の導電性鉱物と、
より成ると共に、
上記絶縁層は、素子皮接時に薬剤層を含む領域への押圧によって体積変化するものとし、これによって前記中空絶縁体針の中空部位を負圧になるようにしたイオントフォレシス型の経皮投薬素子。
A drug layer in which a permeation drug is dispersed on a gel-like base material or a base material such as plastic ,
Laminated on this drug layer, the surface opposite to the drug layer is a skin contact surface, and an insulating layer having a through-hole,
A hollow insulator needle that is inserted through the through-hole of this insulating layer, one end of both open ends is in contact with the drug layer, and the other end protrudes outside the insulating layer;
Provided in the skin contact surface of the insulating layer, made of a metal or semiconductor A forms part of skin contact surface, a first conductive mineral having a free surface,
A second conductive mineral that is provided in contact with the drug layer and is electrically connected to the first conductive mineral and is made of a metal or semiconductor B having an electron affinity different from A, and has a free surface;
Consisting of
The insulating layer changes its volume when pressed against the region including the drug layer when contacting the element, whereby an iontophoresis-type transdermal drug is applied so that the hollow portion of the hollow insulator needle is at a negative pressure. element.
被浸透薬剤をゲル状の基材又はプラスチック等の基材に分散させた薬剤層と、
この薬剤層に積層され、薬剤層と反対側の面が皮接面となり、かつ貫通孔を有する絶縁層と、
この絶縁層の貫通孔に挿通し、両側開放端の一端が上記薬剤層に接し、他端が絶縁層より外側に突出した中空絶縁体針と、
上記絶縁層の皮接面に設けられ皮接面の一部をなす金属または半導体Aから成り自由表面を有する第1の導電性鉱物と、
上記薬剤層に接して設けられ、かつ第1の導電性鉱物と電気的につながり、前記Aとは異なる電子親和力を有する金属または半導体Bから成り、自由表面を有する第2の導電性鉱物と、
より成ると共に、
上記薬剤層の側面に絶縁層を設け、この絶縁層は素子皮接時に薬剤層を含む領域への押圧によって体積変化するものとし、これによって中空絶縁体針の中空部位を負圧にするようにしたイオントフォレシス型の経皮投薬素子。
A drug layer in which a permeation drug is dispersed on a gel-like substrate or a substrate such as plastic,
Laminated on this drug layer, the surface opposite to the drug layer is a skin contact surface, and an insulating layer having a through-hole,
A hollow insulator needle that is inserted through the through-hole of this insulating layer, one end of both open ends is in contact with the drug layer, and the other end protrudes outside the insulating layer;
Provided in the skin contact surface of the insulating layer, made of a metal or semiconductor A forms part of skin contact surface, a first conductive mineral having a free surface,
A second conductive mineral that is provided in contact with the drug layer and is electrically connected to the first conductive mineral and is made of a metal or semiconductor B having an electron affinity different from A, and has a free surface;
Consisting of
An insulating layer is provided on the side surface of the drug layer, and the volume of the insulating layer is changed by pressing the region including the drug layer when the element is in contact with the element so that the hollow portion of the hollow insulator needle is negatively pressured. Iontophoresis type transdermal dosage element.
前記中空絶縁体針の中空部位に、あらかじめ導電性液を充填させて成る請求項1または2記載の経皮投薬素子。  The transdermal administration element according to claim 1 or 2, wherein the hollow portion of the hollow insulator needle is filled with a conductive liquid in advance. 前記被浸透薬剤が陰イオンからなる有効成分をもつ場合には第1の導電性鉱物が第2の導電性鉱物より低い電子親和力を持つ金属または半導体であり、前記被浸透薬剤が陽イオンからなる有効成分をもつ場合には第1の導電性鉱物が第2の導電性鉱物より高い電子親和力を持つ金属または半導体である請求項1または2または3記載の経皮投薬素子。  When the permeation agent has an active ingredient composed of an anion, the first conductive mineral is a metal or semiconductor having a lower electron affinity than the second conductive mineral, and the permeation agent is composed of a cation. 4. The transdermal dosage element according to claim 1, wherein the first conductive mineral is a metal or semiconductor having an electron affinity higher than that of the second conductive mineral when having an active ingredient. 前記中空体針が穿皮時に表皮領域の顆粒層乃至基底層以遠に達する程度の長さを有して成る請求項1または2または3または4記載の経皮投薬素子。  5. The transdermal dosage element according to claim 1, 2 or 3 or 4, wherein the hollow body needle has a length enough to reach beyond the granular layer or basal layer of the epidermis region at the time of puncturing. 前記第1の導電性鉱物と第2の導電性鉱物とを非皮接領域においてつなげる電気系路上に、通電電流をパルス化するための電気手段を追加して成る請求項1または2または3記載の経皮投薬素子。  4. An electric means for pulsing an energizing current is additionally provided on an electric system path connecting the first conductive mineral and the second conductive mineral in a non-contact area. Transdermal dosing element.
JP32145797A 1997-11-21 1997-11-21 Iontophoresis element for transdermal administration Expired - Lifetime JP4182555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32145797A JP4182555B2 (en) 1997-11-21 1997-11-21 Iontophoresis element for transdermal administration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32145797A JP4182555B2 (en) 1997-11-21 1997-11-21 Iontophoresis element for transdermal administration

Publications (2)

Publication Number Publication Date
JPH11151303A JPH11151303A (en) 1999-06-08
JP4182555B2 true JP4182555B2 (en) 2008-11-19

Family

ID=18132788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32145797A Expired - Lifetime JP4182555B2 (en) 1997-11-21 1997-11-21 Iontophoresis element for transdermal administration

Country Status (1)

Country Link
JP (1) JP4182555B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419717B (en) * 2005-06-17 2013-12-21 Altea Therapeutics Corp Permeant delivery system and methods for use thereof
US7996077B2 (en) * 2006-09-06 2011-08-09 Encore Medical Asset Corporation Iontophoresis apparatus and method

Also Published As

Publication number Publication date
JPH11151303A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
US6591133B1 (en) Apparatus and methods for fluid delivery using electroactive needles and implantable electrochemical delivery devices
EP2788075B1 (en) Device for reducing patient transthoracic impedance
AU2002363106B2 (en) Device and method for controlled delivery of active substance into the skin
US5983131A (en) Apparatus and method for electroporation of tissue
US9101778B2 (en) Device and method for reducing patient transthoracic impedance for the purpose of delivering a therapeutic current
JP4262410B2 (en) Electrical transmission electrode assembly with low initial resistance
US7315758B2 (en) Transdermal delivery of therapeutic agent
US5167616A (en) Iontophoretic delivery method
JPH09215755A (en) Skin contact treating implement
US8343147B2 (en) Electrolytic tissue treatment
US20070185432A1 (en) Electrokinetic system and method for delivering methotrexate
JP2005506158A (en) Transdermal patch
JP2004523308A (en) Tissue electroporation for improved drug delivery and diagnostic sampling
AU2002363106A1 (en) Device and method for controlled delivery of active substance into the skin
CA2606038A1 (en) Dc tissue treatment
EP1355697A1 (en) Apparatus and methods for fluid delivery using electroactive needles and implantable electrochemical delivery devices
JP4182555B2 (en) Iontophoresis element for transdermal administration
JP2002282371A (en) Low voltage drive type ionophoretic element
JP3566346B2 (en) Transdermal drug delivery device
CN219517546U (en) Transdermal drug delivery device
JP4126110B2 (en) Transdermal dosing element
JP2016002368A (en) Percutaneous drug delivery system
KR20230099191A (en) Biodegradable metallic microneedle patch electrodes for enhanced transdermal drug delivery
JPH02255020A (en) Plant iontophoresis system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term