JP4181897B2 - Multilayer wiring board with built-in semiconductor device and manufacturing method thereof - Google Patents

Multilayer wiring board with built-in semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4181897B2
JP4181897B2 JP2003049663A JP2003049663A JP4181897B2 JP 4181897 B2 JP4181897 B2 JP 4181897B2 JP 2003049663 A JP2003049663 A JP 2003049663A JP 2003049663 A JP2003049663 A JP 2003049663A JP 4181897 B2 JP4181897 B2 JP 4181897B2
Authority
JP
Japan
Prior art keywords
semiconductor device
wiring
base material
thermoplastic resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003049663A
Other languages
Japanese (ja)
Other versions
JP2004259984A (en
Inventor
紳月 山田
秀次 鈴木
礼郎 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2003049663A priority Critical patent/JP4181897B2/en
Publication of JP2004259984A publication Critical patent/JP2004259984A/en
Application granted granted Critical
Publication of JP4181897B2 publication Critical patent/JP4181897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置内蔵多層配線基板及びその製造方法に関し、特に、半導体装置を搭載した配線基材を含む複数の配線基材を積層してなる高密度かつ超小型の3次元実装モジュールに用いて好適な半導体装置内蔵多層配線基板及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、プリント積層板やセラミック積層板等の基板上に、抵抗、キャパシタなどの受動部品の他に、小型半導体パッケージ、半導体ベアチップ、FBGA(fine pitch ball grid array)等の小型能動部品を実装することにより、基板における部品の実装密度を向上させ、電子装置の小型化、軽量化、薄型化を図った表面実装法が実用化されている。この表面実装法は、各部品の大きさを小型化しようとするものである。
また、部品の実装密度をさらに向上させるために、半導体装置を3次元的に積み上げる3次元実装技術を用いた3次元実装モジュールも開発されている。この3次元実装モジュールは、上述した表面実装法によっても配置しきれない部品、とりわけ、部品サイズの大きい半導体装置を立体的に配置し、あるいは、基板内部に入れ込んで、実装密度を高めようとするものである。
【0003】
上記の3次元実装技術は、機器の小型化だけではなく、コンピュータや通信機器などの高速化にも寄与する技術として、最近特に注目されている技術である。例えば、通信機器においては、今後、撮像素子を用いた動画通信機能、Bluetoothのインターフェース機能、GPS機能等が搭載されることが見込まれており、部品点数の増加をともなう多機能化が積極的に押し進められ、実装技術の高密度化を牽引していくものである。特に、小型半導体装置である半導体チップを3次元的に積層して配線すれば、配線長を短くすることができ、高速信号を伝送することができるようにもなるために、3次元実装技術の採用は不可欠である。
【0004】
3次元実装技術には、大きく分けて2種類の技術がある。
一つはプリント配線基板上や内部に部品を積層する3次元実装モジュール等についての技術であるが、3次元実装モジュール等を採用する機器メーカが専用実装機の研究開発を進める必要があることから、殆ど普及していない。
もう一つはパッケージ内で半導体チップを積層する3次元実装パッケージについての技術であり(例えば、非特許文献1参照)、3次元実装パッケージ等を製造する電気メーカーにとっては、半導体チップの種類や個数、積層する配線基板の枚数が他社との差別化要因になることと、同一の形状であっても、多種多様の機能を発揮することができることのために、LSIメーカーが開発に本腰を入れ始めている。
【0005】
この3次元実装パッケージは、耐熱性樹脂からなる絶縁基板に導体配線を形成することにより複数種の配線基板を作製し、これらの配線基板のうち1つ以上に半導体チップ(半導体装置)を搭載して半導体チップ搭載配線基板とし、これらの配線基板を積層し、熱圧着により融着一体化することで作製される(例えば、特許文献1参照)。
積層及び融着一体化は、ヒータ内蔵の積層治具を用いて行われ、融着の温度は、耐熱性樹脂のガラス転移温度以上とされる。
【0006】
【非特許文献1】
西山 和夫、「デジタル家電の実装ニーズと半導体パッケージング技術」、エレクトロニクス実装学会誌、(社)エレクトロニクス実装学会、2001年、第4巻、第3号、p.166−169
【特許文献1】
特開2001−119148号公報
【0007】
【発明が解決しようとする課題】
ところで、従来の3次元実装パッケージは、半導体チップを搭載した基板を含む複数の配線基板を積層し、熱圧着により融着一体化したものであるから、この熱融着過程において半導体チップに直接加わる応力や、半導体チップと配線基板との熱膨張率の差に起因する熱的ストレスにより、半導体チップや配線基板と半導体チップとの間に変形や配線歪が生じ、オープン/ショート(O/S)等の配線不良、寸法のずれ等の不具合が生じる虞があるという問題点があった。
【0008】
この変形や配線歪は、高密度かつ超小型の3次元実装モジュールにおいて必須とされる配線ピッチのファイン化にとって無視できない大きな問題となる。
さらに、この歪みや変形により、半導体チップや配線基板の初期特性が不安定になったり、特性の経時変化が大きくなり信頼性が低下する等の不具合が生じる虞があった。
また、熱圧着により融着一体化した後に、融着条件(温度、圧力)によっては、半導体チップと配線基板との間への樹脂の回り込みが不十分なためにボイドが形成され、このボイドに吸湿により水が溜まり、後のリフロー工程で膨れが生じ、吸湿リフロー耐熱性が低下するという問題点があった。
【0009】
本発明は、上記の課題を解決するためになされたものであって、半導体装置を搭載した基板を含む複数の配線基板を積層し融着一体化する際に、半導体装置や配線基板と半導体装置との間に歪みや変形が生じる虞がなく、したがって、オープン/ショート(O/S)等の配線不良や寸法のずれ等の不具合が生じる虞がなく、また、ボイドの形成が無く、したがって、吸湿リフロー耐熱性が向上し、その結果、高密度かつ超小型の3次元実装モジュールにおける配線ピッチのファイン化、及び半導体装置や配線基板の初期特性及び動作特性の安定性及び信頼性の向上を図ることが可能な半導体装置内蔵多層配線基板及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者等は、鋭意検討を重ねた結果、半導体装置を搭載した配線基板を含む複数の配線基板を積層し、融着一体化する際に、半導体装置が搭載された配線基材の熱可塑性樹脂組成物のガラス転移温度(または液晶転移温度)を、この半導体装置が収納される配線基材の熱可塑性樹脂組成物のガラス転移温度(または液晶転移温度)より高く、かつこれらの転移温度の差を20℃以下とすれば、半導体装置や配線基板と半導体装置との間に歪みや変形が生じる虞がなく、したがって、オープン/ショート(O/S)等の配線不良や寸法のずれ等の不具合が生じる虞がなく、さらに、ボイドの形成が無く、吸湿リフロー耐熱性が向上することが分かり、本発明に至った。
【0011】
すなわち、本発明の半導体装置内蔵多層配線基板は、熱可塑性樹脂組成物からなる絶縁基材に導体配線が形成されてなる配線基材が複数、積層され、これら複数の配線基材のうち、1つまたは2つ以上の配線基材に半導体装置が搭載され、これらの配線基材同士が熱融着により一体化されてなる半導体装置内蔵多層配線基板において、前記半導体装置が搭載された配線基材の熱可塑性樹脂組成物のガラス転移温度は、前記半導体装置が搭載された配線基材に隣接して配置され前記半導体装置を収納する凹部または開口が形成された配線基材の熱可塑性樹脂組成物のガラス転移温度より高く、かつこれらのガラス転移温度の温度差は20℃以下であることを特徴とする。
【0012】
この半導体装置内蔵多層配線基板では、前記半導体装置が搭載された配線基材の熱可塑性樹脂組成物のガラス転移温度を、前記半導体装置が搭載された配線基材に隣接して配置され前記半導体装置を収納する凹部または開口が形成された配線基材の熱可塑性樹脂組成物のガラス転移温度より高く、かつこれらのガラス転移温度の温度差を20℃以下としたことにより、前記半導体装置を収納する配線基材が熱融着の際に生じる熱的ストレスを吸収し、半導体装置や配線基材と半導体装置との間の歪みや変形を防止する。これにより、この歪みや変形に起因する配線不良や寸法のずれ等の不具合を防止することが可能になり、高精度かつ高精細な導体配線が可能になる。
また、この半導体装置と該半導体装置を収納する配線基材との間に歪みや変形が無いので、ボイドが形成される虞が無く、したがって、吸湿リフロー耐熱性が向上する。
これにより、電気的特性及び信頼性に優れた半導体装置内蔵多層配線基板を提供することが可能になる。
【0013】
前記半導体装置が搭載された配線基材及び前記半導体装置を収納する配線基材それぞれの熱可塑性樹脂組成物を、結晶融解ピーク温度が260℃以上である結晶性熱可塑性樹脂組成物、または、ガラス転移温度が260℃以上である非晶性熱可塑性樹脂組成物、を主成分とすることが望ましい。
【0014】
前記結晶性熱可塑性樹脂組成物を、結晶融解ピーク温度が260℃以上であるポリアリールケトン樹脂と非晶性ポリエーテルイミド樹脂を主成分とする熱可塑性樹脂混合組成物、ポリフェニレンサルファイド樹脂とポリエーテルイミド樹脂を主成分とする熱可塑性樹脂混合組成物、シンジオタクチックリスチレン樹脂と変性ポリフェニレンエーテル樹脂を主成分とする熱可塑性樹脂混合組成物から選択された1種とすることが望ましい。
また、前記非晶性熱可塑性樹脂組成物を、ポリイミド樹脂またはポリアミドイミド樹脂とすることが望ましい。
【0015】
本発明の半導体装置内蔵多層配線基板の製造方法は、熱可塑性樹脂組成物からなる絶縁基材に導体配線が形成されてなる配線基材が複数、積層され、これら複数の配線基材のうち、1つまたは2つ以上の配線基材に半導体装置が搭載され、これらの配線基材同士が熱融着により一体化されてなる半導体装置内蔵多層配線基板の製造方法であって、半導体装置搭載用の配線基材と、基材の一部に前記半導体装置を収納する凹部または開口が形成され当該基材の厚みが前記半導体装置の厚みより厚く、当該基材の熱可塑性樹脂組成物のガラス転移温度が、前記半導体装置搭載用の配線基材の熱可塑性樹脂組成物のガラス転移温度より低く、かつこれらのガラス転移温度の温度差が20℃以下である半導体装置収納用の配線基材とを作製し、次いで、前記半導体装置搭載用の配線基材に半導体装置を搭載し、これらの配線基材を積層し、熱融着により一体化することを特徴とする。
【0016】
この半導体装置内蔵多層配線基板の製造方法では、半導体装置搭載用の配線基材と、基材の一部に前記半導体装置を収納する凹部または開口が形成され当該基材の厚みが前記半導体装置の厚みより厚く、当該基材の熱可塑性樹脂組成物のガラス転移温度が、前記半導体装置搭載用の配線基材の熱可塑性樹脂組成物のガラス転移温度より低く、かつこれらのガラス転移温度の温度差が20℃以下である半導体装置収納用の配線基材とを作製し、次いで、前記半導体装置搭載用の配線基材に半導体装置を搭載し、これらの配線基材を積層し、熱融着により一体化することにより、これらの配線基材を積層し、熱融着により一体化する際に、半導体装置収納用の配線基材が外部からの応力や熱膨張率の差による熱的ストレスを吸収し、半導体装置、あるいは配線基板と半導体装置との間に歪みや変形が生じるのを防止する。これにより、オープン/ショート(O/S)等の配線不良や寸法のずれ等の不具合が生じる虞がなくなり、高精度かつ高精細な導体配線を有する半導体装置内蔵型の多層配線基板が容易に得られる。その結果、電気的特性及び信頼性に優れた半導体装置内蔵多層配線基板を容易に得ることが可能になる。
【0017】
前記複数の配線基材を熱融着により一体化する際の温度は、前記半導体装置搭載用の配線基材のガラス転移温度以上であることが望ましい。
【0018】
【発明の実施の形態】
本発明の半導体装置内蔵多層配線基板及びその製造方法の一実施の形態について説明する。
図1は本発明の一実施形態のICチップ(半導体装置)内蔵多層配線基板を示す断面図であり、図において、符号1は最上層基材(最上層の配線基材)、2は中実の内層基材(配線基材)、3は穴空き(開口)内層基材(配線基材)、4は最下層の配線基材となるICチップ(半導体装置)搭載内層基材(配線基材)である。
【0019】
最上層基材1は、通常、熱可塑性樹脂組成物からなる100μm以下の厚みの薄板状、フィルム状あるいはシート状の絶縁基材11であり、この絶縁基材11の表面及び裏面は平坦化されている。
この熱可塑性樹脂組成物は、結晶融解ピーク温度(Tm)が260℃以上である結晶性熱可塑性樹脂組成物、または、ガラス転移温度(Tg)が260℃以上である非晶性熱可塑性樹脂組成物、を含有している。
【0020】
この結晶性熱可塑性樹脂組成物としては、結晶融解ピーク温度(Tm)が260℃以上であるポリアリールケトン樹脂と非晶性ポリエーテルイミド樹脂を主成分とする熱可塑性樹脂混合組成物、ポリフェニレンサルファイド樹脂とポリエーテルイミド樹脂を主成分とする熱可塑性樹脂混合組成物、シンジオタクチックリスチレン樹脂と変性ポリフェニレンエーテル樹脂を主成分とする熱可塑性樹脂混合組成物から選択された1種が好適である。
また、上記の非晶性熱可塑性樹脂組成物としては、ポリイミド樹脂またはポリアミドイミド樹脂が好適である。
【0021】
この熱可塑性樹脂組成物の組成は、中実の内層基材2と同一の組成でよく、そのガラス転移温度(Tg)は、穴空き内層基材3に用いられる熱可塑性樹脂組成物のガラス転移温度(Tg)より高いとされている。
この熱可塑性樹脂組成物のガラス転移温度(Tg)と、穴空き内層基材3に用いられる熱可塑性樹脂組成物のガラス転移温度(Tg)との差は、20℃以下が好ましく、より好ましくは15℃以下、更に好ましくは10℃以下である。
【0022】
ここで、最上層基材1及び中実の内層基材2に用いられる熱可塑性樹脂組成物のガラス転移温度(Tg)と、穴空き内層基材3に用いられる熱可塑性樹脂組成物のガラス転移温度(Tg)との差を20℃以下とした理由は、この差が20℃を超えると、積層時の基材間の熱融着性が低下したり、基材間の位置精度が低下したりするからである。
【0023】
結晶融解ピーク温度(Tm)が260℃以上である結晶性熱可塑性樹脂組成物としては、例えば、ポリエーテルエーテルケトン(PEEK)を40重量%、ポリエーテルイミド(PEI)を60重量%含む樹脂組成物(PEEK/PEI:Tg=185℃、Tm=335℃)、ポリフェニレンサルファイド(PPS)を40重量%、ポリエーテルイミド(PEI)を60重量%含む樹脂組成物(PPS/PEI:Tg=150℃、Tm=280℃)、シンジオタクチックポリスチレン(SPS)を40重量%、変性ポリフェニレンエーテル(変性PPE)を60重量%含む樹脂組成物(SPS/変性PPE:Tg=120℃、Tm=265℃)等が好適に用いられる。
【0024】
また、ガラス転移温度(Tg)が260℃以上である非晶性熱可塑性樹脂組成物としては、例えば、ポリアミドイミド(PAI:Tg>260℃)、ポリイミド(PI:Tg>260℃)等、ガラス転移温度(Tg)を分子設計で適宜調製したものが好適に用いられる。
【0025】
この熱可塑性樹脂組成物に対しては、その性質を損なわない程度に、他の樹脂や各種添加剤、例えば、無機充填材、安定剤、紫外線吸収剤、光安定剤、核剤、着色剤、滑剤、難燃剤、無機充填材、接着促進剤等を適宜添加してもよい。
無機充填材としては、特に制限はなく、公知のいかなるものも使用できる。例えば、シリカ、タルク、マイカ、雲母、ガラスフレーク、窒化ホウ素(BN)、板状炭カル、板状水酸化アルミニウム、板状シリカ、板状チタン酸カリウム等が挙げられる。これらは1種類を単独で添加してもよく、2種類以上を組合せて添加してもよい。
また、接着促進剤としては、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン等が挙げられる。
【0026】
中実の内層基材2は、上述した最上層基材1と全く同様の形状の熱可塑性樹脂組成物からなる薄板状、フィルム状あるいはシート状の絶縁基材11の一方の面(この図では上側)に、配線回路形成用の溝部12が形成されるとともに、絶縁基材11を貫通するバイアホール13が形成され、この溝部12及びバイアホール13には導電性ペーストを硬化してなる導電材14が充填されている。
この導電性ペーストとしては、樹脂系低温焼成タイプの銀(Ag)ペースト、銀(Ag)−パラジウム(Pd)ペースト、銅(Cu)ペースト、金属系低温焼成タイプの銀(Ag)−スズ(Sn)ペースト等が好適に用いられる。
【0027】
穴空き内層基材3は、その形状は上述した最上層基材1と全く同様であるが、その組成が上述した最上層基材1と異なる熱可塑性樹脂組成物からなる薄板状、フィルム状あるいはシート状の絶縁基材15に、この絶縁基材15を貫通するバイアホール13が形成され、このバイアホール13に導電性ペーストを硬化してなる導電材14が充填され、さらに、この絶縁基材15の所定位置には後述するICチップ18を収納するために、このICチップ18と略同一形状の開口16が形成されている。
【0028】
この穴空き内層基材3に用いられる熱可塑性樹脂組成物の組成は、既に説明した様に、そのガラス転移温度(Tg)が、最上層基材1、中実の内層基材2及びICチップ搭載内層基材4に用いられる熱可塑性樹脂組成物のガラス転移温度(Tg)より低いとされ、この熱可塑性樹脂組成物のガラス転移温度(Tg)と、最上層基材1、中実の内層基材2及びICチップ搭載内層基材4に用いられる熱可塑性樹脂組成物のガラス転移温度(Tg)との差は、好ましくは20℃以下、より好ましくは15℃以下、更に好ましくは10℃以下である。
【0029】
ガラス転移温度(Tg)が低い熱可塑性樹脂組成物としては、結晶融解ピーク温度(Tm)が260℃以上である結晶性熱可塑性樹脂組成物、または、ガラス転移温度(Tg)が260℃以上である非晶性熱可塑性樹脂組成物が好適に用いられる。
【0030】
結晶融解ピーク温度(Tm)が260℃以上である結晶性熱可塑性樹脂組成物としては、例えば、ポリエーテルエーテルケトン(PEEK)を40重量%、ポリエーテルイミド(PEI)を60重量%含む樹脂組成物(PEEK/PEI:Tg=185℃、Tm=335℃)、ポリフェニレンサルファイド(PPS)を40重量%、ポリエーテルイミド(PEI)を60重量%含む樹脂組成物(PPS/PEI:Tg=150℃、Tm=280℃)、シンジオタクチックポリスチレン(SPS)を40重量%、変性ポリフェニレンエーテル(変性PPE)を60重量%含む樹脂組成物(SPS/変性PPE:Tg=120℃、Tm=265℃)等が好適に用いられる。
【0031】
また、ガラス転移温度(Tg)が260℃以上である非晶性熱可塑性樹脂組成物としては、例えば、ポリアミドイミド(PAI:Tg>260℃)、ポリイミド(PI:Tg>260℃)等、ガラス転移温度(Tg)を分子設計で適宜調製したものが好適に用いられる。
【0032】
ICチップ搭載内層基材4は、上述した最上層基材1と全く同様の形状の熱可塑性樹脂組成物からなる薄板状、フィルム状あるいはシート状の絶縁基材11の一方の面(この図では上側)に、配線回路形成用の溝部12が形成されるとともに、絶縁基材11を貫通するバイアホール13が形成され、この溝部12及びバイアホール13には導電性ペーストを硬化してなる導電材14が充填され、さらに、この絶縁基材11上にICチップ18が搭載され、このICチップ18の端子19は導電材14により構成される配線回路に電気的に接続されている。
【0033】
これら最上層基材1〜ICチップ搭載内層基材4は、この順に積層されて基材を構成する熱可塑性樹脂組成物が熱圧着により接着されることで一体化した積層構造とされ、これら基材1〜4各々の配線回路及び各基材1〜4間を電気的に接続する配線は、導電性ペーストを硬化してなる導電材14により構成することで導通するようになっている。
【0034】
次に、本実施形態のICチップ内蔵多層配線基板の製造方法について図2〜図7に基づき説明する。
ここでは、まず、個々の配線基材の製造方法について説明し、次いで、これらの配線基材を用いたICチップ内蔵多層配線基板の製造方法について説明する。
【0035】
(1)最上層基材及び中実の内層基材
まず、図2(a)に示すように、表面及び裏面が平坦化された熱可塑性樹脂組成物からなる絶縁基材21を作製する。この絶縁基材21は、そのままで最上層基材となる。
次いで、図2(b)に示すように、この絶縁基材21の表面に、スタンパ22の凸部23を熱転写する。この熱転写の条件は、例えば、温度:175〜205℃、圧力:20〜60kg/cmである。
この熱転写により、図2(c)に示すように、絶縁基材21の表面に配線回路形成用溝部12が形成される。
【0036】
スタンパ22は、絶縁基材21に対して離型性の良好な材質、例えば、ガラス、セラミックス等により構成されたもので、特に、3〜5mmの厚みの耐熱ガラスが好適に用いられる。このスタンパ22は、耐熱ガラス板上にフォトリソグラフ法を用いてレジストマスクを形成し、その後、このレジストマスクを用いてサンドブラスト法により配線回路パターンに対応する凸部23を形成することにより作製される。
【0037】
次いで、図2(d)に示すように、絶縁基材21の所定位置に、レーザもしくは機械ドリル等を用いて絶縁基材21を貫通する貫通孔を形成し、バイアホール13とする。このバイアホール13は、スタンパにより配線回路形成用溝部12と同時に成形しても構わない。
次いで、図2(e)に示すように、スキージ印刷等により配線回路形成用溝部12及びバイアホール13内に導電性ペースト25を充填し、その後、この導電性ペースト25を120℃〜160℃で、30分〜60分加熱して硬化させ、導電材14とする。
次いで、図示しない研磨機を用いて絶縁基材21上に残っている導電材14aを研削して除去するとともに、絶縁基材21の表面を平坦化する。
以上により、中実の内層基材26を得ることができる。
【0038】
(2)ICチップ搭載内層基材
図3(a)に示すように、上記で得られた中実の内層基材26上の所定位置に、ICチップ18を配置し、このICチップ18上にヒーター内蔵の熱圧着治具28を載置し、この熱圧着治具28を押下させることにより、ICチップ18を絶縁基材21に熱圧着する。熱圧着は、例えば、温度:180〜200℃、圧力:10〜100kg/cmの条件で行う。
【0039】
この熱圧着により、図3(b)に示すように、ICチップ18の端子19が絶縁基材21の導電材14、すなわち導電回路に電気的に接続されるとともに、ICチップ18と絶縁基材21とが一体化されたICチップ搭載内層基材29を得ることができる。
【0040】
(3)穴空き内層基材
図4(a)に示すように、ガラス転移温度が、上記の絶縁基材21のガラス転移温度より低く、かつ絶縁基材21のガラス転移温度との差が20℃以下であり、その表面及び裏面が平坦化された熱可塑性樹脂組成物からなる絶縁基材31を作製する。
この絶縁基材31の厚みは、ICチップ18の厚みに対して1.05〜1.10倍とする。
【0041】
次いで、図4(b)に示すように、絶縁基材31の所定位置に、レーザもしくは機械ドリル等を用いて絶縁基材31を貫通する貫通孔を形成し、バイアホール13とする。
次いで、図4(c)に示すように、スキージ印刷等によりバイアホール13内に導電性ペースト25を充填し、その後、この導電性ペースト25を120℃〜160℃で、30分〜60分加熱して硬化させ、導電材14とする。
【0042】
次いで、図4(d)に示すように、図示しない研磨機を用いて絶縁基材31上に残っている導電材14aを研削して除去するとともに、絶縁基材31の表面を平坦化する。
次いで、図4(e)に示すように、図示しない打ち抜き用の成型機を用いて、この絶縁基材31の所定箇所にICチップ収納用の開口32を打ち抜く。これにより、穴空き内層基材33を得ることができる。
この開口32の面積は、絶縁基材31が熱圧着される前ではICチップ18に対して所定の隙間が生じるように、また、絶縁基材31が熱圧着された際にはICチップ18の周囲に密着するように、その平面視の形状が設定される。例えば、ICチップ18の占有面積に対して1.01〜1.05倍とされる。
【0043】
(4)ICチップ内蔵多層配線基板
まず、図5に示すように、ヒーター内蔵の積層治具41内に、弾性及び離型性を有するクッションフィルム42、ICチップ搭載内層基材29、穴空き内層基材33、中実の内層基材26、絶縁基材21及び弾性及び離型性を有するクッションフィルム42をこの順に重ねる。
【0044】
次いで、押圧治具43を押下させかつ加熱することにより、これらICチップ搭載内層基材29〜絶縁基材21に熱圧着を施す。
この場合の熱圧着は、絶縁基材21を構成する熱可塑性樹脂組成物のガラス転移温度(Tg)以上かつ結晶融解ピーク温度(Tm)未満で行うと効果的である。
この熱圧着の条件の一例を挙げると、温度:220〜300℃、圧力:10〜60kg/cmである。
【0045】
ここで、絶縁基材21、31のガラス転移温度(Tg)及び結晶融解ピーク温度(Tm)は、示差走査熱量(DSC)を測定することで分かる。これらの温度は、例えば、結晶融解ピーク温度(Tm)が260℃以上であるポリアリールケトンとポリエーテルイミドを含む混合熱可塑性樹脂組成物であっても、相溶性を示すため、DSCのプロファイルより求めることができる。
【0046】
図6は、ポリエーテルエーテルケトン(PEEK)とポリエーテルイミド(PEI)を含む樹脂組成物を溶融混練後、急冷製膜してフィルム基材とし、このフィルム基材を加熱速度10℃/分で昇温したときに得られるDSCのプロファイルであり、図中Aは、ポリエーテルエーテルケトン(PEEK)を40重量%、ポリエーテルイミド(PEI)を60重量%含む樹脂組成物(A)のDSCプロファイルであり、Bはポリエーテルエーテルケトン(PEEK)を50重量%、ポリエーテルイミド(PEI)を50重量%含む樹脂組成物(B)のDSCプロファイルである。
この図によれば、樹脂組成物(A)のガラス転移温度(Tg)は185℃、結晶化開始温度(Tc)は251℃であり、樹脂組成物(B)のガラス転移温度(Tg)は178℃、結晶化開始温度(Tc)は232℃である。
【0047】
図7は、上記の樹脂組成物(A)及び(B)の弾性率温度依存性を示す図であり、樹脂組成物(A)は、ガラス転移温度(Tg)以上の温度で弾性率が低下し、その後の昇温過程で結晶化して弾性率が上昇することが分かる。また、樹脂組成物(B)は、樹脂組成物(A)より低温で弾性率が低下し、その後の昇温過程で樹脂組成物(A)が結晶化する前に結晶化して弾性率が上昇し、樹脂組成物(A)を上回る弾性率で推移することが分かる。
【0048】
ここで、絶縁基材21の熱可塑性樹脂組成物として樹脂組成物(A)を、絶縁基材31の熱可塑性樹脂組成物として樹脂組成物(B)を、それぞれ用いた場合の熱圧着過程について説明する。
この熱圧着の初期の過程(室温:25℃〜180℃)では、図8(a)に示すように、絶縁基材31は弾性率が十分に低下せず変形もしないので、当初の形状を保持し続け、ICチップ18側に向かって変形することはない。また、絶縁基材21も、この温度範囲では弾性率が低下しないので変形もせず、当初の形状を保持し続ける。
【0049】
次の過程(180〜200℃)では、図8(b)に示すように、絶縁基材31の弾性率が低下するので、押圧治具43の押圧により圧縮されてICチップ18側に向かって変形し、ICチップ18に密着する。この絶縁基材31の厚みはICチップ18の厚みに対して1.05〜1.10倍とされているので、押圧治具43の押圧力は絶縁基材31に集中して加わることとなり、ICチップ18に加わることはない。これにより、この押圧力でICチップ18に変形等が生じる虞は無い。
【0050】
次いで、所定の温度プロファイルで240℃まで昇温させると、図8(c)に示すように、絶縁基材31は絶縁基材21に比べて結晶化速度が速いために、結晶化し、弾性率が高くなる。同時に、この昇温過程で、絶縁基材21の弾性率が低下するので、押圧治具43の押圧によりICチップ18に密着する。
次いで、この温度(240℃)を所定時間、例えば、10〜30分間保持し続けると、絶縁基材21も結晶化し、弾性率が高くなる。
その後、所定の温度プロファイルで室温(25℃)まで冷却し、本実施形態のICチップ内蔵多層配線基板を得る。
【0051】
次に、本実施形態のICチップ内蔵多層配線基板の実施例及び比較例について説明する。
実施例1〜5及び比較例1〜5各々においては、最上層基材1、中実の内層基材2及びICチップ搭載内層基材4の熱可塑性樹脂組成物を表1の基材Aに示す組成とし、穴空き内層基材3の熱可塑性樹脂組成物を表1の基材Bに示す組成とし、上記のICチップ内蔵多層配線基板の製造方法に基づき実施例及び比較例各々のサンプルを作製した。
【0052】
ここでは、実施例及び比較例各々における基材A及びB各々の樹脂組成物の成分、組成比、ガラス転移温度、及び基材A及びBのガラス転移温度の差を表1に示す通りとした。例えば、ポリエーテルエーテルケトン(PEEK)を40重量%、ポリエーテルイミド(PEI)を60重量%含む樹脂組成物の場合、成分を「PEEK/PEI」、組成比を「40/60」と表記した。他の樹脂組成物の成分及び組成比も同様に表記してある。
【0053】
また、ICチップの厚みは、実施例1〜5及び比較例1〜5共に100μmとし、基材Bの厚みは、比較例2のみICチップの厚みと同じ100μmとし、実施例1〜5及び比較例1、3〜5では110μmとした。
また、実施例及び比較例各々における熱圧着の最高保持温度は表1に示す通りとした。
【0054】
得られた実施例及び比較例各々のサンプルについて評価を行った。
評価は、初期オープン/ショート、吸湿リフロー試験での膨れ、の2項目とし、各項目におけるサンプル数をそれぞれ5個とし、各々の評価結果を表1に示した。
評価方法は下記の通りである。
【0055】
(1)初期オープン/ショート
ICチップ搭載内層基材4の表出した2端子間(導電材14上の2点間)で導通抵抗を測定し、抵抗値が10−2Ωcm未満であったものを良(○)とし、抵抗値が10−2Ωcm以上であったものをオープン不良(×)とした。
また、同一のICチップ搭載内層基材4の設計上接続されていない任意の2端子間(設計上接続されていない導電材14、14間)で導通抵抗を測定し、導通状態でなかったものを良(○)とし、導通状態であったものをショート(×)とした。
【0056】
(2)吸湿リフロー試験での膨れ
実施例及び比較例各々のサンプルをプレッシャークッカー試験器(温度:121℃、気圧:2気圧、湿度:100%RH)内に2時間放置して吸湿させ、その後、これらのサンプルをプレッシャークッカー試験器から取り出してリフロー炉(最高設定温度:260℃)を通過させ、通過後のサンプルの表面状態を観察し、膨れが全く生じていなかったものを良(○)、膨れが僅かでも生じていたものを不良(×)と評価した。
【0057】
【表1】

Figure 0004181897
【0058】
表1によれば、実施例1〜5では、初期オープン/ショート、吸湿リフロー試験での膨れ、共に良好であることが分かった。
一方、比較例3、4では、初期オープン/ショートは良好なものの、吸湿リフロー試験において膨れが生じており、吸湿リフローに対する耐性が低下していることが分かった。また、比較例1、2、5では、初期オープン/ショート、吸湿リフロー試験での膨れ、共に悪化していることが分かった。
【0059】
本実施形態のICチップ内蔵多層配線基板によれば、最上層基材1、中実の内層基材2及びICチップ搭載内層基材4の熱可塑性樹脂組成物のガラス転移温度を、穴空き内層基材3の熱可塑性樹脂組成物のガラス転移温度より高くし、これらの熱可塑性樹脂組成物のガラス転移温度の差を20℃以下としたので、穴空き内層基材3が熱融着の際に生じる熱的ストレスを吸収し、ICチップ18や、ICチップ18と中実の内層基材2及びICチップ搭載内層基材4との間に歪みや変形が生じない。したがって、この歪みや変形に起因する配線不良や寸法のずれ等の不具合を防止することができ、導体配線を高精度かつ高精細とすることができる。
また、ICチップ18と穴空き内層基材3との間に歪みや変形が無いので、ボイドが形成される虞が無く、したがって、吸湿リフロー耐熱性を向上させることができる。
【0060】
本実施形態のICチップ内蔵多層配線基板の製造方法によれば、ICチップ搭載内層基材29、ガラス転移温度の低い穴空き内層基材33、中実の内層基材26、絶縁基材21をこの順に重ね、これらICチップ搭載内層基材29〜絶縁基材21に熱圧着を施し、熱融着により相互に接合し一体化するので、穴空き内層基材33が熱圧着過程において生じる熱的ストレスを吸収し、配線不良や寸法のずれ等の不具合が生じるのを防止することができる。
したがって、高精度かつ高精細な導体配線を有する半導体装置内蔵型の多層配線基板を容易に作製することができ、その結果、電気的特性及び信頼性に優れた半導体装置内蔵多層配線基板を容易に得ることができる。
【0061】
【発明の効果】
以上説明したように、本発明の半導体装置内蔵多層配線基板によれば、半導体装置が搭載された配線基材の熱可塑性樹脂組成物のガラス転移温度を、半導体装置を収納する凹部または開口が形成された配線基材の熱可塑性樹脂組成物のガラス転移温度より高く、かつこれらのガラス転移温度の温度差を「20℃」以下としたので、半導体装置を収納する配線基材が熱融着の際に生じる熱的ストレスを吸収することにより、半導体装置や配線基材と半導体装置との間の歪みや変形を防止することができる。したがって、この歪みや変形に起因する配線不良や寸法のずれ等の不具合を防止することができ、高精度かつ高精細な導体配線を実現することができる。
また、この半導体装置と該半導体装置を収納する配線基材との間に歪みや変形が無いので、ボイドが形成される虞が無く、したがって、吸湿リフロー耐熱性を向上させることができる。
【0062】
本発明の半導体装置内蔵多層配線基板の製造方法によれば、半導体装置搭載用の配線基材と、基材の一部に前記半導体装置を収納する凹部または開口が形成され当該基材の厚みが前記半導体装置の厚みより厚く、当該基材の熱可塑性樹脂組成物のガラス転移温度が、前記半導体装置搭載用の配線基材の熱可塑性樹脂組成物のガラス転移温度より低く、かつこれらのガラス転移温度の温度差が20℃以下である半導体装置収納用の配線基材とを作製し、次いで、前記半導体装置搭載用の配線基材に半導体装置を搭載し、これらの配線基材を積層し、熱融着により一体化するので、これらの配線基材を熱融着により一体化する際の歪みや変形を防止することができ、オープン/ショート(O/S)等の配線不良や寸法のずれ等の不具合が無く、しかも高精度かつ高精細な導体配線を有する半導体装置内蔵型の多層配線基板を容易に作製することができる。したがって、電気的特性及び信頼性に優れた半導体装置内蔵多層配線基板を容易に作製することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態のICチップ内蔵多層配線基板を示す断面図である。
【図2】 本発明の一実施形態のICチップ内蔵多層配線基板の製造方法を示す過程図である。
【図3】 本発明の一実施形態のICチップ内蔵多層配線基板の製造方法を示す過程図である。
【図4】 本発明の一実施形態のICチップ内蔵多層配線基板の製造方法を示す過程図である。
【図5】 本発明の一実施形態のICチップ内蔵多層配線基板の製造方法を示す過程図である。
【図6】 ポリエーテルエーテルケトンとポリエーテルイミドを含む樹脂組成物のDSCのプロファイルを示す図である。
【図7】 ポリエーテルエーテルケトンとポリエーテルイミドを含む樹脂組成物の弾性率温度依存性を示す図である。
【図8】 本発明の一実施形態のICチップ内蔵多層配線基板の製造方法を示す過程図である。
【符号の説明】
1 最上層基材(最上層の配線基材)
2 中実の内層基材(配線基材)
3 穴空き内層基材(配線基材)
4 ICチップ搭載内層基材(配線基材)
11 絶縁基材
12 溝部
13 バイアホール
14 導電材
15 絶縁基材
16 開口
18 ICチップ(半導体装置)
21 絶縁基材
26 中実の内層基材
29 ICチップ搭載内層基材
31 絶縁基材
33 穴空き内層基材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer wiring board with a built-in semiconductor device and a method for manufacturing the same, and particularly to a high-density and ultra-small three-dimensional mounting module formed by laminating a plurality of wiring substrates including a wiring substrate on which a semiconductor device is mounted. In particular, the present invention relates to a multilayer wiring board with a built-in semiconductor device and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, in addition to passive components such as resistors and capacitors, small active components such as small semiconductor packages, semiconductor bare chips, and fine pitch ball grid arrays (FBGA) have been mounted on printed circuit boards and ceramic laminates. Therefore, a surface mounting method has been put into practical use in which the mounting density of components on the substrate is improved and the electronic device is reduced in size, weight, and thickness. This surface mounting method is intended to reduce the size of each component.
In order to further improve the mounting density of components, a three-dimensional mounting module using a three-dimensional mounting technique in which semiconductor devices are stacked three-dimensionally has been developed. This three-dimensional mounting module is intended to increase the mounting density by placing three-dimensionally a part that cannot be placed even by the surface mounting method described above, especially a semiconductor device having a large part size, or by placing it inside the board. To do.
[0003]
The above-described three-dimensional mounting technology is a technology that has recently attracted attention as a technology that contributes not only to downsizing of devices but also to speeding up of computers and communication devices. For example, in communication devices, it is expected that video communication functions using an image sensor, Bluetooth interface functions, GPS functions, etc. will be installed in the future. It will be pushed forward and will lead to higher density of mounting technology. In particular, if semiconductor chips, which are small semiconductor devices, are three-dimensionally stacked and wired, the wiring length can be shortened and high-speed signals can be transmitted. Adoption is essential.
[0004]
There are two types of three-dimensional mounting techniques.
One is a technology for 3D mounting modules that stack components on or inside a printed circuit board, but it is necessary for equipment manufacturers that use 3D mounting modules to advance research and development of dedicated mounting machines. It is hardly spread.
The other is a technique related to a three-dimensional mounting package in which semiconductor chips are stacked in a package (see, for example, Non-Patent Document 1). For an electric manufacturer that manufactures a three-dimensional mounting package, the type and number of semiconductor chips Because of the fact that the number of wiring boards to be stacked becomes a differentiating factor from other companies and that it can perform a wide variety of functions even with the same shape, LSI manufacturers have begun to focus on development. Yes.
[0005]
In this three-dimensional mounting package, a plurality of types of wiring substrates are produced by forming conductor wiring on an insulating substrate made of a heat-resistant resin, and a semiconductor chip (semiconductor device) is mounted on one or more of these wiring substrates. The wiring board is mounted on a semiconductor chip, and these wiring boards are laminated and fused and integrated by thermocompression bonding (see, for example, Patent Document 1).
Lamination and fusion integration are performed using a lamination jig with a built-in heater, and the fusion temperature is equal to or higher than the glass transition temperature of the heat resistant resin.
[0006]
[Non-Patent Document 1]
Kazuo Nishiyama, “Mounting needs of digital home appliances and semiconductor packaging technology”, Journal of Japan Institute of Electronics Packaging, Japan Institute of Electronics Packaging, 2001, Vol. 4, No. 3, p. 166-169
[Patent Document 1]
JP 2001-119148 A
[0007]
[Problems to be solved by the invention]
By the way, since the conventional three-dimensional mounting package is obtained by laminating a plurality of wiring boards including a board on which a semiconductor chip is mounted and fusing and integrating them by thermocompression bonding, it is directly applied to the semiconductor chip in this heat fusing process. Open / short (O / S) due to stress or thermal stress caused by the difference in thermal expansion coefficient between the semiconductor chip and the wiring board causes deformation or wiring distortion between the semiconductor chip or the wiring board and the semiconductor chip. There is a problem that defects such as wiring defects and dimensional deviations may occur.
[0008]
This deformation and wiring distortion become a serious problem that cannot be ignored for finer wiring pitch, which is essential in a high-density and ultra-small three-dimensional mounting module.
Furthermore, the distortion and deformation may cause problems such as the initial characteristics of the semiconductor chip and the wiring board becoming unstable, and the change in characteristics over time becomes large and the reliability is lowered.
In addition, after fusing and integrating by thermocompression bonding, depending on the fusing conditions (temperature and pressure), a void is formed due to insufficient resin wrapping between the semiconductor chip and the wiring board. There is a problem in that water accumulates due to moisture absorption, swelling occurs in the subsequent reflow process, and moisture absorption reflow heat resistance decreases.
[0009]
The present invention has been made to solve the above-described problem, and a plurality of wiring substrates including a substrate on which a semiconductor device is mounted are stacked and fused and integrated. Therefore, there is no risk of distortion or deformation between them, and therefore there is no risk of problems such as wiring defects such as open / short (O / S) and dimensional deviations, and there is no formation of voids. Improved moisture absorption reflow heat resistance, resulting in finer wiring pitch in high-density and ultra-small three-dimensional mounting modules, and stability and reliability of initial characteristics and operating characteristics of semiconductor devices and wiring boards An object of the present invention is to provide a multilayer wiring board with a built-in semiconductor device and a method for manufacturing the same.
[0010]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have laminated a plurality of wiring boards including a wiring board on which a semiconductor device is mounted, and in the fusion integration, the thermoplasticity of the wiring substrate on which the semiconductor device is mounted The glass transition temperature (or liquid crystal transition temperature) of the resin composition is higher than the glass transition temperature (or liquid crystal transition temperature) of the thermoplastic resin composition of the wiring substrate in which the semiconductor device is housed, and the transition temperature If the difference is 20 ° C. or less, there is no risk of distortion or deformation between the semiconductor device or the wiring board and the semiconductor device. Therefore, such as a wiring failure such as open / short (O / S) or a dimensional deviation. It has been found that there is no possibility of inconvenience and there is no formation of voids, and the moisture absorption reflow heat resistance is improved, leading to the present invention.
[0011]
That is, in the multilayer wiring board with a built-in semiconductor device of the present invention, a plurality of wiring base materials in which conductor wiring is formed on an insulating base material made of a thermoplastic resin composition are laminated, and among these wiring base materials, 1 In a multilayer wiring board with a built-in semiconductor device in which a semiconductor device is mounted on one or two or more wiring base materials and these wiring base materials are integrated by heat fusion, the wiring base material on which the semiconductor device is mounted The glass transition temperature of the thermoplastic resin composition is a thermoplastic resin composition of a wiring substrate that is disposed adjacent to the wiring substrate on which the semiconductor device is mounted and that has a recess or an opening that houses the semiconductor device. The glass transition temperature is higher than that of the glass transition temperature, and the temperature difference between these glass transition temperatures is 20 ° C. or less.
[0012]
In this multilayer wiring board with a built-in semiconductor device, the glass transition temperature of the thermoplastic resin composition of the wiring substrate on which the semiconductor device is mounted is disposed adjacent to the wiring substrate on which the semiconductor device is mounted. The semiconductor device is accommodated by having a glass transition temperature higher than the glass transition temperature of the thermoplastic resin composition of the wiring base material in which a recess or an opening for accommodating the resin is formed and the temperature difference between these glass transition temperatures is 20 ° C. or less. The wiring base material absorbs thermal stress generated during thermal fusion and prevents distortion and deformation between the semiconductor device and the wiring base material. As a result, it is possible to prevent defects such as wiring defects and dimensional deviations due to this distortion and deformation, and high-precision and high-definition conductor wiring is possible.
In addition, since there is no distortion or deformation between the semiconductor device and the wiring base material that houses the semiconductor device, there is no possibility that voids are formed, and therefore moisture absorption reflow heat resistance is improved.
As a result, it is possible to provide a multilayer wiring board with a built-in semiconductor device having excellent electrical characteristics and reliability.
[0013]
The thermoplastic resin composition of each of the wiring substrate on which the semiconductor device is mounted and the wiring substrate that houses the semiconductor device, a crystalline thermoplastic resin composition having a crystal melting peak temperature of 260 ° C. or higher, or glass It is desirable that the main component is an amorphous thermoplastic resin composition having a transition temperature of 260 ° C. or higher.
[0014]
The crystalline thermoplastic resin composition comprises a thermoplastic resin mixture composition comprising a polyaryl ketone resin and an amorphous polyetherimide resin having a crystal melting peak temperature of 260 ° C. or higher as a main component, a polyphenylene sulfide resin and a polyether. It is desirable to use one kind selected from a thermoplastic resin mixture composition containing imide resin as a main component and a thermoplastic resin mixture composition containing syndiotactic styrene resin and modified polyphenylene ether resin as main components.
The amorphous thermoplastic resin composition is preferably a polyimide resin or a polyamideimide resin.
[0015]
In the manufacturing method of the semiconductor device built-in multilayer wiring board of the present invention, a plurality of wiring base materials in which conductor wiring is formed on an insulating base material made of a thermoplastic resin composition are laminated, and among these wiring base materials, A method of manufacturing a multilayer wiring board with a built-in semiconductor device, in which a semiconductor device is mounted on one or two or more wiring substrates, and these wiring substrates are integrated by thermal fusion. A wiring substrate and a recess or opening for housing the semiconductor device is formed in a part of the substrate, and the thickness of the substrate is larger than the thickness of the semiconductor device. The glass transition temperature of the thermoplastic resin composition of the base material is lower than the glass transition temperature of the thermoplastic resin composition of the wiring base material for mounting the semiconductor device, and the temperature difference between these glass transition temperatures is 20 ℃ or less A wiring substrate for housing a semiconductor device is manufactured, and then a semiconductor device is mounted on the wiring substrate for mounting the semiconductor device, and these wiring substrates are stacked and integrated by heat fusion. And
[0016]
In this method of manufacturing a multilayer wiring board with a built-in semiconductor device, a wiring substrate for mounting the semiconductor device, and a recess or opening for housing the semiconductor device is formed in a part of the substrate, and the thickness of the substrate is the same as that of the semiconductor device. Than thickness The glass transition temperature of the thermoplastic resin composition of the base material is lower than the glass transition temperature of the thermoplastic resin composition of the wiring base material for mounting the semiconductor device, and the temperature difference between these glass transition temperatures is 20 ℃ or less By producing a wiring substrate for housing a semiconductor device, then mounting the semiconductor device on the wiring substrate for mounting the semiconductor device, laminating these wiring substrates, and integrating them by thermal fusion, When these wiring substrates are laminated and integrated by thermal fusion, the wiring substrate for housing the semiconductor device absorbs the external stress and thermal stress due to the difference in thermal expansion coefficient, and the semiconductor device or It is possible to prevent distortion and deformation from occurring between the wiring board and the semiconductor device. This eliminates the possibility of problems such as open / short (O / S) wiring defects and dimensional deviations, and a semiconductor device built-in type multilayer wiring board having highly accurate and high-definition conductor wiring can be easily obtained. It is done. As a result, a multilayer wiring board with a built-in semiconductor device having excellent electrical characteristics and reliability can be easily obtained.
[0017]
The temperature at the time of integrating the plurality of wiring substrates by heat fusion is preferably equal to or higher than the glass transition temperature of the wiring substrate for mounting the semiconductor device.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a multilayer wiring board with a built-in semiconductor device and a method for manufacturing the same according to the present invention will be described.
FIG. 1 is a cross-sectional view showing an IC chip (semiconductor device) built-in multilayer wiring board according to an embodiment of the present invention. In the figure, reference numeral 1 denotes an uppermost layer base material (uppermost wiring base material), and 2 denotes a solid body. Inner layer base material (wiring base material), 3 is a perforated (opening) inner layer base material (wiring base material), 4 is an IC chip (semiconductor device) mounting inner base material (wiring base material) which is the lowermost wiring base material ).
[0019]
The uppermost layer base material 1 is a thin plate-like, film-like or sheet-like insulating base material 11 made of a thermoplastic resin composition and having a thickness of 100 μm or less, and the front and back surfaces of the insulating base material 11 are flattened. ing.
This thermoplastic resin composition is a crystalline thermoplastic resin composition having a crystal melting peak temperature (Tm) of 260 ° C. or higher, or an amorphous thermoplastic resin composition having a glass transition temperature (Tg) of 260 ° C. or higher. Product.
[0020]
The crystalline thermoplastic resin composition includes a thermoplastic resin mixture composition comprising a polyaryl ketone resin having a crystal melting peak temperature (Tm) of 260 ° C. or higher and an amorphous polyetherimide resin as main components, polyphenylene sulfide. One kind selected from a thermoplastic resin mixed composition mainly composed of a resin and a polyetherimide resin, and a thermoplastic resin mixed composition mainly composed of a syndiotactic styrene resin and a modified polyphenylene ether resin is preferable.
Moreover, as said amorphous thermoplastic resin composition, a polyimide resin or a polyamideimide resin is suitable.
[0021]
The composition of the thermoplastic resin composition may be the same as that of the solid inner layer base material 2, and the glass transition temperature (Tg) thereof is the glass transition of the thermoplastic resin composition used for the perforated inner layer base material 3. It is said that it is higher than the temperature (Tg).
The difference between the glass transition temperature (Tg) of this thermoplastic resin composition and the glass transition temperature (Tg) of the thermoplastic resin composition used for the perforated inner layer base material 3 is preferably 20 ° C. or less, more preferably 15 ° C. or lower, more preferably 10 ° C. or lower.
[0022]
Here, the glass transition temperature (Tg) of the thermoplastic resin composition used for the uppermost layer base material 1 and the solid inner layer base material 2 and the glass transition of the thermoplastic resin composition used for the perforated inner layer base material 3. The reason why the difference from the temperature (Tg) is set to 20 ° C. or less is that when this difference exceeds 20 ° C., the heat-fusibility between the substrates at the time of lamination is lowered, or the positional accuracy between the substrates is lowered. It is because.
[0023]
As the crystalline thermoplastic resin composition having a crystal melting peak temperature (Tm) of 260 ° C. or higher, for example, a resin composition containing 40% by weight of polyetheretherketone (PEEK) and 60% by weight of polyetherimide (PEI) Product (PEEK / PEI: Tg = 185 ° C., Tm = 335 ° C.), 40% by weight of polyphenylene sulfide (PPS) and 60% by weight of polyetherimide (PEI) (PPS / PEI: Tg = 150 ° C.) , Tm = 280 ° C.), resin composition containing 40% by weight of syndiotactic polystyrene (SPS) and 60% by weight of modified polyphenylene ether (modified PPE) (SPS / modified PPE: Tg = 120 ° C., Tm = 265 ° C.) Etc. are preferably used.
[0024]
Examples of the amorphous thermoplastic resin composition having a glass transition temperature (Tg) of 260 ° C. or higher include, for example, polyamideimide (PAI: Tg> 260 ° C.), polyimide (PI: Tg> 260 ° C.), and the like. Those having a transition temperature (Tg) appropriately prepared by molecular design are preferably used.
[0025]
For this thermoplastic resin composition, other resins and various additives, such as inorganic fillers, stabilizers, ultraviolet absorbers, light stabilizers, nucleating agents, colorants, to the extent that their properties are not impaired. Lubricants, flame retardants, inorganic fillers, adhesion promoters and the like may be added as appropriate.
There is no restriction | limiting in particular as an inorganic filler, Any well-known thing can be used. For example, silica, talc, mica, mica, glass flake, boron nitride (BN), plate-like carbon cal, plate-like aluminum hydroxide, plate-like silica, plate-like potassium titanate and the like can be mentioned. These may be added alone or in combination of two or more.
Examples of the adhesion promoter include γ-aminopropyltrimethoxysilane and γ-aminopropyltriethoxysilane.
[0026]
The solid inner layer base material 2 is one surface of a thin plate-like, film-like or sheet-like insulating base material 11 made of a thermoplastic resin composition having exactly the same shape as the above-mentioned uppermost layer base material 1 (in this figure). On the upper side, a groove 12 for forming a wiring circuit is formed, and a via hole 13 penetrating the insulating base material 11 is formed, and a conductive material obtained by curing a conductive paste in the groove 12 and the via hole 13. 14 is filled.
Examples of the conductive paste include resin-based low-temperature firing type silver (Ag) paste, silver (Ag) -palladium (Pd) paste, copper (Cu) paste, metal-based low-temperature firing type silver (Ag) -tin (Sn). ) A paste or the like is preferably used.
[0027]
The perforated inner layer base material 3 has the same shape as the uppermost layer base material 1 described above, but is made of a thin plate, a film, or a thermoplastic resin composition whose composition is different from that of the uppermost layer base material 1 described above. A via hole 13 penetrating the insulating base material 15 is formed in the sheet-like insulating base material 15, and the via hole 13 is filled with a conductive material 14 formed by curing a conductive paste. An opening 16 having substantially the same shape as the IC chip 18 is formed at a predetermined position 15 to accommodate an IC chip 18 described later.
[0028]
As described above, the composition of the thermoplastic resin composition used for the perforated inner layer base material 3 is such that the glass transition temperature (Tg) is the uppermost layer base material 1, the solid inner layer base material 2 and the IC chip. The glass transition temperature (Tg) of the thermoplastic resin composition used for the mounting inner layer base material 4 is lower than the glass transition temperature (Tg) of the thermoplastic resin composition, and the uppermost layer base material 1, solid inner layer. The difference from the glass transition temperature (Tg) of the thermoplastic resin composition used for the substrate 2 and the IC chip mounting inner layer substrate 4 is preferably 20 ° C. or less, more preferably 15 ° C. or less, and even more preferably 10 ° C. or less. It is.
[0029]
As a thermoplastic resin composition having a low glass transition temperature (Tg), a crystalline thermoplastic resin composition having a crystal melting peak temperature (Tm) of 260 ° C. or higher, or a glass transition temperature (Tg) of 260 ° C. or higher. A certain amorphous thermoplastic resin composition is preferably used.
[0030]
As the crystalline thermoplastic resin composition having a crystal melting peak temperature (Tm) of 260 ° C. or higher, for example, a resin composition containing 40% by weight of polyetheretherketone (PEEK) and 60% by weight of polyetherimide (PEI) Product (PEEK / PEI: Tg = 185 ° C., Tm = 335 ° C.), 40% by weight of polyphenylene sulfide (PPS) and 60% by weight of polyetherimide (PEI) (PPS / PEI: Tg = 150 ° C.) , Tm = 280 ° C.), resin composition containing 40% by weight of syndiotactic polystyrene (SPS) and 60% by weight of modified polyphenylene ether (modified PPE) (SPS / modified PPE: Tg = 120 ° C., Tm = 265 ° C.) Etc. are preferably used.
[0031]
Examples of the amorphous thermoplastic resin composition having a glass transition temperature (Tg) of 260 ° C. or higher include, for example, polyamideimide (PAI: Tg> 260 ° C.), polyimide (PI: Tg> 260 ° C.), and the like. Those having a transition temperature (Tg) appropriately prepared by molecular design are preferably used.
[0032]
The IC chip mounting inner layer base material 4 is formed on one surface of a thin plate-like, film-like or sheet-like insulating base material 11 made of a thermoplastic resin composition having exactly the same shape as the uppermost layer base material 1 (in this figure). On the upper side, a groove 12 for forming a wiring circuit is formed, and a via hole 13 penetrating the insulating base material 11 is formed, and a conductive material obtained by curing a conductive paste in the groove 12 and the via hole 13. In addition, an IC chip 18 is mounted on the insulating base material 11, and a terminal 19 of the IC chip 18 is electrically connected to a wiring circuit formed of the conductive material 14.
[0033]
The uppermost layer base material 1 to the IC chip mounting inner layer base material 4 are laminated in this order to form a laminated structure in which the thermoplastic resin compositions constituting the base material are bonded together by thermocompression bonding. The wiring circuit for each of the materials 1 to 4 and the wiring for electrically connecting the substrates 1 to 4 are made conductive by being constituted by a conductive material 14 formed by curing a conductive paste.
[0034]
Next, the manufacturing method of the IC chip built-in multilayer wiring board according to the present embodiment will be described with reference to FIGS.
Here, first, a manufacturing method of each wiring substrate will be described, and then a manufacturing method of an IC chip built-in multilayer wiring substrate using these wiring substrates will be described.
[0035]
(1) Top layer substrate and solid inner layer substrate
First, as shown in FIG. 2A, an insulating base material 21 made of a thermoplastic resin composition having a flattened front surface and back surface is prepared. This insulating base material 21 becomes the uppermost layer base material as it is.
Next, as shown in FIG. 2B, the protrusions 23 of the stamper 22 are thermally transferred onto the surface of the insulating base material 21. The thermal transfer conditions are, for example, temperature: 175 to 205 ° C., pressure: 20 to 60 kg / cm. 2 It is.
By this thermal transfer, a wiring circuit forming groove 12 is formed on the surface of the insulating substrate 21 as shown in FIG.
[0036]
The stamper 22 is made of a material having good releasability with respect to the insulating base material 21, for example, glass, ceramics, and the like, and in particular, heat-resistant glass having a thickness of 3 to 5 mm is preferably used. The stamper 22 is produced by forming a resist mask on a heat-resistant glass plate using a photolithographic method, and then forming a convex portion 23 corresponding to the wiring circuit pattern by a sandblast method using the resist mask. .
[0037]
Next, as shown in FIG. 2 (d), a through-hole penetrating the insulating base material 21 is formed at a predetermined position of the insulating base material 21 using a laser or a mechanical drill to form a via hole 13. The via hole 13 may be formed simultaneously with the wiring circuit forming groove 12 by a stamper.
Next, as shown in FIG. 2 (e), the conductive paste 25 is filled into the wiring circuit forming grooves 12 and the via holes 13 by squeegee printing or the like, and then the conductive paste 25 is heated at 120 ° C. to 160 ° C. The conductive material 14 is cured by heating for 30 to 60 minutes.
Next, the conductive material 14a remaining on the insulating base 21 is removed by grinding using a polishing machine (not shown), and the surface of the insulating base 21 is flattened.
Thus, the solid inner layer base material 26 can be obtained.
[0038]
(2) Inner layer base material with IC chip
As shown in FIG. 3A, an IC chip 18 is arranged at a predetermined position on the solid inner layer base material 26 obtained as described above, and a thermocompression bonding jig 28 with a built-in heater is placed on the IC chip 18. The IC chip 18 is thermocompression bonded to the insulating substrate 21 by placing and pressing down the thermocompression bonding jig 28. For example, temperature: 180 to 200 ° C., pressure: 10 to 100 kg / cm. 2 Perform under the conditions of
[0039]
By this thermocompression bonding, as shown in FIG. 3B, the terminals 19 of the IC chip 18 are electrically connected to the conductive material 14 of the insulating base material 21, that is, the conductive circuit, and the IC chip 18 and the insulating base material are connected. IC chip mounting inner layer base material 29 integrated with 21 can be obtained.
[0040]
(3) Perforated inner layer base material
As shown to Fig.4 (a), a glass transition temperature is lower than the glass transition temperature of said insulating base material 21, and the difference with the glass transition temperature of the insulating base material 21 is 20 degrees C or less, The surface and An insulating substrate 31 made of a thermoplastic resin composition whose back surface is flattened is produced.
The thickness of the insulating base 31 is 1.05 to 1.10 times the thickness of the IC chip 18.
[0041]
Next, as shown in FIG. 4B, a through hole penetrating the insulating base material 31 is formed at a predetermined position of the insulating base material 31 using a laser, a mechanical drill, or the like to form a via hole 13.
Next, as shown in FIG. 4C, the conductive paste 25 is filled into the via hole 13 by squeegee printing or the like, and then the conductive paste 25 is heated at 120 to 160 ° C. for 30 to 60 minutes. The conductive material 14 is then cured.
[0042]
Next, as shown in FIG. 4D, the conductive material 14a remaining on the insulating base material 31 is ground and removed using a polishing machine (not shown), and the surface of the insulating base material 31 is flattened.
Next, as shown in FIG. 4E, an opening 32 for storing an IC chip is punched into a predetermined portion of the insulating base 31 using a punching molding machine (not shown). Thereby, the perforated inner layer base material 33 can be obtained.
The area of the opening 32 is such that a predetermined gap is generated with respect to the IC chip 18 before the insulating base material 31 is thermocompression-bonded. The shape in plan view is set so as to be in close contact with the periphery. For example, the area occupied by the IC chip 18 is 1.01 to 1.05 times.
[0043]
(4) IC chip built-in multilayer wiring board
First, as shown in FIG. 5, an elastic and releasable cushion film 42, an IC chip mounting inner layer base material 29, a perforated inner layer base material 33, a solid inner layer base material are provided in a laminating jig 41 with a built-in heater. The material 26, the insulating base material 21, and the cushion film 42 having elasticity and releasability are stacked in this order.
[0044]
Next, the IC chip mounting inner layer base material 29 to the insulating base material 21 are subjected to thermocompression bonding by pressing and heating the pressing jig 43.
The thermocompression bonding in this case is effective when performed at a temperature not lower than the glass transition temperature (Tg) of the thermoplastic resin composition constituting the insulating base material 21 and lower than the crystal melting peak temperature (Tm).
An example of the thermocompression bonding conditions is as follows: temperature: 220 to 300 ° C., pressure: 10 to 60 kg / cm. 2 It is.
[0045]
Here, the glass transition temperature (Tg) and the crystal melting peak temperature (Tm) of the insulating base materials 21 and 31 can be understood by measuring the differential scanning calorific value (DSC). These temperatures are, for example, compatible with a thermoplastic resin composition containing a polyaryl ketone and a polyetherimide having a crystal melting peak temperature (Tm) of 260 ° C. or higher. Can be sought.
[0046]
FIG. 6 shows a resin composition containing polyetheretherketone (PEEK) and polyetherimide (PEI), melt-kneaded, and then rapidly cooled to form a film substrate. The film substrate was heated at a heating rate of 10 ° C./min. The DSC profile obtained when the temperature is raised. In the figure, A is the DSC profile of the resin composition (A) containing 40% by weight of polyetheretherketone (PEEK) and 60% by weight of polyetherimide (PEI). B is a DSC profile of the resin composition (B) containing 50% by weight of polyetheretherketone (PEEK) and 50% by weight of polyetherimide (PEI).
According to this figure, the glass transition temperature (Tg) of the resin composition (A) is 185 ° C., the crystallization start temperature (Tc) is 251 ° C., and the glass transition temperature (Tg) of the resin composition (B) is 178 ° C., the crystallization start temperature (Tc) is 232 ° C.
[0047]
FIG. 7 is a diagram showing the elastic modulus temperature dependency of the above resin compositions (A) and (B), and the elastic modulus of the resin composition (A) decreases at a temperature equal to or higher than the glass transition temperature (Tg). It can be seen that the elastic modulus increases due to crystallization in the subsequent temperature raising process. In addition, the resin composition (B) has a lower elastic modulus at a lower temperature than the resin composition (A), and is crystallized before the resin composition (A) is crystallized in the subsequent temperature rising process to increase the elastic modulus. And it turns out that it changes with the elasticity modulus exceeding a resin composition (A).
[0048]
Here, the thermocompression bonding process in the case of using the resin composition (A) as the thermoplastic resin composition of the insulating base material 21 and the resin composition (B) as the thermoplastic resin composition of the insulating base material 31, respectively. explain.
In the initial stage of this thermocompression bonding (room temperature: 25 ° C. to 180 ° C.), as shown in FIG. 8A, the insulating base material 31 does not have a sufficiently low elastic modulus and is not deformed. It keeps holding and does not deform toward the IC chip 18 side. In addition, the insulating base material 21 is not deformed because the elastic modulus does not decrease in this temperature range, and keeps its original shape.
[0049]
In the next process (180 to 200 ° C.), as shown in FIG. 8B, the elastic modulus of the insulating base material 31 is lowered, so that it is compressed by the pressing of the pressing jig 43 toward the IC chip 18 side. Deforms and adheres closely to the IC chip 18. Since the thickness of the insulating base material 31 is 1.05 to 1.10 times the thickness of the IC chip 18, the pressing force of the pressing jig 43 is concentrated on the insulating base material 31. There is no addition to the IC chip 18. Thereby, there is no possibility that the IC chip 18 is deformed by the pressing force.
[0050]
Next, when the temperature is raised to 240 ° C. with a predetermined temperature profile, the insulating base 31 has a higher crystallization speed than the insulating base 21 as shown in FIG. Becomes higher. At the same time, since the elastic modulus of the insulating base material 21 decreases during this temperature rising process, the insulating substrate 21 is brought into close contact with the IC chip 18 by the pressing of the pressing jig 43.
Next, when this temperature (240 ° C.) is kept for a predetermined time, for example, 10 to 30 minutes, the insulating base material 21 is also crystallized and the elastic modulus is increased.
Then, it cools to room temperature (25 degreeC) with a predetermined | prescribed temperature profile, and obtains the IC chip built-in multilayer wiring board of this embodiment.
[0051]
Next, examples and comparative examples of the IC chip built-in multilayer wiring board of the present embodiment will be described.
In each of Examples 1 to 5 and Comparative Examples 1 to 5, the thermoplastic resin composition of the uppermost layer base material 1, the solid inner layer base material 2 and the IC chip mounting inner layer base material 4 is used as the base material A in Table 1. The thermoplastic resin composition of the perforated inner layer base material 3 is the composition shown in the base material B of Table 1, and the samples of the examples and comparative examples are based on the above-described method for producing a multilayer wiring board with integrated IC chip. Produced.
[0052]
Here, as shown in Table 1, the components, composition ratios, glass transition temperatures, and glass transition temperatures of the substrates A and B in each of the Examples and Comparative Examples are as shown in Table 1. . For example, in the case of a resin composition containing 40% by weight of polyetheretherketone (PEEK) and 60% by weight of polyetherimide (PEI), the component is expressed as “PEEK / PEI” and the composition ratio is expressed as “40/60”. . The components and composition ratios of other resin compositions are also indicated in the same manner.
[0053]
Further, the thickness of the IC chip is 100 μm in each of Examples 1 to 5 and Comparative Examples 1 to 5, and the thickness of the base material B is 100 μm, which is the same as the thickness of the IC chip only in Comparative Example 2. In Examples 1 and 3 to 5, the thickness was 110 μm.
Moreover, the maximum holding temperature of thermocompression bonding in each of the examples and comparative examples was as shown in Table 1.
[0054]
The samples of the obtained examples and comparative examples were evaluated.
Evaluation was made into two items of initial open / short and swelling in the moisture absorption reflow test. The number of samples in each item was set to 5, and the evaluation results are shown in Table 1.
The evaluation method is as follows.
[0055]
(1) Initial open / short
The conduction resistance is measured between the two terminals exposed between the IC chip mounting inner layer base material 4 (between two points on the conductive material 14), and the resistance value is 10 -2 What was less than Ωcm was determined to be good (◯), and the resistance value was 10 -2 What was more than Ωcm was defined as an open defect (×).
In addition, the conductive resistance was measured between any two terminals not connected in design of the same IC chip mounting inner layer base material 4 (between the conductive materials 14 and 14 not connected in design), and was not in a conductive state. Was determined to be good (◯), and the conductive state was determined to be short (×).
[0056]
(2) Swelling in moisture absorption reflow test
The samples of the examples and comparative examples were allowed to stand for 2 hours in a pressure cooker tester (temperature: 121 ° C., atmospheric pressure: 2 atm, humidity: 100% RH) to absorb moisture, and then these samples were subjected to a pressure cooker tester. The sample was taken out of the sample and passed through a reflow furnace (maximum set temperature: 260 ° C.), and the surface condition of the sample after passing was observed. Was evaluated as defective (x).
[0057]
[Table 1]
Figure 0004181897
[0058]
According to Table 1, in Examples 1-5, it turned out that initial stage open / short and the swelling by a moisture absorption reflow test are both favorable.
On the other hand, in Comparative Examples 3 and 4, although the initial open / short was good, it was found that swelling occurred in the moisture absorption reflow test, and the resistance to moisture absorption reflow was reduced. In Comparative Examples 1, 2, and 5, it was found that both the initial open / short and the swelling in the moisture absorption reflow test were worsened.
[0059]
According to the IC chip built-in multilayer wiring board of the present embodiment, the glass transition temperature of the thermoplastic resin composition of the uppermost layer base material 1, the solid inner layer base material 2, and the IC chip mounting inner layer base material 4 Since the glass transition temperature of the thermoplastic resin composition of the base material 3 is set higher than that of the thermoplastic resin composition and the difference in glass transition temperature between these thermoplastic resin compositions is 20 ° C. or less, the perforated inner layer base material 3 is subjected to thermal fusion. The thermal stress generated in the IC chip 18 is absorbed, and no distortion or deformation occurs between the IC chip 18 or between the IC chip 18 and the solid inner layer base material 2 and the IC chip mounting inner layer base material 4. Therefore, defects such as wiring defects and dimensional deviations due to the distortion and deformation can be prevented, and the conductor wiring can be made with high accuracy and high definition.
In addition, since there is no distortion or deformation between the IC chip 18 and the perforated inner layer base material 3, there is no possibility that voids are formed, and therefore moisture absorption reflow heat resistance can be improved.
[0060]
According to the manufacturing method of the IC chip built-in multilayer wiring board of this embodiment, the IC chip mounting inner layer base material 29, the perforated inner layer base material 33 having a low glass transition temperature, the solid inner layer base material 26, and the insulating base material 21 are provided. Since these IC chip mounting inner layer base material 29 to insulating base material 21 are thermocompression-bonded in this order and bonded and integrated together by thermal fusion, the perforated inner layer base material 33 is thermally generated in the thermocompression bonding process. By absorbing stress, it is possible to prevent problems such as wiring defects and dimensional deviations.
Therefore, a semiconductor device built-in type multilayer wiring board having high-precision and high-definition conductor wiring can be easily manufactured. As a result, a semiconductor device built-in multilayer wiring board having excellent electrical characteristics and reliability can be easily obtained. Obtainable.
[0061]
【The invention's effect】
As described above, according to the multilayer wiring substrate with a built-in semiconductor device of the present invention, the glass transition temperature of the thermoplastic resin composition of the wiring substrate on which the semiconductor device is mounted is formed in the recess or opening for housing the semiconductor device. Since the temperature difference between the glass transition temperatures of the formed thermoplastic resin composition of the wiring substrate and the glass transition temperature is set to 20 ° C. or less, the wiring substrate containing the semiconductor device is thermally fused. By absorbing the thermal stress generated at the time, distortion or deformation between the semiconductor device or wiring substrate and the semiconductor device can be prevented. Therefore, defects such as wiring defects and dimensional deviations due to the distortion and deformation can be prevented, and high-precision and high-definition conductor wiring can be realized.
In addition, since there is no distortion or deformation between the semiconductor device and the wiring base material that houses the semiconductor device, there is no possibility that voids are formed. Therefore, moisture absorption reflow heat resistance can be improved.
[0062]
According to the method for manufacturing a semiconductor device built-in multilayer wiring board of the present invention, a wiring substrate for mounting a semiconductor device, and a recess or opening for housing the semiconductor device is formed in a part of the substrate, and the thickness of the substrate is From the thickness of the semiconductor device The glass transition temperature of the thermoplastic resin composition of the base material is lower than the glass transition temperature of the thermoplastic resin composition of the wiring base material for mounting the semiconductor device, and the temperature difference between these glass transition temperatures is 20 ℃ or less A wiring substrate for housing a semiconductor device, and then mounting the semiconductor device on the wiring substrate for mounting the semiconductor device, laminating these wiring substrates, and integrating them by heat fusion. Can prevent distortion and deformation when integrating the wiring base material by heat fusion, and there are no defects such as open / short (O / S) wiring defects and dimensional deviations, and high accuracy. A semiconductor device built-in type multilayer wiring board having high-definition conductor wiring can be easily manufactured. Therefore, a multilayer wiring board with a built-in semiconductor device having excellent electrical characteristics and reliability can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a multilayer wiring board with integrated IC chip according to an embodiment of the present invention.
FIG. 2 is a process diagram showing a method of manufacturing a multilayer wiring board with a built-in IC chip according to an embodiment of the present invention.
FIG. 3 is a process diagram showing a method of manufacturing an IC chip built-in multilayer wiring board according to an embodiment of the present invention.
FIG. 4 is a process diagram showing a method for manufacturing an IC chip built-in multilayer wiring board according to an embodiment of the present invention.
FIG. 5 is a process diagram showing a method of manufacturing a multilayer wiring board with a built-in IC chip according to an embodiment of the present invention.
FIG. 6 is a diagram showing a DSC profile of a resin composition containing polyetheretherketone and polyetherimide.
FIG. 7 is a graph showing the elastic modulus temperature dependency of a resin composition containing polyether ether ketone and polyether imide.
FIG. 8 is a process diagram showing a method of manufacturing a multilayer wiring board with a built-in IC chip according to an embodiment of the present invention.
[Explanation of symbols]
1 Uppermost layer base material (uppermost wiring base material)
2 Solid inner layer substrate (wiring substrate)
3 perforated inner layer substrate (wiring substrate)
4 IC chip mounting inner layer substrate (wiring substrate)
11 Insulation substrate
12 Groove
13 Bahia Hall
14 Conductive material
15 Insulating substrate
16 opening
18 IC chip (semiconductor device)
21 Insulating substrate
26 Solid inner layer base material
29 IC chip mounting inner layer base material
31 Insulating substrate
33 perforated inner layer base material

Claims (6)

熱可塑性樹脂組成物からなる絶縁基材に導体配線が形成されてなる配線基材が複数、積層され、
これら複数の配線基材のうち、1つまたは2つ以上の配線基材に半導体装置が搭載され、
これらの配線基材同士が熱融着により一体化されてなる半導体装置内蔵多層配線基板において、
前記半導体装置が搭載された配線基材の熱可塑性樹脂組成物のガラス転移温度は、前記半導体装置が搭載された配線基材に隣接して配置され前記半導体装置を収納する凹部または開口が形成された配線基材の熱可塑性樹脂組成物のガラス転移温度より高く、かつこれらのガラス転移温度の温度差は20℃以下であることを特徴とする半導体装置内蔵多層配線基板。
A plurality of wiring base materials in which conductor wiring is formed on an insulating base material made of a thermoplastic resin composition are laminated,
Of these multiple wiring substrates, a semiconductor device is mounted on one or more wiring substrates,
In the multilayer wiring board with a built-in semiconductor device in which these wiring base materials are integrated by thermal fusion,
The glass transition temperature of the thermoplastic resin composition of the wiring substrate on which the semiconductor device is mounted is disposed adjacent to the wiring substrate on which the semiconductor device is mounted, and a recess or an opening for storing the semiconductor device is formed. A multilayer wiring substrate with a built-in semiconductor device, wherein the temperature is higher than the glass transition temperature of the thermoplastic resin composition of the wiring substrate and the temperature difference between these glass transition temperatures is 20 ° C. or less.
前記半導体装置が搭載された配線基材及び前記半導体装置を収納する配線基材それぞれの熱可塑性樹脂組成物は、結晶融解ピーク温度が260℃以上である結晶性熱可塑性樹脂組成物、または、ガラス転移温度が260℃以上である非晶性熱可塑性樹脂組成物、を主成分とすることを特徴とする請求項1記載の半導体装置内蔵多層配線基板。  The thermoplastic resin composition of each of the wiring substrate on which the semiconductor device is mounted and the wiring substrate that houses the semiconductor device is a crystalline thermoplastic resin composition having a crystal melting peak temperature of 260 ° C. or higher, or glass The multilayer wiring board with a built-in semiconductor device according to claim 1, comprising a non-crystalline thermoplastic resin composition having a transition temperature of 260 ° C. or higher as a main component. 前記結晶性熱可塑性樹脂組成物は、結晶融解ピーク温度が260℃以上であるポリアリールケトン樹脂と非晶性ポリエーテルイミド樹脂を主成分とする熱可塑性樹脂混合組成物、ポリフェニレンサルファイド樹脂とポリエーテルイミド樹脂を主成分とする熱可塑性樹脂混合組成物、シンジオタクチックリスチレン樹脂と変性ポリフェニレンエーテル樹脂を主成分とする熱可塑性樹脂混合組成物から選択された1種であることを特徴とする請求項2記載の半導体装置内蔵多層配線基板。  The crystalline thermoplastic resin composition includes a thermoplastic resin mixture composition comprising a polyaryl ketone resin and an amorphous polyetherimide resin having a crystal melting peak temperature of 260 ° C. or higher, a polyphenylene sulfide resin and a polyether. The thermoplastic resin mixture composition mainly comprising an imide resin, and a thermoplastic resin mixture composition mainly comprising a syndiotactic styrene resin and a modified polyphenylene ether resin. 3. A multilayer wiring board with a built-in semiconductor device according to 2. 前記非晶性熱可塑性樹脂組成物は、ポリイミド樹脂またはポリアミドイミド樹脂であることを特徴とする請求項2記載の半導体装置内蔵多層配線基板。  3. The multilayer wiring board with a built-in semiconductor device according to claim 2, wherein the amorphous thermoplastic resin composition is a polyimide resin or a polyamide-imide resin. 熱可塑性樹脂組成物からなる絶縁基材に導体配線が形成されてなる配線基材が複数、積層され、
これら複数の配線基材のうち、1つまたは2つ以上の配線基材に半導体装置が搭載され、
これらの配線基材同士が熱融着により一体化されてなる半導体装置内蔵多層配線基板の製造方法であって、
半導体装置搭載用の配線基材と、
基材の一部に前記半導体装置を収納する凹部または開口が形成され当該基材の厚みが前記半導体装置の厚みより厚く、当該基材の熱可塑性樹脂組成物のガラス転移温度が、前記半導体装置搭載用の配線基材の熱可塑性樹脂組成物のガラス転移温度より低く、かつこれらのガラス転移温度の温度差が20℃以下である半導体装置収納用の配線基材とを作製し、
次いで、前記半導体装置搭載用の配線基材に半導体装置を搭載し、
これらの配線基材を積層し、熱融着により一体化することを特徴とする半導体装置内蔵多層配線基板の製造方法。
A plurality of wiring base materials in which conductor wiring is formed on an insulating base material made of a thermoplastic resin composition are laminated,
Of these multiple wiring substrates, a semiconductor device is mounted on one or more wiring substrates,
A method for manufacturing a multilayer wiring board with a built-in semiconductor device in which these wiring base materials are integrated by heat fusion,
A wiring substrate for mounting a semiconductor device;
A recess or opening for housing the semiconductor device is formed in a part of the base material, and the thickness of the base material is thicker than the thickness of the semiconductor device, and the glass transition temperature of the thermoplastic resin composition of the base material is the semiconductor device. Producing a wiring substrate for housing a semiconductor device having a temperature lower than the glass transition temperature of the thermoplastic resin composition of the wiring substrate for mounting and a temperature difference of these glass transition temperatures of 20 ° C. or less ;
Next, the semiconductor device is mounted on the wiring substrate for mounting the semiconductor device,
A method of manufacturing a multilayer wiring board with a built-in semiconductor device, wherein these wiring substrates are laminated and integrated by heat fusion.
前記複数の配線基材を熱融着により一体化する際の温度は、前記半導体装置搭載用の配線基材のガラス転移温度以上であることを特徴とする請求項5記載の半導体装置内蔵多層配線基板の製造方法。  6. The semiconductor device built-in multilayer wiring according to claim 5, wherein a temperature at which the plurality of wiring base materials are integrated by heat fusion is equal to or higher than a glass transition temperature of the wiring base material for mounting the semiconductor device. A method for manufacturing a substrate.
JP2003049663A 2003-02-26 2003-02-26 Multilayer wiring board with built-in semiconductor device and manufacturing method thereof Expired - Fee Related JP4181897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049663A JP4181897B2 (en) 2003-02-26 2003-02-26 Multilayer wiring board with built-in semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049663A JP4181897B2 (en) 2003-02-26 2003-02-26 Multilayer wiring board with built-in semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004259984A JP2004259984A (en) 2004-09-16
JP4181897B2 true JP4181897B2 (en) 2008-11-19

Family

ID=33115315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049663A Expired - Fee Related JP4181897B2 (en) 2003-02-26 2003-02-26 Multilayer wiring board with built-in semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4181897B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7422683B2 (en) 2019-01-17 2024-01-26 Toa株式会社 microphone device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253225A (en) * 2005-03-08 2006-09-21 Denso Corp Circuit substrate, method of manufacturing the same, and electronic circuit apparatus
JP2006311183A (en) * 2005-04-28 2006-11-09 Sony Corp Semiconductor device and its manufacturing method
JP2006341596A (en) * 2005-05-12 2006-12-21 Mitsubishi Plastics Ind Ltd Heat resistant resin plate
JP2008141007A (en) * 2006-12-01 2008-06-19 Denso Corp Method for manufacturing multilayer substrate
DE102014112673A1 (en) * 2014-09-03 2016-03-03 Epcos Ag light emitting diode device
CN111081854B (en) * 2014-09-26 2023-11-17 日亚化学工业株式会社 Light emitting assembly
WO2016047446A1 (en) * 2014-09-26 2016-03-31 株式会社村田製作所 Substrate for stacked module, stacked module, and method for manufacturing stacked module
WO2016080141A1 (en) * 2014-11-17 2016-05-26 株式会社村田製作所 Component-embedded substrate and method for manufacturing component-embedded substrate
CN110010480B (en) * 2018-10-10 2020-08-28 浙江集迈科微电子有限公司 Wafer-level radio frequency chip electromagnetic shielding packaging process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7422683B2 (en) 2019-01-17 2024-01-26 Toa株式会社 microphone device

Also Published As

Publication number Publication date
JP2004259984A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4401070B2 (en) Multilayer wiring board with built-in semiconductor device and manufacturing method thereof
JP4181778B2 (en) Wiring board manufacturing method
TWI389608B (en) Component built-in wiring substrate and manufacturing method thereof
JP2010171413A (en) Method of manufacturing wiring board with built-in component
JP4181897B2 (en) Multilayer wiring board with built-in semiconductor device and manufacturing method thereof
WO2006078027A1 (en) Multilayer printed wiring board
JP5127315B2 (en) Built-in module
JP4261713B2 (en) Thermally conductive substrate and manufacturing method thereof
JP2005191156A (en) Wiring plate containing electric component, and its manufacturing method
JP3922977B2 (en) Multilayer wiring board with built-in semiconductor device
JP2002305364A (en) Module incorporating circuit component and manufacturing method therefor
JP5192865B2 (en) Manufacturing method of wiring board with built-in components
JP3888578B2 (en) Electronic component unit manufacturing method
JP3935801B2 (en) Multilayer wiring board and multilayer wiring board with built-in semiconductor device
JP5306797B2 (en) Manufacturing method of wiring board with built-in components
JP5192864B2 (en) Manufacturing method of wiring board with built-in components
JP4137739B2 (en) Perforated wiring base material for multilayer wiring board with built-in semiconductor device, multilayer wiring board with built-in semiconductor device, and manufacturing method thereof
KR101563163B1 (en) Embedded substrate and method for manufacturing the same
JP2004214273A (en) Method for manufacturing single side lamination wiring board
JP2008078530A (en) Circuit board and manufacturing method thereof
JP2004235266A (en) Multilayered wiring board with built-in electronic element
JP2006196673A (en) Split laminated wiring board
JP2008270776A (en) Wiring board having built-in component and manufacturing method thereof, and capacitor to be built in wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees