JP4178855B2 - COOLING DEVICE, ELECTRIC DEVICE, AND COOLING DEVICE MANUFACTURING METHOD - Google Patents

COOLING DEVICE, ELECTRIC DEVICE, AND COOLING DEVICE MANUFACTURING METHOD Download PDF

Info

Publication number
JP4178855B2
JP4178855B2 JP2002203335A JP2002203335A JP4178855B2 JP 4178855 B2 JP4178855 B2 JP 4178855B2 JP 2002203335 A JP2002203335 A JP 2002203335A JP 2002203335 A JP2002203335 A JP 2002203335A JP 4178855 B2 JP4178855 B2 JP 4178855B2
Authority
JP
Japan
Prior art keywords
substrate
flow path
substrates
working fluid
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002203335A
Other languages
Japanese (ja)
Other versions
JP2004044917A (en
Inventor
豪作 加藤
峰広 外崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002203335A priority Critical patent/JP4178855B2/en
Publication of JP2004044917A publication Critical patent/JP2004044917A/en
Application granted granted Critical
Publication of JP4178855B2 publication Critical patent/JP4178855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発熱デバイスを冷却する冷却装置とその製造方法、さらにはコンピュータ、ディジタルカメラなどの発熱デバイスを搭載した電子機器装置に関する。
【0002】
【従来の技術】
近年、パーソナルコンピュータなどに搭載されるCPU(Central Processing Unit)、ビデオ・アクセレレータなどのLSI(Large Scale Integration)の高速化をはじめ、フラットパネル・ディスプレイなどの大面積化、さらにはパーソナルコンピュータのみならずディジタルカメラやディジタルオーディオ機器など、その利用の範囲が近年急速に広がりつつあるメモリスティック、スマートメディア、コンパクトフラッシュ(登録商標)などに代表される、記憶素子としてフラッシュメモリを利用した記憶媒体の大容量化などに起因して、電子機器装置の全体の発熱量の増大が著しい。
【0003】
そこで、これら発熱デバイスを冷却する冷却装置の重要度が増してきている。冷却装置としては、一般に冷却ファン、ペルチェ素子、ヒートパイプなどがある。ここでは特にヒートパイプについて述べることとする。
【0004】
通常、ヒートパイプは内壁に毛細管構造を設けた金属性の管体からなり、密閉された管体内部には水や代替フロンなどの作動流体が封入されている。このヒートパイプでは以下のように熱輸送が行われる。
【0005】
ヒートパイプの一端を熱源となるデバイスに接触させると、この熱によって管体内部の作動流体が蒸発して気化する。気化された作動流体は凝縮部へ高速に移動し、そこで凝縮されて液体に戻り、このとき熱を放出する。液体に戻った作動流体は、この後毛細管構造を通って元の場所へ戻る。このようにして連続的に効率よく熱輸送が行われる。
【0006】
【発明が解決しようとする課題】
しかしながら、従来のヒートパイプは管状であり、空間的に大掛かりな装置となるので、小型薄型が求められるパーソナルコンピュータやディジタルカメラなどの電子機器装置への利用には設計の自由度が乏しく、不向きである。
【0007】
そこで、シリコン基板やガラス基板などの基板材の中にヒートパイプ構造を作り込む方法が提案されている。
【0008】
しかしながら、シリコン基板を用いてヒートパイプを構成すると、シリコン自体の熱伝導性がよいため、冷却対象物からの熱がシリコン基板表面で拡散し、内部の作動流体の気化が十分行われず、ヒートパイプとしての機能が十分発揮されないという問題があった。
【0009】
また、ガラス基板を用いた場合、冷却対象デバイスとの熱伝導におけるカップリング効率の悪さから、要求する温度まで冷却対象デバイスを冷却できないという問題もあった。
【0010】
本発明は、このような事情を鑑みて、小型薄型化が容易で、放熱設計の自由度が高く、熱輸送能力に優れた冷却装置とその製造方法、ならびに内部発熱デバイスの発熱に対して回路の安定動作を高い信頼性で確保し得る電子機器装置を提供することを目的としている。
【0011】
【課題を解決するための手段】
本発明の主たる観点に係る冷却装置は、上記課題を解決するための手段として、二層の基板と、前記二層の基板の層間に設けられ、ヒートパイプを構成する作動流体の流路と、前記二層の基板の少なくとも一方に設けられた開口部と、前記二層の基板の間に配置され、前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部、および前記開口部に嵌め込まれて先端が表出した表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材とを具備する。
【0012】
この発明の冷却装置は、二層の基板の層間にヒートパイプを構成する作動流体の流路が形成されているので、小型薄型化が容易である。また、基板への流路のパターン形成によって、高い自由度でヒートパイプを設計することができる。また、基板よりも熱伝導率の高い材料からなる液体吸引保持部材の一部が表出部として基板の少なくとも一方の面に表出しているので、この表出部を通じて冷却対象である発熱デバイスと液体吸引保持部材との熱的接触をとることで、効率的な熱輸送を実現することができる。さらに、このことにより基板の材料として熱伝導率の低い材料の使用が可能となり、基板での熱拡散に起因した熱輸送効率の低減を抑制できる。
【0013】
また、本発明の別の観点に基づく冷却装置は、二層の基板と、前記二層の基板の層間に設けられ、ヒートパイプを構成する作動流体の流路と、前記二層の基板の表裏両面に設けられた複数の開口部と、前記二層の基板の間に配置され、前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部、および前記複数の開口部にそれぞれ嵌め込まれて先端が表出した複数の表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材とを具備する。
【0014】
これにより二層の基板の表裏各面にCPU、グラフィックチップ、ドライバICなどの発熱デバイスを各々搭載した形態を採ることができるなど、電子機器装置の放熱設計の自由度が向上する。
【0015】
さらに、本発明の別の観点に基づく冷却装置は、二層の基板と、前記二層の基板の層間に設けられ、ヒートパイプを構成する作動流体の流路と、前記二層の基板の少なくとも一方に設けられた第1の開口部および第2の開口部と、前記二層の基板の間に配置され、前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部、および前記第1の開口部に嵌め込まれて先端が表出した第1の表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材と、前記二層の基板の間に配置され、前記第2の開口部に嵌め込まれて先端が表出した第2の表出部を有し、前記流路にて気相の作動流体のもつ潜熱を放出する潜熱放出部材とを具備する。
【0016】
これにより、潜熱放出部材を冷却装置の外部の放熱部材に接触させることができ、ヒートパイプにおける凝縮部での冷却能力が向上し、冷却装置の熱輸送効率をさらに改善することができる。
【0017】
また、本発明の冷却装置において、液体吸引保持部材の前記チャンネル部は、前記二層の基板のうち一方の前記基板に設けられた前記作動流体の流路に対応する毛細管力発生用の第一のチャンネル部と、他方の前記基板に設けられた前記作動流体の流路に対応する毛細管力発生用の第二のチャンネル部とを有するものであってもよい。
【0018】
このように液体吸引保持部材の両面に毛細管力発生用のチャンネル部を形成することによって、液体吸引保持部材全体として液相の作動流体との接触面積をより広く確保することができ、熱輸送効率がさらに向上する。
【0019】
さらに、本発明の冷却装置において、二層の基板が、それぞれ作動流体の流路のパターンが一方の面に形成された基板どうしを接合したものからなり、各々の基板には、互いに異なる形態の、作動流体の流路パターンが形成されたものであってもよい。
【0020】
これにより冷却装置の熱輸送特性の選択の自由度がより一層向上する。
【0021】
さらに、本発明の冷却装置において、二層の基板が接着層を介して互いに接合され、該接着層の厚さを1.5nm以上かつ1μm未満の範囲とすることで、熱伝導性が高い材料を接着層に用いる場合に、この接着層での熱伝導に起因する冷却装置の効率低下を低減できるとともに、基板接合に求められる接着強度が得られる。
【0022】
本発明の別の観点に係る電子機器装置は、発熱源であるデバイスと、このデバイスを冷却する冷却装置とを備え、前記冷却装置が、二層の基板と、前記二層の基板の層間に設けられ、ヒートパイプを構成する作動流体の流路と、前記二層の基板の少なくとも一方に設けられた開口部と、前記二層の基板の間に配置され、前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部、および前記開口部に嵌め込まれて先端が表出した表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材とを具備し、前記液体吸引保持部材の前記表出部と前記デバイスとが接触して構成される。
【0023】
この発明の電子機器装置によれば、基板よりも熱伝導率の高い材料からなる液体吸引保持部材の表出部と冷却対象である発熱デバイスとの熱的接触により、冷却装置において効率的な熱輸送が行われることで、デバイスが効率的に冷却され、デバイスの発熱に起因する動作不良を防止することができる。
【0024】
さらに、本発明の別の観点に係る電子機器装置は、発熱源であるデバイスと、このデバイスを冷却する冷却装置とを備え、前記冷却装置が、二層の基板と、前記二層の基板の層間に設けられ、ヒートパイプを構成する作動流体の流路と、前記二層の基板の表裏両面に設けられた複数の開口部と、前記二層の基板の間に配置され、前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部、および前記複数の開口部にそれぞれ嵌め込まれて先端が表出した複数の表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材とを具備し、前記液体吸引保持部材の少なくとも1つの前記表出部と前記デバイスとが接触されてなるものである。
【0025】
これにより二層の基板の表裏各面にCPU、グラフィックチップ、ドライバICなどの発熱デバイスを各々搭載した形態や、一方の面にはヒートシンクを取り付けることができるなど、電子機器装置の放熱設計の自由度が向上する。
【0026】
また、この発明の別の観点に係る冷却装置の製造方法は、2枚の基板の少なくとも一方に開口を形成、2枚の基板それぞれの1つの面にヒートパイプを構成する作動流体の流路のパターンを形成前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部と、記基板に設けられた前記開口部に嵌め込まれる表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材を作製、前記2枚の基板の前記流路パターンの形成面どうしを前記液体吸引保持部材を挟んで接合することを特徴とする。
【0027】
この製造方法によれば、小型薄型化が容易であるとともに、放熱設計の自由度が高く、熱輸送能力に優れた冷却装置を簡単に製造できる。
【0028】
さらに、本発明の別の観点に係る冷却装置の製造方法は、2枚の基板の少なくとも一方に第1の開口部および第2の開口部をそれぞれ形成し、2枚の基板それぞれの1つの面にヒートパイプを構成する作動流体の流路のパターンを形成し、前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部と、記基板に設けられた前記第1の開口部に嵌め込まれる第1の表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材を作製し前記基板に設けられた前記第2の開口部に嵌め込まれる第2の表出部とを有し、前記流路にて気相の作動流体のもつ潜熱を放出する潜熱放出部材を作製し、前記2枚の基板の前記流路パターンの形成面どうしを前記液体吸引保持部材および前記潜熱放出部材を挟んで接合することを特徴とする。
【0029】
この発明によれば、潜熱放出部材を冷却装置の外部の放熱部材に接触させることで、ヒートパイプにおける凝縮部での冷却能力が高く、熱輸送効率の高い冷却装置を製造することができる。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0031】
図1は本発明の実施の一形態である冷却装置の分解斜視図、図2はこの冷却装置を組み立てた状態の断面図である。
【0032】
これらの図に示すように、この冷却装置1は、二層の基板を構成する上側基板2および下側基板3と、液体吸引保持部材であるウィック4と、潜熱放出部材としてのコンデンサ5とで構成される。
【0033】
上側基板2および下側基板3の各々の一つの面には、ヒートパイプを構成する流路パターンの溝6が設けられている。
【0034】
上側基板2と下側基板3とは、それぞれの流路パターン形成面を向かい合わせ、その間にウィック4およびコンデンサ5を配置して互いに接合されている。
【0035】
図3に流路パターンの平面レイアウトを、図4にはさらにウィック4およびコンデンサ5を配置した流路パターンの平面レイアウトを示す。
【0036】
上下の各基板2,3を接合することによって、各基板2,3の流路パターンの溝6は、作動流体である冷媒を蒸発させる蒸発器11、気相ライン12、凝縮器13、液相ライン14、リザーバエリア15、冷媒封入口16、気液相分離溝19、ウィック外枠口17、コンデンサ外枠口18を構成する。
【0037】
蒸発器11、気相ライン12、凝縮器13、液相ライン14およびリザーバエリア15には冷媒が封入され、これによってヒートパイプが構成されている。
【0038】
蒸発器11は、これに充填されている液相の冷媒にて、毛細管構造を有するウィック4からの熱を奪い、液相の冷媒を蒸発させて気相ライン12へ気相の冷媒を移動させる部分である。
【0039】
気相ライン12は、蒸発器11にて蒸発した気相の冷媒を凝縮器13へ伝達する流路である。
【0040】
凝縮器13は、蒸気の持つ潜熱をコンデンサ5に吸収させ、気相の冷媒を凝縮して液化する部分である。
【0041】
液相ライン14は、凝縮器13にて液化された冷媒を蒸発器11に移動させる流路である。
【0042】
リザーバエリア15は、液相の冷媒を貯蔵したエリアであり、蒸発器11内の液体の量を一定に保つようにリザーバエリア15から蒸発器11へ冷媒の補充が可能となっている。
【0043】
さらに、各基板2,3には、基板どうしの接合後に冷媒を注入するための入り口である冷媒封入口16、気相ライン12と液相ライン14とを分離して相互間の熱干渉を抑制する気液相分離溝19、そして後述のウィック4の外枠部を嵌め込んで基板表面にウィック4の外枠部の表裏各先端面を表出させるウィック外枠口17、コンデンサ5の外枠部を嵌め込んで基板表面にコンデンサ5の外枠部の表裏各先端面を表出させるコンデンサ外枠口18などが設けられている。
【0044】
基板2,3の材料としては、熱伝導率があまり高いと、基板での熱拡散によってヒートパイプの熱輸送効率に悪影響を及ぼし得るので、たとえば、ガラスや、ポリイミド、テフロン(登録商標)、PDMS(polydimethylsiloxane)などの有機系プラスティックなどが用いられる。
【0045】
冷媒には、たとえば、水、エタノール、メタノール、プロパノール(異性体を含む。)、エチルエーテル、エチレングリコール、フロリナートなど、冷却・熱輸送装置の設計を満足する沸点、熱伝導率、耐抗菌性を有する流体が利用される。
【0046】
ウィック4およびコンデンサ5の材料には熱伝導性の高いもの、たとえば熱伝導率が0.17W/mK以上のものが使用される。具体的には、Si、Cu、Al、Ni、Ti、Au、Ag、Ptなどのうち少なくとも一種を含む材料をはじめ、導電性ポリマー、セラミックなどであって、かつ金属と同等の熱伝導率をもつ材料が使用される。より好ましくは、基板材より2倍以上の熱伝導率を有する材料を用いることが望ましい。
【0047】
図5にウィック4の構造の詳細を示す。同図において(a)は側面図、(b)は平面図である。
【0048】
同図に示すように、ウィック4は、チャンネル部21と、その両端に設けられた外枠部22とで構成される。チャンネル部21の上下両面には毛細管力を発生するためのマイクロチャンネル23,23がそれぞれ設けられている。
【0049】
図2に示したように、ウィック4が各基板2,3と組み合わされた状態で、ウィック4の外枠部22の上端面22aおよび下端面22bはそれぞれ、二層の基板2,3の表裏各々の面2a,2bに表出させてある。すなわち、ウィック4の外枠部22の上端面22aおよび下端面22bは、二層の基板2,3の表裏各々の面2a,2bと高さが一致するように、もしくは二層の基板2,3の表裏各々の面2a,2bより僅かに突出するようにそれぞれの高さが設定されている。そして、この二層の基板2,3から表出したウィック4の外枠部22の上端面22aおよび/または下端面22bには、たとえば冷却対象である発熱デバイスなどが接触・接合されるようになっている。
【0050】
コンデンサ5も同様にチャンネル部31と外枠部32とで構成される。このコンデンサ5のチャンネル部31は、放熱性を高めるために、その上下両面にフィンとして機能するマイクロチャンネル33が設けられている。また、このコンデンサ5にはウィック4と同様に外枠部32が設けられており、この外枠部32の上端面32aおよび下端面32bは、二層の基板2,3の表裏各々の面2a,2bに表出させてある。すなわち、コンデンサ5の外枠部32の上端面32aおよび下端面32bは、二層の基板2,3の表裏各々の面2a,2bと高さが一致するように、もしくは二層の基板2,3の表裏各々の面2a,2bより僅かに突出するようにそれぞれの高さが設定されている。そしてこのコンデンサ5の外枠部32の上端面32aおよび/または下端面32bには、冷却装置1の外部の放熱性または熱伝導率の高い部材が接触・接合されるようになっている。
【0051】
以上のように、この実施形態の冷却装置1は、ヒートパイプのための流路パターンの溝6が一方の面に設けられた上下の各基板2,3を、それぞれの流路パターンの溝6が設けられた面どうしを向かい合わせ、その間にウィック4とコンデンサ5とを配置し、互いに接合して作製され、そして冷却装置1の内部は所定の減圧状態とされている。
【0052】
この冷却装置1における熱輸送は以下のように行われる。
【0053】
蒸発器11内に充填されている液相の冷媒は、二層の基板2,3の外でウィック4と接触している発熱デバイスの熱を吸収し、この熱で蒸発する。すると蒸気圧差によって蒸気(気相の冷媒)が気相ライン12に移動する。気相の冷媒は気相ライン12を通じて凝縮器13に移動し、凝縮器13で気相の冷媒は、コンデンサ5により潜熱を奪われて液体に戻る。液化された冷媒は液相ライン14を通じて蒸発器11に移動する。このようなサイクルによって熱輸送が行われる。
【0054】
次に、この冷却装置1の製造方法を説明する。
【0055】
まず、図6に示すように、上下の各基板2,3に冷媒封入口16、ウィック外枠口17、コンデンサ外枠口18などの開口を形成する。
【0056】
続いて、図7に示すように、各基板2,3の一方の面にヒートパイプを構成する流路パターンの溝6を形成する。これら開口と溝6の形成方法には、サンドブラスト、RIE(ドライエッチング)、ウエットエッチング、UV光エッチング、レーザーエッチング、プロトン光エッチング、電子線描画エッチング、マイクロモールディングなどがある。
【0057】
次に、各基板2,3内にウィック4が嵌る領域を確保するために、図8に示すように、各基板2,3の流路パターン形成面のウィック嵌め込み予定の領域40を、同領域に対応する開口41を有するメタルマスク42を用いたエッチングなどによって均一な深さで除去し、図9に示すように、除去された面に流路パターンが存在するウィック嵌め込み凹部43を形成する。
【0058】
次に、図1に示したように、各基板2,3の流路パターンの形成面どうしを向き合わせ、ウィック4およびコンデンサ5を、それぞれの外枠部22,32をウィック外枠口17およびコンデンサ外枠口18に嵌め込んで基板2,3間に挟み込み、基板2,3どうしを接合する。これにより図10に示すような外観の冷却装置1が完成する。
【0059】
基板2,3どうしを接合する方法には、たとえば、陽極接合、加圧・熱融着、超音波接合、化学結合による接合(基板材がポリミイドの場合など)、自己接着性材料どうしの接合(基板材がSiゴムの場合など)、などの方法がある。
【0060】
この際、一方もしくは両方の基板の流路パターン形成面に接着層(図2および図10の符号34)を形成して接合するようにしてもよい。また、この場合、たとえば、各基板の材料中にイオンインプランテーションを用いて金属を打ち込んだり、蒸着装置により銅などの薄膜を形成したり、プラズマ照射により表面活性を高めておいてから接合することが好ましい。
【0061】
ここで、接着層34の厚さは、熱伝導性が高い材料を接着層34に用いる場合には薄いほうが好ましい。なぜなら、接着層34に起因する熱伝導を低減し、冷却装置1の効率低下を防ぐためである。その一方、接着層34の厚さが薄すぎると接着層としての十分な機能が期待できない。
【0062】
たとえば、接着層34の厚さは少なくとも1.5nm以上、1μm未満がよく、好ましくは3nm以上かつ1μm未満、さらに好ましくは10nm以上かつ200nm未満である。
【0063】
続いて、ウィック4、コンデンサ5の作製方法を図11により説明する。
【0064】
ウィック4、コンデンサ5の幅、長さ、高さを満足する、前述した材料からなる板材51を用意する(a)。この板材51からたとえば機械加工などにより、上下いずれか一方の側の外枠部52とチャンネル部53を形成する(b)。次に、チャンネル部53の一方の面に、ウィック4、コンデンサ5に適した形状、サイズのマイクロチャンネル54をたとえば機械加工などにより形成する(c)。そして、板材51の他方の側についても同様に、外枠部52、チャンネル部53およびマイクロチャンネル54の形成を機械加工などによって行う。
【0065】
なお、ウィック4、コンデンサ5のその他の製造方法としては、RIE(ドライエッチング)、ウエットエッチング、UV−LIGA、電気鋳造などが挙げられる。
【0066】
以上のように構成された冷却装置1では、図10に示したように、ウィック4の外枠部22が二層の基板2,3の表裏各面2a,3aに表出しているから、電子機器装置において多様な形態で組み込むことが可能となる。
【0067】
たとえば、図12に示すように、電子機器装置60の中のたとえばCPU、グラフィックチップ、ドライバICなどの発熱デバイス61,62を、冷却装置1の表裏各面2a,3aに表出させたウィック4の外枠22に接触させて搭載した形態を採ることができる。
【0068】
また、図13に示すように、冷却装置1の表裏いずれか一方の面側にウィック4の外枠22に接触させるようにしてヒートシンク63を搭載することで、冷却装置1の熱輸送量の上限を向上させることができ、電子機器装置60の放熱設計の自由度が向上する。
【0069】
さらに、図14に示すように、冷却装置1を縦横に複数組み合わせてアレイ化し、LCD(Liquid Crystal Display)、FED(Field Emission Display)、PDP(Plasma Display Panel)などのフラットパネル・ディスプレイ71と背面シャーシ73との間に介在させた形態を採ることもできる。
【0070】
さらに、図12、図13に示したように、コンデンサ5の外枠部32を二層の基板2,3の表裏各面2a,3aに表出させることで、このコンデンサ5の表出部を冷却装置1の外部の、放熱性または熱伝導性の高い部材64、たとえば電子機器装置60のシャーシ64などに接触させることで、凝縮器13の冷却能力を高めることができる。
【0071】
したがって、本実施形態の冷却装置1は、パーソナルコンピュータ、ディジタルカメラなど、発熱デバイスを搭載した様々な電子機器装置60に高い自由度で組み込むことができ、電子機器装置60内の発熱デバイスを効率的に冷却することができる。
【0072】
次に、本発明に係る冷却装置1の他の実施形態を説明する。
【0073】
前記の実施形態では、各基板内にウィック4が嵌る領域を確保するために、図8、図9に示したように、各基板2,3の流路パターン形成面のウィック嵌め込み領域40をエッチングなどにより均一な深さで除去し、除去された面に流路パターンが存在するウィック嵌め込み凹部43を形成した。この方法によれば、ウィック4のチャンネル部21の厚みを稼ぐことができ、ウィック4の加工が容易になるとともに、ウィック4での熱吸収量を高めることができる。
【0074】
ただし、本発明はこれに限定されるものではなく、ウィック嵌め込み凹部の形成を省略し、図15に示すように、流路6Aの高さHの範囲内にウィック4のチャンネル部21Aを収めるような構成を採っても構わない。
【0075】
また、前記の実施形態では、図2に示したように、ウィック4、コンデンサ5とも、その外枠部22,32の上下端面22a,22b,32a,32bの高さを、二層の基板2,3の表裏各々の面2a,2bの高さ以上となるように設定したが、図16に示すように、ウィック4、コンデンサ5とも、その外枠部22,32の上下のいずれか一方の端面22a,32aの高さだけを、基板2,3の面2aの高さ以上となるように設定してもよい。
【0076】
また、前記の実施形態では、上下の各基板2,3に共通の流路パターンを形成し、これら流路パターン形成面どうしを向い合わせて接合したが、図17に示すように、たとえば気相ライン12および液相ライン14など、熱輸送の特性に変化を及ぼし得る流路部分のパターンを上下重ならないようにずらして配置することによって、熱輸送特性の選択の自由度が向上し、高効率化を図ることができる。
【0077】
ここで、上側基板2には気相ライン12aを形成する溝が、下側基板3には気相ライン12bを形成する溝がそれぞれ設けられ、各気相ライン12a,12bは重ならないように位置が設定されている。同様に、上側基板2には液相ライン14aを形成する溝が、下側基板3には液相ライン14bを形成する溝がそれぞれ設けられ、各液相ライン14a,14bは重ならないように位置が設定されている。
【0078】
【発明の効果】
以上説明したように、本発明によれば、小型薄型の冷却装置を提供することができ、また、基板への流路のパターン形成により高い自由度でヒートパイプを設計することができる。また、基板よりも熱伝導率の高い材料からなる液体吸引保持部材の一部が表出部として基板の少なくとも一方の面に表出しているので、この表出部を通じて冷却対象である発熱デバイスと液体吸引保持部材との熱的接触をとることで、効率的な熱輸送を実現することができる。さらに、このことにより基板の材料として熱伝導率の低い材料の使用が可能となり、基板での熱拡散に起因した熱輸送効率の低減を抑制できる。
【図面の簡単な説明】
【図1】本発明の実施の一形態である冷却装置の分解斜視図である。
【図2】図1の冷却装置の断面図である。
【図3】この冷却装置の流路パターンの平面レイアウトを示す図である。
【図4】図3の流路パターン、ウィックおよびコンデンサの平面レイアウトを示す図である。
【図5】ウィックの構造の詳細を示す側面図と平面図である。
【図6】基板に冷媒封入口、ウィック外枠口、コンデンサ外枠口などの開口を形成する工程を示す斜視図である。
【図7】基板にヒートパイプを構成する流路パターンの溝を形成する工程を示す斜視図である。
【図8】基板のウィック嵌め込み領域のエッチング工程を示す斜視図である。
【図9】基板のウィック嵌め込み領域のエッチング後の状態を示す斜視図である。
【図10】完成した冷却装置の外観を示す斜視図である。
【図11】ウィックおよびコンデンサの作製方法を示す図である。
【図12】冷却装置の電子機器装置への組み込み形態の例を示す側面図である。
【図13】冷却装置の電子機器装置への別の組み込み形態の例を示す側面図である。
【図14】多数の冷却装置をアレイ化してフラットパネル・ディスプレイの冷却用途に用いた形態を示す斜視図である。
【図15】冷却装置の他の実施形態を示す断面図である。
【図16】冷却装置におけるウィックおよびコンデンサの変形例を示す断面図である。
【図17】上下各基板に異なる流路パターンを形成した場合の冷却装置を示す平面図である。
【符号の説明】
1 冷却装置
2 上側基板
3 下側基板
4 ウィック
5 コンデンサ
6 流路パターンの溝
11 蒸発器
12 気相ライン
13 凝縮器
14 液相ライン
15 リザーバエリア
17 ウィック外枠口
18 コンデンサ外枠口
21,31 チャンネル部
22,32 外枠部
23,33 マイクロチャンネル
34 接着層
60 電子機器装置
61,62 発熱デバイス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling device for cooling a heat generating device and a method for manufacturing the same, and further to an electronic apparatus equipped with a heat generating device such as a computer or a digital camera.
[0002]
[Prior art]
In recent years, the speed of LSIs (Large Scale Integration) such as CPUs (Central Processing Units) and video accelerators installed in personal computers has been increased, the area of flat panel displays has increased, and not only personal computers. Large-capacity storage media that use flash memory as storage elements, such as memory sticks, smart media, and compact flash (registered trademark), which have been rapidly expanding the scope of their use in recent years, such as digital cameras and digital audio equipment As a result, the overall heat generation amount of the electronic device is significantly increased.
[0003]
Therefore, the importance of cooling devices for cooling these heat generating devices is increasing. As the cooling device, there are generally a cooling fan, a Peltier element, a heat pipe, and the like. Here, the heat pipe will be described in particular.
[0004]
Usually, a heat pipe is made of a metallic tube having a capillary structure on the inner wall, and a working fluid such as water or alternative chlorofluorocarbon is sealed inside the sealed tube. In this heat pipe, heat transport is performed as follows.
[0005]
When one end of the heat pipe is brought into contact with a device serving as a heat source, the working fluid inside the tube is evaporated and vaporized by this heat. The vaporized working fluid moves at high speed to the condensing part, where it is condensed and returned to a liquid, at which time heat is released. The working fluid that has returned to liquid then returns to its original location through the capillary structure. In this way, heat is transported continuously and efficiently.
[0006]
[Problems to be solved by the invention]
However, since the conventional heat pipe is tubular and becomes a large-scale device, it is not suitable for use in electronic devices such as personal computers and digital cameras that are required to be small and thin. is there.
[0007]
Therefore, a method of making a heat pipe structure in a substrate material such as a silicon substrate or a glass substrate has been proposed.
[0008]
However, when a heat pipe is configured using a silicon substrate, the heat conductivity of the silicon itself is good. Therefore, heat from the object to be cooled diffuses on the surface of the silicon substrate, and the internal working fluid is not sufficiently vaporized. There was a problem that the function of the was not fully demonstrated.
[0009]
In addition, when a glass substrate is used, there is a problem that the device to be cooled cannot be cooled to a required temperature due to poor coupling efficiency in heat conduction with the device to be cooled.
[0010]
In view of such circumstances, the present invention is a cooling device that is easy to reduce in size and thickness, has a high degree of freedom in heat radiation design, and has excellent heat transport capability, a manufacturing method thereof, and a circuit for heat generation of an internal heating device. It is an object of the present invention to provide an electronic apparatus device that can ensure stable operation with high reliability.
[0011]
[Means for Solving the Problems]
  The cooling device according to the main aspect of the present invention is a means for solving the above problems,A two-layered substrate; a working fluid flow path which is provided between the two-layered substrates and constitutes a heat pipe; an opening provided in at least one of the two-layered substrates; and the two-layered substrate A channel portion that sucks and holds a liquid-phase working fluid by capillary force in the flow path, and an exposed portion that is fitted into the opening and the tip is exposed.And a liquid suction holding member made of a material having a higher thermal conductivity than the substrate.
[0012]
  In the cooling device according to the present invention, since the flow path of the working fluid constituting the heat pipe is formed between the two layers of the substrates, it is easy to reduce the size and thickness. Further, the heat pipe can be designed with a high degree of freedom by forming the flow path pattern on the substrate. Also, a liquid suction holding member made of a material having higher thermal conductivity than the substrateAs part of the exposed partSince it is exposed on at least one side of the board,By taking thermal contact between the heat generating device to be cooled and the liquid suction holding member through this exposed portion,Efficient heat transport can be realized. Furthermore, this makes it possible to use a material having low thermal conductivity as the material of the substrate, and it is possible to suppress a reduction in heat transport efficiency due to thermal diffusion in the substrate.
[0013]
  In addition, the present inventionThe cooling device according to another aspect of the present invention is provided between the two-layer substrate, the interlayer of the two-layer substrate, the working fluid flow path constituting the heat pipe, and the both surfaces of the two-layer substrate. A plurality of openings, and a channel portion that is disposed between the two layers of the substrate and sucks and holds a liquid-phase working fluid by capillary force in the flow path, and is fitted into the openings. And a liquid suction holding member made of a material having a thermal conductivity higher than that of the substrate.
[0014]
As a result, it is possible to adopt a form in which heat generating devices such as CPUs, graphic chips, and driver ICs are mounted on the front and back surfaces of the two-layer substrate, and the degree of freedom of heat dissipation design of the electronic device is improved.
[0015]
  Furthermore, the present inventionA cooling device according to another aspect of the present invention is provided on at least one of a two-layer substrate, a flow path of a working fluid constituting a heat pipe, and a layer of the two-layer substrate. A channel portion that is disposed between the first and second openings and the two-layered substrate and sucks and holds a liquid-phase working fluid by capillary force in the flow path; and the first Between the liquid suction holding member made of a material having a higher thermal conductivity than the substrate and the two-layer substrate. A latent heat release member that has a second exposed portion that is fitted into the second opening and has a tip exposed, and that releases the latent heat of the gas-phase working fluid in the flow path;It comprises.
[0016]
Thereby, a latent heat discharge | release member can be made to contact the heat radiating member outside a cooling device, the cooling capability in the condensation part in a heat pipe can improve, and the heat transport efficiency of a cooling device can further be improved.
[0017]
  In the cooling device of the present invention, the liquid suction holding memberThe channel part ofIsOf the two-layer substrateA first channel portion for generating capillary force corresponding to the flow path of the working fluid provided on one of the substrates, and a capillary force generating position corresponding to the flow path of the working fluid provided on the other substrate. The second channel portion may be included.
[0018]
By forming the channel portions for generating capillary force on both surfaces of the liquid suction holding member in this way, it is possible to secure a wider contact area with the liquid-phase working fluid as the whole liquid suction holding member, and heat transport efficiency Is further improved.
[0019]
Further, in the cooling device of the present invention, the two-layer substrates are formed by joining the substrates each having the working fluid flow path pattern formed on one surface, and each substrate has a different form from each other. In addition, a working fluid flow path pattern may be formed.
[0020]
Thereby, the freedom degree of selection of the heat transport characteristic of a cooling device improves further.
[0021]
Furthermore, in the cooling device of the present invention, the two layers of substrates are bonded to each other via the adhesive layer, and the thickness of the adhesive layer is in the range of 1.5 nm or more and less than 1 μm, so that the material having high thermal conductivity. Is used for the adhesive layer, the reduction in efficiency of the cooling device due to heat conduction in the adhesive layer can be reduced, and the adhesive strength required for substrate bonding can be obtained.
[0022]
  An electronic apparatus device according to another aspect of the present invention includes a device that is a heat source and a cooling device that cools the device, and the cooling device includes:A two-layered substrate; a working fluid flow path which is provided between the two-layered substrates and constitutes a heat pipe; an opening provided in at least one of the two-layered substrates; and the two-layered substrate And a channel portion that sucks and holds a liquid-phase working fluid by capillary force in the flow path, and an exposed portion that is fitted into the opening and has a tip exposed. A liquid suction holding member made of a material having a higher thermal conductivity thanThe exposed portion of the liquid suction holding member and the device are configured to contact each other.
[0023]
  This inventionElectronic equipmentAccording to the liquid suction holding member made of a material having a higher thermal conductivity than the substrateDue to the thermal contact between the exposed part and the heat generating device to be cooled,By performing efficient heat transport in the cooling device, the device is efficiently cooled, and malfunction due to heat generation of the device can be prevented.
[0024]
  Furthermore, an electronic apparatus device according to another aspect of the present invention provides:A device that is a heat source and a cooling device that cools the device, the cooling device being provided between the two layers of the substrate and the layer of the two layers of the substrate, and the flow path of the working fluid constituting the heat pipe A plurality of openings provided on both front and back surfaces of the two-layer substrate, and a channel that is disposed between the two-layer substrates and sucks and holds the liquid-phase working fluid by capillary force in the flow path A liquid suction holding member made of a material having a higher thermal conductivity than the substrate, and a plurality of exposed portions that are respectively fitted into the plurality of openings and exposed at the tips, At least one of the exposed portion of the liquid suction holding member and the device are in contact with each other.
[0025]
This allows freedom of heat dissipation design of electronic equipment, such as a configuration in which heat-generating devices such as CPUs, graphic chips, and driver ICs are mounted on the front and back surfaces of a two-layer board, and a heat sink can be attached to one surface. The degree is improved.
[0026]
  A cooling device manufacturing method according to another aspect of the present invention provides an opening in at least one of two substrates.PartFormingShiForming the pattern of the working fluid flow path that constitutes the heat pipe on one surface of each of the two substratesShi,A channel portion for sucking and holding a liquid-phase working fluid by capillary force in the flow path;in frontAnd an exposed portion fitted in the opening provided in the substrate, and made of a material having a higher thermal conductivity than the substrate.Create liquid suction holding memberShiAnd the flow path pattern forming surfaces of the two substrates are joined with the liquid suction holding member interposed therebetween.It is characterized by that.
[0027]
According to this manufacturing method, a cooling device that can be easily reduced in size and thickness, has a high degree of freedom in heat radiation design, and has excellent heat transport capability can be easily manufactured.
[0028]
  Furthermore, in the method for manufacturing a cooling device according to another aspect of the present invention, a first opening and a second opening are formed in at least one of the two substrates, respectively, and one surface of each of the two substrates. Forming a flow path pattern of the working fluid constituting the heat pipe, and a channel portion for sucking and holding the liquid phase working fluid by capillary force in the flow path;in frontA liquid suction holding member made of a material having a first exposed portion fitted in the first opening provided in the substrate and having a higher thermal conductivity than the substrate is manufactured.,A second exposed portion fitted into the second opening provided in the substrate, and producing a latent heat release member that releases the latent heat of the gas-phase working fluid in the flow path, The flow path pattern forming surfaces of two substrates are joined to each other with the liquid suction holding member and the latent heat release member interposed therebetween.
[0029]
According to the present invention, by bringing the latent heat releasing member into contact with the heat radiating member outside the cooling device, it is possible to manufacture a cooling device having high cooling capacity at the condensing portion in the heat pipe and high heat transport efficiency.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0031]
FIG. 1 is an exploded perspective view of a cooling device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the cooling device assembled.
[0032]
As shown in these drawings, the cooling device 1 includes an upper substrate 2 and a lower substrate 3 that constitute a two-layer substrate, a wick 4 that is a liquid suction holding member, and a capacitor 5 that is a latent heat release member. Composed.
[0033]
On one surface of each of the upper substrate 2 and the lower substrate 3, a channel pattern groove 6 constituting a heat pipe is provided.
[0034]
The upper substrate 2 and the lower substrate 3 are bonded to each other with their flow path pattern forming surfaces facing each other and a wick 4 and a capacitor 5 disposed therebetween.
[0035]
FIG. 3 shows a planar layout of the flow path pattern, and FIG. 4 shows a planar layout of the flow path pattern in which the wick 4 and the capacitor 5 are further arranged.
[0036]
By joining the upper and lower substrates 2, 3, the grooves 6 in the flow path pattern of each substrate 2, 3 have an evaporator 11, a gas phase line 12, a condenser 13, and a liquid phase that evaporate the refrigerant that is the working fluid. A line 14, a reservoir area 15, a refrigerant sealing port 16, a gas-liquid phase separation groove 19, a wick outer frame port 17, and a capacitor outer frame port 18 are configured.
[0037]
A refrigerant is enclosed in the evaporator 11, the gas phase line 12, the condenser 13, the liquid phase line 14, and the reservoir area 15, thereby forming a heat pipe.
[0038]
The evaporator 11 takes the heat from the wick 4 having a capillary structure with the liquid phase refrigerant filled therein, evaporates the liquid phase refrigerant, and moves the gas phase refrigerant to the gas phase line 12. Part.
[0039]
The gas phase line 12 is a flow path for transmitting the gas phase refrigerant evaporated in the evaporator 11 to the condenser 13.
[0040]
The condenser 13 is a part that causes the condenser 5 to absorb the latent heat of the vapor and condenses and liquefies the gas-phase refrigerant.
[0041]
The liquid phase line 14 is a flow path for moving the refrigerant liquefied by the condenser 13 to the evaporator 11.
[0042]
The reservoir area 15 is an area in which liquid-phase refrigerant is stored, and the refrigerant can be replenished from the reservoir area 15 to the evaporator 11 so as to keep the amount of liquid in the evaporator 11 constant.
[0043]
Further, each substrate 2 and 3 is separated from the refrigerant filling port 16, the gas phase line 12 and the liquid phase line 14, which are inlets for injecting the refrigerant after joining the substrates, thereby suppressing thermal interference between them. A gas / liquid phase separation groove 19 to be opened, an outer frame portion of the wick 4 to be described later, and a wick outer frame port 17 that exposes front and back end surfaces of the outer frame portion of the wick 4 on the substrate surface, and an outer frame of the capacitor 5 A capacitor outer frame opening 18 and the like are provided on the surface of the substrate so that the front and rear end surfaces of the outer frame portion of the capacitor 5 are exposed.
[0044]
As the material of the substrates 2 and 3, if the thermal conductivity is too high, the heat transport efficiency of the heat pipe may be adversely affected by the thermal diffusion in the substrate. For example, glass, polyimide, Teflon (registered trademark), PDMS Organic plastics such as (polydimethylsiloxane) are used.
[0045]
For example, water, ethanol, methanol, propanol (including isomers), ethyl ether, ethylene glycol, fluorinate, and other refrigerants that have a boiling point, thermal conductivity, and antibacterial resistance that satisfy the design of cooling and heat transport devices. The fluid which has is utilized.
[0046]
As the material of the wick 4 and the capacitor 5, a material having high thermal conductivity, for example, a material having a thermal conductivity of 0.17 W / mK or more is used. Specifically, it includes materials including at least one of Si, Cu, Al, Ni, Ti, Au, Ag, Pt, etc., conductive polymers, ceramics, etc., and has a thermal conductivity equivalent to that of metal. The material it has is used. More preferably, it is desirable to use a material having a thermal conductivity twice or more that of the substrate material.
[0047]
FIG. 5 shows details of the structure of the wick 4. In the figure, (a) is a side view and (b) is a plan view.
[0048]
As shown in the figure, the wick 4 includes a channel portion 21 and outer frame portions 22 provided at both ends thereof. Microchannels 23 and 23 for generating a capillary force are respectively provided on the upper and lower surfaces of the channel portion 21.
[0049]
As shown in FIG. 2, in the state where the wick 4 is combined with each of the substrates 2 and 3, the upper end surface 22a and the lower end surface 22b of the outer frame portion 22 of the wick 4 are the front and back surfaces of the two layers of the substrates 2 and 3, respectively. Each surface 2a, 2b is exposed. In other words, the upper end surface 22a and the lower end surface 22b of the outer frame portion 22 of the wick 4 have the same height as the front and back surfaces 2a and 2b of the two-layer substrates 2 and 3, or the two-layer substrates 2 and 2 The respective heights are set so as to slightly protrude from the surfaces 2a and 2b of the front and back surfaces of the three. The upper end surface 22a and / or the lower end surface 22b of the outer frame portion 22 of the wick 4 exposed from the two-layer substrates 2 and 3 are contacted / joined with, for example, a heat generating device to be cooled. It has become.
[0050]
Similarly, the capacitor 5 includes a channel portion 31 and an outer frame portion 32. The channel portion 31 of the capacitor 5 is provided with microchannels 33 functioning as fins on both upper and lower surfaces in order to improve heat dissipation. The capacitor 5 is provided with an outer frame portion 32 similar to the wick 4, and the upper end surface 32 a and the lower end surface 32 b of the outer frame portion 32 are surfaces 2 a on the front and back sides of the two layers of substrates 2 and 3, respectively. , 2b. That is, the upper end surface 32a and the lower end surface 32b of the outer frame portion 32 of the capacitor 5 have the same height as the front and back surfaces 2a and 2b of the two-layer substrates 2 and 3, or the two-layer substrate 2 and The respective heights are set so as to slightly protrude from the front and back surfaces 2a and 2b. A member having high heat dissipation or heat conductivity outside the cooling device 1 is brought into contact with and joined to the upper end surface 32 a and / or the lower end surface 32 b of the outer frame portion 32 of the capacitor 5.
[0051]
As described above, the cooling device 1 of this embodiment is configured so that the upper and lower substrates 2 and 3 provided with the flow path pattern grooves 6 for the heat pipes on the one surface are connected to the respective flow path pattern grooves 6. The wick 4 and the capacitor 5 are arranged between each other, and the surfaces provided with are arranged so as to be joined to each other, and the inside of the cooling device 1 is in a predetermined reduced pressure state.
[0052]
Heat transport in the cooling device 1 is performed as follows.
[0053]
The liquid-phase refrigerant filled in the evaporator 11 absorbs the heat of the heat-generating device that is in contact with the wick 4 outside the two-layer substrates 2 and 3, and evaporates with this heat. Then, the vapor (vapor phase refrigerant) moves to the gas phase line 12 due to the vapor pressure difference. The gas-phase refrigerant moves to the condenser 13 through the gas-phase line 12, and the gas-phase refrigerant is deprived of latent heat by the condenser 5 and returns to the liquid. The liquefied refrigerant moves to the evaporator 11 through the liquid phase line 14. Heat transport is performed by such a cycle.
[0054]
Next, a method for manufacturing the cooling device 1 will be described.
[0055]
First, as shown in FIG. 6, openings such as a refrigerant sealing port 16, a wick outer frame port 17, and a capacitor outer frame port 18 are formed in the upper and lower substrates 2 and 3.
[0056]
Subsequently, as shown in FIG. 7, a groove 6 having a flow path pattern constituting a heat pipe is formed on one surface of each of the substrates 2 and 3. Methods for forming these openings and grooves 6 include sand blasting, RIE (dry etching), wet etching, UV light etching, laser etching, proton light etching, electron beam drawing etching, and micro molding.
[0057]
Next, in order to secure an area in which the wick 4 fits in each of the substrates 2 and 3, as shown in FIG. As shown in FIG. 9, a wick fitting recess 43 having a flow path pattern is formed on the removed surface by etching or the like using a metal mask 42 having an opening 41 corresponding to.
[0058]
Next, as shown in FIG. 1, the flow path pattern forming surfaces of the substrates 2 and 3 are faced to each other, the wick 4 and the capacitor 5, and the outer frame portions 22 and 32 are connected to the wick outer frame port 17 and The board is inserted into the capacitor outer frame port 18 and sandwiched between the boards 2 and 3 to join the boards 2 and 3 together. Thereby, the cooling device 1 having an appearance as shown in FIG. 10 is completed.
[0059]
Examples of methods for bonding the substrates 2 and 3 include anodic bonding, pressurization / thermal fusion, ultrasonic bonding, bonding by chemical bonding (such as when the substrate material is polyimide), bonding of self-adhesive materials ( For example, the substrate material is Si rubber.
[0060]
At this time, an adhesive layer (reference numeral 34 in FIGS. 2 and 10) may be formed and bonded to the flow path pattern forming surface of one or both substrates. In this case, for example, metal is implanted into the material of each substrate by using ion implantation, a thin film such as copper is formed by a vapor deposition apparatus, or the surface activity is increased by plasma irradiation and then bonded. Is preferred.
[0061]
Here, the thickness of the adhesive layer 34 is preferably thinner when a material having high thermal conductivity is used for the adhesive layer 34. This is because the heat conduction caused by the adhesive layer 34 is reduced and the efficiency of the cooling device 1 is prevented from decreasing. On the other hand, if the thickness of the adhesive layer 34 is too thin, a sufficient function as the adhesive layer cannot be expected.
[0062]
For example, the thickness of the adhesive layer 34 may be at least 1.5 nm or more and less than 1 μm, preferably 3 nm or more and less than 1 μm, more preferably 10 nm or more and less than 200 nm.
[0063]
Subsequently, a manufacturing method of the wick 4 and the capacitor 5 will be described with reference to FIGS.
[0064]
A plate material 51 made of the above-described material that satisfies the width, length, and height of the wick 4 and the capacitor 5 is prepared (a). The outer frame portion 52 and the channel portion 53 on either the upper or lower side are formed from the plate material 51 by, for example, machining or the like (b). Next, a microchannel 54 having a shape and size suitable for the wick 4 and the capacitor 5 is formed on one surface of the channel portion 53 by, for example, machining (c). Similarly, on the other side of the plate material 51, the outer frame portion 52, the channel portion 53, and the microchannel 54 are formed by machining or the like.
[0065]
Other manufacturing methods for the wick 4 and the capacitor 5 include RIE (dry etching), wet etching, UV-LIGA, and electroforming.
[0066]
In the cooling device 1 configured as described above, the outer frame portion 22 of the wick 4 is exposed on the front and back surfaces 2a and 3a of the two-layer substrates 2 and 3 as shown in FIG. It can be incorporated in various forms in the device.
[0067]
For example, as shown in FIG. 12, the wick 4 in which the heat generating devices 61 and 62 such as a CPU, graphic chip, and driver IC in the electronic device 60 are exposed on the front and back surfaces 2a and 3a of the cooling device 1, for example. It is possible to take a form in which the outer frame 22 is mounted in contact with the outer frame 22.
[0068]
Further, as shown in FIG. 13, by mounting a heat sink 63 so as to be in contact with the outer frame 22 of the wick 4 on either the front or back surface side of the cooling device 1, the upper limit of the heat transport amount of the cooling device 1. The degree of freedom of heat dissipation design of the electronic device 60 is improved.
[0069]
Further, as shown in FIG. 14, a plurality of cooling devices 1 are combined in an array to form a flat panel display 71 such as an LCD (Liquid Crystal Display), FED (Field Emission Display), or PDP (Plasma Display Panel), and the rear surface. It is also possible to adopt a form interposed between the chassis 73.
[0070]
Further, as shown in FIGS. 12 and 13, by exposing the outer frame portion 32 of the capacitor 5 to the front and back surfaces 2a and 3a of the two-layer substrates 2 and 3, the exposed portion of the capacitor 5 is The cooling capacity of the condenser 13 can be increased by contacting the member 64 having high heat dissipation or heat conductivity outside the cooling device 1, for example, the chassis 64 of the electronic device 60.
[0071]
Therefore, the cooling device 1 of the present embodiment can be incorporated with high degree of freedom into various electronic device devices 60 equipped with heat generating devices such as personal computers and digital cameras, and the heat generating devices in the electronic device device 60 can be efficiently used. Can be cooled to.
[0072]
Next, another embodiment of the cooling device 1 according to the present invention will be described.
[0073]
In the above embodiment, in order to secure a region where the wick 4 fits in each substrate, as shown in FIGS. 8 and 9, the wick fitting region 40 on the flow path pattern forming surface of each substrate 2, 3 is etched. The wick fitting recessed part 43 in which the flow path pattern exists on the removed surface was formed. According to this method, the thickness of the channel portion 21 of the wick 4 can be increased, the processing of the wick 4 can be facilitated, and the amount of heat absorbed by the wick 4 can be increased.
[0074]
However, the present invention is not limited to this, and the formation of the wick fitting recess is omitted, and the channel portion 21A of the wick 4 is accommodated within the range of the height H of the flow path 6A as shown in FIG. You may take a simple structure.
[0075]
In the above-described embodiment, as shown in FIG. 2, the heights of the upper and lower end surfaces 22a, 22b, 32a, and 32b of the outer frame portions 22 and 32 of the wick 4 and the capacitor 5 are set to the two-layer substrate 2. , 3 is set to be equal to or greater than the height of each of the front and back surfaces 2a, 2b, but as shown in FIG. 16, both the upper and lower outer frame portions 22, 32 of the wick 4 and the capacitor 5 are provided. Only the height of the end surfaces 22a and 32a may be set to be equal to or higher than the height of the surface 2a of the substrates 2 and 3.
[0076]
In the above embodiment, a common flow path pattern is formed on each of the upper and lower substrates 2 and 3, and the flow path pattern forming surfaces are faced to each other. As shown in FIG. By arranging the flow path portions such as the line 12 and the liquid phase line 14 that may change the heat transport characteristics so as not to overlap each other, the degree of freedom in selecting the heat transport characteristics is improved and the efficiency is high. Can be achieved.
[0077]
Here, the upper substrate 2 is provided with a groove for forming the gas phase line 12a, and the lower substrate 3 is provided with a groove for forming the gas phase line 12b, so that the gas phase lines 12a and 12b do not overlap each other. Is set. Similarly, the upper substrate 2 is provided with a groove for forming the liquid phase line 14a, and the lower substrate 3 is provided with a groove for forming the liquid phase line 14b, so that the liquid phase lines 14a and 14b do not overlap each other. Is set.
[0078]
【The invention's effect】
As described above, according to the present invention, a small and thin cooling device can be provided, and a heat pipe can be designed with a high degree of freedom by forming a flow path pattern on the substrate. Also, a liquid suction holding member made of a material having higher thermal conductivity than the substrateAs part of the exposed partSince it is exposed on at least one side of the board,By taking thermal contact between the heat generating device to be cooled and the liquid suction holding member through this exposed portion,Efficient heat transport can be realized. Furthermore, this makes it possible to use a material having low thermal conductivity as the material of the substrate, and it is possible to suppress a reduction in heat transport efficiency due to thermal diffusion in the substrate.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a cooling device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the cooling device of FIG.
FIG. 3 is a diagram showing a planar layout of a flow path pattern of the cooling device.
4 is a diagram showing a planar layout of the flow path pattern, wick and capacitor of FIG. 3;
FIG. 5 is a side view and a plan view showing details of the structure of the wick.
FIG. 6 is a perspective view showing a process of forming openings such as a refrigerant sealing port, a wick outer frame port, and a capacitor outer frame port on a substrate.
FIG. 7 is a perspective view showing a step of forming a flow path pattern groove constituting a heat pipe on a substrate.
FIG. 8 is a perspective view showing an etching process of a wick fitting region of a substrate.
FIG. 9 is a perspective view showing a state after etching of a wick fitting region of a substrate.
FIG. 10 is a perspective view showing the external appearance of the completed cooling device.
FIG. 11 is a diagram showing a method for manufacturing a wick and a capacitor.
FIG. 12 is a side view showing an example of a built-in form of the cooling device in the electronic device.
FIG. 13 is a side view showing an example of another form of incorporation of the cooling device into the electronic device.
FIG. 14 is a perspective view showing a form in which a large number of cooling devices are arrayed and used for cooling a flat panel display.
FIG. 15 is a cross-sectional view showing another embodiment of the cooling device.
FIG. 16 is a cross-sectional view showing a modified example of the wick and the capacitor in the cooling device.
FIG. 17 is a plan view showing a cooling device when different flow path patterns are formed on upper and lower substrates.
[Explanation of symbols]
1 Cooling device
2 Upper substrate
3 Lower board
4 Wick
5 capacitors
6 Channel pattern groove
11 Evaporator
12 Gas phase line
13 Condenser
14 Liquid phase line
15 Reservoir area
17 Wick outer frame
18 Capacitor outer frame port
21,31 Channel part
22, 32 Outer frame
23,33 microchannels
34 Adhesive layer
60 Electronic equipment
61,62 Heating device

Claims (11)

二層の基板と、
前記二層の基板の層間に設けられ、ヒートパイプを構成する作動流体の流路と、
前記二層の基板の少なくとも一方に設けられた開口部と、
前記二層の基板の間に配置され、前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部、および前記開口部に嵌め込まれて先端が表出した表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材と
を具備することを特徴とする冷却装置。
A two-layer substrate,
Provided between the two layers of the substrate, the flow path of the working fluid constituting the heat pipe,
An opening provided in at least one of the two-layer substrates;
A channel portion that is disposed between the two layers of the substrate and sucks and holds a liquid-phase working fluid by capillary force in the flow path; and an exposed portion that is fitted into the opening and the tip is exposed. A liquid suction holding member made of a material having higher thermal conductivity than the substrate;
A cooling device comprising:
二層の基板と、
前記二層の基板の層間に設けられ、ヒートパイプを構成する作動流体の流路と、
前記二層の基板の表裏両面に設けられた複数の開口部と、
前記二層の基板の間に配置され、前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部、および前記複数の開口部にそれぞれ嵌め込まれて先端が表出した複数の表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材と
を具備することを特徴とする冷却装置。
A two-layer substrate,
Provided between the two layers of the substrate, the flow path of the working fluid constituting the heat pipe,
A plurality of openings provided on both front and back surfaces of the two-layer substrate;
A plurality of channels disposed between the two layers of substrates, each of which is fitted into each of the plurality of openings and a channel portion that sucks and holds a liquid-phase working fluid by capillary force in the flow path; A liquid suction holding member made of a material having a exposed portion and a higher thermal conductivity than the substrate;
A cooling device comprising:
二層の基板と、
前記二層の基板の層間に設けられ、ヒートパイプを構成する作動流体の流路と、
前記二層の基板の少なくとも一方に設けられた第1の開口部および第2の開口部と、
前記二層の基板の間に配置され、前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部、および前記第1の開口部に嵌め込まれて先端が表出した第1の表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材と、
前記二層の基板の間に配置され、前記第2の開口部に嵌め込まれて先端が表出した第2の表出部を有し、前記流路にて気相の作動流体のもつ潜熱を放出する潜熱放出部材と
を具備することを特徴とする冷却装置。
A two-layer substrate,
Provided between the two layers of the substrate, the flow path of the working fluid constituting the heat pipe,
A first opening and a second opening provided in at least one of the two-layer substrates;
A first portion that is disposed between the two layers of substrates and that is fitted into the first opening and a channel portion that sucks and holds the liquid-phase working fluid by capillary force in the flow path and the first opening. And a liquid suction holding member made of a material having a higher thermal conductivity than the substrate,
It has a second exposed portion that is disposed between the two layers of substrates and is fitted in the second opening and has a tip exposed, and the latent heat of the vapor-phase working fluid in the flow path. A latent heat release member to be released and
A cooling device comprising:
前記液体吸引保持部材の前記チャンネル部が、前記二層の基板のうち一方の前記基板に設けられた前記作動流体の流路に対応する毛細管力発生用の第一のチャンネル部と、他方の前記基板に設けられた前記作動流体の流路に対応する毛細管力発生用の第二のチャンネル部とを有することを特徴とする請求項1に記載の冷却装置。The channel portion of the liquid suction holding member includes a first channel portion for generating a capillary force corresponding to a flow path of the working fluid provided on one of the two layers of substrates, and the other of the two layers. The cooling device according to claim 1, further comprising a second channel portion for generating a capillary force corresponding to a flow path of the working fluid provided on the substrate. 前記二層の基板が、それぞれ前記作動流体の流路のパターンが一方の面に形成された基板どうしを接合したものからなり、各々の前記基板に設けられた前記作動流体の流路のパターンが互いに異なることを特徴とする請求項1に記載の冷却装置。  Each of the two layers of substrates is formed by joining substrates having a pattern of the working fluid flow path formed on one surface, and the pattern of the flow path of the working fluid provided on each of the substrates is The cooling device according to claim 1, wherein the cooling devices are different from each other. 前記二層の基板が接着層を介して互いに接合され、該接着層の厚さが1.5nm以上かつ1μm未満の範囲であることを特徴とする請求項1に記載の冷却装置。  2. The cooling device according to claim 1, wherein the two layers of substrates are bonded to each other through an adhesive layer, and the thickness of the adhesive layer is in a range of 1.5 nm or more and less than 1 μm. 発熱源であるデバイスと、
このデバイスを冷却する冷却装置とを備え、
前記冷却装置が、
二層の基板と、
前記二層の基板の層間に設けられ、ヒートパイプを構成する作動流体の流路と、
前記二層の基板の少なくとも一方に設けられた開口部と、
前記二層の基板の間に配置され、前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部、および前記開口部に嵌め込まれて先端が表出した表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材と
を具備し、
前記液体吸引保持部材の前記表出部と前記デバイスとが接触されてなることを特徴とする電子機器装置。
A device that is a heat source;
A cooling device for cooling the device,
The cooling device is
A two-layer substrate,
Provided between the two layers of the substrate, the flow path of the working fluid constituting the heat pipe,
An opening provided in at least one of the two-layer substrates;
A channel portion that is disposed between the two layers of the substrate and sucks and holds a liquid-phase working fluid by capillary force in the flow path; and an exposed portion that is fitted into the opening and the tip is exposed. A liquid suction holding member made of a material having higher thermal conductivity than the substrate;
Comprising
The electronic device apparatus, wherein the exposed portion of the liquid suction holding member and the device are in contact with each other.
発熱源であるデバイスと、
このデバイスを冷却する冷却装置とを備え、
前記冷却装置が、
二層の基板と、
前記二層の基板の層間に設けられ、ヒートパイプを構成する作動流体の流路と、
前記二層の基板の表裏両面に設けられた複数の開口部と、
前記二層の基板の間に配置され、前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部、および前記複数の開口部にそれぞれ嵌め込まれて先端が表出した複数の表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材と
を具備し、
前記液体吸引保持部材の少なくとも1つの前記表出部と前記デバイスとが接触されてなることを特徴とする電子機器装置。
A device that is a heat source;
A cooling device for cooling the device,
The cooling device is
A two-layer substrate,
Provided between the two layers of the substrate, the flow path of the working fluid constituting the heat pipe,
A plurality of openings provided on both front and back surfaces of the two-layer substrate;
A plurality of channels disposed between the two layers of substrates, each of which is fitted into each of the plurality of openings and a channel portion that sucks and holds a liquid-phase working fluid by capillary force in the flow path; A liquid suction holding member made of a material having a exposed portion and a higher thermal conductivity than the substrate;
Comprising
An electronic device apparatus , wherein the device is in contact with at least one exposed portion of the liquid suction holding member .
発熱源であるデバイスと、
このデバイスを冷却する冷却装置とを備え、
前記冷却装置が、
二層の基板と、
前記二層の基板の層間に設けられ、ヒートパイプを構成する作動流体の流路と、
前記二層の基板の少なくとも一方に設けられた第1の開口部および第2の開口部と、
前記二層の基板の間に配置され、前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部、および前記第1の開口部に嵌め込まれて先端が表出した第1の表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材と、
前記二層の基板の間に配置され、前記第2の開口部に嵌め込まれて先端が表出した第2の表出部を有し、前記流路にて気相の作動流体のもつ潜熱を放出する潜熱放出部材と
を具備し、
前記液体吸引保持部材の前記第1の表出部または前記第2の表出部の少なくともいずれか一方と前記デバイスとが接触されてなることを特徴とする電子機器装置。
A device that is a heat source;
A cooling device for cooling the device,
The cooling device is
A two-layer substrate,
Provided between the two layers of the substrate, the flow path of the working fluid constituting the heat pipe,
A first opening and a second opening provided in at least one of the two-layer substrates;
A first portion that is disposed between the two layers of substrates and that is fitted into the first opening and a channel portion that sucks and holds the liquid-phase working fluid by capillary force in the flow path and the first opening. And a liquid suction holding member made of a material having a higher thermal conductivity than the substrate,
It has a second exposed portion that is disposed between the two layers of substrates and is fitted in the second opening and has a tip exposed, and the latent heat of the vapor-phase working fluid in the flow path. A latent heat release member to be released and
Comprising
An electronic device apparatus , wherein the device is in contact with at least one of the first exposed portion or the second exposed portion of the liquid suction holding member .
2枚の基板の少なくとも一方に開口を形成
2枚の基板それぞれの1つの面にヒートパイプを構成する作動流体の流路のパターンを形成
前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部と、記基板に設けられた前記開口部に嵌め込まれる表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材を作製
前記2枚の基板の前記流路パターンの形成面どうしを前記液体吸引保持部材を挟んで接合することを特徴とする冷却装置の製造方法。
On at least one opening of the two substrates to form,
Forming a pattern of the flow path of the working fluid constituting a heat pipe to one side of the two substrates, respectively,
It includes a channel portion for holding by suction the liquid-phase working fluid by capillary forces, and exposed portions to be fitted into the opening provided in the prior SL substrate in said flow path, the thermal conductivity than the substrate to prepare a liquid suction holding member made of a high material
Method for manufacturing a cooling device according to the forming surface each other of the flow path pattern of said two substrates, wherein the benzalkonium be bonded across said liquid suction holding member.
2枚の基板の少なくとも一方に第1の開口部および第2の開口部をそれぞれ形成し、
2枚の基板それぞれの1つの面にヒートパイプを構成する作動流体の流路のパターンを形成し、
前記流路にて毛細管力によって液相の作動流体を吸引し保持するチャンネル部と、記基板に設けられた前記第1の開口部に嵌め込まれる第1の表出部とを有し、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材を作製し
前記基板に設けられた前記第2の開口部に嵌め込まれる第2の表出部とを有し、前記流路にて気相の作動流体のもつ潜熱を放出する潜熱放出部材を作製し、
前記2枚の基板の前記流路パターンの形成面どうしを前記液体吸引保持部材および前記潜熱放出部材を挟んで接合することを特徴とする冷却装置の製造方法。
Forming a first opening and a second opening in at least one of the two substrates,
Forming a pattern of the flow path of the working fluid constituting the heat pipe on one surface of each of the two substrates;
And a first exposed portion to be fitted with a channel portion for holding by suction the liquid-phase working fluid by capillary forces in the flow path, the first opening provided in the front Stories substrate, wherein A liquid suction holding member made of a material having a higher thermal conductivity than the substrate is produced ,
A second exposed portion fitted in the second opening provided in the substrate, and producing a latent heat release member that releases the latent heat of the gas-phase working fluid in the flow path,
A method for manufacturing a cooling device, wherein the flow path pattern forming surfaces of the two substrates are joined to each other with the liquid suction holding member and the latent heat release member interposed therebetween .
JP2002203335A 2002-07-11 2002-07-11 COOLING DEVICE, ELECTRIC DEVICE, AND COOLING DEVICE MANUFACTURING METHOD Expired - Fee Related JP4178855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203335A JP4178855B2 (en) 2002-07-11 2002-07-11 COOLING DEVICE, ELECTRIC DEVICE, AND COOLING DEVICE MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203335A JP4178855B2 (en) 2002-07-11 2002-07-11 COOLING DEVICE, ELECTRIC DEVICE, AND COOLING DEVICE MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2004044917A JP2004044917A (en) 2004-02-12
JP4178855B2 true JP4178855B2 (en) 2008-11-12

Family

ID=31709219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203335A Expired - Fee Related JP4178855B2 (en) 2002-07-11 2002-07-11 COOLING DEVICE, ELECTRIC DEVICE, AND COOLING DEVICE MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP4178855B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3896840B2 (en) * 2001-12-13 2007-03-22 ソニー株式会社 COOLING DEVICE, ELECTRONIC DEVICE DEVICE, AND COOLING DEVICE MANUFACTURING METHOD
JP4725138B2 (en) * 2005-03-11 2011-07-13 ソニー株式会社 Heat transport device and electronic equipment
WO2010084717A1 (en) * 2009-01-23 2010-07-29 日本電気株式会社 Cooling device

Also Published As

Publication number Publication date
JP2004044917A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US7000686B2 (en) Heat transport device and electronic device
US10704838B2 (en) Loop heat pipe
JP3651790B2 (en) High density chip mounting equipment
TWI247873B (en) Flat heat transferring device and method of fabricating the same
US6490160B2 (en) Vapor chamber with integrated pin array
US7304842B2 (en) Apparatuses and methods for cooling electronic devices in computer systems
US4995451A (en) Evaporator having etched fiber nucleation sites and method of fabricating same
JP2006503436A (en) Plate heat transfer device and manufacturing method thereof
JP2004037039A (en) Cooling device, electronic equipment device and display device, and cooling device manufacturing method
JP2019056511A (en) Loop type heat pipe, method of manufacturing loop type heat pipe, electronic apparatus
JPH05264182A (en) Integrated heat pipe, assembly for heat exchanger and clamping as well as obtaining method thereof
WO2003050466A1 (en) Cooling device, electronic equipment device, and method of manufacturing cooling device
JP2007113864A (en) Heat transport apparatus and electronic instrument
TWI235817B (en) Heat-dissipating module
JP2008505305A (en) Micro heat pipe with wedge capillary
JP4496999B2 (en) Heat transport device and electronic equipment
JP4380250B2 (en) Heat transport device, electronic device and heat transport device manufacturing method
JP2000513504A (en) Heat removal device in chip module on multi-layer ceramic support, especially in multi-chip module
JP2004077051A (en) Heat transport device and its manufacturing method
JP4178855B2 (en) COOLING DEVICE, ELECTRIC DEVICE, AND COOLING DEVICE MANUFACTURING METHOD
JP2010216676A (en) Cooling substrate
JP6852352B2 (en) Loop heat pipes and electronics
JP4178850B2 (en) COOLING DEVICE, ELECTRONIC DEVICE DEVICE, COOLING DEVICE MANUFACTURING METHOD, AND Evaporator
JP4178843B2 (en) COOLING DEVICE, ELECTRONIC DEVICE DEVICE, AND COOLING DEVICE MANUFACTURING METHOD
JP4178859B2 (en) COOLING DEVICE, ELECTRONIC DEVICE DEVICE, AND COOLING DEVICE MANUFACTURING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees