JP4178141B2 - Charging apparatus and charging method - Google Patents

Charging apparatus and charging method Download PDF

Info

Publication number
JP4178141B2
JP4178141B2 JP2004331787A JP2004331787A JP4178141B2 JP 4178141 B2 JP4178141 B2 JP 4178141B2 JP 2004331787 A JP2004331787 A JP 2004331787A JP 2004331787 A JP2004331787 A JP 2004331787A JP 4178141 B2 JP4178141 B2 JP 4178141B2
Authority
JP
Japan
Prior art keywords
charging
voltage
battery
amount
charging voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004331787A
Other languages
Japanese (ja)
Other versions
JP2006148997A (en
Inventor
克彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004331787A priority Critical patent/JP4178141B2/en
Publication of JP2006148997A publication Critical patent/JP2006148997A/en
Application granted granted Critical
Publication of JP4178141B2 publication Critical patent/JP4178141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は充電装置及び充電方法に関し、特に充電池の劣化防止と稼働時間の双方を確保する技術に関する。   The present invention relates to a charging device and a charging method, and more particularly to a technique for ensuring both deterioration prevention and operating time of a rechargeable battery.

近年のノートパソコン、PDA、携帯電話などの携帯型電子機器の発達に伴い、これらの電子機器に使用される電池について性能のより一層の向上が求められている。具体的には、大容量化・小型軽量化はもちろん、頻繁に充電しても劣化しないことが求められている。そこでこのようなニーズに応えるため、例えばリチウムイオン二次電池のような、フル放電せずに充電しても、メモリ効果を起こさない電池が開発され、広く使用されている。   With the recent development of portable electronic devices such as notebook personal computers, PDAs, and mobile phones, there is a demand for further improvement in performance of batteries used in these electronic devices. Specifically, it is required not only to increase the capacity, reduce the size and weight, but also not to deteriorate even if frequently charged. Therefore, in order to meet such needs, a battery such as a lithium ion secondary battery that does not cause a memory effect even when charged without full discharge has been developed and widely used.

しかし、リチウムイオン二次電池にはメモリ効果はないものの、常にフル充電状態に置かれると、電池の劣化すなわち充電容量の減少が早められるという特性がある。   However, although the lithium ion secondary battery does not have a memory effect, there is a characteristic that deterioration of the battery, that is, reduction of the charge capacity can be accelerated when the battery is always in a fully charged state.

このため、例えば特許文献1に記載されている技術のように、充電器に接続している場合に、フル充電を検知したら充電を止め、電圧降下を検知したら再度充電(補充電)を開始する技術が開発されている。このようにすることにより、充電器から外して使用する場合の稼働時間を長くし、かつ劣化を防いでいる。   For this reason, for example, when connected to a charger as in the technique described in Patent Document 1, charging is stopped when full charging is detected, and charging (complementary charging) is started again when a voltage drop is detected. Technology has been developed. By doing in this way, the operating time when using it remove | excluding from a charger is lengthened, and deterioration is prevented.

そしてさらに、特許文献1では、充電器を接続したときに一旦フル充電し、充電を止めた後の2回目以降の充電においては、充電の際の充電電圧を低めに抑えることにより、リチウムイオン電池の劣化をより効果的に防いでいる。   Further, in Patent Document 1, when a charger is connected, the battery is once fully charged, and in the second and subsequent charging after the charging is stopped, the charging voltage at the time of charging is suppressed to a low level to thereby reduce the lithium ion battery. Is effectively prevented.

背景技術に係る上記のような充電処理をより具体的に説明する。図7は、電池の充電を行う場合の時間Tと、該電池に流れる電流I又は該電池の電圧Vの関係を示す図である。   The above charging process according to the background art will be described more specifically. FIG. 7 is a diagram showing the relationship between the time T when the battery is charged and the current I flowing through the battery or the voltage V of the battery.

ここでは、時間0において電池が完全放電状態にあると仮定する。最初に、所定の電流Ipにより充電を開始する。すなわち、充電電流はIpで一定となる(定電流充電)。そして充電が進み、電池電圧が閾値Vcとなったことを検出した場合(T=Tc)、所定の電流Ipにより充電することを中止し、所定の電圧Vmにより充電を開始する(定電圧充電)。この状態で時間が経過すると、電池電圧がVmに漸近する。この漸近の程度は、充電電流の低下により測定することができ、所定程度充電電流が低下したことを検出した場合、充電は終了したと判断して充電を停止する。   Here, it is assumed that the battery is in a fully discharged state at time zero. First, charging is started with a predetermined current Ip. That is, the charging current is constant at Ip (constant current charging). When charging progresses and it is detected that the battery voltage reaches the threshold value Vc (T = Tc), charging is stopped with a predetermined current Ip and charging is started with a predetermined voltage Vm (constant voltage charging). . When time elapses in this state, the battery voltage gradually approaches Vm. This asymptotic degree can be measured by a decrease in charging current. When it is detected that the charging current has decreased by a predetermined amount, it is determined that charging has ended, and charging is stopped.

上述のように、リチウムイオン二次電池を高電圧状態で充電を続けると劣化が発生する。すなわち、充電容量の低下が起こり、該電池を駆動電源とする装置の稼働時間が、高電圧状態で充電を続けない場合に比べ短くなってしまう。このため、まずは定電流で充電すること、及び所定程度充電電流が低下したことを検出することにより充電を停止することにより、不必要な高電圧を電池に与えることを回避している。   As described above, when the lithium ion secondary battery is continuously charged in a high voltage state, deterioration occurs. That is, the charging capacity is reduced, and the operating time of the apparatus using the battery as a driving power source is shorter than when the charging is not continued in a high voltage state. For this reason, the charging is stopped by first charging with a constant current and detecting that the charging current has decreased by a predetermined level, thereby avoiding applying an unnecessary high voltage to the battery.

そしてさらに、充電を停止した状態では電池は徐々に放電してしまうため、充電の停止後も電圧の検出を行い、所定程度電池電圧が低下した場合に、再度充電(補充電)を開始する。この場合の電池電圧の時間変化を図8に示す。充電器が接続されたときに、定電圧充電時の電圧を、フル充電時容量を許容範囲内で最大とする第1充電電圧(例えば4.2V)とし、該第1充電電圧まで充電を行う(すなわち、例えばVm=4.2Vまで充電する)。そして、充電が終了したら充電を停止し、電池電圧が基準電圧Vsまで低下したら、再度充電を行う、という処理を繰り返す。   Further, since the battery is gradually discharged in the state where the charging is stopped, the voltage is detected even after the charging is stopped, and when the battery voltage is lowered by a predetermined amount, the charging (complementary charging) is started again. The time change of the battery voltage in this case is shown in FIG. When the charger is connected, the voltage during constant voltage charging is the first charging voltage (for example, 4.2 V) that maximizes the capacity during full charging within an allowable range, and charging is performed up to the first charging voltage. (That is, charge to Vm = 4.2V, for example). When the charging is completed, the charging is stopped, and when the battery voltage decreases to the reference voltage Vs, the charging is performed again.

しかし、このようにすると、充電の度に電池は高電圧状態(フル充電電圧に漸近する電圧状態)に置かれることとなる。そこで、図9のように2回目以降は、定電圧充電時の電圧を、例えば第2充電電圧(第1充電電圧より低い電圧。例えば4.1V)に下げて充電を行う技術が特許文献1に記載されている。
特開2002−218668号公報
However, if it does in this way, a battery will be put in a high voltage state (voltage state asymptotic to a full charge voltage) for every charge. Therefore, as shown in FIG. 9, after the second time, a technique for performing charging by lowering the voltage during constant voltage charging to, for example, a second charging voltage (a voltage lower than the first charging voltage, for example, 4.1 V) is disclosed in Patent Document 1. It is described in.
JP 2002-218668 A

しかしながら、上記従来の技術では、充電器から充電池を外して使用する場合の該電池の稼働時間の減少を防止するため、充電器に接続した後の少なくとも最初の1回はフル充電しておく必要があった。このため、最初の1回だけとはいえ、高電圧で充電がなされ、電池が劣化してしまうという課題があった。   However, in the above conventional technique, in order to prevent a decrease in the operating time of the battery when the battery is removed from the charger, the battery is fully charged at least for the first time after being connected to the charger. There was a need. For this reason, although it was only the first time, there was a problem that the battery was charged at a high voltage and the battery deteriorated.

また、そもそも電池は、携帯用の機器を発電所などから供給される交流電源に接続せずに使用するために使用されるのであり、図9のように定電圧充電時の電圧である充電電圧を下げてしまうと、その分該電池を駆動電源として使用する機器の稼働時間が短くなってしまうという課題もあった。より具体的には、フル充電検知後の補充電による充電では充電電圧が第2充電電圧(<第1充電電圧)となってしまうため、例えば携帯電話など、一晩充電して朝に充電器からはずして使用する場合には通常は何度か補充電が繰り返された後の状態となっているため低い充電電圧(第2充電電圧)で充電された状態となっており、第1充電電圧で充電した場合に比べ、稼働時間が短くなってしまっていた。   In the first place, a battery is used to use a portable device without being connected to an AC power source supplied from a power plant or the like, and a charging voltage that is a voltage at the time of constant voltage charging as shown in FIG. As a result, there is a problem that the operating time of a device that uses the battery as a drive power source is shortened accordingly. More specifically, since the charge voltage becomes the second charge voltage (<first charge voltage) in the charge by the auxiliary charge after the detection of the full charge, for example, a mobile phone or the like is charged overnight and charged in the morning. When it is used after being removed from the battery, it is normally in a state after being supplemented repeatedly several times, so it is in a state of being charged at a low charge voltage (second charge voltage), and the first charge voltage Compared to charging with, the operating time has become shorter.

以上のように、充電池の劣化防止と、稼動時間の確保と、を両立することは従来できていなかった。   As described above, it has not been possible to achieve both the prevention of deterioration of the rechargeable battery and the securing of the operation time.

本発明は上記課題を解決するためになされたもので、その目的の一つは、充電池の劣化防止と稼働時間の確保の両立を可能にする充電装置及び充電方法を提供することにある。   The present invention has been made to solve the above-described problems, and one of its purposes is to provide a charging device and a charging method that enable both prevention of deterioration of the rechargeable battery and securing of operating time.

上記課題を解決するための本発明に係る充電装置は、複数回にわたり電池の充電を行う場合において、前記電池の充電を開始する際の電池電圧が所定の閾値電圧より高い場合の、前記複数回に占める割合を示す割合関係量を算出する割合関係量算出手段と、前記算出される割合関係量と所定の閾値割合関係量との大小により、定電圧充電時の充電電圧が異なるよう、該充電電圧を決定する充電電圧決定手段と、前記決定される定電圧充電時の充電電圧で、電池の充電を行う充電手段と、を特徴とする。   The charging device according to the present invention for solving the above-described problem is the case where the battery is charged a plurality of times, and the plurality of times when the battery voltage at the start of charging the battery is higher than a predetermined threshold voltage. The charging is performed so that the charging voltage at the time of constant voltage charging differs depending on the size of the ratio relationship quantity calculating means for calculating the ratio relation quantity indicating the ratio to the ratio and the calculated ratio relation quantity and the predetermined threshold ratio relation quantity. The charging voltage determining means for determining the voltage and the charging means for charging the battery with the determined charging voltage at the time of constant voltage charging.

このようにすることにより、所定回数分の充電開始時の電池電圧に応じて充電電圧を決定することができるので、充電池の劣化防止と稼働時間の確保の両立が可能になる。   By doing in this way, since a charging voltage can be determined according to the battery voltage at the time of the charge start of the predetermined number of times, it becomes possible to prevent deterioration of the rechargeable battery and ensure operating time.

また、上記充電装置において、前記充電電圧決定手段は、前記算出される割合関係量が前記所定の閾値割合関係量より小さい場合に第1充電電圧を前記定電圧充電時の充電電圧として決定するとともに、補充電の開始電圧を第1補充閾値とし、前記算出される割合関係量が前記所定の閾値割合関係量より大きい場合に、前記第1充電電圧より低い電圧である第2充電電圧を前記定電圧充電時の充電電圧として決定するとともに、補充電の開始電圧を第2補充閾値とし、前記第1補充閾値と前記第2補充閾値の相違量は、前記第1充電電圧と前記第2充電電圧の相違量に応じて決定される、こととしてもよい。   In the charging device, the charging voltage determination unit determines the first charging voltage as the charging voltage at the constant voltage charging when the calculated ratio relation amount is smaller than the predetermined threshold ratio relation amount. The second charging voltage, which is a voltage lower than the first charging voltage, is set when the calculated supplemental relationship amount is larger than the predetermined threshold proportion relationship amount. The charging voltage is determined as a charging voltage at the time of voltage charging, and the supplementary charging start voltage is set as a second supplementary threshold value. The difference between the first supplementary threshold value and the second supplementary threshold value is determined by the first and second charging voltages. It may be determined according to the difference amount.

このようにすれば、充電停止状態で自然放電により所定程度電池電圧が低下した場合に、再度充電(補充電)を行う場合の電圧低下量を、充電電圧決定手段により決定される充電電圧に応じて決定することができるので、補充電の間隔が過度に短くならないようにすることができるとともに、電池の平均電圧が確実に下がるようにすることができる。   In this way, when the battery voltage is reduced by a predetermined amount due to spontaneous discharge in the charge-stopped state, the amount of voltage reduction when performing recharging (complementary charging) depends on the charging voltage determined by the charging voltage determining means. Therefore, the auxiliary charging interval can be prevented from becoming excessively short, and the average voltage of the battery can be reliably reduced.

また、上記充電装置において、前記充電電圧決定手段による充電電圧の決定は、前記電池に対する電源の供給が可能となったとき及び前記電池を駆動電源として備える装置の電源が投入されたときに行われることとしてもよい。このようにすれば、前記電池を駆動電源として備える装置の電源が投入されたときにも充電電圧を決定することができるので、携帯される事が少なく、かつ携帯される場合の電池消費量が大きい携帯型機器に使用される電池について、より適切に充電池の劣化防止と稼働時間の確保の両立を行うことが可能になる。   Further, in the above charging apparatus, the determination of the charging voltage by the charging voltage determining means is performed when the power supply to the battery becomes possible and when the apparatus including the battery as a driving power source is turned on. It is good as well. In this way, since the charging voltage can be determined even when the power source of the apparatus including the battery as a driving power source is turned on, the battery is rarely carried and the battery consumption when carried is small. For a battery used in a large portable device, it is possible to more appropriately balance the prevention of deterioration of the rechargeable battery and the operation time.

さらに、上記充電装置において、前記電池の劣化を防止する電池劣化防止モード又は前記電池の稼働時間を長くする電池稼働時間確保モードのいずれかを、充電モードとして決定する充電モード決定手段、をさらに含み、前記充電電圧決定手段は、前記決定される充電モードが電池劣化防止モードである場合に、前記算出される割合関係量が所定の閾値割合関係量より高いか否かにより定電圧充電時の充電電圧が異なるよう、該充電電圧を決定する、こととしてもよい。このようにすれば、電池のユーザが、自身でモードを決定することができる。すなわち、例えば長時間充電せずに電池を使いたいときには電池稼働時間確保モード、劣化を防止することを優先させたい場合には電池劣化防止モードを選択することができる。   Furthermore, the charging device further includes a charging mode determining means for determining, as a charging mode, either a battery deterioration preventing mode for preventing deterioration of the battery or a battery operating time securing mode for extending the operating time of the battery. The charging voltage determining means determines whether charging is performed during constant voltage charging depending on whether the calculated proportion relationship amount is higher than a predetermined threshold proportion relationship amount when the determined charging mode is a battery deterioration prevention mode. The charging voltage may be determined so that the voltages are different. In this way, the battery user can determine the mode himself. That is, for example, when it is desired to use the battery without charging for a long time, the battery operating time securing mode can be selected, and when priority is given to preventing the deterioration, the battery deterioration preventing mode can be selected.

また、本発明に係る充電方法は、複数回にわたり電池の充電を行う場合において、前記電池の充電を開始する際の電池電圧が所定の閾値電圧より高い場合の、前記複数回に占める割合を示す割合関係量を算出する割合関係量算出ステップと、前記算出される割合関係量と所定の閾値割合関係量との大小により、定電圧充電時の充電電圧が異なるよう、該充電電圧を決定する充電電圧決定ステップと、前記決定される定電圧充電時の充電電圧で、電池の充電を行う充電ステップと、を含むことを特徴とする。   In addition, the charging method according to the present invention indicates a ratio of the plurality of times when the battery voltage is higher than a predetermined threshold voltage when charging the battery a plurality of times. Charging for determining the charging voltage so that the charging voltage at the time of constant voltage charging differs depending on the magnitude of the ratio relationship quantity calculating step for calculating the ratio relation quantity and the calculated ratio relation quantity and the predetermined threshold ratio relation quantity The method includes a voltage determining step and a charging step of charging the battery with the determined charging voltage at the time of constant voltage charging.

本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係る充電装置10の機能ブロック図である。同図は、充電対象である電池が接続された状態を示す図である。まず、充電装置10は、充電部20、電源部30を含み、充電部20、電源部30は端子82及び端子83で接続されている。そして、充電部20は充電対象となる電池43を含む電池部40と端子80及び端子81で接続される。負荷50は、該電池43を駆動電源として備える装置であり、一例として携帯電話が挙げられる。また、電源部30は充電器32を含み、該充電器32は100Vの交流電源60と接続されている。   FIG. 1 is a functional block diagram of a charging apparatus 10 according to the first embodiment of the present invention. The figure shows a state in which a battery to be charged is connected. First, the charging device 10 includes a charging unit 20 and a power supply unit 30, and the charging unit 20 and the power supply unit 30 are connected by a terminal 82 and a terminal 83. The charging unit 20 is connected to the battery unit 40 including the battery 43 to be charged by the terminal 80 and the terminal 81. The load 50 is a device provided with the battery 43 as a driving power source, and a mobile phone is an example. The power supply unit 30 includes a charger 32, and the charger 32 is connected to a 100 V AC power supply 60.

充電部20は、充電制御部21、判定部22、メモリ部23、電圧検出部24、定電圧回路25、定電流回路26、充電電圧制御ON/OFF操作部27、電流検出部28及び電気抵抗29を含んで構成される。充電制御部21は、充電部20の各部を制御するとともに、充電装置10における電池43の充電処理の制御を実行する。   The charging unit 20 includes a charging control unit 21, a determination unit 22, a memory unit 23, a voltage detection unit 24, a constant voltage circuit 25, a constant current circuit 26, a charging voltage control ON / OFF operation unit 27, a current detection unit 28, and an electric resistance. 29. The charging control unit 21 controls each unit of the charging unit 20 and controls the charging process of the battery 43 in the charging device 10.

定電流充電時には、充電制御部21は、所定の電流(図7ではIp)を発生するよう、定電流回路26を制御する。また、定電圧充電が始まると、充電制御部21は、所定の電流を発生するよう、定電流回路26を制御することを中止し、所定の電圧(図7ではVm)を発生するよう、定電圧回路25を制御するようにする。そして、所定程度充電電流が低下したことを検出した場合、充電は終了したと判断して、充電制御部21は充電を停止する。すなわち、定電圧回路25で発生する電圧が0になるよう、定電圧回路25を制御する。   During constant current charging, the charging control unit 21 controls the constant current circuit 26 so as to generate a predetermined current (Ip in FIG. 7). When the constant voltage charging starts, the charging control unit 21 stops controlling the constant current circuit 26 so as to generate a predetermined current, and generates a predetermined voltage (Vm in FIG. 7). The voltage circuit 25 is controlled. Then, when it is detected that the charging current has decreased by a predetermined amount, it is determined that charging has ended, and the charging control unit 21 stops charging. That is, the constant voltage circuit 25 is controlled so that the voltage generated by the constant voltage circuit 25 becomes zero.

電圧検出部24は、電池43の電池電圧(電池電圧,図7における電圧V)を検出し、充電制御部21に通知する。定電圧回路25は、充電電圧を制御し一定の充電電圧で充電できるようにしている。また定電流回路26は、充電電流を制御し一定の充電電流で充電できるようにしている。定電圧回路25及び定電流回路26は、充電制御部21の指示により、いずれかが動作するように構成される。電流検出部28は、電気抵抗29に流れる電流を検出することにより、電池43に流れる電流(充電電流,図7における電流I)を検出し、充電制御部21に通知する。判定部22、メモリ部23、充電電圧制御ON/OFF操作部27については後述する。   The voltage detection unit 24 detects the battery voltage (battery voltage, voltage V in FIG. 7) of the battery 43 and notifies the charge control unit 21 of it. The constant voltage circuit 25 controls the charging voltage so that it can be charged with a constant charging voltage. The constant current circuit 26 controls the charging current so that charging can be performed with a constant charging current. One of the constant voltage circuit 25 and the constant current circuit 26 is configured to operate according to an instruction from the charge control unit 21. The current detection unit 28 detects the current flowing through the battery 43 by detecting the current flowing through the electric resistance 29 (charging current, current I in FIG. 7), and notifies the charging control unit 21 of the current. The determination unit 22, the memory unit 23, and the charging voltage control ON / OFF operation unit 27 will be described later.

また、電池部40は、過充電過放電検出部41、保護回路42及び電池43を含んで構成される。電池43は、過充電又は過放電により劣化するので、過充電過放電検出部41は、電池43が過充電又は過放電されないよう充電が所定電圧を超えたこと若しくは放電による電圧低下が所定値を超えたことを検出して保護回路42に出力し、保護回路42は、該検出結果に応じて、充電若しくは放電を停止するよう、回路を切断する。   The battery unit 40 includes an overcharge / overdischarge detection unit 41, a protection circuit 42, and a battery 43. Since the battery 43 deteriorates due to overcharge or overdischarge, the overcharge / overdischarge detection unit 41 determines that the charge has exceeded a predetermined voltage or the voltage drop due to discharge has a predetermined value so that the battery 43 is not overcharged or overdischarged. It is detected that it has been exceeded and outputted to the protection circuit 42. The protection circuit 42 cuts off the circuit so as to stop charging or discharging according to the detection result.

電池部40は単体でバッテリーパックとして取引されることが多い。また、充電部20は電池43を駆動電源とする装置に含まれていることが多い。そして、電池部40は、充電部20を含む装置に通常接続された状態のまま使用され、充電する際に充電部20を電源部30に接続することを契機として充電を開始することが多い。また、本実施の形態では、電池43はリチウムイオン二次電池であるとして説明を進める。   The battery unit 40 is often traded as a single battery pack. The charging unit 20 is often included in a device using the battery 43 as a driving power source. And the battery part 40 is used in the state normally connected to the apparatus containing the charging part 20, and when charging, it starts charging in response to connecting the charging part 20 to the power supply part 30 in many cases. In the present embodiment, the description will be given assuming that the battery 43 is a lithium ion secondary battery.

本発明における電池電圧の時間変化を図2に示す。同図に示すように、本実施の形態の後述する電池劣化防止モードにおける電池電圧は、常にVm以下(例えば4.1V)であり、電池43が高電圧状態に置かれることがないので、充電池の劣化防止を実現することができる。   The time change of the battery voltage in the present invention is shown in FIG. As shown in the figure, the battery voltage in the battery deterioration prevention mode to be described later of the present embodiment is always Vm or less (eg, 4.1 V), and the battery 43 is not placed in a high voltage state. It is possible to prevent battery deterioration.

本実施の形態では、このように充電しても稼動時間を確保することができるようにしている。このための処理について、図3に示す処理のフロー図を参照しながら説明する。   In the present embodiment, the operation time can be secured even if charging is performed in this way. The process for this will be described with reference to the flowchart of the process shown in FIG.

図3は本発明の第1の実施形態を示す処理のフロー図である。まず、端子80乃至83が全て接続され、さらに交流電源60から電源が供給された場合(すなわち電池43に電源が供給されることにより充電を開始する場合)に、電圧検出部24は、電池電圧Vbat(充電開始時の電池電圧)を測定することにより検出し(S101)、充電制御部21に対して出力する。このように、充電制御部21は充電開始時の充電電圧を示す電池電圧情報を取得する電池電圧情報取得手段として機能する。そして判定部22は充電制御部21から該Vbatを受け取り、受け取ったVbatと予めメモリ部23に記憶される第1閾値電圧V1と比較して(S102)、該比較結果を該Vbatの電圧範囲を示す充電開始時電池電圧範囲情報として取得する。さらに、後述するS104の処理によりメモリ部23に記憶される過去N−1回分のS102における比較結果を示す過去N−1回分の充電開始時電池電圧範囲情報を読み出す。そして、S102における比較結果と、該過去N−1回分の比較結果と、を併せたN回分の比較結果を示すN回分の充電開始時電池電圧範囲情報を取得する(S103)。   FIG. 3 is a process flow diagram showing the first embodiment of the present invention. First, when all of the terminals 80 to 83 are connected and further supplied with power from the AC power supply 60 (that is, when charging is started by supplying power to the battery 43), the voltage detection unit 24 sets the battery voltage. It detects by measuring Vbat (battery voltage at the start of charging) (S101), and outputs it to the charging control unit 21. Thus, the charge control unit 21 functions as a battery voltage information acquisition unit that acquires battery voltage information indicating a charging voltage at the start of charging. Then, the determination unit 22 receives the Vbat from the charge control unit 21, compares the received Vbat with the first threshold voltage V1 stored in the memory unit 23 in advance (S102), and compares the comparison result with the voltage range of the Vbat. It is acquired as battery voltage range information at the start of charging shown. Furthermore, the battery voltage range information at the start of charging for the past N−1 times indicating the comparison result in S102 for the past N−1 times stored in the memory unit 23 by the process of S104 described later is read. And the battery voltage range information at the time of N charge starting which shows the comparison result for N times which combined the comparison result in S102 and the comparison result for the past N-1 times is acquired (S103).

ここで、メモリ部23に記憶される充電開始時電池電圧範囲情報について、図4を参照しながら説明する。図4はメモリ部23に記憶される上記充電開始時電池電圧範囲情報の一例である。同図に示すように、回数に対応付けて、「3灯」又は「2灯」が記憶される。これは、電池43が携帯電話の駆動電源である場合に、携帯電話の表示部に表示される電池残量メータ(例えば3つの灯の明滅により、電池残量を表す)が、充電を開始する場合にどのような値となっているかを示すものである。   Here, the battery voltage range information at the start of charging stored in the memory unit 23 will be described with reference to FIG. FIG. 4 is an example of the charging start battery voltage range information stored in the memory unit 23. As shown in the figure, “3 lights” or “2 lights” are stored in association with the number of times. This is because when the battery 43 is a driving power source for a mobile phone, a battery remaining amount meter (for example, the remaining battery level is indicated by blinking of three lights) displayed on the display unit of the mobile phone starts charging. In this case, the value is shown.

電池残量メータの表示は、以下のようにして決定される。すなわち、Vbatがある第1閾値電圧V1を超える場合を「3灯」(すなわち3灯と2灯の境界値=第1閾値電圧)とし、Vbatが第1閾値電圧V1以下であり、かつ第2閾値電圧V2を超える場合を「2灯」(すなわち2灯と1灯の境界値=第2閾値電圧)とし、とする。より具体的には、第1閾値電圧V1は電池43の残充電容量が50%になったときの電池43の電池電圧(例えば第1充電電圧の50%である2.1V)、第1閾値電圧V1は電池43の残充電容量が20%になったときの電池43の電池電圧(例えば第1充電電圧の20%である0.84V)、のように決定することができる。   The display of the battery level meter is determined as follows. That is, the case where Vbat exceeds a certain first threshold voltage V1 is defined as “3 lamps” (that is, the boundary value between 3 lamps and 2 lamps = the first threshold voltage), Vbat is equal to or lower than the first threshold voltage V1, and the second The case where the threshold voltage V2 is exceeded is defined as “2 lamps” (that is, the boundary value between 2 lamps and 1 lamp = the second threshold voltage). More specifically, the first threshold voltage V1 is the battery voltage of the battery 43 when the remaining charge capacity of the battery 43 reaches 50% (for example, 2.1V which is 50% of the first charge voltage), the first threshold voltage. The voltage V1 can be determined as the battery voltage of the battery 43 when the remaining charge capacity of the battery 43 reaches 20% (for example, 0.84V, which is 20% of the first charge voltage).

このようにして電池残量メータの表示とメモリ部23に記憶される比較結果とを連動させることにより、充電開始時の電池残量メータを確認しておくことが、後述する「電池劣化防止モード」と「電池稼働時間防止モード」のいずれを選択するかを決定する際の指標となりうる。   In this way, it is possible to confirm the battery level meter at the start of charging by linking the display of the battery level meter and the comparison result stored in the memory unit 23, as described later in “Battery degradation prevention mode”. "Or" battery operating time prevention mode "can be used as an index for determining whether to select.

ここで図3の説明に戻る。判定部22は、上記N回分の充電開始時電池電圧範囲情報のうち、新しい結果からN−1回分の充電開始時電池電圧範囲情報を、メモリ部23に上書きで書き込む(S104)。また、判定部22は、N回分の充電開始時電池電圧範囲情報により、充電開始時の電池電圧が第1閾値電圧V1より高いことを示す割合を示す割合関係量(高電圧時充電回数割合関係量)が、使用傾向閾値割合関係量より小さいか否かを判断する(S105)。ここで、使用傾向閾値割合関係量は、電池43のユーザが頻繁に充電する傾向にあるのか、それとも少なくとも第1閾値電圧V1以下まで放電してから充電する傾向にあるのか、といったユーザの使用傾向を示すための閾値である。充電開始時の電池電圧が第1閾値電圧V1より高いことを示す割合を示す高電圧時充電回数割合関係量が使用傾向閾値割合関係量より少なければ、電池43のユーザは第1閾値電圧V1以下まで放電してから充電する傾向にあると判断され、充電開始時の電池電圧が第1閾値電圧V1以下より高いことを示す割合を示す高電圧時充電回数割合関係量が使用傾向閾値割合関係量以上であれば、電池43のユーザは頻繁に充電する傾向にあると判断される。   Returning to the description of FIG. The determination unit 22 overwrites the memory unit 23 by overwriting the N-1 charging start battery voltage range information from the new results out of the N charging starting battery voltage range information (S104). In addition, the determination unit 22 uses the battery voltage range information at the start of charging N times as a ratio relation amount indicating a ratio indicating that the battery voltage at the start of charging is higher than the first threshold voltage V1 (high voltage charge count ratio relation). It is determined whether or not (amount) is smaller than the usage tendency threshold ratio related amount (S105). Here, the usage trend threshold ratio related amount indicates whether the user of the battery 43 tends to charge frequently or whether it tends to charge after discharging to at least the first threshold voltage V1 or less. This is a threshold value for indicating. If the high voltage charge count ratio relation amount indicating the ratio indicating that the battery voltage at the start of charging is higher than the first threshold voltage V1 is less than the use tendency threshold ratio relation quantity, the user of the battery 43 is equal to or less than the first threshold voltage V1. It is determined that the battery tends to be charged after being discharged until the battery voltage at the start of charging is higher than the first threshold voltage V1. If it is above, it will be judged that the user of the battery 43 tends to charge frequently.

なお、高電圧時充電回数割合関係量は、上記N回分の充電開始時電池電圧範囲情報のうち、充電開始時の電池電圧が第1閾値電圧V1より高いことを示す充電開始時電池電圧範囲情報が含まれる回数(高電圧時充電回数)をNで割った値としてもよいし、高電圧時充電回数そのものでもよい。そして使用傾向閾値割合関係量は、高電圧時充電回数割合関係量が高電圧時充電回数そのものである場合には、所定の閾値M(M≦N)であり、高電圧時充電回数割合関係量が高電圧時充電回数をNで割った値である場合には、所定の閾値M/Nとなる。   In addition, the charging time ratio related quantity at the time of high voltage is the battery voltage range information at the start of charging indicating that the battery voltage at the start of charging is higher than the first threshold voltage V1 among the N battery voltage range information at the start of charging. May be a value obtained by dividing the number of times of charging (number of times of charging at high voltage) by N or the number of times of charging at high voltage itself. The usage tendency threshold ratio related quantity is a predetermined threshold M (M ≦ N) when the high voltage charge count ratio related quantity is the high voltage charge count itself, and the high voltage charge count ratio related quantity. Is a value obtained by dividing the number of times of charging at high voltage by N, the predetermined threshold value M / N is obtained.

そして、高電圧時充電回数割合関係量が使用傾向閾値割合関係量より小さくない場合には、充電制御部21は定電圧充電時の電圧値を第2充電電圧4.1Vに設定する(S107)。すなわち、フル充電電池電圧よりも所定電圧低い電圧が定電圧充電時の電圧値となるよう定電圧回路25を設定する。一方、高電圧時充電回数割合関係量が使用傾向閾値割合関係量より小さい場合には、充電制御部21は定電圧充電時の電圧値を第1充電電圧4.2Vに設定する(S108)。すなわち、フル充電電池電圧が定電圧充電時の電圧値となるよう定電圧回路25を設定する。このようにして充電制御部21は、複数回(最新のN回)にわたり電池の充電を行う場合において、前記電池の充電を開始する際の電池電圧が所定の閾値電圧(第1閾値電圧)より高い場合の、前記複数回に占める割合を示す高電圧時充電回数割合関係量を算出する割合関係量算出手段及び前記算出される高電圧時充電回数割合関係量と所定の使用傾向閾値割合関係量との大小により、定電圧充電時の充電電圧が異なるよう、該充電電圧を決定する充電電圧決定手段として機能する。   When the high voltage charge count ratio related amount is not smaller than the usage tendency threshold ratio related amount, the charge control unit 21 sets the voltage value at the constant voltage charge to the second charge voltage 4.1 V (S107). . That is, the constant voltage circuit 25 is set so that a voltage lower than the fully charged battery voltage by a predetermined voltage becomes a voltage value during constant voltage charging. On the other hand, when the high voltage charge count ratio related amount is smaller than the usage tendency threshold ratio related amount, the charge control unit 21 sets the voltage value at the constant voltage charge to the first charge voltage of 4.2 V (S108). That is, the constant voltage circuit 25 is set so that the fully charged battery voltage becomes a voltage value during constant voltage charging. In this way, in the case where the charging control unit 21 charges the battery a plurality of times (the latest N times), the battery voltage when starting the charging of the battery is higher than a predetermined threshold voltage (first threshold voltage). A ratio relation amount calculating means for calculating a high voltage charge count ratio relation amount indicating a ratio of the plurality of times in the case of high, and the calculated high voltage charge count ratio relation quantity and a predetermined usage tendency threshold ratio relation quantity It functions as a charging voltage determining means for determining the charging voltage so that the charging voltage at the time of constant voltage charging differs depending on the size.

なお、第1充電電圧及び第2充電電圧の具体的な値は、例えば電池に含まれるリチウムイオン電池セルの個数によって変化する。例えばセルが1つである場合(1セルの場合)には、第1充電電圧が4.2V、第2充電電圧が4.1Vとなる。また、セルが2つである場合(2セルの場合)の第1充電電圧は8.4V、セルが3つである場合(3セルの場合)の第1充電電圧は12.6Vとなる。   The specific values of the first charging voltage and the second charging voltage vary depending on the number of lithium ion battery cells included in the battery, for example. For example, when there is one cell (in the case of one cell), the first charging voltage is 4.2V and the second charging voltage is 4.1V. Further, the first charging voltage when there are two cells (in the case of two cells) is 8.4 V, and the first charging voltage when there are three cells (in the case of three cells) is 12.6 V.

そして充電制御部21は、設定された充電電圧で充電動作を行い(S108)、充電電流が低下によりフル充電になったか否かを判断して(S109)、フル充電になった場合には、充電を停止する(S110)。そして、電池43の電池電圧を監視し(S111)、電池電圧が第1補充閾値V3(又は第2補充閾値V3')以下となった場合(S112)には、再度充電動作(補充電動作)を行う。このとき、S108から繰り返してもよいし、S101から繰り返すこととしてもよい。   Then, the charging control unit 21 performs a charging operation with the set charging voltage (S108), determines whether or not the charging current has been reduced due to a decrease (S109), Charging is stopped (S110). Then, the battery voltage of the battery 43 is monitored (S111), and when the battery voltage becomes equal to or lower than the first supplement threshold value V3 (or the second supplement threshold value V3 ′) (S112), the charging operation (complementary charging operation) is performed again. I do. At this time, it may be repeated from S108 or may be repeated from S101.

以上のようにすることにより、過去の充電開始時の電池電圧に応じて、充電電圧を変化させることができる。すなわち、ユーザが充電できない状態でどれだけ電池43を使用するかに関する傾向を取得することができるので、該傾向に応じて、充電電圧を変えることにより、ユーザの観点から十分に稼働時間を確保するとともに、充電池の劣化防止を図るべく充電電圧を下げることを可能としている。また、携帯型機器を携帯して使用する時間が長く、充電器を接続して充電を開始するときの電池電圧が所定値(第1閾値電圧)より高い場合が使用傾向閾値割合関係量により示される割合より小さければ、電池の充電電圧を高く設定して(第1充電電圧に設定して)充電される容量を多くし、机上で充電しながら使用する時間が長かったり、頻繁に充電を行ったりする場合など、充電器を接続して充電を開始するときの電池電圧が所定値(第1閾値電圧)より高い場合が使用傾向閾値割合関係量により示される割合以上であれば、電池の充電電圧を低く設定して(第2充電電圧に設定して)電池の劣化を防ぐ、といったことを可能にしている。   As described above, the charging voltage can be changed according to the battery voltage at the start of the past charging. That is, since the tendency about how much the battery 43 is used in a state where the user cannot be charged can be acquired, the operation time is sufficiently secured from the user's viewpoint by changing the charging voltage according to the tendency. At the same time, the charging voltage can be lowered to prevent deterioration of the rechargeable battery. In addition, when the portable device is used for a long time and the battery voltage when charging is started by connecting a charger is higher than a predetermined value (first threshold voltage), the usage tendency threshold ratio relation amount indicates. If it is smaller than the charging rate, set the charging voltage of the battery higher (set it to the first charging voltage) to increase the charged capacity, and it will take longer to use while charging on the desk or charge frequently If the battery voltage at the start of charging with a charger connected is higher than a predetermined value (first threshold voltage), such as when the battery is charged, the battery is charged. It is possible to prevent battery deterioration by setting the voltage low (set to the second charging voltage).

なお、上記第1の実施形態では、充電電圧を2段階としているが、充電開始時の電池電圧に応じて、よりきめ細かく充電電圧を設定する(第n閾値電圧を電池残量表示の閾値数に応じて細かく設定する)こととすれば、より厳密にユーザの使用傾向を充電電圧に反映させることができるので、よりユーザの満足度を上げることができる。   In the first embodiment, the charging voltage is set in two stages. However, the charging voltage is set more finely according to the battery voltage at the start of charging (the nth threshold voltage is set as the threshold number of the battery remaining amount display). Therefore, the user's usage tendency can be more accurately reflected in the charging voltage, so that the user's satisfaction can be further increased.

なおS112の処理において、充電電圧が第1充電電圧である場合(すなわち高電圧時充電回数割合関係量が、使用傾向閾値割合関係量より小さい場合)、第1補充閾値V3を利用し、充電電圧が第2充電電圧である場合(すなわち高電圧時充電回数割合関係量が、使用傾向閾値割合関係量以上である場合)、第2補充閾値V3'(<第1補充閾値V3)を使用することが好適である。ここで、第1補充閾値V3と第2補充閾値V3'の相違量については、第1充電電圧と第2充電電圧の値の相違量に応じて決定されることとしてもよい。具体的には、第1充電電圧が第2充電電圧に比べ10%高い値であったとすると、第1補充閾値V3は第2補充閾値V3'に比べ10%大きい値となるよう決定されることができる。このようにして第1補充閾値V3と第2補充閾値V3'とが決定されることにより、補充電の間隔が過度に狭くならないようにすることができるとともに、電池43の平均電池電圧が確実に下がるようにすることができる。なお、電池電圧が第1補充閾値V3又は第2補充閾値V3'に低下したことを検出する処理は、常時電圧を監視することにより行ってもよいし、所定時間経過後に電池電圧を確認することにより行ってもよい。また、第1補充閾値V3又は第2補充閾値V3'を設けずに、例えば所定時間経過後に補充電を開始することとしてもよい。   In the process of S112, when the charging voltage is the first charging voltage (that is, when the high voltage charging frequency ratio relation amount is smaller than the usage tendency threshold ratio relation amount), the first replenishment threshold V3 is used to charge the charging voltage. Is the second charging voltage (that is, when the high voltage charge count ratio related quantity is equal to or greater than the usage tendency threshold ratio related quantity), the second supplement threshold V3 ′ (<first supplement threshold V3) is used. Is preferred. Here, the difference amount between the first replenishment threshold value V3 and the second replenishment threshold value V3 ′ may be determined according to the difference amount between the values of the first charging voltage and the second charging voltage. Specifically, if the first charging voltage is 10% higher than the second charging voltage, the first replenishment threshold V3 is determined to be 10% larger than the second replenishment threshold V3 ′. Can do. By determining the first replenishment threshold value V3 and the second replenishment threshold value V3 ′ in this way, it is possible to prevent the interval of supplementary charging from becoming excessively narrow, and to ensure the average battery voltage of the battery 43. Can be lowered. The process of detecting that the battery voltage has decreased to the first replenishment threshold V3 or the second replenishment threshold V3 ′ may be performed by constantly monitoring the voltage, or confirming the battery voltage after a predetermined time has elapsed. May be performed. Further, without providing the first replenishment threshold V3 or the second replenishment threshold V3 ′, for example, supplementary charging may be started after a predetermined time has elapsed.

また、第1の実施形態において充電部20に含まれる充電電圧制御ON/OFF操作部27では、電池43のユーザが、電池43の劣化を防止する電池劣化防止モード又は電池43の稼働時間を長くする電池稼働時間確保モードのいずれかを選択する操作を受け入れることができるようになっている。そしてユーザが電池劣化防止モードを選択した場合には、上記S101乃至S107の処理を行うことにより、過去の充電開始時の電池電圧に応じ、充電電圧を決定することができるので、電池43の劣化を防止することができる。一方、ユーザが電池稼働時間確保モードを選択した場合には、S106及びS107の処理を行わず、常に充電電圧を4.2Vに設定することにより、図8と同様の充電動作を行い、電池43の稼働時間を最大限にすることができる。   In the charging voltage control ON / OFF operation unit 27 included in the charging unit 20 in the first embodiment, the user of the battery 43 extends the battery deterioration prevention mode in which the battery 43 is prevented from deteriorating or the operation time of the battery 43 is increased. An operation for selecting one of the battery operating time securing modes to be performed can be accepted. When the user selects the battery deterioration prevention mode, the charging voltage can be determined according to the battery voltage at the start of charging in the past by performing the processes of S101 to S107. Can be prevented. On the other hand, when the user selects the battery operating time securing mode, the processing of S106 and S107 is not performed, and the charging operation is always performed by setting the charging voltage to 4.2 V, whereby the battery 43 Can maximize uptime.

また、充電開始時において、第1閾値電圧との比較に加え、第2閾値電圧との比較も行うようにし、第2閾値電圧以下の充電電圧が検出された場合には少なくともその直後に行う充電(充電器の接続開始から接続解除までの間に行われる充電)については、定電圧充電時の充電電圧を第1充電電圧に設定することにより、電池43をできるだけ長く使用できるようにすることとしてもよい。   Further, at the start of charging, in addition to the comparison with the first threshold voltage, the comparison with the second threshold voltage is also performed. When a charging voltage equal to or lower than the second threshold voltage is detected, the charging performed at least immediately after that is detected. As for (charging performed between the start of connection of the charger and the disconnection), the battery 43 can be used for as long as possible by setting the charging voltage during constant voltage charging to the first charging voltage. Also good.

次に、本発明の第2の実施形態について説明する。第2の実施形態は、例えばノート型パーソナルコンピュータのように、多くの場合充電状態(充電器に接続された状態)で使用される携帯型機器について適用することが好適である。   Next, a second embodiment of the present invention will be described. The second embodiment is preferably applied to a portable device that is often used in a charged state (connected to a charger), such as a notebook personal computer.

すなわち、多くの場合、ノート型パーソナルコンピュータについてはそもそも充電器の接続動作があまりない場合が多く、まれに携帯して使用した後充電器を接続した場合にはかなりの確率で電池電圧が第1閾値電圧V1以下となっている。このような場合、第1の実施形態においてはメモリ部23に記憶される比較結果は、かなりの割合で「2灯」となり、定電圧充電時の設定電圧は第1充電電圧となる。しかしながら、実際にはほとんど持ち歩かないのであるから第2充電電圧で十分である。本実施の形態においては、このように携帯される事が少なく、かつ携帯される場合の電池消費量が大きい携帯型機器について適用することが好適である。   That is, in many cases, the notebook personal computer does not often have a charger connection operation in the first place. When the charger is connected after being carried in a rare case, the battery voltage has the first probability with a considerable probability. It is below the threshold voltage V1. In such a case, in the first embodiment, the comparison result stored in the memory unit 23 is “2 lamps” at a considerable rate, and the set voltage during constant voltage charging is the first charging voltage. However, the second charging voltage is sufficient because it is practically hardly carried. In this embodiment, it is preferable to apply to a portable device that is rarely carried in this way and that consumes a large amount of battery power when carried.

図5は、図1における充電装置10の充電部20を充電部20aで置換したものになっている。充電部20aでは、充電制御部21が充電制御部21aに置換され、充電制御部21aには電源制御部70が接続される。電源制御部70は、電池43を駆動電源とする装置の電源を制御するための機能部である。該電源制御部70からは、充電制御部21aに対して起動検出信号が出力される。起動検出信号とは、電源制御部70により電源が制御される上記装置が、起動されたことを検出したことを示す信号である。より具体的な例を挙げると、装置はノート型パーソナルコンピュータであり、該ノート型パーソナルコンピュータの電源が投入されたことを検出したことを示す信号が起動検出信号である。或いは、該装置は携帯電話であり、ノート型パーソナルコンピュータに接続され、モデムとして使用され、ほとんどの場合机上において充電器を接続したまま該ノート型パーソナルコンピュータを使用する場合に、該ノート型パーソナルコンピュータの電源が投入されたことを検出したことを示す信号を起動検出信号であることとしてもよい。   5 is obtained by replacing the charging unit 20 of the charging apparatus 10 in FIG. 1 with a charging unit 20a. In the charging unit 20a, the charging control unit 21 is replaced with the charging control unit 21a, and the power control unit 70 is connected to the charging control unit 21a. The power supply control unit 70 is a functional unit for controlling the power supply of a device that uses the battery 43 as a driving power supply. The power supply control unit 70 outputs an activation detection signal to the charge control unit 21a. The activation detection signal is a signal indicating that the apparatus whose power is controlled by the power controller 70 has been activated. As a more specific example, the apparatus is a notebook personal computer, and a signal indicating that the power of the notebook personal computer has been turned on is the activation detection signal. Alternatively, the device is a mobile phone, connected to a notebook personal computer, used as a modem, and in most cases when the notebook personal computer is used with a charger connected on a desk, the notebook personal computer A signal indicating that it is detected that the power is turned on may be an activation detection signal.

そして、この起動検出信号により、充電器接続検出時だけでなく、ノート型パーソナルコンピュータなどの電池43を駆動電源として備える上記装置の起動時に充電器の接続が検出された場合にも定電圧充電時の充電電圧制御処理を行うようにしている。   In addition, when the connection of the charger is detected not only when the charger connection is detected by this activation detection signal but also when the above-mentioned device having the battery 43 such as a notebook personal computer as a driving power source is activated, the constant voltage charging is performed. The charging voltage control process is performed.

図6は、第2の実施形態における処理のフロー図である。同図に示すように、S101からS112の処理は図3に示す第1の実施形態における処理と同様である。第2の実施形態において特徴的なことは、S120の処理が加わったことである。起動検出信号が入力された場合、充電制御部21は、充電中だったとしても一旦充電動作を停止する(S120)。そして、S101からの処理を行う。このようにすることにより、例えばノート型パーソナルコンピュータのように、充電可能な状態(すなわち電池43に電源が供給されているために充電することが可能な状態)で使用されることが多い機器についても、過去の充電開始時(S120において充電を停止した後に、充電を開始する時を含む)の電池電圧に応じて、充電電圧を変化させることができる。   FIG. 6 is a flowchart of processing in the second embodiment. As shown in the figure, the processing from S101 to S112 is the same as the processing in the first embodiment shown in FIG. What is characteristic in the second embodiment is that the process of S120 is added. When the activation detection signal is input, the charging control unit 21 temporarily stops the charging operation even if charging is being performed (S120). Then, the processing from S101 is performed. By doing this, for example, a device that is often used in a rechargeable state (that is, a state in which charging is possible because power is supplied to the battery 43), such as a notebook personal computer. In addition, the charging voltage can be changed according to the battery voltage at the start of past charging (including the time when charging is started after stopping charging in S120).

本発明の実施の形態にかかる充電装置の機能ブロック図である。It is a functional block diagram of the charging device concerning embodiment of this invention. 本発明の実施の形態にかかる電池電圧の時間変化を示す図である。It is a figure which shows the time change of the battery voltage concerning embodiment of this invention. 本発明の実施の形態にかかる処理のフロー図である。It is a flowchart of the process concerning embodiment of this invention. 本発明の実施の形態にかかるメモリテーブルである。It is a memory table concerning embodiment of this invention. 本発明の実施の形態にかかる充電装置の機能ブロック図である。It is a functional block diagram of the charging device concerning embodiment of this invention. 本発明の実施の形態にかかる処理のフロー図である。It is a flowchart of the process concerning embodiment of this invention. 本発明の背景技術にかかる時間と、電流及び電圧と、の関係を示す図である。It is a figure which shows the relationship between the time concerning the background art of this invention, an electric current, and a voltage. 本発明の背景技術にかかる電池電圧の時間変化を示す図である。It is a figure which shows the time change of the battery voltage concerning the background art of this invention. 本発明の背景技術にかかる電池電圧の時間変化を示す図である。It is a figure which shows the time change of the battery voltage concerning the background art of this invention.

符号の説明Explanation of symbols

10 充電装置、20,20a 充電部、21,21a 充電制御部、22 判定部、23 メモリ部、24 電圧検出部、25 定電圧回路、26 定電流回路、27 充電電圧制御ON/OFF操作部、28 電流検出部、29 電気抵抗、30 電源部、32 充電器、40 電池部、41 過充電過放電検出部、42 保護回路、43 電池、50 負荷、60 交流電源、70 電源制御部、80,81,82,83 端子
10 charging device, 20, 20a charging unit, 21, 21a charging control unit, 22 determination unit, 23 memory unit, 24 voltage detection unit, 25 constant voltage circuit, 26 constant current circuit, 27 charging voltage control ON / OFF operation unit, 28 current detection unit, 29 electrical resistance, 30 power supply unit, 32 battery charger, 40 battery unit, 41 overcharge overdischarge detection unit, 42 protection circuit, 43 battery, 50 load, 60 AC power supply, 70 power supply control unit, 80, 81, 82, 83 terminals

Claims (5)

複数回にわたり電池の充電を行う場合において、前記電池の充電を開始する際の電池電圧が所定の閾値電圧より高い場合の、前記複数回に占める割合を示す割合関係量を算出する割合関係量算出手段と、
前記算出される割合関係量と所定の閾値割合関係量との大小により、定電圧充電時の充電電圧が異なるよう、該充電電圧を決定する充電電圧決定手段と、
前記決定される定電圧充電時の充電電圧で、電池の充電を行う充電手段と、
を含むことを特徴とする充電装置。
In the case where the battery is charged a plurality of times, a ratio relation amount calculation for calculating a ratio relation amount indicating a ratio of the plurality of times when the battery voltage at the start of the battery charging is higher than a predetermined threshold voltage Means,
Charging voltage determining means for determining the charging voltage so that the charging voltage during constant voltage charging differs depending on the magnitude of the calculated proportion relationship amount and the predetermined threshold proportion relationship amount;
Charging means for charging the battery at the determined charging voltage during constant voltage charging;
A charging device comprising:
請求項1に記載の充電装置において、
前記充電電圧決定手段は、
前記算出される割合関係量が前記所定の閾値割合関係量より小さい場合に第1充電電圧を前記定電圧充電時の充電電圧として決定するとともに、補充電の開始電圧を第1補充閾値とし、
前記算出される割合関係量が前記所定の閾値割合関係量より大きい場合に、前記第1充電電圧より低い電圧である第2充電電圧を前記定電圧充電時の充電電圧として決定するとともに、補充電の開始電圧を第2補充閾値とし、
前記第1補充閾値と前記第2補充閾値の相違量は、前記第1充電電圧と前記第2充電電圧の相違量に応じて決定される、
ことを特徴とする充電装置。
The charging device according to claim 1,
The charging voltage determining means includes
When the calculated proportion relation amount is smaller than the predetermined threshold proportion relation amount, the first charging voltage is determined as the charging voltage at the constant voltage charging, and the auxiliary charging start voltage is set as the first supplement threshold value,
When the calculated proportion relation amount is larger than the predetermined threshold proportion relation amount, the second charging voltage that is lower than the first charging voltage is determined as the charging voltage at the constant voltage charging, and the auxiliary charging is performed. And the second replenishment threshold
The difference between the first replenishment threshold and the second replenishment threshold is determined according to the difference between the first charging voltage and the second charging voltage.
A charging device characterized by that.
請求項1又は2に記載の充電装置において、
前記充電電圧決定手段による充電電圧の決定は、前記電池に対する電源の供給が可能となったとき及び前記電池を駆動電源として備える装置の電源が投入されたときに行われる、
ことを特徴とする充電装置。
The charging device according to claim 1 or 2,
The determination of the charging voltage by the charging voltage determination means is performed when the power supply to the battery becomes possible and when the power of the apparatus including the battery as a driving power source is turned on.
A charging device characterized by that.
請求項1乃至3のいずれかに記載の充電装置において、
前記電池の劣化を防止する電池劣化防止モード又は前記電池の稼働時間を長くする電池稼働時間確保モードのいずれかを、充電モードとして決定する充電モード決定手段、
をさらに含み、
前記充電電圧決定手段は、前記決定される充電モードが電池劣化防止モードである場合に、前記算出される割合関係量と所定の閾値割合関係量との大小により、定電圧充電時の充電電圧が異なるよう、該充電電圧を決定する、
ことを特徴とする充電装置。
The charging device according to any one of claims 1 to 3,
A charging mode determining means for determining, as a charging mode, either a battery deterioration preventing mode for preventing deterioration of the battery or a battery operating time securing mode for extending the operating time of the battery;
Further including
When the determined charging mode is a battery deterioration prevention mode, the charging voltage determining means determines whether the charging voltage during constant voltage charging is based on the magnitude of the calculated proportion relationship amount and a predetermined threshold proportion relationship amount. Determine the charging voltage to be different,
A charging device characterized by that.
複数回にわたり電池の充電を行う場合において、前記電池の充電を開始する際の電池電圧が所定の閾値電圧より高い場合の、前記複数回に占める割合を示す割合関係量を算出する割合関係量算出ステップと、
前記算出される割合関係量と所定の閾値割合関係量との大小により、定電圧充電時の充電電圧が異なるよう、該充電電圧を決定する充電電圧決定ステップと、
前記決定される定電圧充電時の充電電圧で、電池の充電を行う充電ステップと、
を含むことを特徴とする充電方法。
In the case where the battery is charged a plurality of times, a ratio relation amount calculation for calculating a ratio relation amount indicating a ratio of the plurality of times when the battery voltage at the start of the battery charging is higher than a predetermined threshold voltage Steps,
A charging voltage determining step for determining the charging voltage so that the charging voltage at the time of constant voltage charging differs depending on the magnitude of the calculated proportion relationship amount and the predetermined threshold proportion relationship amount;
A charging step of charging the battery at the determined charging voltage at the time of constant voltage charging; and
The charging method characterized by including.
JP2004331787A 2004-11-16 2004-11-16 Charging apparatus and charging method Expired - Fee Related JP4178141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331787A JP4178141B2 (en) 2004-11-16 2004-11-16 Charging apparatus and charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004331787A JP4178141B2 (en) 2004-11-16 2004-11-16 Charging apparatus and charging method

Publications (2)

Publication Number Publication Date
JP2006148997A JP2006148997A (en) 2006-06-08
JP4178141B2 true JP4178141B2 (en) 2008-11-12

Family

ID=36628047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331787A Expired - Fee Related JP4178141B2 (en) 2004-11-16 2004-11-16 Charging apparatus and charging method

Country Status (1)

Country Link
JP (1) JP4178141B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7149274B2 (en) 2016-12-21 2022-10-06 ソンセボ オートモティブ エスエー mechatronic actuator

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303827B2 (en) * 2006-09-04 2013-10-02 富士通モバイルコミュニケーションズ株式会社 Portable device
JP4990612B2 (en) * 2006-12-27 2012-08-01 パナソニック株式会社 Charge control device, portable terminal device, and charge control method
JP2008187790A (en) * 2007-01-29 2008-08-14 Hitachi Koki Co Ltd Charger
JP5115104B2 (en) * 2007-09-03 2013-01-09 ソニー株式会社 Secondary battery charging method, charging device and electronic device
MY144094A (en) * 2007-12-21 2011-08-15 Motorola Solutions Inc Method and apparatus for bi-contact battery-charger system
JP5191502B2 (en) * 2010-02-09 2013-05-08 日立ビークルエナジー株式会社 Lithium ion secondary battery system and lithium ion secondary battery
JP2013081262A (en) * 2011-08-29 2013-05-02 Toshiba Corp Charger and charging method
JP7356012B2 (en) * 2019-10-18 2023-10-04 アイコム株式会社 Charging device and wireless communication unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7149274B2 (en) 2016-12-21 2022-10-06 ソンセボ オートモティブ エスエー mechatronic actuator

Also Published As

Publication number Publication date
JP2006148997A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP3618472B2 (en) Battery unit and device using battery unit
US7772807B2 (en) Method for charging portable electronic device
JP4805223B2 (en) Charging system and charging method
US5963010A (en) Battery controller for controlling batteries of different kinds and including battery monitoring means for calculating remaining operation time and an information processing apparatus including such battery controller
JP4691140B2 (en) Charge / discharge system and portable computer
JP5119307B2 (en) Battery pack charge control method
US7304454B2 (en) Information processing apparatus for setting charge-start criteria level based on power supply drive history
US20100219795A1 (en) Pulse charge method for nonaqueous electrolyte secondary battery and pulse charge control device
WO2006073101A1 (en) Mobile telephone terminal charging control device and charging control method
US6246890B1 (en) Portable telephone with built-in charger
JP4796784B2 (en) Rechargeable battery charging method
JP4178141B2 (en) Charging apparatus and charging method
JP5620423B2 (en) Electronic device and battery charging method for electronic device
JP2007048645A (en) Electronic apparatus and battery device
JP2001028841A (en) Method for controlling charging of battery and device for executing the same
JPH11187585A (en) Charger and charging method for lithium ion secondary battery
KR100694062B1 (en) Apparatus and control method for charging multi-battery
CN114614521A (en) Method for prolonging service life of lithium battery
JP3730784B2 (en) Electronic equipment
JP2003143770A (en) Charge control method of secondary battery and electrical apparatus employing the same
JP3921492B2 (en) Electronic equipment
JP3328987B2 (en) Charging control method and charging device
JP2022049387A (en) Electronic device
CN115483729A (en) Charging management device, electronic device, and charging management method
KR100237434B1 (en) Method extending battery lifetime in portable terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees