JP4174858B2 - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP4174858B2
JP4174858B2 JP19058298A JP19058298A JP4174858B2 JP 4174858 B2 JP4174858 B2 JP 4174858B2 JP 19058298 A JP19058298 A JP 19058298A JP 19058298 A JP19058298 A JP 19058298A JP 4174858 B2 JP4174858 B2 JP 4174858B2
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting element
color
colorant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19058298A
Other languages
Japanese (ja)
Other versions
JP2000022221A (en
Inventor
広昭 為本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP19058298A priority Critical patent/JP4174858B2/en
Publication of JP2000022221A publication Critical patent/JP2000022221A/en
Application granted granted Critical
Publication of JP4174858B2 publication Critical patent/JP4174858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Landscapes

  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は各種パイロットランプ、バックライトやディスプレイなどの光源に利用される多色発光可能な発光ダイオードに係わり、特に、発光ダイオードの光度とコントラスト比の向上を両立するものである。
【0002】
【従来技術】
今日、小型、軽量、かつ長寿命で信頼性に高いことから種々の光源に発光ダイオード(以下、LEDとも呼ぶ)が利用されてきている。LEDとして、半導体素子であるLEDチップを利用したチップタイプLEDが挙げられる。チップタイプLEDはLEDチップを外部環境から保護し、作業性を向上させるなどのために樹脂パッケージを利用している。パッケージ自体が絶縁性であるためパッケージの凹部に積載したLEDチップに電流を供給させるためリード電極を設けてある。パッケージの内部から外部に露出したリード電極とLEDチップの各電極はAgペーストやワイヤなどにより内部で電気的に接続させている。LEDチップやワイヤなどが配された凹部には、LEDチップを保護する目的で透光性樹脂がモールドされている。リード電極に電力を供給することによりLEDチップを発光させることができる。LEDチップからの発光は、LEDチップから直接モールド部材を透過して外部に放出されるものの他、LEDチップを収容する凹部の底面や側壁により反射されて外部に取り出されるものがある。
【0003】
LEDから取り出される光度を重視する場合、LEDチップが配置される凹部の側壁を利用することで比較的簡単に光度を向上させることができる。具体的には、パッケージを構成する樹脂自体を光反射性に優れた白色系の材料や金属材料を選択させる。或いは、パッケージ中に光反射性の優れた白色顔料を添加することでパッケージの凹部側面や底面を光反射性の優れた反射面として利用することができる。これによりLEDから取り出される光量を1割以上増加させることもできる。
【0004】
他方、暗所においてLEDを発光させた明るさと、明所におけるLEDを発光させたときのLED全体の明るさと、明所におけるLEDを消灯させたときのLED全体の明るさの比であるコントラスト比を重視する場合、上述とは逆にLEDチップを収容するパッケージなど全体を黒色などの暗色系の着色材を含有させる。或いは、パッケージ自体が黒色に着色している材料を選択することが考えられる。これによりLEDに照射された外来光の反射を抑制してコントラスト比を向上させることができる。特に、LEDディスプレイなどの場合は、コントラスト比が高いことが望まれる。コントラスト比が高ければ点灯時と消灯時の差が明確となり良好なグレースケールを達成することができるからである。同様に、光センサーの光源として利用する場合は、ノイズを低減し感度を向上させることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、LEDチップからの光を有効利用するために反射性の優れた白色、銀白色や銀色の側壁を持つ場合は、LEDチップからの光を反射して外部に効率的に放出するだけでなく、外部からの光をも側壁で反射する。そのため、発光ダイオードのコントラスト比が低下するという問題があった。また、コントラスト比を向上させる為にパッケージを暗色系に着色させるなどの場合は逆にLEDチップから発光をも吸収し、LEDから取り出される光が大きく低下する問題があった。即ち、LEDの光度向上とコントラスト比の改善を両立することが極めて難しい関係となっていた。LEDチップの発光光度が向上するにつれ野外での使用など使用環境の多様性に伴いより高輝度かつ高コントラスト比が特に求められる傾向にある。したがって、上記構成のLEDでは十分ではなく更なる改良が求められている。
【0006】
【課題を解決するための手段】
本発明は、凹部を有する基体と、前記凹部の内部に配置され互いに発光色の異なる複数の発光素子と、を有し、前記複数の発光素子からの発光を前記凹部の側壁にて反射することが可能な発光ダイオードであって、前記側壁は、互いに色の異なる複数の着色材を有しており、前記複数の発光素子の各発光色は、前記複数の着色材のいずれかの色と略同一であることを特徴とする発光ダイオードである。これにより、光度の低下を防ぎつつ、コントラスト比を大幅に向上させることができる。
【0007】
本発明の請求項2に記載の発光ダイオードは、前記複数の発光素子は、第1の発光素子と前記第1の発光素子よりも高さが高い第2の発光素子とを有し、前記複数の着色材は、前記第1の発光素子の発光色と略同一の色の第1の着色材と前記第2の発光素子の発光色と略同一の色の第2の着色材とを有し、前記側壁は、底面側に前記第1の着色材を有しそれよりも上側に前記第2の着色材を有していることを特徴とする。このように、発光素子が異なる指向特性を持っていると共にその指向特性に合わせて各着色剤が主として独立配置されている。発光素子から放出される光がそれぞれ異なる指向性を持っている場合、その発光素子から放出される光が最も照射される部位に、その光を反射する着色剤を配置させる。着色剤はそれぞれ独立に配置されることになるが極めて近接して配置させてあるため、人間の目には混色として視認することができる。そのため、より光度の低下を抑制できる発光ダイオードとすることができる。
【0008】
本発明の請求項3に記載の発光ダイオードは、凹部に赤色、緑色及び青色がそれぞれ発光可能な少なくとも3種類の発光素子が実装されてなる発光ダイオードである。特に、発光素子からの発光を反射させる凹部表面の少なくとも一部に各発光素子の発光色と略同一の着色材を混合して着色している。光度を維持しながらコントラスト比の良好なフルカラー表示できる発光ダイオードとすることができる。
【0009】
【発明の実施の形態】
本発明者は種々の実験の結果、発光素子の発光波長と、発光素子からの光を反射する部位とを特定の関係とすることにより、発光輝度の大幅な低下を防止つつコントラスト比を向上し得ることを見出し本発明を成すに至った。
【0010】
着色剤はその着色剤の色に相当する波長を反射すると共に他の色を吸収する。また、光の混色は白色光に近づくのに対して、色の混色は黒色に近づく。本発明は光の混色と色の混色とを複数のLEDチップを1個所に配置させたLEDに利用したものである。即ち、LEDの複数の発光素子から放出される光は、その発光素子の発光色と略同一の着色剤が含有された側壁によりそれぞれ反射される。この場合、発光素子からの発光色と異なる着色剤により吸収されるものの、少なくとも発光素子の発光色と同一の着色剤では反射される。そのため、黒色の着色剤を含有させた側壁などで構成されたLEDより遙かに光度の低下が少ない。
【0011】
他方、異なる色の着色剤は、人間の目によって識別できない距離まで離れると混色により色表現されて視認される。例えば、赤色、緑色及び青色の顔料を樹脂中に混合して形成させると紺色などの暗色系を表現することができる。そのため、外部からの光はそれぞれの着色剤により吸収される。これにより本発明は、外来光からの光を効率的に吸収させると共に発光素子からの光を選択的に反射することができ、コントラスト比を向上させることができる。特に、発光ピークが鋭い単色性発光波長を発光する発光素子と、発光素子の発光ピークに対応させたピークを持ちつつ比較的ブロードな吸収波長を持つ着色剤では特に大きな効果を生ずることとなる。
【0012】
以下、本発明の一例であるLED200を図2を利用して説明する。図2にはLEDチップ204、205を内部に配置することが可能な凹部を有するパッケージ202に黄色及び黒色の着色染料を5:1の割合で含有させて形成させてある。パッケージ202にはリード電極206として一方が凹部表面に露出すると共に他方がパッケージの外壁に露出させてある。パッケージ202のカップ内に青色が発光可能なLEDチップ204と黄色が発光可能なLEDチップ205を配置させる。各LEDチップは独立に駆動できるように金線及びAgペーストを利用してそれぞれ各リード電極と電気的に接続させてある。青色が発光可能なLEDチップ204はサファイア上に発光層として発光層が窒化インジウム・ガリウムでありpn接合を持つ発光素子であり、黄色が発光可能なLEDチップ205はガリウム燐基板上に発光層としてインジウム・アルミニウム・ガリウム燐であるpn接合を持つ発光素子である。
【0013】
青色のLEDチップ204の指向特性は黄色のLEDチップ205に較べ層方向に強照射される傾向にある。また、青色のLEDチップ204は黄色のLEDチップ205の高さよりも低く形成させてある。そのため、青色のLEDチップ204から放出された光はLEDチップの活性層と平行な凹部側面に強照射される。他方、黄色のLEDチップ205からの光はそれよりも上の凹部側面に照射される割合が高い。したがって、本発明において凹部側壁の底面側に青色の着色顔料を含有するエポキシ樹脂201を塗布硬化させ青色に着色させる。他方、それよりも上の側面202はパッケージ中に含有された黄色及び黒色の着色顔料が表面に現れることとなる。着色により遠方から視認すると凹部内部は黒色、黄色、青色の混色として暗緑色に視認される。また、各LEDを同時に点灯させると光の混色により白色光を得ることができる。このようなLEDは複数の色のLEDチップを配置させた場合においても何色の発光素子であるかを瞬時に判断することができる。また、外来光が照射されたとしても反射光が緑色系なので目に優しい。以下、本発明の各構成について説明する。
【0014】
(着色剤)
本発明の着色剤は発光素子の各発光色と略同一の色を持つ着色剤を利用することができる。着色剤は着色剤の色と同じ系統の色を発光する発光素子からの光に対して効率よく反射すると共にその他の色を吸収する。着色剤が近接して複数の色としてあれば混色により黒色に近づくことになる。したがって、本発明の複数の着色剤はそれぞれ混合して利用しても良いし、それぞれ混色が生ずる程度に近接した位置で独立に設けても良い。着色剤は、基体中に含有させることもできるし、基体の表面に樹脂などに含有させた着色剤を塗布させることでも良い。また、コントラストを重視する場合、複数の着色剤に加えて暗色系のパッケージ材料等を選択する或いは暗色系の着色剤を加えることができる。また、複数の着色料の含有量は必ずしも等量に含有させる必要はなく、発光素子の光度や着色剤の反射性等を考慮して種々調節することができる。このような着色剤は種々の染料、顔料など種々のものを選択することができる。同様に着色剤は無機部材であっても良いし、有機部材であっても良い。具体的にはペリレン系レッド、縮合アゾ系レッド、キナクリドン系レッド、銅フタロシニアンブルー、銅フタロシニアングリーン、クルクミン、コールタール染料などが挙げられる。なお、着色剤は発光素子が単色性ピーク波長を持つのに対しブロードな吸収スペクトルを持つことが好ましい。これにより、着色剤と同色の発光素子の光を反射させつつ、外来光を効率よく吸収させることができる。このような着色剤は反射効率を高めるため5から40重量%が好ましく、10から30重量%がより好ましい。
【0015】
(基体102、202)
本発明の基体102、202とは発光素子103、104、105、204、205が配置可能であると共に発光素子が発光する光の少なくとも一部を反射可能な部位を持つものである。発光ダイオードの基体としては内部が窪み発光素子を配置可能な凹部を有するチップタイプLEDの筐体やLEDチップを搭載可能な略平板などが挙げられる。また、本発明の効果を奏する限り、マウントリードのカップを基体として利用することもできる。本発明の複数の発光素子に対応した発光色と同色の着色剤を含有する基体とするためには形成時に含有させる着色剤が均一に分散しやすく、かつ均一に混合可能な基体材料を選択することが好ましい。
【0016】
パッケージに用いられる材料によってベース樹脂の色は種々のものを選択することができるが、光利用効率を高めるためにはベースとなる樹脂の色が白色や種々の着色剤を好適に添加できる透光性樹脂を利用することが好ましい。発光素子からの光を凹部側面101や底面で不要に吸収させないようにさせるためである。また、発光素子から放出された光をパッケージの凹部の側壁を利用して反射させることもできるし、パッケージを構成する凹部側壁とは別に発光素子からの光を効率よく反射させる反射部材を形成させても良い。なお、ベース樹脂自体の色が暗色系であっても含有させる着色顔料によって発光素子からの光を反射するため同様に効果を発することもできる。
【0017】
さらに、着色材をパッケージ中に含有させるのではなく、パッケージ凹部の内壁面に発光素子の発光色に合わせた着色料を塗布させることにより同様の効果を得ることもできる。着色材は種々の透光性樹脂や硝子などを利用して塗布することもできる。このような基体として、液晶ポリマー、PBTやメラミン、エポキシ樹脂、アクリル樹脂などの絶縁性樹脂を好適に利用することができる。また、無機部材としてはセラミックを用いて形成させたパッケージを基体として利用することもできる。
【0018】
パッケージの凹部内に発光素子を配置させた場合は、発光素子などを保護するために透光性モールド樹脂109を設けることができる。このような透光性樹脂としてはエポキシ樹脂、シリコン樹脂、シリコン樹脂やアクリル樹脂など耐候性に優れた樹脂が好適に挙げられる。
【0019】
また、パッケージは通常絶縁性を有するため、パッケージ内の発光素子に電力を外部から供給させるリード電極106、107を有する。リード電極106、107は発光素子と金、アルミニウムなどのワイヤ108を利用したものの他、Agペースト、カーボンペースト、ITOなどの導電性ペーストの他、半田或いは金錫共晶などを利用することで電気的に接続させることができる。リード電極106、107の材質も電気伝導性やワイヤ、パッケージの材料などとの密着性を考慮して種々のものを選択することができる。具体的には、鉄、銅、鉄入り銅やステンレスなど種々の金属や合金を利用することができる。
【0020】
(発光素子103、104、105、204、205)
本発明の発光素子は半導体発光素子であり、電流の供給により発光するものである。半導体材料により発光素子から放出される発光色を種々選択することができる。即ち、バンドギャップの大きい半導体を利用すると短波長が発光可能な発光素子とすることができ、バンドギャップの小さい半導体材料を利用すると比較的長波長が発光可能な発光素子とすることができる。このような半導体素子の具体的材料として、SiC、GaN、GaP、GaAlAs、GaAsP、InGaN、InAlGaN、AlGaInPなどを好適に用いることができる。また、半導体素子の構造としては、ホモ接合、ヘテロ接合、ダブルへテロ接合を利用したMIS構造、pn構造やPIN構造などが挙げられる。さらに、発光層を量子効果が生ずるとされる単一井戸構造や多重量子井戸構造を利用し発光効率を向上させることもできる。このような発光素子は液相成長法、各種CVD法を利用して成膜することができる。
【0021】
現在のところ可視光の短波長側でも高輝度に発光可能な発光素子として窒化物半導体(AlxInyGa1-x-yN、ただし、0≦x、0≦y、x+y≦1)を用いることが好ましい。窒化物半導体を利用した発光素子の具体的構造例としては、サファイア基板上に、バッファ層、GaNからなるn型コンタクト層兼クラッド層、量子効果を有するとされる厚さのInGaNからなる発光層、AlGaNからなるp型クラッド層、GaNからなるp型コンタクト層を積層させた構成とすることができる。発光層のInの組成が多ければ発光波長が長波長側となり、Inの組成が少なければ発光波長が短波長側となる。例えばIn0.4Ga0.6Nでは波長が約475nmの青色を呈する単色性ピーク波長であり、In0.6Ga0.4Nでは波長が約535nmの緑色を呈する単色性ピーク波長を発光する。このように所望の発光色を得るために種々選択することができる。同様に赤色系を高輝度に発光可能な発光素子としてGaAsやGaPなどの半導体基板上にバッファ層、AlInGaPからなるn型クラッド層、AlInGaPからなる発光層、AlInGaPからなるp型クラッド層、InGaPからなるp型コンタクト層を積層させた発光素子などを好適に利用することができる。このような異なる発光素子を基体上に近接配置させ同時に発光させることで混色光を得ることができる。例えば、白色を得るためには、赤色、緑色及び青色がそれぞれ発光可能な少なくとも3種類の発光素子、シアン、マゼンタ、イエローがそれぞれ発光可能な少なくとも3種類の発光素子、青色及び黄色がそれぞれ発光可能な少なくとも2種類の発光素子からの発光を混色させることで得ることができる。
【0022】
また、上述のように高輝度に青色及び緑色が発光可能な発光素子と、高輝度に赤色が発光可能な発光素子とは、積層構造が異なるため、窒化物半導体を利用した発光素子から放出される光は、他方と較べて発光層と平行方向に強照射される傾向にある。また、AlInGaPからなる発光層を利用した赤色系の発光素子はInGaNからなる発光層を利用した青色や緑色の発光素子に較べて発光層の高さが高い。発光素子が異なる指向特性を利用することで、各着色剤をその指向特性に合わせて独立して配置させ光度を稼ぐこともできる。以下、本発明の実施例について詳述するがこれのみに限定されないことは言うまでもない。
【0023】
【実施例】
(実施例1)
以下、図1に本発明の発光ダイオード100の模式的断面図及び平面図を示す。図1には発光素子が配置される基体102として液晶ポリマーを用いてパッケージを形成させてある。発光観測面側から見てパッケージのほぼ中央には直径2mmの真円状窪みが設けられている。窪みとなる凹部内にはRGBがそれぞれ発光可能なLEDチップ103、104、105が配置されている。パッケージの凹部底面は各LEDチップがそれぞれ独立に電流を供給することができるリード電極107が設けられている。リード電極は各LEDチップの電極と金線を介してワイヤボンドされた3つのリード電極107と、各LEDのコモンに共通に接続されたリード電極106の合計4つが設けられている。各リード電極はりん青銅の表面に銀メッキさせておりパッケージの凹部底面で露出している他、絶縁性のパッケージ内部を通って発光面に対して裏面外部にも露出させてある。
【0024】
絶縁性樹脂として液晶ポリマーを利用したパッケージを利用している。液晶ポリマーのベース樹脂は略白色を呈しているが、ベース樹脂中にLEDチップの発光色に対応して略赤、緑及び青色の着色染料をそれぞれ15重量%の割合で混合させてある。着色染料として、ペリレン系レッド、銅フタロシニアニングリーン及び銅フタロシニアニンブルーを利用してある。パッケージの形成は予め赤色、緑色及び青色の着色剤が含有された成形材料を形成させる。形成材料を不示図の射出成型器ホッパに入れ加熱溶融させながら青銅の表面に銀メッキされたリード電極を予め配置させた金型内に注入し射出成形を利用して発光ダイオード用のパッケージを形成させた。型から取りだした後、リード電極を所望の形状に切断加工することにより図1の如き、パッケージとなる。形成されたパッケージは赤色、緑色及び青色が含有された樹脂は黒色に近い紺色を呈している。そのため、露出したリード電極を除いてパッケージの凹部表面101は暗色系となっている。
【0025】
LEDチップはそれぞれInGaNを利用した青色LEDチップ103として、サファイア基板上に、GaNからなるバッファ層、GaNからなるn型コンタクト層兼クラッド層、量子効果を有するとされる厚さのInGaNからなる発光層、AlGaNからなるp型クラッド層、GaNからなるp型コンタクト層を積層させた約350μm角のLEDチップを利用している。同様にInの組成を変えた以外は同様の構成となる緑色LEDチップ104及びInGaAlAsを利用した赤色LEDチップ105を利用してある。なお、赤色のLEDチップ105は、GaP基板上にバッファ層、AlInGaPからなるn型クラッド層、AlInGaPからなる発光層、AlInGaPからなるp型クラッド層、InGaPからなるp型コンタクト層を積層させてある。各LEDチップは470nm、555nm及び620nmの単色性ピーク波長を持つ光を発する。
【0026】
また、青色及び緑色のLEDチップは同一面側に各コンタクト層が露出し正負の電極が設けられているため、リード電極上にエポキシ樹脂でダイボンドする。同一面側に設けられたLEDチップの各電極とリード電極とをそれぞれ金線で接続させる。これに対して赤色のLEDチップは半導体素子を介して正負一対の電極が形成されている。このため、各LEDチップに共通のリード電極とAgペーストを利用してダイボンドさせ導通をとる。一方、LEDチップの他方の電極と、他のリード電極とを金線を用いてワイヤボンディングさせてある。また、LEDチップがリード電極と接続されたパッケージの凹部内には各LEDチップや金線などを保護するための透光性モールド樹脂としてエポキシ樹脂を配置させてある。こうして形成された発光ダイオードを500個形成させた。
【0027】
(比較例1)
パッケージ内にRGBの着色顔料の代わりに黒色顔料のみを添加した以外は実施例1と同様にして黒色パッケージを有する発光ダイオードとして500個形成させた。また、顔料を何ら添加しなかった以外は実施例1と同様にして発光ダイオードを500個形成させた。これはベース樹脂の色を反映して白色パッケージを有する発光ダイオードとなった。実施例1の発光ダイオード、黒色及び白色パッケージを有する発光ダイオードの輝度、コントラスト比の平均値をそれぞれ測定した。本発明の発光ダイオードをそれぞれ100とすると白色パッケージの発光ダイオードの輝度は162、コントラスト比は41であった。また、黒色パッケージの発光ダイオードの輝度は64、コントラスト比は108であった。輝度×コントラスト比は、本発明の100に対し、白色パッケージの発光ダイオードは66、黒色パッケージの発光ダイオードは69となる。したがって、本発明の発光ダイオードが著しく優れているのが分かる。
【0028】
(実施例2)
実施例1の発光素子を青色及び黄色が発光可能な窒化物半導体を利用し、青色、黄色及び黒色の着色剤を混合して均一に含有させたアクリル樹脂をパッケージに利用した以外は実施例1と同様にして発光ダイオードを形成させた。なお、リード電極は各発光素子を独立に駆動できるよう設けてある。形成された発光ダイオードは発光素子を同時に点灯させると混色により白色を発光させることができる。発光素子の発光時には、発光素子から放出される光と同色の着色剤により反射し光度の低下を抑制させる。また、発光素子の消灯時には、着色剤の青色、黄色及び黒色の混色により暗緑色となりコントラスト比を向上させることができる。
【0029】
【発明の効果】
上記の如く、本発明では発光ダイオードを構成するパッケージの光取りだし側の面、即ち発光ダイオードにて表示素子或いは表示体を形成した時に外部より見える部分に発光素子の発光色と同一色の着色を施す。これにより、着色は発光素子からの光に関しては同一色のため反射作用を有し、一方、外部よりの略白色光に対しては着色と同一以外の色の光を吸収するため吸収作用を示す。したがって、本発明による発光ダイオードは輝度の低下を抑制しつつコントラスト比の向上という相反する特性を両立することができる。
【図面の簡単な説明】
【図1】 図1(A)は本発明の発光ダイオードを示す模式的平面図であり、図1(B)は図1(A)におけるXX断面図である。
【図2】 本発明の他の発光ダイオードを示す模式的断面図である。
【符号の説明】
100、200・・・発光ダイオード
101・・・パッケージの凹部側壁
102・・・LEDチップが配置される基体
103・・・青色LEDチップ
104・・・緑色LEDチップ
105・・・赤色LEDチップ
106、107、206・・・リード電極
108、208・・・ワイヤ
109、209・・・透光性モールド樹脂
201・・・着色剤が含有された樹脂
202・・・着色剤が含有された側壁
204・・・青色LEDチップ
205・・・黄色LEDチップ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting diode capable of emitting multicolor light and used for light sources such as various pilot lamps, backlights and displays, and in particular, achieves both improvement in luminous intensity and contrast ratio of the light emitting diode.
[0002]
[Prior art]
Today, light-emitting diodes (hereinafter also referred to as LEDs) have been used for various light sources because of their small size, light weight, long life, and high reliability. Examples of the LED include a chip type LED using an LED chip that is a semiconductor element. The chip type LED uses a resin package to protect the LED chip from the external environment and improve workability. Since the package itself is insulative, a lead electrode is provided to supply current to the LED chip mounted in the recess of the package. The lead electrode exposed to the outside from the inside of the package and each electrode of the LED chip are electrically connected inside by Ag paste or wire. A light-transmitting resin is molded in the recess in which the LED chip, the wire, and the like are arranged for the purpose of protecting the LED chip. The LED chip can emit light by supplying power to the lead electrode. The light emitted from the LED chip is not only directly emitted from the LED chip through the mold member but emitted to the outside, and also emitted from the LED chip by being reflected by the bottom surface or the side wall of the recess for housing the LED chip.
[0003]
When importance is attached to the luminous intensity extracted from the LED, the luminous intensity can be improved relatively easily by using the side wall of the recess in which the LED chip is disposed. Specifically, a white material or a metal material excellent in light reflectivity is selected as the resin constituting the package. Alternatively, by adding a white pigment having excellent light reflectivity to the package, the side surface and bottom surface of the concave portion of the package can be used as a reflective surface having excellent light reflectivity. As a result, the amount of light extracted from the LED can be increased by 10% or more.
[0004]
On the other hand, the contrast ratio, which is the ratio of the brightness of the LED in the dark place, the brightness of the entire LED when the LED in the bright place is emitted, and the brightness of the entire LED when the LED in the bright place is turned off On the other hand, in contrast to the above, a dark color coloring material such as black is included in the entire package including the LED chip. Alternatively, it is conceivable to select a material in which the package itself is colored black. Thereby, reflection of the extraneous light irradiated to LED can be suppressed and contrast ratio can be improved. In particular, in the case of an LED display or the like, a high contrast ratio is desired. This is because if the contrast ratio is high, the difference between lighting and non-lighting becomes clear and a good gray scale can be achieved. Similarly, when used as a light source of an optical sensor, noise can be reduced and sensitivity can be improved.
[0005]
[Problems to be solved by the invention]
However, in order to effectively use the light from the LED chip, if it has white, silver white or silver side walls with excellent reflectivity, it not only reflects the light from the LED chip and efficiently emits it to the outside. The light from the outside is also reflected by the side wall. Therefore, there is a problem that the contrast ratio of the light emitting diode is lowered. In addition, when the package is colored in a dark color system in order to improve the contrast ratio, there is a problem that light emitted from the LED chip is absorbed and the light extracted from the LED is greatly reduced. That is, it has been extremely difficult to achieve both improvement in the brightness of the LED and improvement in the contrast ratio. As the luminous intensity of the LED chip improves, higher brightness and higher contrast ratio tend to be particularly demanded along with the variety of usage environments such as outdoor use. Therefore, the LED having the above configuration is not sufficient and further improvement is required.
[0006]
[Means for Solving the Problems]
The present invention includes a substrate having a recess and a plurality of light emitting elements disposed in the recess and having different emission colors, and the light emitted from the plurality of light emitting elements is reflected by a sidewall of the recess. The side wall has a plurality of colorants having different colors, and each light emission color of the plurality of light emitting elements is substantially the same as any one of the plurality of colorants. It is a light emitting diode characterized by being the same. As a result, the contrast ratio can be greatly improved while preventing a decrease in luminous intensity.
[0007]
The light emitting diode according to claim 2 of the present invention is such that the plurality of light emitting elements include a first light emitting element and a second light emitting element having a height higher than that of the first light emitting element. The colorant includes a first colorant having substantially the same color as the emission color of the first light-emitting element and a second colorant having a color substantially the same as the emission color of the second light-emitting element. The sidewall has the first colorant on the bottom side and the second colorant on the upper side. As described above, the light emitting elements have different directivity characteristics, and the colorants are mainly arranged independently according to the directivity characteristics. In the case where the light emitted from the light emitting element has different directivity, a colorant that reflects the light is disposed at the site most irradiated with the light emitted from the light emitting element. Although the colorants are arranged independently, they are arranged very close to each other, so that they can be visually recognized as mixed colors by human eyes. Therefore, it can be set as the light emitting diode which can suppress the fall of luminous intensity more.
[0008]
The light-emitting diode according to claim 3 of the present invention is a light-emitting diode in which at least three types of light-emitting elements capable of emitting red, green, and blue light are mounted in a recess. In particular, at least a part of the surface of the recess that reflects light emitted from the light emitting element is colored by mixing a colorant substantially the same as the light emitting color of each light emitting element. A light emitting diode capable of full color display with a good contrast ratio while maintaining the luminous intensity can be obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As a result of various experiments, the present inventor has improved the contrast ratio while preventing a significant decrease in light emission luminance by establishing a specific relationship between the emission wavelength of the light emitting element and the portion that reflects the light from the light emitting element. As a result, the present invention has been found.
[0010]
A colorant reflects a wavelength corresponding to the color of the colorant and absorbs other colors. Further, while the color mixture of light approaches white light, the color mixture of colors approaches black. In the present invention, the color mixture of light and the color mixture of colors are used for an LED in which a plurality of LED chips are arranged in one place. That is, the light emitted from the plurality of light emitting elements of the LED is reflected by the side walls containing the colorant substantially the same as the light emitting color of the light emitting elements. In this case, although it is absorbed by a colorant different from the emission color from the light emitting element, it is reflected by at least the same colorant as the emission color of the light emitting element. For this reason, the decrease in luminous intensity is far less than that of an LED composed of a side wall containing a black colorant.
[0011]
On the other hand, when different colorants are separated to a distance that cannot be discerned by human eyes, they are visually expressed by color mixing. For example, when a red, green, and blue pigment is mixed and formed in a resin, a dark color system such as amber color can be expressed. Therefore, the light from the outside is absorbed by each colorant. Accordingly, the present invention can efficiently absorb light from external light and selectively reflect light from the light emitting element, thereby improving the contrast ratio. In particular, a light emitting element that emits a monochromatic light emission wavelength with a sharp emission peak and a colorant that has a peak corresponding to the light emission peak of the light emitting element and a relatively broad absorption wavelength produce a particularly great effect.
[0012]
Hereinafter, LED200 which is an example of this invention is demonstrated using FIG. In FIG. 2, a package 202 having recesses in which the LED chips 204 and 205 can be disposed is formed by containing yellow and black coloring dyes in a ratio of 5: 1. One of the packages 202 is exposed as a lead electrode 206 on the surface of the recess, and the other is exposed on the outer wall of the package. An LED chip 204 capable of emitting blue light and an LED chip 205 capable of emitting yellow light are disposed in the cup of the package 202. Each LED chip is electrically connected to each lead electrode using a gold wire and Ag paste so that it can be driven independently. The LED chip 204 capable of emitting blue light is a light emitting element having a pn junction as a light emitting layer on sapphire as a light emitting layer, and the LED chip 205 capable of emitting yellow light as a light emitting layer on a gallium phosphorous substrate. It is a light-emitting element having a pn junction made of indium, aluminum, and gallium phosphide.
[0013]
The directivity characteristic of the blue LED chip 204 tends to be more intensely irradiated in the layer direction than the yellow LED chip 205. Further, the blue LED chip 204 is formed lower than the height of the yellow LED chip 205. Therefore, the light emitted from the blue LED chip 204 is strongly irradiated to the side surface of the recess parallel to the active layer of the LED chip. On the other hand, the ratio of the light emitted from the yellow LED chip 205 to the side of the concave portion higher than that is high. Accordingly, in the present invention, the epoxy resin 201 containing a blue coloring pigment is applied and cured on the bottom surface side of the concave side wall to be colored blue. On the other hand, the side surfaces 202 above the surface appear yellow and black color pigments contained in the package on the surface. When viewed from a distance by coloring, the inside of the recess is visually recognized as dark green as a mixed color of black, yellow, and blue. Moreover, when each LED is lighted simultaneously, white light can be obtained by color mixture of light. Such an LED can instantaneously determine the color of the light emitting element even when LED chips of a plurality of colors are arranged. Even if extraneous light is irradiated, the reflected light is green, so it is gentle on the eyes. Hereinafter, each configuration of the present invention will be described.
[0014]
(Coloring agent)
As the colorant of the present invention, a colorant having substantially the same color as each emission color of the light emitting element can be used. The colorant efficiently reflects light from a light emitting element that emits the same color as the colorant and absorbs other colors. If the colorant is in close proximity and has a plurality of colors, the color mixture approaches black. Accordingly, the plurality of colorants of the present invention may be used by mixing each other, or may be provided independently at positions close enough to cause color mixing. The colorant can be contained in the substrate, or a colorant contained in a resin or the like may be applied to the surface of the substrate. In the case where the contrast is important, in addition to a plurality of colorants, a dark package material or the like can be selected or a dark colorant can be added. The contents of the plurality of colorants are not necessarily contained in equal amounts, and can be variously adjusted in consideration of the luminous intensity of the light emitting element, the reflectivity of the colorant, and the like. Various coloring agents such as various dyes and pigments can be selected. Similarly, the colorant may be an inorganic member or an organic member. Specific examples include perylene red, condensed azo red, quinacridone red, copper phthalocyanine blue, copper phthalocyanine green, curcumin, and coal tar dyes. The colorant preferably has a broad absorption spectrum while the light emitting element has a monochromatic peak wavelength. Thereby, extraneous light can be efficiently absorbed, reflecting the light of the light emitting element of the same color as a coloring agent. Such a colorant is preferably 5 to 40% by weight and more preferably 10 to 30% by weight in order to increase the reflection efficiency.
[0015]
(Substrate 102, 202)
The bases 102 and 202 of the present invention have portions where the light emitting elements 103, 104, 105, 204, and 205 can be arranged and at least a part of the light emitted from the light emitting elements can be reflected. Examples of the base of the light emitting diode include a chip-type LED housing having a concave portion in which the light emitting element can be disposed and a substantially flat plate on which the LED chip can be mounted. As long as the effects of the present invention are exhibited, the mount lead cup can also be used as the substrate. In order to obtain a substrate containing a colorant having the same color as the light emission color corresponding to the plurality of light emitting elements of the present invention, a substrate material that can easily be uniformly dispersed and mixed uniformly is selected. It is preferable.
[0016]
Various base resin colors can be selected depending on the material used for the package, but in order to improve the light utilization efficiency, the base resin color is white and various light-transmitting agents can be added to the light. It is preferable to use a functional resin. This is to prevent light from the light emitting element from being unnecessarily absorbed by the concave side surface 101 and the bottom surface. In addition, the light emitted from the light emitting element can be reflected by utilizing the side wall of the concave portion of the package, or a reflecting member that efficiently reflects the light from the light emitting element can be formed separately from the concave side wall of the package. May be. In addition, even if the color of base resin itself is a dark color system, since the light from a light emitting element is reflected with the coloring pigment to contain, it can produce an effect similarly.
[0017]
Further, a similar effect can be obtained by applying a colorant that matches the emission color of the light-emitting element to the inner wall surface of the package recess, instead of including a colorant in the package. The coloring material can also be applied using various translucent resins and glass. As such a substrate, an insulating resin such as a liquid crystal polymer, PBT, melamine, epoxy resin, or acrylic resin can be suitably used. Moreover, the package formed using the ceramic as an inorganic member can also be utilized as a base | substrate.
[0018]
In the case where the light emitting element is disposed in the recess of the package, a translucent mold resin 109 can be provided to protect the light emitting element and the like. As such a translucent resin, a resin excellent in weather resistance such as an epoxy resin, a silicon resin, a silicon resin, and an acrylic resin is preferably exemplified.
[0019]
In addition, since the package normally has an insulating property, the package includes lead electrodes 106 and 107 for supplying electric power to the light emitting elements in the package from the outside. The lead electrodes 106 and 107 use a light emitting element and a wire 108 such as gold and aluminum, as well as a conductive paste such as Ag paste, carbon paste and ITO, as well as solder or gold tin eutectic. Can be connected. Various materials can be selected for the lead electrodes 106 and 107 in consideration of the electrical conductivity and the adhesiveness to the wire and the package material. Specifically, various metals and alloys such as iron, copper, iron-containing copper, and stainless steel can be used.
[0020]
(Light emitting elements 103, 104, 105, 204, 205)
The light-emitting element of the present invention is a semiconductor light-emitting element and emits light when supplied with current. Various emission colors emitted from the light emitting element by the semiconductor material can be selected. That is, when a semiconductor with a large band gap is used, a light emitting element capable of emitting a short wavelength can be obtained, and when a semiconductor material with a small band gap is used, a light emitting element capable of emitting a relatively long wavelength can be obtained. As a specific material for such a semiconductor element, SiC, GaN, GaP, GaAlAs, GaAsP, InGaN, InAlGaN, AlGaInP, or the like can be preferably used. Examples of the structure of the semiconductor element include a MIS structure using a homojunction, a heterojunction, and a double heterojunction, a pn structure, and a PIN structure. Furthermore, it is possible to improve the light emission efficiency by using a single well structure or a multiple quantum well structure in which the quantum effect is generated in the light emitting layer. Such a light emitting element can be formed using a liquid phase growth method and various CVD methods.
[0021]
Currently, a nitride semiconductor (Al x In y Ga 1-xy N, where 0 ≦ x, 0 ≦ y, x + y ≦ 1) is used as a light-emitting element capable of emitting light with high brightness even on the short wavelength side of visible light. Is preferred. Specific examples of the structure of a light emitting device using a nitride semiconductor include a buffer layer, an n-type contact / cladding layer made of GaN on a sapphire substrate, and a light emitting layer made of InGaN having a thickness considered to have a quantum effect. A p-type cladding layer made of AlGaN and a p-type contact layer made of GaN may be stacked. If the In composition of the light emitting layer is large, the emission wavelength is on the long wavelength side, and if the In composition is small, the emission wavelength is on the short wavelength side. For example, In 0.4 Ga 0.6 N emits a monochromatic peak wavelength exhibiting a blue color having a wavelength of about 475 nm, and In 0.6 Ga 0.4 N emits a monochromatic peak wavelength exhibiting a green color having a wavelength of about 535 nm. Thus, various selections can be made to obtain a desired emission color. Similarly, as a light emitting element capable of emitting red light with high brightness, a buffer layer on a semiconductor substrate such as GaAs or GaP, an n-type cladding layer made of AlInGaP, a light-emitting layer made of AlInGaP, a p-type cladding layer made of AlInGaP, and an InGaP The light emitting element etc. which laminated | stacked the p-type contact layer which become can be utilized suitably. Mixed light can be obtained by arranging such different light emitting elements in proximity to each other and emitting light simultaneously. For example, in order to obtain white, at least three types of light emitting elements capable of emitting red, green and blue, respectively, at least three types of light emitting elements capable of emitting cyan, magenta and yellow, respectively, blue and yellow can emit light respectively. It can be obtained by mixing light emission from at least two kinds of light emitting elements.
[0022]
In addition, as described above, a light emitting element capable of emitting blue and green light with high luminance and a light emitting element capable of emitting red light with high luminance have different stacked structures, and thus are emitted from light emitting elements using nitride semiconductors. Light tends to be more strongly irradiated in a direction parallel to the light emitting layer than the other. In addition, a red light emitting device using a light emitting layer made of AlInGaP has a higher light emitting layer height than a blue or green light emitting device using a light emitting layer made of InGaN. By using different directivity characteristics of the light emitting elements, each colorant can be arranged independently according to the directivity characteristics to increase the luminous intensity. Hereinafter, although the Example of this invention is described in full detail, it cannot be overemphasized that it is not limited only to this.
[0023]
【Example】
(Example 1)
FIG. 1 shows a schematic sectional view and a plan view of a light emitting diode 100 of the present invention. In FIG. 1, a package is formed using a liquid crystal polymer as a substrate 102 on which a light emitting element is arranged. A perfect circular recess having a diameter of 2 mm is provided in the center of the package as seen from the light emission observation surface side. LED chips 103, 104, and 105 capable of emitting RGB light are disposed in the recesses that become the depressions. A lead electrode 107 is provided on the bottom surface of the recess of the package so that each LED chip can supply current independently. A total of four lead electrodes are provided, that is, three lead electrodes 107 wire-bonded via electrodes of each LED chip and gold wires, and lead electrodes 106 commonly connected to the common of each LED. Each lead electrode is silver-plated on the surface of phosphor bronze and exposed at the bottom of the recess of the package, and is also exposed outside the back surface of the light emitting surface through the inside of the insulating package.
[0024]
A package using a liquid crystal polymer as an insulating resin is used. Although the base resin of the liquid crystal polymer is substantially white, substantially red, green and blue colored dyes are mixed in the base resin in proportions of 15% by weight, corresponding to the emission color of the LED chip. Perylene red, copper phthalocyanine green and copper phthalocyanine blue are used as coloring dyes. The package is formed by forming a molding material containing red, green and blue colorants in advance. The molding material is placed in an injection molder hopper (not shown) and heated and melted, and then a lead electrode plated with silver on the surface of bronze is injected into a pre-arranged mold, and a package for a light emitting diode is formed using injection molding. Formed. After taking out from the mold, the lead electrode is cut into a desired shape to form a package as shown in FIG. In the formed package, the resin containing red, green and blue has an amber color close to black. Therefore, except for the exposed lead electrode, the concave surface 101 of the package is dark.
[0025]
Each LED chip is a blue LED chip 103 using InGaN, on a sapphire substrate, a buffer layer made of GaN, an n-type contact / cladding layer made of GaN, and light emission made of InGaN with a thickness that is supposed to have a quantum effect. An LED chip of about 350 μm square is used in which a layer, a p-type cladding layer made of AlGaN, and a p-type contact layer made of GaN are stacked. Similarly, the green LED chip 104 and the red LED chip 105 using InGaAlAs have the same configuration except that the composition of In is changed. The red LED chip 105 has a buffer layer, an n-type cladding layer made of AlInGaP, a light emitting layer made of AlInGaP, a p-type cladding layer made of AlInGaP, and a p-type contact layer made of InGaP on a GaP substrate. . Each LED chip emits light having monochromatic peak wavelengths of 470 nm, 555 nm and 620 nm.
[0026]
In addition, since the contact layers of the blue and green LED chips are exposed on the same surface and positive and negative electrodes are provided, die bonding is performed on the lead electrodes with epoxy resin. Each electrode of the LED chip provided on the same surface side and the lead electrode are connected by a gold wire. On the other hand, a red LED chip is formed with a pair of positive and negative electrodes via a semiconductor element. For this reason, a lead electrode common to each LED chip and an Ag paste are used for die bonding so as to be conductive. On the other hand, the other electrode of the LED chip and another lead electrode are wire-bonded using a gold wire. In addition, an epoxy resin is disposed as a translucent mold resin for protecting each LED chip, a gold wire, and the like in the concave portion of the package in which the LED chip is connected to the lead electrode. 500 light emitting diodes thus formed were formed.
[0027]
(Comparative Example 1)
500 light emitting diodes having a black package were formed in the same manner as in Example 1 except that only a black pigment was added in place of the RGB colored pigment in the package. Further, 500 light emitting diodes were formed in the same manner as in Example 1 except that no pigment was added. This is a light emitting diode having a white package reflecting the color of the base resin. The average values of the luminance and contrast ratio of the light-emitting diode of Example 1 and the light-emitting diodes having black and white packages were measured. When the number of light emitting diodes of the present invention is 100, the brightness of the light emitting diode in the white package is 162 and the contrast ratio is 41. The luminance of the light emitting diode in the black package was 64 and the contrast ratio was 108. The brightness × contrast ratio is 66 for the white package light emitting diode and 69 for the black package light emitting diode, compared to 100 of the present invention. Therefore, it can be seen that the light emitting diode of the present invention is remarkably superior.
[0028]
(Example 2)
Example 1 except that the light emitting device of Example 1 uses a nitride semiconductor capable of emitting blue and yellow, and uses an acrylic resin in which blue, yellow and black colorants are mixed and uniformly contained in the package. A light emitting diode was formed in the same manner as described above. The lead electrode is provided so that each light emitting element can be driven independently. The formed light emitting diode can emit white light by color mixture when the light emitting elements are turned on simultaneously. When the light emitting element emits light, it is reflected by a colorant having the same color as the light emitted from the light emitting element to suppress a decrease in luminous intensity. Further, when the light emitting element is turned off, the colorant becomes dark green due to a mixture of blue, yellow and black colorants, and the contrast ratio can be improved.
[0029]
【The invention's effect】
As described above, in the present invention, the light extraction side surface of the package constituting the light emitting diode, that is, the portion that is visible from the outside when the display element or display body is formed with the light emitting diode, is colored with the same color as the light emitting element. Apply. As a result, the coloring has a reflection effect for the light from the light emitting element because it is the same color, while it absorbs light of a color other than the same as the coloring for the substantially white light from the outside. . Therefore, the light-emitting diode according to the present invention can achieve the contradictory characteristics of improving the contrast ratio while suppressing a decrease in luminance.
[Brief description of the drawings]
FIG. 1A is a schematic plan view showing a light emitting diode of the present invention, and FIG. 1B is a sectional view taken along line XX in FIG.
FIG. 2 is a schematic cross-sectional view showing another light emitting diode of the present invention.
[Explanation of symbols]
100, 200... Light emitting diode 101... Recessed side wall 102 of package.. Base 103 on which LED chip is arranged... Blue LED chip 104... Green LED chip 105. 107, 206 ... lead electrodes 108, 208 ... wires 109, 209 ... translucent mold resin 201 ... resin 202 containing a colorant ... sidewall 204 containing a colorant ..Blue LED chip 205 ... Yellow LED chip

Claims (3)

凹部を有する基体と、前記凹部の内部に配置され互いに発光色の異なる複数の発光素子と、を有し、前記複数の発光素子からの発光を前記凹部の側壁にて反射することが可能な発光ダイオードであって、
前記側壁は、互いに色の異なる複数の着色材を有しており、
前記複数の発光素子の各発光色は、前記複数の着色材のいずれかの色と略同一であることを特徴とする発光ダイオード。
Light emission that has a base having a recess and a plurality of light emitting elements that are arranged inside the recess and have different emission colors , and that can emit light from the plurality of light emitting elements at a sidewall of the recess. A diode,
The side wall has a plurality of colorants having different colors from each other,
Each light emitting color of the plurality of light emitting elements is substantially the same as any color of the plurality of coloring materials .
前記複数の発光素子は、第1の発光素子と前記第1の発光素子よりも高さが高い第2の発光素子とを有し、
前記複数の着色材は、前記第1の発光素子の発光色と略同一の色の第1の着色材と前記第2の発光素子の発光色と略同一の色の第2の着色材とを有し、
前記側壁は、底面側に前記第1の着色材を有しそれよりも上側に前記第2の着色材を有していることを特徴とする請求項に記載の発光ダイオード。
The plurality of light emitting elements include a first light emitting element and a second light emitting element having a height higher than that of the first light emitting element.
The plurality of colorants include a first colorant having substantially the same color as the emission color of the first light-emitting element and a second colorant having substantially the same color as the emission color of the second light-emitting element. Have
2. The light emitting diode according to claim 1 , wherein the side wall includes the first colorant on a bottom surface side and the second colorant on an upper side thereof.
前記複数の発光素子は、赤色、緑色および青色がそれぞれ発光可能な少なくとも3種類の発光素子を有していることを特徴とする請求項1に記載の発光ダイオード。 2. The light emitting diode according to claim 1, wherein the plurality of light emitting elements include at least three types of light emitting elements capable of emitting red, green, and blue light respectively.
JP19058298A 1998-07-06 1998-07-06 Light emitting diode Expired - Fee Related JP4174858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19058298A JP4174858B2 (en) 1998-07-06 1998-07-06 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19058298A JP4174858B2 (en) 1998-07-06 1998-07-06 Light emitting diode

Publications (2)

Publication Number Publication Date
JP2000022221A JP2000022221A (en) 2000-01-21
JP4174858B2 true JP4174858B2 (en) 2008-11-05

Family

ID=16260469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19058298A Expired - Fee Related JP4174858B2 (en) 1998-07-06 1998-07-06 Light emitting diode

Country Status (1)

Country Link
JP (1) JP4174858B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10020465A1 (en) * 2000-04-26 2001-11-08 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component with luminescence conversion element
JP2003017753A (en) * 2001-07-03 2003-01-17 Koha Co Ltd Light emitting device
KR100632660B1 (en) * 2002-05-29 2006-10-11 서울반도체 주식회사 Pink Light-emitting diode and Method of Manufacturing the same
TW591811B (en) * 2003-01-02 2004-06-11 Epitech Technology Corp Ltd Color mixing light emitting diode
JP2005191446A (en) * 2003-12-26 2005-07-14 Sanyo Electric Co Ltd Package for light-emitting element and light-emitting device having the same
KR100583159B1 (en) * 2004-02-16 2006-05-23 엘지이노텍 주식회사 Light emitting diode package
US7564180B2 (en) 2005-01-10 2009-07-21 Cree, Inc. Light emission device and method utilizing multiple emitters and multiple phosphors
US8125137B2 (en) 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
DE102007029369A1 (en) * 2007-06-26 2009-01-02 Osram Opto Semiconductors Gmbh Opto-electronic semiconductor component, has opaque material for covering conductive strips of connection carrier and areas of chip connection region and for uncovering radiation passage surface of opto-electronic semiconductor chip
JP5453713B2 (en) * 2007-07-06 2014-03-26 日亜化学工業株式会社 Semiconductor device and method for forming the same
JP5114773B2 (en) * 2007-08-10 2013-01-09 スタンレー電気株式会社 Surface mount light emitting device
JP2010192835A (en) * 2009-02-20 2010-09-02 Showa Denko Kk Light emitting diode, method for manufacturing the same, and light emitting diode lamp
JP2010206138A (en) * 2009-03-06 2010-09-16 Nichia Corp Light emitting device
DE102010029368A1 (en) 2010-05-27 2011-12-01 Osram Opto Semiconductors Gmbh Electronic device and method for manufacturing an electronic device
EP2472578B1 (en) * 2010-12-28 2020-06-03 Nichia Corporation Light emitting device
US9030103B2 (en) 2013-02-08 2015-05-12 Cree, Inc. Solid state light emitting devices including adjustable scotopic / photopic ratio
US9039746B2 (en) 2013-02-08 2015-05-26 Cree, Inc. Solid state light emitting devices including adjustable melatonin suppression effects
JP5685284B2 (en) * 2013-04-17 2015-03-18 株式会社カネカ Light emitting diode package and light emitting diode
US9240528B2 (en) 2013-10-03 2016-01-19 Cree, Inc. Solid state lighting apparatus with high scotopic/photopic (S/P) ratio
JP6575065B2 (en) 2014-12-26 2019-09-18 日亜化学工業株式会社 Light emitting device
JP2017157593A (en) * 2016-02-29 2017-09-07 三星電子株式会社Samsung Electronics Co.,Ltd. Light-emitting diode, manufacturing method for light-emitting diode, light-emitting diode display device, and manufacturing method for light-emitting diode display device
JP2017143314A (en) * 2017-05-24 2017-08-17 ローム株式会社 LED module
JP7331331B2 (en) * 2019-07-11 2023-08-23 日亜化学工業株式会社 Light-emitting device and light-emitting module
JP7476002B2 (en) 2020-07-09 2024-04-30 シチズン電子株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP2000022221A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
JP4174858B2 (en) Light emitting diode
JP3704941B2 (en) Light emitting device
KR100491314B1 (en) Light emitting device
US7414271B2 (en) Thin film led
US8445921B2 (en) Thin film light emitting diode
US8395175B2 (en) Light-emitting semiconductor device and package thereof
CN103579466B (en) Light-emitting device
EP2378553B1 (en) Light emitting device and light emitting device package
JP3468018B2 (en) Light emitting device and display device using the same
JP6542509B2 (en) Phosphor and light emitting device package including the same
JPH1093146A (en) Light-emitting diode
JP2008135554A (en) Semiconductor light-emitting element, light-emitting device, and manufacturing method for semiconductor light-emitting element
CN101465398B (en) preparation method of single electrode white light LED based on secondary substrate transfer technology
JPH11261114A (en) Light-emitting diode
JP3645207B2 (en) Light emitting diode
CN109791966A (en) Light emitting device package
KR20140004351A (en) Light emitting diode package
US20170358708A1 (en) Light emitting diode, light emitting diode package including same, and lighting system including same
JP2003234513A (en) Resin for wavelength conversion light-emitting diode allowing fluorescent dye or fluorescent pigment to be added
US9660145B2 (en) Light emitting device, light emitting device package having the same and light system having the same
JP2004158873A (en) Light emitting diode
JP3729047B2 (en) Light emitting diode
KR102131309B1 (en) Phosphor and light emitting device package including the same
KR100450514B1 (en) White light emitting diode
JP2003124530A (en) Light emitting diode and led display device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees