JP4156537B2 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
JP4156537B2
JP4156537B2 JP2004013145A JP2004013145A JP4156537B2 JP 4156537 B2 JP4156537 B2 JP 4156537B2 JP 2004013145 A JP2004013145 A JP 2004013145A JP 2004013145 A JP2004013145 A JP 2004013145A JP 4156537 B2 JP4156537 B2 JP 4156537B2
Authority
JP
Japan
Prior art keywords
power
coil
power feeding
power supply
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004013145A
Other languages
Japanese (ja)
Other versions
JP2005210801A (en
Inventor
充 倉持
光 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riso Kagaku Corp
Original Assignee
Riso Kagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riso Kagaku Corp filed Critical Riso Kagaku Corp
Priority to JP2004013145A priority Critical patent/JP4156537B2/en
Publication of JP2005210801A publication Critical patent/JP2005210801A/en
Application granted granted Critical
Publication of JP4156537B2 publication Critical patent/JP4156537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、電源に接続された給電コイルと、負荷に接続された受電コイルとを、電磁結合が成立する給電状態に置くことにより、給電部から受電部に対し電磁誘導により非接触で給電を行うことができる給電装置に係り、特に受電側において負荷が広い範囲で変動した場合にも、これに安定して対応することができる給電装置に関するものである。   According to the present invention, a power feeding coil connected to a power source and a power receiving coil connected to a load are placed in a power feeding state in which electromagnetic coupling is established, so that power feeding from the power feeding unit to the power receiving unit by electromagnetic induction is performed without contact. The present invention relates to a power supply device that can be performed, and particularly to a power supply device that can stably cope with a case where the load fluctuates in a wide range on the power receiving side.

コネクター・ソケット等、機械的接触を介して電力を供給する給電装置は、水濡れの恐れのある場合や埃・砂等の堆積の恐れがある様な環境では、ショート・感電の可能性があるため使用することができなかった。   Power supply devices that supply power through mechanical contact, such as connectors and sockets, may cause short circuits or electric shock in environments where there is a risk of getting wet, or where there is a risk of accumulation of dust, sand, etc. Therefore could not be used.

この様な場所での使用に適した給電装置として、機械的な結合を用いずに電磁誘導を用いた非接触タイプの給電システムが提案されている。例えば、下記特許文献1には、電源に接続された給電コイルと、負荷に接続された受電コイルとを、電磁結合が成立する給電状態に置くことにより、給電部から受電部に対し電磁誘導により非接触で給電を行うことができる給電装置が開示されている。
特開平10−215530号公報
As a power supply apparatus suitable for use in such a place, a non-contact type power supply system using electromagnetic induction without using mechanical coupling has been proposed. For example, in Patent Document 1 below, by placing a power feeding coil connected to a power source and a power receiving coil connected to a load in a power feeding state in which electromagnetic coupling is established, the power feeding unit performs electromagnetic induction on the power receiving unit. A power supply apparatus that can perform power supply in a contactless manner is disclosed.
JP-A-10-215530

しかし、この様な電磁誘導を用いる給電装置では、給電部と受電部の磁界結合により給電側に流しうる電流が決定されてしまうので、受電側の負荷が変動すると受電側の出力電圧が激しく変動してしまうという不都合があるため、従来は変動の少ないある特定の負荷に対して使用されるのが一般的であって、広い範囲で変動しうる負荷に対して有効に対応できないという問題があった。   However, in such a power feeding device using electromagnetic induction, the current that can flow to the power feeding side is determined by the magnetic coupling between the power feeding unit and the power receiving unit, so that the output voltage on the power receiving side fluctuates drastically when the load on the power receiving side fluctuates. Conventionally, it is generally used for a specific load with little fluctuation, and there is a problem that it cannot effectively cope with a load that can fluctuate over a wide range. It was.

そこで本発明は、給電コイルと負荷側の受電コイルを電磁結合の状態に置いて電磁誘導により非接触で給電を行う給電装置の分野において、広い範囲で変動する負荷に安定して対応できるため、不特定な負荷にも対応することができる給電装置を提供することを目的とするものである。   Therefore, the present invention can stably handle a load that fluctuates in a wide range in the field of a power feeding device that performs power supply in a non-contact manner by electromagnetic induction by placing a power feeding coil and a power receiving coil on a load side in an electromagnetically coupled state. It is an object of the present invention to provide a power feeding device that can cope with unspecified loads.

請求項1に記載された給電装置は、電源に接続される給電コイルを備えた給電部と負荷に接続される受電コイルを備えた受電部とを有し、前記給電コイルと前記受電コイルを電磁結合が成立する給電状態に置くことにより電磁誘導で給電部から受電部に対し非接触で給電を行う給電装置において、
前記給電コイルを選択的に駆動可能な複数の小給電コイルで構成し、
前記給電コイルに流れる電流の電流値の変化に応じて前記小給電コイルの個数を切り換えて駆動する制御手段を備えたことを特徴としている。
The power supply device described in claim 1 includes a power supply unit including a power supply coil connected to a power source and a power reception unit including a power reception coil connected to a load, and the power supply coil and the power reception coil are electromagnetically coupled. In a power supply device that performs power supply in a non-contact manner from a power supply unit to a power reception unit by electromagnetic induction by placing in a power supply state in which coupling is established,
A plurality of small power supply coils that can selectively drive the power supply coil,
Control means for switching and driving the number of the small power feeding coils according to a change in the current value of the current flowing through the power feeding coil is provided.

請求項2に記載された給電装置は、請求項1記載の給電装置において、前記給電コイルに流れる電流を検出して駆動される小給電コイルの個数に応じた基準値と比較し、その結果に応じて前記小給電コイルの個数を切り換えて駆動することを特徴としている。 According to a second aspect of the present invention, in the power feeding device according to the first aspect, the current flowing in the power feeding coil is detected and compared with a reference value corresponding to the number of small power feeding coils to be driven. Accordingly, the number of small power supply coils is switched and driven accordingly.

請求項3に記載された給電装置は、請求項2記載の給電装置において、前記制御手段が、前記基準値を1以上設けることにより電流値の範囲を複数に分け、検出した前記電流値がより高い範囲に属する場合に、より多くの小給電コイルを駆動することを特徴としている。
例えば、前記基準値を2つとすれば、前記電流値の範囲を3つに分けることができ、これに合せて負荷の範囲を軽負荷・中負荷・高負荷の3つに設定し、これらにそれぞれ対応して駆動する小給電コイルの数を切り替えることができる。
According to a third aspect of the present invention, in the power feeding device according to the second aspect, the control unit divides a range of current values by providing one or more reference values, and the detected current value is more In the case of belonging to a high range, it is characterized in that more small power feeding coils are driven.
For example, if the reference value is two, the range of the current value can be divided into three, and the load range is set to three of light load, medium load, and high load according to this, It is possible to switch the number of small power feeding coils that are driven correspondingly.

請求項4に記載された給電装置は、請求項乃至3記載の給電装置において、前記制御手段が、
前記給電コイルにおいて相対的に少ない個数の小給電コイルを駆動するとともに、給電コイルに流れる電流の電流値を検出して所定の基準値と比較することにより、前記給電コイルと前記受電コイルが前記給電状態以外の状態から前記給電状態となって前記電磁結合が成立したことを検知するとともに、
前記給電コイルにおいて相対的に多い個数の小給電コイルを駆動するとともに、給電コイルに流れる電流の電流値を検出して他の所定の基準値と比較することにより、前記給電コイルと前記受電コイルが前記給電状態から前記給電状態以外の状態となって前記電磁結合が解除されたことを検知することを特徴としている。
The power supply device described in claim 4 is the power supply device according to any one of claims 2 to 3, wherein the control means includes:
A relatively small number of small power feeding coils are driven in the power feeding coil, and the current value of the current flowing in the power feeding coil is detected and compared with a predetermined reference value, so that the power feeding coil and the power receiving coil are fed with the power feeding coil. While detecting that the electromagnetic coupling has been established from the state other than the state to the power feeding state,
While driving a relatively large number of small power feeding coils in the power feeding coil and detecting the current value of the current flowing through the power feeding coil and comparing it with other predetermined reference values, the power feeding coil and the power receiving coil It is detected that the electromagnetic coupling is released from the power supply state to a state other than the power supply state.

請求項5に記載された給電装置は、請求項乃至4記載の給電装置において、前記小給電コイルをそれぞれ駆動する複数の駆動回路と前記電源との間に電流検出素子を設けるとともに、
前記制御手段には駆動される小給電コイルの個数に応じた前記基準値が設定され、前記制御手段は前記電流検出素子で検出された前記給電コイルを流れる電流の電流値と前記各基準値とを比較し、その結果に応じて前記小給電コイルを駆動する駆動回路を選択するように構成されたことを特徴としている。

The power supply device according to claim 5, in the power supply device according to claim 2 to 4, wherein, provided with a current detecting element between the plurality of driving circuit for driving the small feeding coil respectively and the power supply,
The control means is set with the reference value according to the number of small power feeding coils to be driven, and the control means is configured to detect the current value of the current flowing through the power feeding coil detected by the current detection element and the respective reference values. And a drive circuit for driving the small power feeding coil is selected according to the result.

請求項6に記載された給電装置は、請求項1乃至5記載の給電装置において、前記給電コイルと前記受電コイルが前記給電状態以外の状態から前記給電状態となって前記電磁結合が成立したことを検知する操作を、前記制御手段に設けたタイマー手段により所定の周期で繰り返し行うことを特徴としている。   According to a sixth aspect of the present invention, in the power feeding device according to any one of the first to fifth aspects, the electromagnetic coupling is established when the power feeding coil and the power receiving coil change from the state other than the power feeding state to the power feeding state. It is characterized in that the operation of detecting the above is repeated at a predetermined cycle by a timer means provided in the control means.

請求項7に記載された給電装置は、請求項1乃至6記載の給電装置において、前記給電コイルは所定の内径の挿入孔を備えており、前記受電コイルは前記給電コイルの前記挿入孔に挿入可能な長体状であり、前記受電コイルを前記給電コイルの前記挿入孔に挿入することにより、前記給電コイルと前記受電コイルとが前記給電状態となることを特徴としている。   According to a seventh aspect of the present invention, in the power feeding device according to the first to sixth aspects, the power feeding coil includes an insertion hole having a predetermined inner diameter, and the power receiving coil is inserted into the insertion hole of the power feeding coil. The power supply coil and the power reception coil are in the power supply state by inserting the power reception coil into the insertion hole of the power supply coil.

請求項8に記載された給電装置は、請求項1乃至6記載の給電装置において、前記受電コイルは所定の内径の挿入孔を備えており、前記給電コイルは前記受電コイルの前記挿入孔に挿入可能な長体状であり、前記給電コイルを前記受電コイルの前記挿入孔に挿入することにより、前記受電コイルと前記給電コイルとが前記給電状態となることを特徴としている。   The power feeding device described in claim 8 is the power feeding device according to any one of claims 1 to 6, wherein the power receiving coil includes an insertion hole having a predetermined inner diameter, and the power feeding coil is inserted into the insertion hole of the power receiving coil. The power receiving coil and the power feeding coil are in the power feeding state by inserting the power feeding coil into the insertion hole of the power receiving coil.

請求項1に記載された給電装置によれば、複数の小給電コイルを選択的に駆動することにより、給電部と受電部の磁界結合を変化させて給電コイルに流れる電流を変化させ、受電部にて発生する電圧を調整することができる。すなわち、給電コイルに流れる電流と、駆動する小給電コイルの数とから、受電部を介して負荷に印加される電圧が所定の値に定まるので、実際の電圧がこれを下回ると駆動する小給電コイル数を増やし、給電コイルに流れる電流を増加させ、受電部からの出力電圧を増加させるように制御を行うことができる。この様に制御することにより、広い範囲の負荷を安定して駆動でき、不特定な負荷に有効に対応することができる。   According to the power supply device described in claim 1, by selectively driving a plurality of small power supply coils, the current flowing through the power supply coil is changed by changing the magnetic field coupling between the power supply unit and the power reception unit. The voltage generated at can be adjusted. That is, since the voltage applied to the load via the power receiving unit is determined to be a predetermined value from the current flowing through the power supply coil and the number of small power supply coils to be driven, the small power supply that is driven when the actual voltage falls below this value. Control can be performed so as to increase the number of coils, increase the current flowing in the power feeding coil, and increase the output voltage from the power receiving unit. By controlling in this way, it is possible to stably drive a wide range of loads and effectively deal with unspecified loads.

請求項2乃至3に記載された給電装置によれば、請求項1記載の給電装置の効果において、前記制御手段が、あらかじめ適切に設定された基準値と給電コイルの電流値とを比較することにより、小給電コイルの駆動個数を負荷に適切に対応した複数段階でこまめに変化させ、受電部側の出力電圧を調整することができる。このため、広い範囲の負荷に対する安定駆動がさらに確実になる。   According to the power supply device described in claims 2 to 3, in the effect of the power supply device according to claim 1, the control unit compares the reference value appropriately set in advance with the current value of the power supply coil. Thus, the number of driven small power supply coils can be frequently changed in a plurality of stages appropriately corresponding to the load, and the output voltage on the power receiving unit side can be adjusted. For this reason, stable driving with respect to a wide range of loads is further ensured.

請求項4に記載された給電装置によれば、請求項乃至3記載の給電装置の効果において、さらに、所定の基準値を適当な大きさに設定すれば、給電コイルと受電コイルの間に電磁結合が成立したことの検知を、相対的に少ない個数の小給電コイルを駆動することにより見落としなく行うことができる。また、相対的に多くの小給電コイルを駆動する場合に比べて電力消費が少なくて済むので、電磁結合の有無の検知周期を相対的に短くして速やかな検知を実現できる。電磁結合が検知された後に、電磁結合が解除されたことを検知する場合には、相対的に多い個数の小給電コイルを駆動して行うことができる。 According to the power feeding device described in claim 4, in the effect of the power feeding device according to claims 2 to 3, if the predetermined reference value is set to an appropriate size, the power feeding coil is placed between the power feeding coil and the power receiving coil. Detection of the establishment of electromagnetic coupling can be performed without oversight by driving a relatively small number of small power feeding coils. In addition, since power consumption can be reduced as compared with the case where a relatively large number of small power feeding coils are driven, it is possible to realize rapid detection by relatively shortening the detection cycle for the presence or absence of electromagnetic coupling. When detecting that the electromagnetic coupling is released after the electromagnetic coupling is detected, a relatively large number of small power feeding coils can be driven.

請求項5に記載された給電装置によれば、請求項乃至4記載の給電装置の効果において、さらに、給電コイルの電流値を電流検出素子で検知して基準値と比較した結果に応じて駆動する小給電コイルの個数切り替えを行う具体的な構成を提供することができる。 According to the power supply device described in claim 5, according to the effect of the power supply device according to claims 2 to 4, the current value of the power supply coil is further detected by the current detection element and compared with the reference value. A specific configuration for switching the number of small power feeding coils to be driven can be provided.

請求項6に記載された給電装置によれば、請求項1乃至5記載の給電装置の効果において、さらに、給電コイルと受電コイルの電磁結合を検知する操作を、制御手段のタイマー手段により所定の周期で繰り返し行うことができるので、前記電磁結合の検知が確実かつ速やかであり、検出のために駆動する小給電コイルの個数が相対的に少なく電力消費も少ないので、前記周期を短くすることもできる。   According to the power supply device described in claim 6, in the effect of the power supply device according to claims 1 to 5, the operation of detecting the electromagnetic coupling between the power supply coil and the power reception coil is further performed by the timer means of the control means. Since it can be repeatedly performed in a cycle, the detection of the electromagnetic coupling is reliable and quick, and the number of small power feeding coils driven for detection is relatively small and the power consumption is small, so the cycle can be shortened. it can.

請求項7乃至8に記載された給電装置によれば、請求項1乃至6記載の給電装置の効果において、前記給電コイルと前記受電コイルのいずれか一方を前記挿入孔を設けた中空円柱状とし、他方を中実円柱状として該挿入孔に挿抜するという選択可能な構造により、両コイルを相対移動させれば前記給電コイルと前記受電コイルの間の電磁結合による給電状態を成立・解除させる作用を得ることができるので、いずれか実現しやすい構造を採用して請求項1乃至6記載の給電装置による効果を電磁誘導方式の非接触の給電装置において広く実現することができる。   According to the power supply device described in any one of Claims 7 to 8, in the effect of the power supply device according to any one of Claims 1 to 6, any one of the power supply coil and the power reception coil is formed in a hollow cylindrical shape provided with the insertion hole. With the selectable structure in which the other is made into a solid cylindrical shape and inserted into and removed from the insertion hole, the action of establishing and releasing the power supply state by electromagnetic coupling between the power supply coil and the power reception coil is achieved by moving both coils relative to each other. Therefore, by adopting a structure that can be easily realized, the effects of the power feeding device according to claims 1 to 6 can be widely realized in the electromagnetic contact type non-contact power feeding device.

以下、本発明を実施するために特許出願人が出願時点で最良と思う本発明の実施の形態を図1〜図6を参照して説明する。
図1は本発明の実施の形態に係る給電装置の回路構成図であり、図2は本発明の実施の形態に係る給電装置の駆動波形図であり、図3は本発明の実施の形態に係る給電装置の主としてコイル部分の構造を示す断面図であり、図4は本発明の実施の形態に係る給電装置の動作を説明する流れ図であり、図5は本発明の実施の形態に係る給電装置の動作を説明する電流等の波形図であり、図6は本発明の実施の形態に係る給電装置における負荷と駆動する小給電コイル数(回路数)に応じた流入電流値・負荷電圧値を表形式で示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention, which the patent applicant believes best at the time of filing to implement the present invention, will be described with reference to FIGS.
FIG. 1 is a circuit configuration diagram of a power feeding device according to an embodiment of the present invention, FIG. 2 is a drive waveform diagram of the power feeding device according to the embodiment of the present invention, and FIG. 3 is a diagram of the embodiment of the present invention. FIG. 4 is a cross-sectional view mainly showing a structure of a coil portion of the power feeding apparatus, FIG. 4 is a flowchart for explaining the operation of the power feeding apparatus according to the embodiment of the present invention, and FIG. 5 is a power feeding according to the embodiment of the present invention. FIG. 6 is a waveform diagram of current and the like for explaining the operation of the device, and FIG. 6 is an inflow current value / load voltage value corresponding to the number of loads and the number of small power feeding coils (number of circuits) in the power feeding device according to the embodiment of the present invention. FIG.

(1)本給電装置の構成(図1〜図3)
図1に示すように、本例の給電装置は、給電コイル1を備えた給電部2と受電コイル3を備えた受電部4を有し、別体に構成された給電コイル1と受電コイル3を電磁結合が成立する給電状態に置くことにより、電磁誘導で給電部2から受電部4に対して非接触で給電を行う装置である。
(1) Configuration of the power feeding device (FIGS. 1 to 3)
As shown in FIG. 1, the power supply device of this example includes a power supply unit 2 including a power supply coil 1 and a power reception unit 4 including a power reception coil 3, and the power supply coil 1 and the power reception coil 3 configured separately. Is placed in a power supply state in which electromagnetic coupling is established, so that power is supplied from the power supply unit 2 to the power reception unit 4 in a non-contact manner by electromagnetic induction.

給電部2は、3つの小給電コイル5からなる給電コイル1と、後述する制御手段10からの制御信号により交流で各小給電コイル5を駆動する3つの駆動回路6と、各駆動回路6と電源7との間の電源経路に設けられて電源電圧を一定電圧に変換する定電圧回路8と、前記電源経路に設けられた電流検出素子9と、各駆動回路6を制御する制御手段10とを有している。   The power feeding unit 2 includes a power feeding coil 1 including three small power feeding coils 5, three driving circuits 6 that drive each small power feeding coil 5 with an alternating current using a control signal from a control unit 10 to be described later, A constant voltage circuit 8 provided in a power supply path between the power supply 7 and converting a power supply voltage to a constant voltage; a current detection element 9 provided in the power supply path; and a control means 10 for controlling each drive circuit 6; have.

制御手段10は、基準となるクロックを発生させる発振回路11と、発振回路11の周波数を所望の周波数にして出力する分周回路12と、電流検出素子9の両端の電圧をデジタル信号に変えるA/D変換器13と、これら各回路等からの信号等を用いて前記各駆動回路6を制御する制御回路14とで構成される。制御回路14には、後述するように、駆動回路6を制御する際の判断基準となる各種の基準値が予め設定されている。   The control means 10 includes an oscillation circuit 11 that generates a reference clock, a frequency dividing circuit 12 that outputs the oscillation circuit 11 at a desired frequency, and a voltage at both ends of the current detection element 9 that changes to a digital signal A A / D converter 13 and a control circuit 14 for controlling each drive circuit 6 using signals from these circuits and the like. As will be described later, the control circuit 14 is set in advance with various reference values serving as determination criteria for controlling the drive circuit 6.

受電部4は、電磁誘導により交流電力を発生させる受電コイル3と、受電コイル3に接続された整流回路(受電回路)15を有する。整流回路15は、ダイオード16及びコンデンサー17を有し、受電コイル3に発生した交流電力を直流に変換して負荷20に供給する。   The power receiving unit 4 includes a power receiving coil 3 that generates AC power by electromagnetic induction, and a rectifier circuit (power receiving circuit) 15 connected to the power receiving coil 3. The rectifier circuit 15 includes a diode 16 and a capacitor 17, converts alternating current power generated in the power receiving coil 3 into direct current, and supplies the direct current to the load 20.

図1及び図2に示すように、制御回路14からはあらかじめ任意に設定された周波数の基本信号S0が常時各駆動回路6に出力される。また、制御回路14からは、H又はLの選択信号E1,E2,E3(Hは選択、Lは非選択)が、後述する手順に従ってそれぞれ対応する小給電コイル5の各駆動回路6に出力される。その結果、図2に示すように、駆動回路6に選択信号En(nは1〜3)が入った場合(Hの場合)には、各小給電コイル5に与えられる駆動信号(給電コイル1の波形)は基本信号S0の周波数に基いた交流波形となる。   As shown in FIGS. 1 and 2, the control circuit 14 always outputs a basic signal S0 having a frequency arbitrarily set in advance to each drive circuit 6. In addition, the control circuit 14 outputs H or L selection signals E1, E2, E3 (H is selected, L is not selected) to each drive circuit 6 of the corresponding small power feeding coil 5 according to the procedure described later. The As a result, as shown in FIG. 2, when the selection signal En (n is 1 to 3) is input to the drive circuit 6 (in the case of H), the drive signal (feed coil 1) applied to each small power feed coil 5. Waveform) is an AC waveform based on the frequency of the basic signal S0.

次に、図3を参照して給電コイル1と受電コイル3のさらに具体的な形状等を説明する。
給電部2の給電コイル1は、所定の内径を備えた横断面円形の挿入孔21(貫通孔)を備えた中空円柱形であり、その他の給電部回路(前記制御手段10、定電圧回路8、電流検出素子9等)とともに外装材料22によって一体に封着された密閉構造とされており、コイルや回路等の電気的構成部分は種々の環境に耐えうる防水性・防湿性・防塵性を備えている。なお電源7は外部から供給される。
Next, more specific shapes and the like of the feeding coil 1 and the receiving coil 3 will be described with reference to FIG.
The power supply coil 1 of the power supply unit 2 has a hollow cylindrical shape with a circular cross-sectional insertion hole 21 (through hole) having a predetermined inner diameter, and other power supply unit circuits (the control means 10, the constant voltage circuit 8). , The current detection element 9 and the like) and a sealing structure integrally sealed with an exterior material 22, and the electrical components such as coils and circuits have waterproof, moisture, and dustproof properties that can withstand various environments. I have. The power source 7 is supplied from the outside.

受電部4の受電コイル3は、磁性体(フェライト)23に巻かれた被覆導電線24からなり、これと前記整流回路(受電回路)15とが外装材料22によって一体に封着された構造とされており、給電コイル1と同様に所定の耐候性を有している。受電コイル3は給電コイル1と同等の軸方向長さを有する中実円柱形であり、前記給電コイル1の挿入孔21に挿入して軸方向に移動可能である。   The power receiving coil 3 of the power receiving unit 4 includes a covered conductive wire 24 wound around a magnetic body (ferrite) 23, and the rectifier circuit (power receiving circuit) 15 is integrally sealed by an exterior material 22. Like the feed coil 1, it has a predetermined weather resistance. The power receiving coil 3 has a solid cylindrical shape having an axial length equivalent to that of the power feeding coil 1 and can be inserted into the insertion hole 21 of the power feeding coil 1 and moved in the axial direction.

なお、円柱状の受電コイル3の上端に設けられた整流回路15は受電コイル3の本体部分よりも大径で外方に張り出した形状に構成されているので、受電コイル3を給電コイル1の挿入孔21に挿入すると、受電コイル3は整流回路15の部分で給電コイル1の上端に引っ掛かり、両コイル1,3は互いに電磁結合する給電位置で保持されることとなる。   Since the rectifier circuit 15 provided at the upper end of the cylindrical power receiving coil 3 is configured to have a larger diameter than the main body portion of the power receiving coil 3 and project outward, the power receiving coil 3 is connected to the power feeding coil 1. When inserted into the insertion hole 21, the power receiving coil 3 is hooked on the upper end of the power feeding coil 1 at the portion of the rectifier circuit 15, and both the coils 1 and 3 are held at a power feeding position where they are electromagnetically coupled to each other.

両コイル1,3は以上のような構成なので、給電部2(給電コイル1)と受電部4(受電コイル3)を別々にしておけば両コイル1,3間に電磁結合は生じず、非接触の給電は行われない。給電部2(給電コイル1)の挿入孔21内に受電部4(受電コイル3)を挿入すれば、給電部2から受電部4に対し電磁誘導により非接触で給電を行うことができる給電状態となる。   Since the coils 1 and 3 are configured as described above, if the power feeding unit 2 (power feeding coil 1) and the power receiving unit 4 (power receiving coil 3) are separately provided, electromagnetic coupling between the coils 1 and 3 does not occur. Contact power is not supplied. If the power receiving unit 4 (power receiving coil 3) is inserted into the insertion hole 21 of the power feeding unit 2 (power feeding coil 1), the power feeding state allows the power feeding unit 2 to feed the power receiving unit 4 in a non-contact manner by electromagnetic induction. It becomes.

(2)本給電装置の作用(図4〜図6)
次に本給電装置の作用を、制御手段10の動作を中心として説明する。
本給電装置では、以下に説明するように予め制御回路14に幾つかの基準値A1〜A4を設定しておき、給電コイル1に流れる電流の電流値を電流検出素子9で測定してこれら基準値A1〜A4と比較し、その比較結果に基づいて受電コイル3の有無や負荷20の軽重等の状態判断を行い、駆動する小給電コイル5の数を選択する。
(2) Operation of the power feeding device (FIGS. 4 to 6)
Next, the operation of the power supply apparatus will be described focusing on the operation of the control means 10.
In this power feeding device, as will be described below, several reference values A1 to A4 are set in the control circuit 14 in advance, and the current value of the current flowing in the power feeding coil 1 is measured by the current detection element 9 and these standards are set. Compared with the values A1 to A4, based on the comparison result, the presence / absence of the power receiving coil 3 and the light weight of the load 20 are determined, and the number of small power feeding coils 5 to be driven is selected.

まず、基準値としてのレベルA1は、給電コイル1と受電コイル3が給電状態以外の状態(具体的には受電コイル3が給電コイル1から外れている状態)から給電状態(具体的には受電コイル3が給電コイル1に全長挿入された状態)となって電磁結合が成立したことを検知するための判断基準値であり、給電コイル1の電流値がこのレベルA1よりも大きい場合には電磁結合がなく(つまり受電コイル3は挿入されておらず)、給電コイル1の電流値がこのレベルA1よりも小さい場合には電磁結合が成立している(つまり受電コイル3が挿入されている)、と判断される。   First, the level A1 as the reference value is a state in which the feeding coil 1 and the receiving coil 3 are in a power supply state (specifically, a state where the power receiving coil 3 is detached from the power feeding coil 1). This is a criterion value for detecting that the electromagnetic coupling has been established in a state where the coil 3 is inserted into the full length of the power supply coil 1. If the current value of the power supply coil 1 is larger than this level A1, the electromagnetic wave When there is no coupling (that is, the receiving coil 3 is not inserted) and the current value of the feeding coil 1 is smaller than the level A1, electromagnetic coupling is established (that is, the receiving coil 3 is inserted). It is judged.

また、基準値としてのレベルA4は、給電コイル1と受電コイル3が給電状態(具体的には受電コイル3が給電コイル1に全長挿入されて電磁結合が成立した状態)から給電状態以外の状態(具体的には受電コイル3が給電コイル1から外れている状態)になったことを検知するための判断基準値であり、給電コイル1の電流値がこのレベルA4よりも大きい場合には給電コイル1に挿入されていた受電コイル3が抜き取られたものと判断される。   Further, the level A4 as the reference value is a state other than the power supply state from the power supply coil 1 and the power reception coil 3 in a power supply state (specifically, a state in which the power reception coil 3 is fully inserted into the power supply coil 1 and electromagnetic coupling is established). This is a determination reference value for detecting that the power receiving coil 3 is detached from the power feeding coil 1 (specifically, when the current value of the power feeding coil 1 is larger than the level A4, power feeding is performed). It is determined that the power receiving coil 3 inserted in the coil 1 has been removed.

また、基準値としてのレベルA2及びA3は、給電コイル1と受電コイル3が給電状態(具体的には受電コイル3が給電コイル1に全長挿入されて電磁結合が成立した状態)にあることを前提とし、その場合に負荷20が高負荷か中負荷か軽負荷かを判断するための基準値である。   Further, the levels A2 and A3 as reference values indicate that the feeding coil 1 and the receiving coil 3 are in a feeding state (specifically, the receiving coil 3 is fully inserted into the feeding coil 1 and electromagnetic coupling is established). This is a reference value for determining whether the load 20 is a high load, a medium load or a light load.

給電コイル1に流れる電流がレベルA2未満である場合には、相対的に高抵抗値の軽負荷であると判断し、駆動する小給電コイル5の個数を相対的に少ない数(本例では1個)とする。
また、給電コイル1に流れる電流がレベルA2を越え、レベルA3未満である場合には、相対的に中抵抗値の中負荷であると判断し、駆動する小給電コイル5の個数を相対的に中程度の数(本例では2個)とする。
また、給電コイル1に流れる電流がレベルA3を越え、レベルA4未満である場合には、相対的に低抵抗値の高負荷であると判断し、駆動する小給電コイル5の個数を相対的に多い数(本例では3個)とする。
When the current flowing through the feeding coil 1 is less than the level A2, it is determined that the load is a relatively high resistance light load, and the number of small feeding coils 5 to be driven is relatively small (1 in this example). Piece).
Further, when the current flowing through the feeding coil 1 exceeds the level A2 and is lower than the level A3, it is determined that the load is relatively medium and the number of the small feeding coils 5 to be driven is relatively set. The number is medium (2 in this example).
Further, when the current flowing through the feeding coil 1 exceeds the level A3 and is lower than the level A4, it is determined that the load is relatively low and the load is relatively small. The number is large (three in this example).

以下、本給電装置の作動についてさらに具体的に説明する。以下の説明では、図4の流れ図に示す各動作ステップS1〜S11を用いて本装置の動作を適宜区切って説明し、各区切り毎に半括弧付き数字1)〜10)を参照符号として付した。また図5に示す電流波形にも対応して同一の半括弧付き数字1)〜10)を付し、理解の便宜とした。   Hereinafter, the operation of the power feeding apparatus will be described more specifically. In the following description, the operation of this apparatus will be described by using the operation steps S1 to S11 shown in the flowchart of FIG. 4 as appropriate, and numerals 1) to 10) with half parentheses will be given as reference numerals for each partition. . In addition, the same numbers in the parentheses 1) to 10) are attached to the current waveforms shown in FIG. 5 for convenience of understanding.

1)受電部4が挿入されていない状態では、小給電コイル5の1つを駆動するとA1レベルより大きい電流が流れるため、S1−S2−S3−S4−S1のルートで動作し、タイマー手段(S4で動作)で指定された時間ごとにE1信号はHとなり、受電コイル3の検出動作を繰り返す。   1) In a state where the power receiving unit 4 is not inserted, if one of the small power feeding coils 5 is driven, a current larger than the A1 level flows, so that it operates on the route of S1-S2-S3-S4-S1, and timer means ( The E1 signal becomes H every time specified in (operation in S4), and the detection operation of the power receiving coil 3 is repeated.

2)受電部4が挿入されろと小給電コイル5の1つを駆動した時の電流がA1レベル以下となり、S1−S2−S5のルートで動作し、E1信号はHのまま保たれるため駆動動作が連続する。この時電流がA2レベル未満の場合はS5−S10−S9−S5のルートで1個の小給電コイル5による駆動動作を繰り返す(軽負荷動作)。   2) When one of the small power feeding coils 5 is driven when the power receiving unit 4 is inserted, the current becomes A1 level or less, and the operation is performed in the route of S1-S2-S5, and the E1 signal is kept at H. Drive operation continues. At this time, if the current is less than the A2 level, the driving operation by one small power feeding coil 5 is repeated through the route of S5-S10-S9-S5 (light load operation).

3)この後、受電部4を抜き取ると電流がA4レベルを超えるため、S5−S6−S7−S8−S9のルートで動作を行い、受電コイル3の検出動作S3−S4−S1−S2−S3を繰り返すこととなる。   3) Thereafter, when the power receiving unit 4 is removed, the current exceeds the A4 level. Therefore, the operation is performed along the route of S5-S6-S7-S8-S9, and the detection operation of the power receiving coil 3 is performed. S3-S4-S1-S2-S3 Will be repeated.

4)受電部4が挿入されて1つの小給電コイル5を駆動した時の電流がA1レベル以下となると、S1−S2−S5のルートで駆動動作が連続する。この時電流がA2レベルより大きく、A3レベル以下である場合はS5−S6のルートで動作し、E2出力をHに変更し、S7−S11−S9−S5−S6のルートで2個の小給電コイル5による駆動動作を繰り返す(中負荷動作)。   4) When the current when the power receiving unit 4 is inserted and one small power feeding coil 5 is driven becomes equal to or lower than the A1 level, the driving operation continues on the route of S1-S2-S5. At this time, if the current is greater than the A2 level and less than or equal to the A3 level, it operates in the route of S5-S6, changes the E2 output to H, and two small power supplies in the route of S7-S11-S9-S5-S6 The driving operation by the coil 5 is repeated (medium load operation).

5)この後、受電部4を抜き取ると電流がA4レベルを超えるため、S5−S6−S7−S8−S9−S3のルートで動作を行い、E2出力をLとし、S1−S2−S3−S4−S1のルートで受電コイル3の検出動作を繰り返すこととなる。   5) After that, when the power receiving unit 4 is extracted, the current exceeds the A4 level. Therefore, the operation is performed in the route of S5-S6-S7-S8-S9-S3, the E2 output is set to L, and S1-S2-S3-S4. -The detection operation of the receiving coil 3 is repeated in the route of S1.

6)受電部4が挿入されて1個の小給電コイル5を駆動した時の電流がA1レベル以下となり、S1−S2−S5のルートで駆動動作が連続する。この時電流がA3レベルより大きい場合は、S5−S6のルートで動作し、E2出力をHに変更し、S7−S8−S9−S5−S6のルートで3個の小給電コイル5による駆動動作を繰り返す(高負荷動作)。   6) The current when the power receiving unit 4 is inserted and one small power feeding coil 5 is driven becomes equal to or lower than the A1 level, and the driving operation continues on the route of S1-S2-S5. At this time, if the current is larger than the A3 level, the operation is performed in the route of S5-S6, the E2 output is changed to H, and the driving operation by the three small feeding coils 5 is performed in the route of S7-S8-S9-S5-S6. Repeatedly (high load operation).

7)この後、受電部4を抜き取ると電流がA4レベルを超えるため、S5−S6−S7−S8−S9−S3のルートで動作を行い、E2,E3出力をLとし、S1−S2−S3−S4−S1のルートで受電コイル3の検出動作を繰り返すこととなる。   7) Thereafter, when the power receiving unit 4 is extracted, the current exceeds the A4 level. Therefore, the operation is performed in the route of S5-S6-S7-S8-S9-S3, E2 and E3 outputs are set to L, and S1-S2-S3. -The detection operation of the receiving coil 3 is repeated in the route of S4-S1.

8)受電部4が挿入されると、小給電コイル5の1つを駆動した時の電流がA1レベル以下となり、S1−S2−S5のルートで動作し、E1信号はHのまま保たれるため駆動動作が連続する。この時電流がA2レベル未満の場合は、S5−S10−S9−S5のルートで動作を繰り返す。この後、負荷が変化し、電流がA2レベルより大きくA3レベル未満になるとS5−S6のルートで動作し、E2出力をHに変更し、S7−S11−S9−S5−S6のルートで動作を繰り返す。さらに電流がA2レベル未満になると、S5−S10のルートで動作し、E2出力をLに変更し,S5−S10−S9−S5のルートで駆動動作を繰り返す(負荷変動)。   8) When the power receiving unit 4 is inserted, the current when one of the small power feeding coils 5 is driven becomes equal to or lower than the A1 level, operates in the route of S1-S2-S5, and the E1 signal is kept at H. Therefore, the driving operation continues. At this time, if the current is less than the A2 level, the operation is repeated along the route of S5-S10-S9-S5. After that, when the load changes and the current becomes larger than the A2 level and less than the A3 level, the S5-S6 route is operated, the E2 output is changed to H, and the S7-S11-S9-S5-S6 route is operated. repeat. When the current further falls below the A2 level, the operation is performed in the route of S5-S10, the E2 output is changed to L, and the driving operation is repeated in the route of S5-S10-S9-S5 (load variation).

9)この後、受電部4を抜き取ると電流がA4レベルを超えるため、S5−S6−S7−S8−S9−S3のルートで動作を行い、E2,E3出力をLとし、S1−S2−S3−S4−S1のルートで受電コイル3の検出動作を繰り返すこととなる。   9) After that, when the power receiving unit 4 is extracted, the current exceeds the A4 level. Therefore, the operation is performed in the route of S5-S6-S7-S8-S9-S3, E2 and E3 outputs are set to L, and S1-S2-S3. -The detection operation of the receiving coil 3 is repeated in the route of S4-S1.

10)もしA1レベルと受電部4が挿入されていない状態の電流値とが近いために、受電コイル3が給電コイル1に挿入されていないのに挿入されたものと誤検出してしまったとしても、S1−S2−S5−S6−S7−S8−S9のルートで動作し、A1レベルより十分に大きいA4レベルとの大きな差を確実に検出してS9−S3−S4のルートで動作を行い、検出動作を繰り返すことができ、受電部4の検知動作を安定させることができる。   10) If the A1 level is close to the current value in the state where the power receiving unit 4 is not inserted, it is erroneously detected that the power receiving coil 3 is not inserted in the power feeding coil 1 but is inserted. Operates on the route of S1-S2-S5-S6-S7-S8-S9, reliably detects a large difference from the A4 level sufficiently larger than the A1 level, and operates on the route of S9-S3-S4. The detection operation can be repeated, and the detection operation of the power receiving unit 4 can be stabilized.

(3)本給電装置の一数値例(図6)
次に、本例の給電装置における実際の一数値例を説明する。
まず、図3に示した構造において、給電コイル1は、挿入孔21の内径が26mmであり、φ1.6mmの被覆銅線を14巻きした3つの小給電コイル5(3回路)で構成される。受電コイル3は、9×10mmの小判型のフェライト23にφ2mmの被覆導電線24を30巻きし、センタータップとしてある。また、外装材料22は樹脂からなる。
(3) One numerical example of the power feeding device (FIG. 6)
Next, an actual numerical example in the power supply apparatus of this example will be described.
First, in the structure shown in FIG. 3, the feeding coil 1 is composed of three small feeding coils 5 (3 circuits) in which the inner diameter of the insertion hole 21 is 26 mm and the coated copper wire of φ1.6 mm is wound 14 times. . The power receiving coil 3 is a center tap formed by winding 30 mm of a covered conductive wire 24 of φ2 mm around a 9 × 10 mm oval type ferrite 23. The exterior material 22 is made of resin.

また、図6の表図は、給電部2への流入電流Iin(A)(電圧は9.0V)と受電部4から負荷20へ供給する電圧Vout (V)を、給電部2にて駆動する小給電コイル6の個数(1回路〜3回路)及び負荷20に応じて示したものであり、負荷20については、「受電部無し」(給電部2の給電コイル1から受電部4の受電コイル3を引き抜いた状態)と、高負荷(抵抗値が相対的に小さい)から軽負荷(抵抗値が相対的に大きい)まで0.3(Ω)〜100(Ω)の範囲の負荷抵抗値によって示している。 Further, the table of FIG. 6 shows that the inflow current I in (A) (voltage is 9.0 V) to the power feeding unit 2 and the voltage V out (V) supplied from the power receiving unit 4 to the load 20 are supplied to the power feeding unit 2. The number of small power feeding coils 6 to be driven (1 circuit to 3 circuits) and the load 20 is shown. The load 20 is “no power receiving unit” (from the power feeding coil 1 to the power receiving unit 4 of the power feeding unit 2). And the load in the range of 0.3 (Ω) to 100 (Ω) from high load (relatively small resistance) to light load (relatively large resistance) This is indicated by the resistance value.

本例において、A1レベルを3.2(A)、A2レベルを1.8(A)、A3レベルを4.5(A)、A4レベルを9.4(A)に設定すると、受電部4が挿入された場合、負荷の抵抗値が100Ω〜10Ωの範囲では小給電コイル5は1個(1回路)のみ駆動される(軽負荷の範囲であり、電圧は7.49〜6.05Vまで変化)。   In this example, when the A1 level is set to 3.2 (A), the A2 level is set to 1.8 (A), the A3 level is set to 4.5 (A), and the A4 level is set to 9.4 (A), the power receiving unit 4 Is inserted, when the resistance value of the load is in the range of 100Ω to 10Ω, only one small power feeding coil 5 (one circuit) is driven (in the light load range, the voltage is 7.49 to 6.05V). change).

負荷の抵抗値が10Ωより小さくなり、電流が1.8(A)を超えると、駆動される小給電コイル5は2個(2回路)となり、この状態は2Ωまで継続する(中負荷の範囲であり、電圧は7.53〜6.02Vまで変化)。   When the resistance value of the load becomes smaller than 10Ω and the current exceeds 1.8 (A), the number of driven small feeding coils 5 becomes two (two circuits), and this state continues up to 2Ω (medium load range) And the voltage varies from 7.53 to 6.02 V).

さらに負荷の抵抗値が小さくなると、駆動される小給電コイル5は3個(3回路)となる(高負荷の範囲であり、電圧は6.87〜4.57V付近まで変化)。   When the resistance value of the load is further reduced, the number of driven small power feeding coils 5 is three (three circuits) (in a high load range, the voltage changes to around 6.87 to 4.57 V).

大出力を必要とするため、以上説明した負荷の抵抗値の範囲である100Ωから0.3Ωまでのすべてにおいて小給電コイル5を3個(3回路)駆動すると、その電圧変化は9.72〜3.89Vとなるが、本例では小給電コイル5の数(回路数)を負荷に応じて切り替えて駆動しているので、その出力電圧の範囲は7.49〜3.89Vとなり、出力電圧の幅が大きく改善される。   Since a large output is required, when three small power supply coils 5 are driven (3 circuits) in all of the load resistance ranges from 100Ω to 0.3Ω described above, the voltage change is 9.72 to In this example, the number of small power supply coils 5 (number of circuits) is switched and driven according to the load, so that the output voltage range is 7.49 to 3.89 V, and the output voltage The width of is greatly improved.

また、受電部4の検知においても、検出時の電流を抑えるために小給電コイル5を1回路のみ駆動させると、受電部4の有無判定は、図6の「1回路」において「負荷」が「0.3」及び「受電部無し」の欄の数値「4.6」「6.4」の差である1.8(A)の精度で行う必要があるが、本例では3.2(A)を基準値としているので、検出時の電流を増やすことなく消費電力を抑えて検知の頻度を高めるとともに、検知の精度を確保し、検出の確実性を高めることができる。   In the detection of the power reception unit 4, if only one small power supply coil 5 is driven to suppress the current at the time of detection, the presence / absence determination of the power reception unit 4 is determined by “load” in “1 circuit” in FIG. 6. Although it is necessary to carry out with the accuracy of 1.8 (A) which is the difference between the numerical values “4.6” and “6.4” in the columns of “0.3” and “no power receiving unit”, in this example, it is 3.2. Since (A) is used as the reference value, it is possible to suppress the power consumption without increasing the current at the time of detection and increase the frequency of detection, secure the accuracy of detection and increase the certainty of detection.

この様に、本例では、負荷に応じ給電コイルを構成する複数の小給電コイルの駆動回路数を切り替えているので、電源としての能力が大きく改善され、広い範囲で変動する負荷に安定して対応でき、不特定な負荷にも対応することができる。   In this way, in this example, the number of drive circuits of the plurality of small power supply coils constituting the power supply coil is switched according to the load, so that the capability as a power source is greatly improved and stable to a load that fluctuates over a wide range. It can respond to unspecified loads.

以上説明した実施形態では、給電コイル1が中空円筒形であり、受電コイル3がこれに挿入される中実円筒形であったが、この形状の関係は逆であってもよい。すなわち、給電コイルを中実円筒形(すなわち丸棒状)とし、受電コイルを所定の内径の貫通孔を備えた中空円筒形として給電コイルに外挿するようにしてもよい。その場合の回路構成や、機械的構成は、前述した実施形態における技術的意義を変更しない範囲においてこれらと略同様に考えることができる。   In the embodiment described above, the feeding coil 1 has a hollow cylindrical shape and the power receiving coil 3 has a solid cylindrical shape to be inserted therein. However, the relationship between the shapes may be reversed. That is, the power feeding coil may be a solid cylindrical shape (that is, a round bar shape), and the power receiving coil may be extrapolated to the power feeding coil as a hollow cylindrical shape having a through hole with a predetermined inner diameter. The circuit configuration and mechanical configuration in that case can be considered in substantially the same way as long as the technical significance in the above-described embodiment is not changed.

図1は本発明の実施の形態に係る給電装置の回路構成図である。FIG. 1 is a circuit configuration diagram of a power feeding apparatus according to an embodiment of the present invention. 図2は本発明の実施の形態に係る給電装置の駆動波形図である。FIG. 2 is a drive waveform diagram of the power feeding apparatus according to the embodiment of the present invention. 図3は本発明の実施の形態に係る給電装置の主としてコイル部分の構造を示す断面図である。FIG. 3 is a cross-sectional view mainly showing the structure of the coil portion of the power feeding apparatus according to the embodiment of the present invention. 図4は本発明の実施の形態に係る給電装置の動作を説明する流れ図である。FIG. 4 is a flowchart for explaining the operation of the power feeding apparatus according to the embodiment of the present invention. 図5は本発明の実施の形態に係る給電装置の動作を説明する電流等の波形図である。FIG. 5 is a waveform diagram of current and the like for explaining the operation of the power feeding apparatus according to the embodiment of the present invention. 図6は本発明の実施の形態に係る給電装置における負荷と駆動周波数に応じた流入電流値・負荷電圧値を表形式で示す図である。FIG. 6 is a table showing inflow current values and load voltage values according to the load and drive frequency in the power supply apparatus according to the embodiment of the present invention.

符号の説明Explanation of symbols

1…給電コイル
2…給電部
3…受電コイル
4…受電部
5…小給電コイル
6…駆動回路
7…電源
8…定電圧回路
9…電流検出素子
10…制御手段
11…発振回路
12…分周回路
14…制御回路
15…整流回路
20…負荷
21…挿入孔
A1〜A4…基準値
DESCRIPTION OF SYMBOLS 1 ... Power feeding coil 2 ... Power feeding part 3 ... Power receiving coil 4 ... Power receiving part 5 ... Small power feeding coil 6 ... Drive circuit 7 ... Power supply 8 ... Constant voltage circuit 9 ... Current detection element 10 ... Control means 11 ... Oscillation circuit 12 ... Frequency division Circuit 14 ... Control circuit 15 ... Rectifier circuit 20 ... Load 21 ... Insertion hole A1-A4 ... Reference value

Claims (8)

電源に接続される給電コイルを備えた給電部と負荷に接続される受電コイルを備えた受電部とを有し、前記給電コイルと前記受電コイルを電磁結合が成立する給電状態に置くことにより電磁誘導で給電部から受電部に対し非接触で給電を行う給電装置において、
前記給電コイルを選択的に駆動可能な複数の小給電コイルで構成し、
前記給電コイルに流れる電流の電流値の変化に応じて前記小給電コイルの個数を切り換えて駆動する制御手段を備えたことを特徴とする給電装置。
A power supply unit including a power supply coil connected to a power source and a power reception unit including a power reception coil connected to a load, and placing the power supply coil and the power reception coil in a power supply state in which electromagnetic coupling is established. In a power feeding device that performs power feeding from a power feeding unit to a power receiving unit by induction without contact,
A plurality of small power supply coils that can selectively drive the power supply coil,
A power supply apparatus comprising control means for switching and driving the number of the small power supply coils in accordance with a change in a current value of a current flowing through the power supply coil.
前記制御手段において、前記給電コイルに流れる電流を検出して駆動される小給電コイルの個数に応じた基準値と比較し、その結果に応じて前記小給電コイルの個数を切り換えて駆動することを特徴とする請求項1記載の給電装置。 In the control means, the current flowing through the feeding coil is detected and compared with a reference value according to the number of small feeding coils to be driven, and the number of the small feeding coils is switched according to the result. The power feeding device according to claim 1, wherein 前記制御手段において、前記基準値を1以上設けることにより電流値の範囲を複数に分け、検出した前記電流値がより高い範囲に属する場合に、より多くの小給電コイルを駆動することを特徴とする請求項2記載の給電装置。 In the control means, the current value range is divided into a plurality of ranges by providing one or more reference values, and more small power feeding coils are driven when the detected current value belongs to a higher range. The power feeding device according to claim 2. 前記制御手段は、
前記給電コイルにおいて相対的に少ない個数の小給電コイルを駆動するとともに、給電コイルに流れる電流の電流値を検出して所定の基準値と比較することにより、前記給電コイルと前記受電コイルが前記給電状態以外の状態から前記給電状態となって前記電磁結合が成立したことを検知するとともに、
前記給電コイルにおいて相対的に多い個数の小給電コイルを駆動するとともに、給電コイルに流れる電流の電流値を検出して他の所定の基準値と比較することにより、前記給電コイルと前記受電コイルが前記給電状態から前記給電状態以外の状態となって前記電磁結合が解除されたことを検知することを特徴とする請求項乃至3記載の給電装置。
The control means includes
A relatively small number of small power feeding coils are driven in the power feeding coil, and the current value of the current flowing in the power feeding coil is detected and compared with a predetermined reference value, so that the power feeding coil and the power receiving coil are fed with the power feeding coil. While detecting that the electromagnetic coupling has been established from the state other than the state to the power feeding state,
While driving a relatively large number of small power feeding coils in the power feeding coil and detecting the current value of the current flowing through the power feeding coil and comparing it with other predetermined reference values, the power feeding coil and the power receiving coil 4. The power feeding device according to claim 2, wherein it detects that the electromagnetic coupling is released from a state other than the power feeding state from the power feeding state. 5.
前記小給電コイルをそれぞれ駆動する複数の駆動回路と前記電源との間に電流検出素子を設けるとともに、
前記制御手段には駆動される小給電コイルの個数に応じた前記基準値が設定され、前記制御手段は前記電流検出素子で検出された前記給電コイルを流れる電流の電流値と前記各基準値とを比較し、その結果に応じて前記小給電コイルを駆動する駆動回路を選択するように構成されたことを特徴とする請求項乃至4記載の給電装置。
While providing a current detection element between a plurality of drive circuits that respectively drive the small power feeding coils and the power supply,
The control means is set with the reference value according to the number of small power feeding coils to be driven, and the control means is configured to detect the current value of the current flowing through the power feeding coil detected by the current detection element and the respective reference values. 5. The power feeding device according to claim 2, wherein a driving circuit for driving the small power feeding coil is selected according to the result of the comparison.
前記給電コイルと前記受電コイルが前記給電状態以外の状態から前記給電状態となって前記電磁結合が成立したことを検知する操作を、前記制御手段に設けたタイマー手段により所定の周期で繰り返し行うことを特徴とする請求項1乃至5記載の給電装置。 An operation for detecting that the power supply coil and the power reception coil are in the power supply state from the state other than the power supply state and the electromagnetic coupling is established is repeatedly performed with a predetermined period by a timer unit provided in the control unit. The power feeding device according to claim 1, wherein: 前記給電コイルは所定の内径の挿入孔を備えており、前記受電コイルは前記給電コイルの前記挿入孔に挿入可能な長体状であり、前記受電コイルを前記給電コイルの前記挿入孔に挿入することにより、前記給電コイルと前記受電コイルとが前記給電状態となることを特徴とする請求項1乃至6記載の給電装置。 The power supply coil includes an insertion hole having a predetermined inner diameter, the power reception coil has a long shape that can be inserted into the insertion hole of the power supply coil, and the power reception coil is inserted into the insertion hole of the power supply coil. The power feeding device according to claim 1, wherein the power feeding coil and the power receiving coil are in the power feeding state. 前記受電コイルは所定の内径の挿入孔を備えており、前記給電コイルは前記受電コイルの前記挿入孔に挿入可能な長体状であり、前記給電コイルを前記受電コイルの前記挿入孔に挿入することにより、前記受電コイルと前記給電コイルとが前記給電状態となることを特徴とする請求項1乃至6記載の給電装置。 The power receiving coil includes an insertion hole having a predetermined inner diameter, and the power feeding coil has a long shape that can be inserted into the insertion hole of the power receiving coil, and the power feeding coil is inserted into the insertion hole of the power receiving coil. The power feeding device according to claim 1, wherein the power receiving coil and the power feeding coil are in the power feeding state.
JP2004013145A 2004-01-21 2004-01-21 Power supply device Expired - Fee Related JP4156537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004013145A JP4156537B2 (en) 2004-01-21 2004-01-21 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004013145A JP4156537B2 (en) 2004-01-21 2004-01-21 Power supply device

Publications (2)

Publication Number Publication Date
JP2005210801A JP2005210801A (en) 2005-08-04
JP4156537B2 true JP4156537B2 (en) 2008-09-24

Family

ID=34899315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013145A Expired - Fee Related JP4156537B2 (en) 2004-01-21 2004-01-21 Power supply device

Country Status (1)

Country Link
JP (1) JP4156537B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4308858B2 (en) 2007-02-16 2009-08-05 セイコーエプソン株式会社 Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic equipment
JP2009268591A (en) 2008-05-01 2009-11-19 Olympus Corp Living body observation system and method of driving living body observation system
KR101136532B1 (en) * 2009-09-15 2012-04-17 주식회사 삼보컴퓨터 Contactless charging apparatus, contactless charging battery apparatus and contactless charging system having the same
CA2780780A1 (en) * 2009-11-16 2011-05-19 300K Enterprises Pty Ltd. Contactless coupling and method for use with an electrical appliance
JPWO2011089776A1 (en) 2010-01-21 2013-05-20 シャープ株式会社 Non-contact power feeding device
JP5718676B2 (en) * 2011-02-28 2015-05-13 株式会社テクノバ Non-contact charging method and non-contact charging device
KR101349551B1 (en) * 2011-11-02 2014-01-08 엘지이노텍 주식회사 A wireless power transmission apparatus and method thereof
JP6264632B2 (en) * 2013-05-22 2018-01-24 パナソニックIpマネジメント株式会社 Non-contact power transmission device detection method and non-contact power transmission device
JP6702541B2 (en) * 2016-03-14 2020-06-03 株式会社東芝 Wireless power transmission device, power transmission device, and power reception device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3579899B2 (en) * 1995-01-13 2004-10-20 ソニー株式会社 IC card reader / writer
AU732701B2 (en) * 1997-02-03 2001-04-26 Sony Corporation Electric power transmission device and electric power transmission method
US6210771B1 (en) * 1997-09-24 2001-04-03 Massachusetts Institute Of Technology Electrically active textiles and articles made therefrom
JP3161388B2 (en) * 1997-11-05 2001-04-25 日本電気株式会社 Docking bay system
JPH11283854A (en) * 1998-03-30 1999-10-15 Harness Syst Tech Res Ltd Connector and power supply circuit using the same
JP2000114080A (en) * 1998-10-01 2000-04-21 Harness Syst Tech Res Ltd Electromagnetic induction type connector
JP2003162696A (en) * 2001-11-26 2003-06-06 Denso Corp Reader/writer for non-contact type ic card
JP4089778B2 (en) * 2002-11-07 2008-05-28 株式会社アイデンビデオトロニクス Energy supply equipment
JP2005110409A (en) * 2003-09-30 2005-04-21 Sharp Corp Power supply system

Also Published As

Publication number Publication date
JP2005210801A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JP4941417B2 (en) Non-contact power transmission device
US9831681B2 (en) Power reception apparatus and power receiving method
JP6090172B2 (en) Contactless charging method
KR102224451B1 (en) Power receiver and power transmitter
US9559527B2 (en) Discharging circuit, image forming apparatus having the discharging circuit, and power supply unit
JP4156537B2 (en) Power supply device
JP2017034972A (en) Foreign matter detection device, radio power transmission device and radio power transmission system
JP2013062895A5 (en)
JP6040899B2 (en) Electronic equipment and power supply system
WO2018101052A1 (en) Direct-current electricity leakage detection device and electricity leakage detection device
JP2012060812A (en) Non-contact power transmission device
WO2014173962A1 (en) Power transfer system
JP5770589B2 (en) Wireless power transmission apparatus and relative position detection method
JP5559312B2 (en) Electromagnetic equipment using shared magnetic flux in multi-load parallel magnetic circuit and its operation method
JP6035282B2 (en) Inductive power transmission device
KR20160140434A (en) Power feeding system
CN100363719C (en) Electromagnetic flow meter
JP6528234B2 (en) POWER SUPPLY SYSTEM, POWER SUPPLY DEVICE, AND POWER SUPPLY METHOD
JP2005210800A (en) Feeder apparatus
JP6384780B2 (en) Contactless power supply system
JP6376201B2 (en) Contactless power supply method
US11596029B2 (en) Induction heating apparatus
JP2018200242A (en) Current sensor
US20080042637A1 (en) Magnetic toroid self resonant current sensor
JP2007166825A (en) Charging power supply and charging circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4156537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees