JP4112505B2 - Optical microphone and manufacturing method thereof - Google Patents

Optical microphone and manufacturing method thereof Download PDF

Info

Publication number
JP4112505B2
JP4112505B2 JP2004006674A JP2004006674A JP4112505B2 JP 4112505 B2 JP4112505 B2 JP 4112505B2 JP 2004006674 A JP2004006674 A JP 2004006674A JP 2004006674 A JP2004006674 A JP 2004006674A JP 4112505 B2 JP4112505 B2 JP 4112505B2
Authority
JP
Japan
Prior art keywords
emitting element
semiconductor
light emitting
light
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004006674A
Other languages
Japanese (ja)
Other versions
JP2005203944A (en
Inventor
雄二郎 成瀬
英之 舟木
和拓 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004006674A priority Critical patent/JP4112505B2/en
Publication of JP2005203944A publication Critical patent/JP2005203944A/en
Application granted granted Critical
Publication of JP4112505B2 publication Critical patent/JP4112505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、音声認識などで使われる高機能で小型のマイクロフォンに係り、特に微小電気機械システム(MEMS)の手法を用いた光マイクロフォン及びその製造方法に関する。   The present invention relates to a high-performance and small-sized microphone used in speech recognition and the like, and more particularly, to an optical microphone using a micro electromechanical system (MEMS) technique and a manufacturing method thereof.

小型マイクロフォンとして使われているものに、コンデンサマイクロフォンがある。コンデンサマイクロフォンは振動板の振動変位量を下部電極との静電容量の変化から検出している。   There is a condenser microphone as a small microphone. The condenser microphone detects the amount of vibration displacement of the diaphragm from the change in capacitance with the lower electrode.

又、光マイクロフォンとしては反射型が主流である。発光強度分布が同心円状にほぼ均一な垂直表面発光型発光素子と、その周辺に同心円状に受光素子とを配置した構造を採用し、複数の受光素子からの出力を差動信号としてその差分を検出して出力とする光マイクロフォンも提案されている(特許文献1参照。)。特許文献1に記載された発明では、単一の受光素子を用いて出力信号とした場合に比べて発光素子の温度変化や駆動電流変化等による影響を低減させ、安定な信号出力を得ている。
特開2001−169394号公報
Also, the reflection type is the mainstream as the optical microphone. A vertical surface-emitting light-emitting element with a substantially uniform emission intensity distribution and a concentric light-receiving element around it are adopted, and the difference between the outputs from multiple light-receiving elements as differential signals An optical microphone that detects and outputs an output has also been proposed (see Patent Document 1). In the invention described in Patent Document 1, the influence of the temperature change or drive current change of the light emitting element is reduced and a stable signal output is obtained as compared with the case of using a single light receiving element as an output signal. .
JP 2001-169394 A

コンデンサマイクロフォンは、振動板の振動変位量を下部電極との静電容量の変化から検出しているため、鋭い指向性が実現できない。このため複数のコンデンサマイクロフォンを用い、その遅延和を利用することで単一指向性を実現する「マイクロフォン・アレイ」が必要になる。又、コンデンサマイクロフォンの感度は振動板と下部電極とのギャップが小さければ小さいほど向上するが安定性を欠き、ギャップ形成プロセスにおいて振動板と下部電極とのスィッキングがしばしば問題となり歩留まりの低下を招く大きな要因となっている。   Since the condenser microphone detects the vibration displacement amount of the diaphragm from the change in capacitance with the lower electrode, it cannot realize sharp directivity. For this reason, a “microphone array” that uses a plurality of condenser microphones and realizes unidirectionality by using the delay sum is required. In addition, the sensitivity of the condenser microphone is improved as the gap between the diaphragm and the lower electrode is smaller. However, the stability is lacking, and the gap between the diaphragm and the lower electrode often becomes a problem in the gap formation process, resulting in a decrease in yield. It is a factor.

光マイクロフォンは、反射型とすれば、振動板の裏面を開放できるため、全方向から音を取り込み、周囲の騒音を相殺する理想的な8の字型の双指向性が得られる。しかしながら、通常、反射光は入射光と比較して大きな広がりを持つため、振動板の微小な振動変位を反射光強度の大きな差分として観測することは難しく、その解決法として光ファイバや光ガイドといった伝送路を付加するため、コストの増大、システムの巨大化、使用範囲の限定等様々な問題が生じている。   If the optical microphone is of a reflective type, the back surface of the diaphragm can be opened, so that an ideal 8-shaped bi-directionality that captures sound from all directions and cancels out ambient noise can be obtained. However, since the reflected light generally has a larger spread than the incident light, it is difficult to observe the minute vibration displacement of the diaphragm as a large difference in the reflected light intensity. Since a transmission line is added, various problems such as an increase in cost, an enormous system, and a limited use range have arisen.

上記問題点を鑑み、本発明は、高指向性を備え、小型薄型で耐環境性がある光マイクロフォン及びその製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an optical microphone that has high directivity, is small and thin, and is environmentally resistant, and a method for manufacturing the same.

上記目的を達成するために、本発明の第1の特徴は、(イ)回折格子を有し音圧により振動する振動板を有する半導体基板と、(ロ)回折格子に光を照射する発光素子と、回折格子で回折した光を検知し電気信号に変換する受光素子を有する実装基板とを互いに積層し、振動板の変位を電気信号に変換する光マイクロフォンであることを要旨とする。   In order to achieve the above object, the first feature of the present invention is: (a) a semiconductor substrate having a diffraction grating and oscillating by sound pressure; and (b) a light emitting element that irradiates light to the diffraction grating. And a mounting substrate having a light receiving element that detects light diffracted by the diffraction grating and converts it into an electrical signal, and is an optical microphone that converts the displacement of the diaphragm into an electrical signal.

本発明の第2の特徴は(イ)半導体基板に、回折格子を有する振動板を形成する工程と、(ロ)実装基板に発光素子用凹部及び受光素子用凹部を形成する工程と、(ハ)発光素子用凹部に回折格子に光を照射する発光素子を、受光素子用凹部に回折格子で回折した光を検知し電気信号に変換する受光素子をそれぞれ実装する工程と、(ニ)発光素子用凹部及び受光素子用凹部を振動板に対向させ、実装基板を半導体基板上に積層する工程とを含む光マイクロフォンの製造方法であることを要旨とする。   The second feature of the present invention is that (a) a step of forming a diaphragm having a diffraction grating on a semiconductor substrate, (b) a step of forming a recess for a light emitting element and a recess for a light receiving element on a mounting substrate, and (c) ) Mounting a light emitting element that irradiates light to the diffraction grating in the light emitting element recess, and a light receiving element that detects light diffracted by the diffraction grating and converts it into an electrical signal in the light receiving element recess; The present invention is summarized as a method of manufacturing an optical microphone including a step of causing a concave portion for light and a concave portion for a light receiving element to face a diaphragm and laminating a mounting substrate on a semiconductor substrate.

本発明によれば、高指向性を備え、小型薄型で耐環境性がある光マイクロフォン及びその製造方法を提供することができる。   According to the present invention, it is possible to provide an optical microphone that has high directivity, is small and thin, and is environmentally resistant, and a method for manufacturing the same.

本発明の第1〜第4の実施の形態を説明する前に、これらの実施の形態の基礎となる光マイクロフォンの原理を、説明する。先ず、光マイクロフォンの基本は振動膜上の回折格子による光の回折現象である。厳密には2次元の回折現象を扱わなければならないが、原理説明と概念設計には近似として1次元モデルを用いる。回折格子による干渉縞の強度分布は(1)式で表わされる(荒井敏弘・平井正光著、『光工学入門』 講談社サイエンティフィック参照。):
I= I0(sin β/β)2(sin Nγ/γ)2 ・・・・・(1)
ここでパラメータγ,βは、光軸となす角度θ,波長λ,光速c,格子間隔h,格子幅b,格子数Nを用いて、以下のように定義される:
γ= k・h・sinθ/2 ・・・・・(2)
β= k・b・sinθ/2 ・・・・・(3)
ここで、k=ω/c,ω=2πc/λである。(1)式で明らかなように、鋭い明線は、nを整数として、(4)式で表わされる方向に現れる:
sinθ=±nλ/h ・・・・・(4)
(4)式で表わされる明線を光検出素子で検出すれば、振動膜の変位に応じた信号が得られる。
Before describing the first to fourth embodiments of the present invention, the principle of an optical microphone serving as the basis of these embodiments will be described. First, the basic of an optical microphone is a light diffraction phenomenon by a diffraction grating on a vibrating membrane. Strictly speaking, a two-dimensional diffraction phenomenon must be handled, but a one-dimensional model is used as an approximation for explaining the principle and conceptual design. The intensity distribution of interference fringes by the diffraction grating is expressed by equation (1) (see Toshihiro Arai and Masamitsu Hirai, “Introduction to Optical Engineering”, Kodansha Scientific):
I = I 0 (sin β / β) 2 (sin Nγ / γ) 2 (1)
Here, the parameters γ and β are defined as follows using the angle θ formed with the optical axis, the wavelength λ, the speed of light c, the lattice spacing h, the lattice width b, and the number N of lattices:
γ = k ・ h ・ sinθ / 2 (2)
β = k ・ b ・ sinθ / 2 (3)
Here, k = ω / c and ω = 2πc / λ. As is clear from equation (1), a sharp bright line appears in the direction represented by equation (4), where n is an integer:
sinθ = ± nλ / h (4)
If the bright line represented by the equation (4) is detected by the light detection element, a signal corresponding to the displacement of the vibration film can be obtained.

詳細は、図面を参照して、以下の本発明の第1〜第4の実施の形態において説明する。 Details will be described in the following first to fourth embodiments of the present invention with reference to the drawings.

以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。又、以下に示す第1〜第4の実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。   In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings. Also, the following first to fourth embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the component parts. The material, shape, structure, arrangement, etc. are not specified below. The technical idea of the present invention can be variously modified within the scope of the claims.

(第1の実施の形態)
本発明の第1の実施の形態に係る光マイクロフォンは、図1(b)に示ように、回折格子を有し下方から入射する音波Φの音圧により振動する振動板113を有する半導体基板11と、回折格子に光を照射する面発光型半導体レーザ(発光素子)21、回折格子で回折した光を検知し電気信号に変換するフォトダイオード(受光素子)23を有する実装基板15とを互いに積層している。半導体基板11と実装基板15とは、ガラス基板(透明基板)13を介して貼り合わせられている。この結果、実装基板15、この実装基板15の下のガラス基板(透明基板)13、そしてガラス基板(透明基板)13の下に配置された半導体基板11とからなる3層構造で、第1の実施の形態に係る光マイクロフォンを構成し、音圧による振動板113の変位を電気信号に変換する。この3層構造は、例えば熱融着技術或いは接着剤で一体化すればよい。
(First embodiment)
As shown in FIG. 1B, the optical microphone according to the first embodiment of the present invention includes a semiconductor substrate 11 having a diaphragm 113 that has a diffraction grating and vibrates due to the sound pressure of a sound wave Φ incident from below. And a mounting substrate 15 having a surface emitting semiconductor laser (light emitting element) 21 that emits light to the diffraction grating and a photodiode (light receiving element) 23 that detects light diffracted by the diffraction grating and converts it into an electrical signal. is doing. The semiconductor substrate 11 and the mounting substrate 15 are bonded together via a glass substrate (transparent substrate) 13. As a result, the first substrate has a three-layer structure including the mounting substrate 15, the glass substrate (transparent substrate) 13 below the mounting substrate 15, and the semiconductor substrate 11 disposed below the glass substrate (transparent substrate) 13. The optical microphone which concerns on embodiment is comprised, and the displacement of the diaphragm 113 by a sound pressure is converted into an electrical signal. This three-layer structure may be integrated by, for example, a heat fusion technique or an adhesive.

図1(a)は、実装基板15の裏面のパターンを示す平面図である。発光素子用凹部155に搭載された発光素子21は、図1(a)に示すように、発光素子21上のボンディングパッドと配線152c,152dとがボンディングワイヤ162c,162dで接続されている(なお、発光素子21の裏面が一方の電極になっている場合は、例えば配線152dを発光素子21の裏面に導き、発光素子21の上のボンディングパッドと配線152cとをボンディングワイヤ162cで接続すればよい。)。そして、実装基板15の表面に形成された配線152c,152dを介して、発光素子21の上のボンディングパッドは、パッド(電極パッド)151c,151dとそれぞれ電気的に接続されている。   FIG. 1A is a plan view showing a pattern on the back surface of the mounting substrate 15. In the light emitting element 21 mounted in the light emitting element recess 155, as shown in FIG. 1A, bonding pads on the light emitting element 21 and wirings 152c and 152d are connected by bonding wires 162c and 162d (note that When the back surface of the light emitting element 21 is one electrode, for example, the wiring 152d is guided to the back surface of the light emitting element 21, and the bonding pad on the light emitting element 21 and the wiring 152c are connected by the bonding wire 162c. .) The bonding pads on the light emitting element 21 are electrically connected to pads (electrode pads) 151c and 151d via wirings 152c and 152d formed on the surface of the mounting substrate 15, respectively.

同様に、受光素子用凹部156に搭載された受光素子23上のボンディングパッドは、配線152a,152bとボンディングワイヤ162a,162bで接続されている(なお、受光素子23の裏面が一方の電極になっている場合は、例えば配線152bを受光素子23の裏面に導き、受光素子23の上のボンディングパッドと配線152aとをボンディングワイヤ162aで接続すればよい。)。そして、受光素子23上のボンディングパッドは、図1(a)に示すように、実装基板15の表面に形成された配線152a,152bを介して、パッド(電極パッド)151a,151bにそれぞれ導かれる。   Similarly, the bonding pads on the light receiving element 23 mounted in the light receiving element recess 156 are connected to the wirings 152a and 152b and the bonding wires 162a and 162b (note that the back surface of the light receiving element 23 serves as one electrode. For example, the wiring 152b may be led to the back surface of the light receiving element 23 and the bonding pad on the light receiving element 23 may be connected to the wiring 152a with the bonding wire 162a. The bonding pads on the light receiving element 23 are led to pads (electrode pads) 151a and 151b through wirings 152a and 152b formed on the surface of the mounting substrate 15, respectively, as shown in FIG. .

図1(b)を参照すれば理解できるように、ガラス基板(透明基板)13の両端付近はパッド151a〜151dの一部が顔を出すようになっているので、発光素子21の駆動用配線と受光素子23からの信号取り出し配線の電気的接続が可能となる。   As can be understood with reference to FIG. 1B, since the portions of the pads 151a to 151d are exposed in the vicinity of both ends of the glass substrate (transparent substrate) 13, the wiring for driving the light emitting element 21 And the signal extraction wiring from the light receiving element 23 can be electrically connected.

実装基板15の材料としては、有機系の種々な合成樹脂、セラミック、ガラス、半導体等の無機系の材料が使用可能である。有機系の樹脂材料としては、フェノール樹脂、ポリエステル樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂等が、使用可能で、又板状にする際の芯となる基材は、紙、ガラス布、ガラス基材などが使用される。無機系の基板材料として一般的なものはセラミック又は半導体である。又、放熱特性を高めるものとして金属基板、透明な基板が必要な場合には、ガラスが用いられる。セラミック基板の素材としてはアルミナ(Al23)、ムライト(3Al23・2SiO2)、ベリリア(BeO)、窒化アルミニウム(AlN)、窒化珪素(SiC)等が使用可能である。更に、鉄、銅などの金属上に耐熱性の高いポリイミド系の樹脂板を積層して多層化した金属ベースの基板(金属絶縁基板)でも構わない。これらの材料中、実装基板15に半導体基板を用いれば、発光素子用凹部155及び受光素子用凹部156を半導体集積回路の製造工程と同様な、フォトリソグラフィ技術とエッチング技術で簡単に形成できるので好ましい。 As the material of the mounting substrate 15, various organic synthetic resins, ceramics, glass, semiconductors and other inorganic materials can be used. As the organic resin material, phenol resin, polyester resin, epoxy resin, polyimide resin, fluororesin, etc. can be used, and the base material used as a core when making a plate is paper, glass cloth, glass base Materials are used. A common inorganic substrate material is ceramic or semiconductor. In addition, glass is used when a metal substrate or a transparent substrate is required to enhance heat dissipation characteristics. As the material for the ceramic substrate, alumina (Al 2 O 3 ), mullite (3Al 2 O 3 .2SiO 2 ), beryllia (BeO), aluminum nitride (AlN), silicon nitride (SiC), or the like can be used. Furthermore, a metal-based substrate (metal insulating substrate) in which a polyimide resin plate having high heat resistance is laminated on a metal such as iron or copper may be used. Of these materials, it is preferable to use a semiconductor substrate for the mounting substrate 15 because the light emitting element recess 155 and the light receiving element recess 156 can be easily formed by the photolithography technique and the etching technique similar to the manufacturing process of the semiconductor integrated circuit. .

半導体基板11は、図1ではあたかも単層の半導体基板であるかのように例示しているが、
後述するSOI基板等の複合膜等でも構わない。
The semiconductor substrate 11 is illustrated as if it is a single layer semiconductor substrate in FIG.
A composite film such as an SOI substrate described later may be used.

図2に示すように、半導体振動膜(振動板)113には、マトリクス状に、一定の深さの複数の穴(凹部)Hi-1,1,・・・・・,Hi,1,Hi,2,Hi,3,・・・・・,Hi+2,6が配置され、2次元回折格子が構成されている。このような周期的なパターン(2次元回折格子)が形成された半導体振動膜(振動板)113は、弾性梁115a,115bにより、半導体基板11に設けられた底部空洞部側壁117に固定されている。図1(a)に2点鎖線で示したように、平面パターンとして見れば、半導体基板に底部空洞部17が矩形額縁状の形状で設けられている。そして、図1に示すように、振動板113は底部空洞部17の内部に、矩形のダイアフラム状に配置されている。図1(a)では、弾性梁115a,115bも2点鎖線で示した。 As shown in FIG. 2, the semiconductor vibration film (diaphragm) 113 in a matrix, a plurality of holes of a predetermined depth (recess) H i-1,1, ·····, H i, 1 , H i, 2 , H i, 3 ,..., H i + 2,6 are arranged to form a two-dimensional diffraction grating. The semiconductor diaphragm (diaphragm) 113 formed with such a periodic pattern (two-dimensional diffraction grating) is fixed to the bottom cavity side wall 117 provided on the semiconductor substrate 11 by elastic beams 115a and 115b. Yes. As shown by a two-dot chain line in FIG. 1A, when viewed as a plane pattern, the bottom cavity 17 is provided in the shape of a rectangular frame on the semiconductor substrate. As shown in FIG. 1, the diaphragm 113 is arranged in a rectangular diaphragm shape inside the bottom cavity 17. In FIG. 1A, the elastic beams 115a and 115b are also indicated by two-dot chain lines.

半導体レーザ(発光素子)21のビームは、図1に示すように、ガラス基板(透明基板)13を透過後に半導体振動膜(振動板)113の回折格子で回折され、再びガラス基板(透明基板)13を透過して、フォトダイオード(受光素子)23で検出される。このとき、図3に示すように、音波Φによる半導体振動膜(振動板)113の変位ΔYに依存してフォトダイオード(受光素子)23の入射位置がΔXだけ変化するため、出力信号が時間的に変化する。前提として、回折強度の強い1次回折の明線を用いるとすれば、(4)式でn=1となり、sinθ=λ/hとなる。このとき、音波Φによる半導体振動膜(振動板)113のY方向の変位ΔYと、フォトダイオード(受光素子)23の入射位置のX方向の変位ΔXとは、
ΔX=ΔYtanθ ・・・・・(5)
の関係になる。変位ΔXに依存した時間的に変化する信号が、音波信号となる。
As shown in FIG. 1, the beam of the semiconductor laser (light emitting element) 21 passes through the glass substrate (transparent substrate) 13 and is diffracted by the diffraction grating of the semiconductor vibration film (vibration plate) 113, and again, the glass substrate (transparent substrate). 13, and is detected by a photodiode (light receiving element) 23. At this time, as shown in FIG. 3, the incident position of the photodiode (light receiving element) 23 changes by ΔX depending on the displacement ΔY of the semiconductor diaphragm (diaphragm) 113 by the sound wave Φ, so that the output signal is temporally changed. To change. Assuming that a first-order diffraction bright line with strong diffraction intensity is used, n = 1 in equation (4), and sin θ = λ / h. At this time, the displacement ΔY in the Y direction of the semiconductor diaphragm (vibration plate) 113 by the sound wave Φ and the displacement ΔX in the X direction of the incident position of the photodiode (light receiving element) 23 are:
ΔX = ΔYtanθ (5)
It becomes a relationship. A signal that changes with time depending on the displacement ΔX is a sound wave signal.

(4)式より、発光素子21と振動板113との距離Lと発光素子21と受光素子23との距離Mの間には、次式を近似的に満たさなければならない:
M/L=tanθ ・・・・・(6)
但し、厳密にはガラス基板(透明基板)13での屈折現象によるビームシフトを考慮する必要がある。
From the equation (4), the following equation must be approximately satisfied between the distance L between the light emitting element 21 and the diaphragm 113 and the distance M between the light emitting element 21 and the light receiving element 23:
M / L = tanθ (6)
However, strictly speaking, it is necessary to consider the beam shift due to the refraction phenomenon in the glass substrate (transparent substrate) 13.

簡単のために、λ/h=1/2、即ちレーザビームの波長λが格子間隔hの半分とすると、sinθ=0.5である。このとき、tanθ=1/√3〜0.577となるので、(6)式より、M/L〜0.577が得られる。したがって、発光素子21と振動板113との距離Lが2mmの場合、発光素子21と受光素子23との距離Mは2×0.577=約1.15mmになるように設計すればよい。又、発光素子21と振動板113との距離Lが1mmの場合、発光素子21と受光素子23との距離Mは、577μmになるように設計すればよい。   For simplicity, assuming that λ / h = 1/2, that is, the wavelength λ of the laser beam is half the grating interval h, sin θ = 0.5. At this time, since tan θ = 1 / √3 to 0.577, M / L to 0.577 is obtained from the equation (6). Therefore, when the distance L between the light emitting element 21 and the diaphragm 113 is 2 mm, the distance M between the light emitting element 21 and the light receiving element 23 may be designed to be 2 × 0.577 = 1.15 mm. In addition, when the distance L between the light emitting element 21 and the diaphragm 113 is 1 mm, the distance M between the light emitting element 21 and the light receiving element 23 may be designed to be 777 μm.

このように、(6)式を満足するように設計すれば、本発明の第1の実施の形態に係る光マイクロフォンは、実装基板15、ガラス基板(透明基板)13、半導体基板11のいずれも60μm〜600μm程度、好ましくは、100μm〜300μm程度の薄膜を3層を貼り合わせた構造とすることが可能であり、小型化、薄型化に好適である。   As described above, if the optical microphone according to the first embodiment of the present invention is designed so as to satisfy the expression (6), all of the mounting substrate 15, the glass substrate (transparent substrate) 13, and the semiconductor substrate 11 are used. A thin film having a thickness of about 60 μm to 600 μm, preferably about 100 μm to 300 μm, can be formed by bonding three layers, which is suitable for downsizing and thinning.

更に、本発明の第1の実施の形態によれば、振動板の微小な振動変位を反射光強度の大きな差分として観測するが可能で、低コストで、使用範囲の限定が少ない光マイクロフォンが実現できる。このため、高指向性を備え、安定性に優れ、小型薄型で耐環境性があり、且つ製造歩留まりの高い光マイクロフォンが提供できる。   Furthermore, according to the first embodiment of the present invention, it is possible to observe a minute vibration displacement of the diaphragm as a large difference in reflected light intensity, and realize an optical microphone that is low in cost and has a limited use range. it can. Therefore, it is possible to provide an optical microphone having high directivity, excellent stability, small and thin, environmental resistance, and high manufacturing yield.

本発明の第1の実施の形態に係る光マイクロフォンは、以下のような手順で製造可能である。なお、以下に述べる光マイクロフォンの製造方法は、一例であり、この変形例を含めて、これ以外の種々の製造方法により、第1の実施の形態に係る光マイクロフォンは、実現可能であることは勿論である。   The optical microphone according to the first embodiment of the present invention can be manufactured by the following procedure. Note that the optical microphone manufacturing method described below is an example, and the optical microphone according to the first embodiment can be realized by various other manufacturing methods including this modification. Of course.

(イ)先ず、単結晶Siからなる支持基板上に埋め込み絶縁膜(SOI酸化膜)、単結晶Si層(SOI層)が順次積層された、いわゆるSOI基板を半導体基板11として、用意する。 次に、フォトレジスト膜(以下において、単に「フォトレジスト」という。)をSOI層の表面にスピン塗布する。そして、フォトリソグラフィ技術により、フォトレジストをパターニングする。そして、このフォトレジストをマスクとして、RIE法等によりSOI層をエッチングし、振動板113のパターンを切り出す。このとき、弾性梁115a,115bのパターンも形成される。   (A) First, a so-called SOI substrate in which a buried insulating film (SOI oxide film) and a single crystal Si layer (SOI layer) are sequentially stacked on a supporting substrate made of single crystal Si is prepared as the semiconductor substrate 11. Next, a photoresist film (hereinafter simply referred to as “photoresist”) is spin-coated on the surface of the SOI layer. Then, the photoresist is patterned by a photolithography technique. Then, using this photoresist as a mask, the SOI layer is etched by the RIE method or the like, and the pattern of the diaphragm 113 is cut out. At this time, the patterns of the elastic beams 115a and 115b are also formed.

(ロ)その後、新たなフォトレジストをSOI層の表面にスピン塗布する。即ち、フォトリソグラフィ技術及びRIE法等を用いて、SOI層を選択的に、RIE法若しくはECRイオンエッチング法等によりエッチングして、振動板113の表面に図2に示すような微細な穴Hi-1,1,・・・・・,Hi,1,Hi,2,Hi,3,・・・・・,Hi+2,6を堀り、反射型の2次元回折格子を形成する。その後、フォトレジストを除去する。 (B) Thereafter, a new photoresist is spin-coated on the surface of the SOI layer. That is, the SOI layer is selectively etched by the RIE method or the ECR ion etching method using a photolithography technique, the RIE method, or the like, and the minute hole H i as shown in FIG. -1,1, ·····, H i, 1 , H i, 2, H i, 3, ·····, dig the H i + 2,6, a reflection type two-dimensional diffraction grating Form. Thereafter, the photoresist is removed.

(ハ)その後、更に新たなフォトレジストを全面にスピン塗布する。このフォトレジストにフォトリソグラフィ技術により、振動板113の周辺の弾性梁115aと弾性梁115bとの間の領域を露出する窓部を形成する。そして、このフォトレジストをマスクとして、RIE等により、窓部に露出したSOI酸化膜を選択的に除去し、窓部の底部に支持基板を露出させる。   (C) Thereafter, a new photoresist is spin-coated on the entire surface. A window portion exposing a region between the elastic beam 115a and the elastic beam 115b around the vibration plate 113 is formed in the photoresist by a photolithography technique. Then, using this photoresist as a mask, the SOI oxide film exposed at the window is selectively removed by RIE or the like, and the support substrate is exposed at the bottom of the window.

(ニ)そして、窓部を介して、単結晶Siの異方性エッチャント、例えばテトラメチルアンモニウムハイドロオキサイド(TMAH)等の薬液を導入し、支持基板を選択的に異方性エッチングし、空洞(キャビティ)を振動板113の下部に形成する。更に、支持基板を裏面からエッチングし、底部空洞部17を形成することで、図1及び図2に示すような、回折格子を有する振動板113が半導体基板11の底部空洞部17内に形成される。   (D) An anisotropic etchant of single crystal Si, for example, a chemical solution such as tetramethylammonium hydroxide (TMAH) is introduced through the window, the support substrate is selectively anisotropically etched, and the cavity ( A cavity) is formed below the diaphragm 113. Further, the support substrate is etched from the back surface to form the bottom cavity portion 17, whereby a diaphragm 113 having a diffraction grating as shown in FIGS. 1 and 2 is formed in the bottom cavity portion 17 of the semiconductor substrate 11. The

(ホ)一方、実装基板15として単結晶Si基板を用意する。そして、フォトリソグラフィ技術により、フォトレジスト等をマスクとして、実装基板15としての単結晶Si基板を、TMAH等により異方性エッチングを行えば、発光素子用凹部155及び受光素子用凹部156が、実装基板15の表面に形成される。その後、CVD、真空蒸着、スパッタリング等によりアルミニウム(Al)、アルミニウム合金(Al−Si,Al−Cu−Si)、銅(Cu)、金(Au)の金属膜を堆積し、フォトリソグラフィ技術、RIE等のエッチング技術等を用いて、金属膜をパターニングして、パッド151a〜151d及び配線152a〜152d等のパターンを形成する。パッド151a〜151d及び配線152a〜152d等のパターンニングには、リフトオフ法を用いてもよく、リフトオフ法と同様なマスクを用いた選択鍍金法でもよい。或いは、スクリーン印刷技術等により、パッド151a〜151d及び配線152a〜152d等のパターンを形成してもよい。   (E) On the other hand, a single crystal Si substrate is prepared as the mounting substrate 15. Then, if the single crystal Si substrate as the mounting substrate 15 is anisotropically etched with TMAH or the like using a photoresist or the like as a mask by photolithography technology, the light emitting element recess 155 and the light receiving element recess 156 are mounted. It is formed on the surface of the substrate 15. Thereafter, a metal film of aluminum (Al), aluminum alloy (Al-Si, Al-Cu-Si), copper (Cu), gold (Au) is deposited by CVD, vacuum evaporation, sputtering, etc., and photolithography technology, RIE The metal film is patterned using an etching technique or the like to form patterns such as pads 151a to 151d and wirings 152a to 152d. For patterning the pads 151a to 151d and the wirings 152a to 152d, a lift-off method may be used, or a selective plating method using a mask similar to the lift-off method may be used. Alternatively, patterns such as the pads 151a to 151d and the wirings 152a to 152d may be formed by a screen printing technique or the like.

(ヘ)そして、実装基板15の発光素子用凹部155に回折格子に光を照射する発光素子21を、受光素子用凹部156に回折格子で回折した光を検知し電気信号に変換する受光素子23をそれぞれ実装する。図1(b)に示すように、面発光型半導体レーザ(発光素子)21の光軸を傾斜させるため、発光素子用凹部155の底部が実装基板15の主面に対し傾斜してマウントする。この構造は、異方性エッチングで形成される平坦な底部の発光素子用凹部155に、発光素子21の底部が傾斜するスペーサを挿入して、発光素子21をマウントすればよい。例えば、発光素子21をマウントする際の半田や導電性接着剤の形状により、実質的に、発光素子21の底部が実装基板15の主面に対し傾斜した構造を実現すればよい。そして、発光素子21の上のボンディングパッドと配線152c,152dとをボンディングワイヤ162c,162dで接続する。同様に、受光素子23の上のボンディングパッドと配線152a,152bとをボンディングワイヤ162a,162bで接続する。   (F) Then, the light emitting element 21 that irradiates the light emitting element concave portion 155 of the mounting substrate 15 with light to the diffraction grating, and the light receiving element 23 that detects the light diffracted by the light receiving element concave portion 156 by the diffraction grating and converts it into an electric signal Are implemented respectively. As shown in FIG. 1B, in order to incline the optical axis of the surface emitting semiconductor laser (light emitting element) 21, the bottom of the light emitting element recess 155 is inclined with respect to the main surface of the mounting substrate 15. In this structure, a light-emitting element 21 may be mounted by inserting a spacer with the bottom of the light-emitting element 21 inclined into a light-emitting element recess 155 having a flat bottom formed by anisotropic etching. For example, a structure in which the bottom of the light emitting element 21 is substantially inclined with respect to the main surface of the mounting substrate 15 may be realized by the shape of solder or conductive adhesive when the light emitting element 21 is mounted. Then, the bonding pads on the light emitting element 21 and the wirings 152c and 152d are connected by bonding wires 162c and 162d. Similarly, the bonding pad on the light receiving element 23 and the wirings 152a and 152b are connected by bonding wires 162a and 162b.

(ト)そして、発光素子用凹部155及び受光素子用凹部156を振動板113に対向させ、透明基板(ガラス基板)13を介して、図1(b)に示すように、実装基板15を半導体基板11上に積層すれば、第1の実施の形態に係る光マイクロフォンが完成する。   (G) The light emitting element concave portion 155 and the light receiving element concave portion 156 are opposed to the vibration plate 113, and the mounting substrate 15 is made of semiconductor via the transparent substrate (glass substrate) 13 as shown in FIG. If it is laminated on the substrate 11, the optical microphone according to the first embodiment is completed.

(第2の実施の形態)
発光素子21は、面発光型半導体レーザに限定されず、端面発光型半導体レーザでもよい。本発明の第2の実施の形態に係る光マイクロフォンは、図4に示ように、3層構造になっていて、上から端面発光型半導体レーザ(発光素子)21及び受光素子23とを、それぞれ発光素子用凹部155及び受光素子用凹部156に有する実装基板15、ガラス基板(透明基板)13、そして振動板113を有する半導体基板11である。
(Second Embodiment)
The light emitting element 21 is not limited to a surface emitting semiconductor laser, but may be an edge emitting semiconductor laser. The optical microphone according to the second embodiment of the present invention has a three-layer structure as shown in FIG. 4, and includes an edge-emitting semiconductor laser (light emitting element) 21 and a light receiving element 23 from above, respectively. The semiconductor substrate 11 includes the mounting substrate 15, the glass substrate (transparent substrate) 13, and the vibration plate 113 that are provided in the light-emitting element recess 155 and the light-receiving element recess 156.

この3層構造は、第1の実施の形態に係る光マイクロフォンと同様に、熱融着技術或いは接着剤で一体化されている。又、振動板113には、半導体プロセス技術(エッチング技術やフォトリソグラフィ技術)で周期的なパターン(回折格子)が形成されていることは、第1の実施の形態に係る光マイクロフォンと同様である。端面発光型半導体レーザ(発光素子)21のビームは発光素子用凹部155の壁に設けられた反射鏡159で反射して、ガラス基板(透明基板)13を透過後に振動板113の回折格子で回折され、再びガラス基板(透明基板)13を透過して、受光素子23で検出される。   This three-layer structure is integrated by a thermal fusion technique or an adhesive, like the optical microphone according to the first embodiment. Further, the diaphragm 113 is formed with a periodic pattern (diffraction grating) by a semiconductor process technique (etching technique or photolithography technique), as in the optical microphone according to the first embodiment. . The beam of the edge-emitting semiconductor laser (light emitting element) 21 is reflected by a reflecting mirror 159 provided on the wall of the light emitting element recess 155, and is diffracted by the diffraction grating of the diaphragm 113 after passing through the glass substrate (transparent substrate) 13. Then, it passes through the glass substrate (transparent substrate) 13 again and is detected by the light receiving element 23.

単結晶Si基板を実装基板15に用いれば、TMAH等の異方性エッチングで、発光素子用凹部155及び受光素子用凹部156を形成した後、発光素子用凹部155の側壁に金(Au)等の高反射率の金属薄膜を真空蒸着やスパッタリング法で堆積すれば、反射鏡159が形成できる。但し、異方性エッチングだけでも、発光素子用凹部155の側壁は、鏡面となるので、高反射率の金属薄膜の堆積工程は省略可能である。   If a single crystal Si substrate is used for the mounting substrate 15, the light emitting element recess 155 and the light receiving element recess 156 are formed by anisotropic etching such as TMAH, and then gold (Au) or the like is formed on the side wall of the light emitting element recess 155. A reflective mirror 159 can be formed by depositing a metal thin film having a high reflectivity by vacuum evaporation or sputtering. However, even by anisotropic etching alone, the side wall of the light emitting element recess 155 becomes a mirror surface, so that the step of depositing a highly reflective metal thin film can be omitted.

第1の実施の形態に係る光マイクロフォンと同様に、光ビームは振動板113の変位に依存して受光素子23の入射位置が変化するため、出力信号が時間的に変化する。この信号を音声に対応した音波信号となる。   Similar to the optical microphone according to the first embodiment, since the incident position of the light receiving element 23 changes depending on the displacement of the diaphragm 113, the output signal of the light beam changes with time. This signal becomes a sound wave signal corresponding to sound.

配線152a〜152dが半導体基板11上に形成されている点や光マイクロフォンの製造方法等、他の点は、第1の実施の形態に係る光マイクロフォンと同様であり、重複した説明は省略する。   Other points such as the points where the wirings 152a to 152d are formed on the semiconductor substrate 11 and the method of manufacturing the optical microphone are the same as those of the optical microphone according to the first embodiment, and redundant description is omitted.

本発明の第2の実施の形態によれば、第1の実施の形態に係る光マイクロフォンと同様に、高指向性を備え、小型薄型で耐環境性がある光マイクロフォンを提供することができる。   According to the second embodiment of the present invention, similarly to the optical microphone according to the first embodiment, it is possible to provide an optical microphone that has high directivity, is small and thin, and has environmental resistance.

(第3の実施の形態)
本発明の第3の実施の形態に係る光マイクロフォンは、図5に示ように、上から面発光型半導体レーザ(発光素子)21と受光素子23とを有する実装基板15、透明テープ(透明基板)14、そして振動板113を有する半導体基板11の3層構造である。図5(a)は、透明テープ(透明基板)14の裏面より、実装基板15の裏面を透視した平面図であるが、実装基板15の平面寸法よりも、透明テープ(透明基板)14の平面寸法の方が大きく設計されている。
(Third embodiment)
As shown in FIG. 5, the optical microphone according to the third embodiment of the present invention includes a mounting substrate 15 having a surface emitting semiconductor laser (light emitting device) 21 and a light receiving device 23 from the top, a transparent tape (transparent substrate). ) 14 and a three-layer structure of the semiconductor substrate 11 having the diaphragm 113. FIG. 5A is a plan view of the back surface of the mounting substrate 15 seen through from the back surface of the transparent tape (transparent substrate) 14, but the plane of the transparent tape (transparent substrate) 14 is larger than the planar dimensions of the mounting substrate 15. Designed with larger dimensions.

図5に示す3層構造は熱融着技術或いは接着剤で一体化される。振動板113には、半導体プロセス技術(エッチング技術やフォトリソグラフィ技術)で周期的なパターン(回折格子)が形成されている。発光素子21のビームは、透明テープ(透明基板)14を透過後に振動板113の回折格子で回折され、再び透明テープ(透明基板)14を透過して、受光素子23で検出される。このとき、図3に示したように、光ビームは振動板113の変位に依存して受光素子23の入射位置が変化するため、出力信号が時間的に変化する。この信号を音声に対応した音波信号となる。   The three-layer structure shown in FIG. 5 is integrated by a heat fusion technique or an adhesive. A periodic pattern (diffraction grating) is formed on the diaphragm 113 by a semiconductor process technique (etching technique or photolithography technique). The beam of the light emitting element 21 passes through the transparent tape (transparent substrate) 14, is diffracted by the diffraction grating of the diaphragm 113, passes through the transparent tape (transparent substrate) 14 again, and is detected by the light receiving element 23. At this time, as shown in FIG. 3, since the incident position of the light receiving element 23 changes depending on the displacement of the diaphragm 113, the output signal of the light beam changes temporally. This signal becomes a sound wave signal corresponding to sound.

第3の実施の形態に係る光マイクロフォンにおいては、透明テープ(透明基板)14上にテープ状の実装配線141,142,143,144が形成され、実装基板15の周辺部に設けられたパッド(電極パッド)153a,153b,153c,153dにそれぞれ電気的に接続されている。そして、発光素子用凹部155に搭載された発光素子21は、図5(a)に示すように、発光素子21上のボンディングパッドとチップ側配線154a,154dとがボンディングワイヤ164a,164dで接続されている(なお、発光素子21の裏面が一方の電極になっている場合は、例えばチップ側配線154aを発光素子21の裏面に導き、発光素子21の上のボンディングパッドとチップ側配線154dとをボンディングワイヤ164dで接続すればよい。)。そして、実装基板15の表面に形成されたチップ側配線154a,154dを介して、発光素子21の上のボンディングパッドは、パッド(電極パッド)153a,153dとそれぞれ電気的に接続されている。   In the optical microphone according to the third embodiment, tape-like mounting wirings 141, 142, 143, and 144 are formed on a transparent tape (transparent substrate) 14, and pads ( Electrode pads) 153a, 153b, 153c, and 153d are electrically connected to each other. In the light emitting element 21 mounted in the light emitting element recess 155, as shown in FIG. 5A, the bonding pads on the light emitting element 21 and the chip-side wirings 154a and 154d are connected by bonding wires 164a and 164d. (If the back surface of the light emitting element 21 is one electrode, for example, the chip side wiring 154a is led to the back surface of the light emitting element 21, and the bonding pad on the light emitting element 21 and the chip side wiring 154d are connected. It may be connected by a bonding wire 164d). The bonding pads on the light emitting element 21 are electrically connected to pads (electrode pads) 153a and 153d through chip-side wirings 154a and 154d formed on the surface of the mounting substrate 15, respectively.

同様に、受光素子用凹部156に搭載された受光素子23上のボンディングパッドは、チップ側配線154b,154cとボンディングワイヤ164b,164cで接続されている(なお、受光素子23の裏面が一方の電極になっている場合は、例えばチップ側配線154cを受光素子23の裏面に導き、受光素子23の上のボンディングパッドとチップ側配線154bとをボンディングワイヤ164bで接続すればよい。)。そして、受光素子23上のボンディングパッドは、図5(a)に示すように、実装基板15の表面に形成されたチップ側配線154b,154cを介して、パッド(電極パッド)153b,153cにそれぞれ導かれる。これらのパッド153a〜153d及びチップ側配線154a〜154dは、第1の実施の形態に係る光マイクロフォンの製造方法で説明したようなチップ配線技術により形成できる。こうして、発光素子21の駆動用配線と受光素子23からの信号取り出し配線の電気的接続が、透明テープ(透明基板)14上の実装配線141,142,143,144を介して可能となる。   Similarly, the bonding pads on the light receiving element 23 mounted in the light receiving element recess 156 are connected to the chip-side wirings 154b and 154c by the bonding wires 164b and 164c (note that the back surface of the light receiving element 23 is one electrode). In this case, for example, the chip side wiring 154c may be guided to the back surface of the light receiving element 23, and the bonding pad on the light receiving element 23 and the chip side wiring 154b may be connected by the bonding wire 164b. The bonding pads on the light receiving element 23 are respectively connected to pads (electrode pads) 153b and 153c via chip-side wirings 154b and 154c formed on the surface of the mounting substrate 15, as shown in FIG. Led. These pads 153a to 153d and chip side wirings 154a to 154d can be formed by the chip wiring technique as described in the method of manufacturing the optical microphone according to the first embodiment. In this way, the electrical connection between the drive wiring of the light emitting element 21 and the signal extraction wiring from the light receiving element 23 becomes possible via the mounting wirings 141, 142, 143, 144 on the transparent tape (transparent substrate) 14.

光マイクロフォンの製造方法等他の点は、第1及び第2の実施の形態に係る光マイクロフォンと実質的に同様であるので、重複した説明を省略する。   Other points such as the method of manufacturing the optical microphone are substantially the same as those of the optical microphones according to the first and second embodiments, and thus redundant description is omitted.

本発明の第3の実施の形態によれば、第1及び第2の実施の形態に係る光マイクロフォンと同様に、高指向性を備え、小型薄型で耐環境性がある光マイクロフォンを提供することができる。   According to the third embodiment of the present invention, similarly to the optical microphones according to the first and second embodiments, it is possible to provide an optical microphone having high directivity, small, thin, and environmentally resistant. Can do.

(第4の実施の形態)
図6に示すように、本発明の第4の実施の形態においては、複数の発光素子21B,21Aと、複数の受光素子23B,23Aにより、異なる共振特性を有する複数の振動板113B,113Aからの振動情報を独立に得ることにより、音声の周波数成分を選択する機能を付加した光マイクロフォンについて説明する。
(Fourth embodiment)
As shown in FIG. 6, in the fourth embodiment of the present invention, a plurality of light-emitting elements 21B and 21A and a plurality of light-receiving elements 23B and 23A are separated from a plurality of diaphragms 113B and 113A having different resonance characteristics. A description will be given of an optical microphone to which a function of selecting a frequency component of sound is obtained by independently obtaining the vibration information.

図6は、実装基板15の裏面のパターンを示す平面図である。第4の実施の形態に係る光マイクロフォンは、図6に示すように、発光素子用凹部155Bに高周波用発光素子21Bが、発光素子用凹部155Aに低周波用発光素子21Aが、受光素子用凹部156Bに高周波用受光素子23Bが、受光素子用凹部156Aに低周波用受光素子23Aがそれぞれ搭載されている。断面構造の図示は省略するが、基本的には、第1の実施の形態に係る光マイクロフォンと同様であり、上から発光素子21B,21Aと受光素子23B,23Aを実装した実装基板15、ガラス基板(透明基板)13、高周波用振動板113B及び低周波用振動板113Aを備える半導体基板11の3層構造になっている。図6では、2点鎖線で、高周波用振動板113B及び高周波用振動板113Bより面積の大きな低周波用振動板113Aと、これらを収納する底部空洞部17の領域を想像線として示している。高周波用の振動領域と、低周波用の振動領域に分かれていれば、高周波用振動板113B及び低周波用振動板113Aは一体化した振動板でもよい。   FIG. 6 is a plan view showing a pattern on the back surface of the mounting substrate 15. As shown in FIG. 6, the optical microphone according to the fourth embodiment includes a high frequency light emitting element 21B in the light emitting element recess 155B, a low frequency light emitting element 21A in the light emitting element recess 155A, and a light receiving element recess. A high frequency light receiving element 23B is mounted on 156B, and a low frequency light receiving element 23A is mounted on the light receiving element recess 156A. Although illustration of a cross-sectional structure is omitted, it is basically the same as the optical microphone according to the first embodiment, and the mounting substrate 15 on which the light emitting elements 21B and 21A and the light receiving elements 23B and 23A are mounted from above, glass The semiconductor substrate 11 has a three-layer structure including a substrate (transparent substrate) 13, a high-frequency diaphragm 113B, and a low-frequency diaphragm 113A. In FIG. 6, the high-frequency diaphragm 113 </ b> B and the low-frequency diaphragm 113 </ b> A having a larger area than the high-frequency diaphragm 113 </ b> B and the region of the bottom cavity 17 that accommodates these are shown by phantom lines. As long as it is divided into a high-frequency vibration region and a low-frequency vibration region, the high-frequency diaphragm 113B and the low-frequency diaphragm 113A may be an integrated diaphragm.

発光素子用凹部155Bに搭載された高周波用発光素子21Bは、図6に示すように、高周波用発光素子21B上のボンディングパッドと配線152c,152dとがボンディングワイヤ162c,162dで接続されている(なお、高周波用発光素子21Bの裏面が一方の電極になっている場合は、例えば配線152dを高周波用発光素子21Bの裏面に導き、高周波用発光素子21Bの上のボンディングパッドと配線152cとをボンディングワイヤ162cで接続すればよい。)。そして、実装基板16の表面に形成された配線152c,152dを介して、高周波用発光素子21Bの上のボンディングパッドは、パッド(電極パッド)151c,151dとそれぞれ電気的に接続されている。   As shown in FIG. 6, the high-frequency light-emitting element 21B mounted in the light-emitting element recess 155B has bonding pads on the high-frequency light-emitting element 21B and wirings 152c and 152d connected by bonding wires 162c and 162d (see FIG. 6). When the back surface of the high frequency light emitting element 21B is one electrode, for example, the wiring 152d is guided to the back surface of the high frequency light emitting element 21B, and the bonding pad on the high frequency light emitting element 21B and the wiring 152c are bonded. It may be connected with a wire 162c). The bonding pads on the high-frequency light-emitting element 21B are electrically connected to pads (electrode pads) 151c and 151d via wirings 152c and 152d formed on the surface of the mounting substrate 16, respectively.

同様に、受光素子用凹部156Bに搭載された高周波用受光素子23B上のボンディングパッドは、配線152a,152bとボンディングワイヤ162a,162bで接続されている(なお、高周波用受光素子23Bの裏面が一方の電極になっている場合は、例えば配線152bを高周波用受光素子23Bの裏面に導き、高周波用受光素子23Bの上のボンディングパッドと配線152aとをボンディングワイヤ162aで接続すればよい。)。そして、高周波用受光素子23B上のボンディングパッドは、図6に示すように、実装基板16の表面に形成された配線152a,152bを介して、パッド(電極パッド)151a,151bにそれぞれ導かれる。   Similarly, the bonding pads on the high frequency light receiving element 23B mounted in the light receiving element recess 156B are connected to the wirings 152a and 152b and the bonding wires 162a and 162b (note that the back surface of the high frequency light receiving element 23B is one side). For example, the wiring 152b may be led to the back surface of the high frequency light receiving element 23B, and the bonding pad on the high frequency light receiving element 23B and the wiring 152a may be connected by the bonding wire 162a. Then, the bonding pads on the high-frequency light receiving element 23B are guided to pads (electrode pads) 151a and 151b via wirings 152a and 152b formed on the surface of the mounting substrate 16, respectively, as shown in FIG.

一方、発光素子用凹部155Aに搭載された低周波用発光素子21Aは、図6に示すように、低周波用発光素子21A上のボンディングパッドと配線152g,152hとがボンディングワイヤ162g,162hで接続されている(なお、低周波用発光素子21Aの裏面が一方の電極になっている場合は、例えば配線152hを低周波用発光素子21Aの裏面に導き、低周波用発光素子21Aの上のボンディングパッドと配線152gとをボンディングワイヤ162gで接続すればよい。)。そして、実装基板16の表面に形成された配線152g,152hを介して、低周波用発光素子21Aの上のボンディングパッドは、パッド(電極パッド)151g,151hとそれぞれ電気的に接続されている。   On the other hand, in the low frequency light emitting element 21A mounted in the light emitting element recess 155A, as shown in FIG. 6, the bonding pads on the low frequency light emitting element 21A and the wirings 152g and 152h are connected by bonding wires 162g and 162h. (If the back surface of the low-frequency light-emitting element 21A is one electrode, for example, the wiring 152h is led to the back surface of the low-frequency light-emitting element 21A, and bonding is performed on the low-frequency light-emitting element 21A. The pad and the wiring 152g may be connected by the bonding wire 162g). The bonding pads on the low-frequency light emitting element 21A are electrically connected to pads (electrode pads) 151g and 151h via wirings 152g and 152h formed on the surface of the mounting substrate 16, respectively.

同様に、受光素子用凹部156Aに搭載された低周波用受光素子23A上のボンディングパッドは、配線152e,152fとボンディングワイヤ162e,162fで接続されている(なお、低周波用受光素子23Aの裏面が一方の電極になっている場合は、例えば配線152fを低周波用受光素子23Aの裏面に導き、低周波用受光素子23Aの上のボンディングパッドと配線152eとをボンディングワイヤ162eで接続すればよい。)。そして、低周波用受光素子23A上のボンディングパッドは、図6に示すように、実装基板16の表面に形成された配線152e,152fを介して、パッド(電極パッド)151e,151fにそれぞれ導かれる。   Similarly, the bonding pads on the low frequency light receiving element 23A mounted in the light receiving element recess 156A are connected to the wirings 152e and 152f by bonding wires 162e and 162f (the back surface of the low frequency light receiving element 23A). Is one electrode, for example, the wiring 152f is led to the back surface of the low-frequency light receiving element 23A, and the bonding pad on the low-frequency light receiving element 23A and the wiring 152e are connected by the bonding wire 162e. .) Then, as shown in FIG. 6, the bonding pads on the low-frequency light receiving element 23A are led to pads (electrode pads) 151e and 151f via wirings 152e and 152f formed on the surface of the mounting substrate 16, respectively. .

これらのパッド151a〜151h及び配線152a〜152hは、第1の実施の形態に係る光マイクロフォンの製造方法で説明したようなチップ配線技術により形成できる。図1(e)と同様に、ガラス基板(透明基板)13の両端付近は151a〜151hの一部が顔を出すようになっているので、高周波用発光素子21B及び低周波用発光素子21Aの駆動用配線と高周波用受光素子23B及び低周波用受光素子23Aからの信号取り出し配線の電気的接続が可能となる。   The pads 151a to 151h and the wirings 152a to 152h can be formed by the chip wiring technique as described in the method for manufacturing the optical microphone according to the first embodiment. As in FIG. 1 (e), the glass substrate (transparent substrate) 13 has portions 151a to 151h in the vicinity of both ends so that the high-frequency light-emitting element 21B and the low-frequency light-emitting element 21A Electrical connection between the driving wiring and the signal extraction wiring from the high-frequency light-receiving element 23B and the low-frequency light-receiving element 23A becomes possible.

光マイクロフォンの製造方法等他の点は、第1〜第3の実施の形態に係る光マイクロフォンと実質的に同様であるので、重複した説明を省略する。   Other points such as the manufacturing method of the optical microphone are substantially the same as those of the optical microphones according to the first to third embodiments, and thus redundant description is omitted.

図6に示す第4の実施の形態に係る光マイクロフォンによれば、図7に示すように、高周波用発光素子21Bと、高周波用受光素子23Bと、高周波用振動板113Bからの高周波の振動スペクトルBを得ることができ、低周波用発光素子21Aと、低周波用受光素子23Aと、低周波用振動板113Aからの低周波の振動スペクトルAを得ることができる。このように、異なる振動スペクトルの振動情報を得ることにより、音声の周波数成分を選択する機能を付加することができる。なお、複数の発光素子21B,21Aと、複数の受光素子23B,23Aにより、一体化した振動板113上の異なる共振特性を有する部分からの振動情報を得ることにより、音声の周波数成分を選択する機能を付加するようにしてもよい。   According to the optical microphone according to the fourth embodiment shown in FIG. 6, as shown in FIG. 7, the high frequency vibration spectrum from the high frequency light emitting element 21B, the high frequency light receiving element 23B, and the high frequency diaphragm 113B. B can be obtained, and a low frequency vibration spectrum A from the low frequency light emitting element 21A, the low frequency light receiving element 23A, and the low frequency diaphragm 113A can be obtained. Thus, by obtaining vibration information of different vibration spectra, it is possible to add a function of selecting a frequency component of sound. The frequency component of the sound is selected by obtaining vibration information from a portion having different resonance characteristics on the integrated diaphragm 113 by the plurality of light emitting elements 21B and 21A and the plurality of light receiving elements 23B and 23A. A function may be added.

(その他の実施の形態)
上記のように、本発明は第1〜第4の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described according to the first to fourth embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operational techniques will be apparent to those skilled in the art.

既に述べた第1〜第4の実施の形態に係る光マイクロフォンにおいて、受光素子23として、図8に示すようなフォトダイオードアレイやCCDを用いるようにしてもよい。図8にでは、4つのフォトダイオードPD1,PD2,PD3,PD4からなるフォトダイオードアレイを例示したが、フォトダイオードの数は4個に限られず、又1次元配列でも、2次元配列でもよい。フォトダイオードアレイやCCDを用いれば、1次回折光だけでなく2次回折光も検出して、感度を向上できる。更に、第4の実施の形態で説明した複数の振動板113A,113Bからの回折光を同時に時系列として検知できる。 In the optical microphones according to the first to fourth embodiments already described, a photodiode array or CCD as shown in FIG. In FIG. 8, a photodiode array composed of four photodiodes PD 1 , PD 2 , PD 3 , and PD 4 is illustrated, but the number of photodiodes is not limited to four, and a one-dimensional array or a two-dimensional array is also possible. But you can. If a photodiode array or CCD is used, sensitivity can be improved by detecting not only the first-order diffracted light but also the second-order diffracted light. Furthermore, the diffracted light from the plurality of diaphragms 113A and 113B described in the fourth embodiment can be detected simultaneously as a time series.

又、第1〜第4の実施の形態に係る光マイクロフォンにおいて、透明基板13,14に波長選択性を持たせることにより、発光素子21の波長は透過させるが外部からの背景光は遮断して雑音特性を向上させるようにしてもよい。透明基板13,14で光ビームが通過する領域以外の部分の光透過率を低下させて背景光からの雑音を低減させると共に高感度にすることができる。   In the optical microphones according to the first to fourth embodiments, the transparent substrates 13 and 14 have wavelength selectivity so that the wavelength of the light emitting element 21 is transmitted but the background light from the outside is blocked. Noise characteristics may be improved. It is possible to reduce noise from the background light and to increase the sensitivity by reducing the light transmittance of portions other than the region where the light beam passes through the transparent substrates 13 and 14.

更に、図9に示すように、透明基板(ガラス基板)13にマイクロレンズ135A及び135Bを形成しマイクロレンズアレイとし、発光素子21からの光ビームの狭径化と利用効率を向上させてもよい。マイクロレンズ135A及び135Bは、発光素子21から振動板113に形成された回折格子を経て受光素子23に至る光路が透明基板(ガラス基板)13と交わる位置に形成されていれば良く、マイクロレンズ135A及び135Bのいずれか一方を省略することも可能である。第1,第2及び第4の実施の形態では、透明基板13として通常のガラス基板を用いているので、発光素子21から出射する光ビーム径は最初小さいが、受光素子(フォトダイオードアレイ)23に到達する段階ではかなり広がってしまう。したがって、光ビームの一部は受光素子(フォトダイオードアレイ)23の受感領域からはずれて、感度低下につながる。これに対して図9に示すように、透明基板(ガラス基板)13にエッチング技術やレーザ加工技術でマイクロレンズ135A,135Bを形成すると、光ビームが狭径化して、高感度になる。これは、光ビーム径が小さくなると、わずかなビーム位置変化でも受光素子(フォトダイオードアレイ)23で検知できるからである。   Furthermore, as shown in FIG. 9, microlenses 135A and 135B may be formed on a transparent substrate (glass substrate) 13 to form a microlens array, thereby reducing the diameter of the light beam from the light emitting element 21 and improving the utilization efficiency. . The microlenses 135A and 135B are only required to be formed at a position where the optical path from the light emitting element 21 to the light receiving element 23 through the diffraction grating formed on the diaphragm 113 intersects the transparent substrate (glass substrate) 13. And either 135B or 135B can be omitted. In the first, second, and fourth embodiments, since a normal glass substrate is used as the transparent substrate 13, the diameter of the light beam emitted from the light emitting element 21 is initially small, but the light receiving element (photodiode array) 23. When it reaches the stage, it spreads considerably. Accordingly, a part of the light beam deviates from the sensitive area of the light receiving element (photodiode array) 23, leading to a decrease in sensitivity. On the other hand, as shown in FIG. 9, when the microlenses 135A and 135B are formed on the transparent substrate (glass substrate) 13 by an etching technique or a laser processing technique, the light beam is narrowed and the sensitivity is increased. This is because when the light beam diameter is reduced, even a slight beam position change can be detected by the light receiving element (photodiode array) 23.

更に、一定の場合は、第1〜第4の実施の形態に係る光マイクロフォンにおいて、透明基板13,14を省略することも可能である。例えば、図10(a)に示ように、面発光型半導体レーザ(発光素子)21とフォトダイオード(受光素子)23を集積化した第2半導体基板18を実装基板とし、半導体振動膜(振動板)113を形成した第1半導体基板11とを直接接合法で接合した2層構造でも構わない。図10(a)においては、化合物半導体からなる第2半導体基板18上に形成したエピタキシャル成長層19を用いて、発光素子21と受光素子23とが形成され、発光素子21と受光素子23との間を絶縁膜やプロトン(H+)照射による高抵抗領域からなる素子分離領域181で電気的に分離されている。第1半導体基板11は、薄い半導体振動膜(振動板)113の機械的強度を考慮すればシリコン(Si)が好ましいが、化合物半導体基板でも構わない。但し、第1半導体基板11の表面から半導体振動膜(振動板)113の表面までの深さを、(6)式を満足するように設計する必要があるが、面発光型半導体レーザ(発光素子)21とフォトダイオード(受光素子)23との距離はフォトリソグラフィ技術で設計できるので微細化が容易で、小型化・薄膜化に優れた構造である。 Furthermore, in certain cases, it is possible to omit the transparent substrates 13 and 14 in the optical microphones according to the first to fourth embodiments. For example, as shown in FIG. 10A, a second semiconductor substrate 18 in which a surface emitting semiconductor laser (light emitting element) 21 and a photodiode (light receiving element) 23 are integrated is used as a mounting substrate, and a semiconductor vibration film (diaphragm) ) A two-layer structure in which the first semiconductor substrate 11 on which the 113 is formed is bonded by a direct bonding method may be used. In FIG. 10A, a light emitting element 21 and a light receiving element 23 are formed by using an epitaxial growth layer 19 formed on a second semiconductor substrate 18 made of a compound semiconductor, and between the light emitting element 21 and the light receiving element 23. Are electrically isolated by an element isolation region 181 consisting of a high resistance region by irradiation with an insulating film or proton (H + ). The first semiconductor substrate 11 is preferably silicon (Si) considering the mechanical strength of the thin semiconductor vibration film (vibration plate) 113, but may be a compound semiconductor substrate. However, it is necessary to design the depth from the surface of the first semiconductor substrate 11 to the surface of the semiconductor vibration film (vibration plate) 113 so as to satisfy the expression (6). ) 21 and the distance between the photodiode (light receiving element) 23 can be designed by a photolithography technique, so that miniaturization is easy and the structure is excellent in miniaturization and thinning.

発光素子21は、図10(b)に示すような、n側ブラッグ反射膜191,n側クラッド層192,活性層193,p側クラッド層,p側ブラッグ反射膜195及びp側電極182等を備える面発光半導体レーザで構成すればよい。受光素子23としては、図10(b)に示した面発光半導体レーザをフォトダイオードとして用いれば、面発光半導体レーザと禁制帯幅が同一のフォトダイオードを用いたことになり、波長の共鳴効果により、雑音や迷光の影響を受けない、極めて好感度な光マイクロフォンが実現できる。   The light emitting element 21 includes an n-side Bragg reflection film 191, an n-side cladding layer 192, an active layer 193, a p-side cladding layer, a p-side Bragg reflection film 195, a p-side electrode 182 and the like as shown in FIG. What is necessary is just to comprise with the surface emitting semiconductor laser provided. When the surface emitting semiconductor laser shown in FIG. 10B is used as the photodiode as the light receiving element 23, a photodiode having the same forbidden bandwidth as that of the surface emitting semiconductor laser is used. Therefore, it is possible to realize an extremely good optical microphone that is not affected by noise and stray light.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

図1(a)は、本発明の第1の実施の形態に係る光マイクロフォンの要素である実装基板の裏面から見たパターンを示す平面図で、図1(b)は、第1の実施の形態に係る光マイクロフォンの実装基板、ガラス基板(透明基板)、半導体基板からなる3層構造を説明する模式的な断面図である。FIG. 1A is a plan view showing a pattern viewed from the back surface of the mounting substrate which is an element of the optical microphone according to the first embodiment of the present invention, and FIG. It is typical sectional drawing explaining the 3 layer structure which consists of the mounting substrate of the optical microphone which concerns on a form, a glass substrate (transparent substrate), and a semiconductor substrate. 本発明の第1の実施の形態に係る光マイクロフォンの要素である半導体振動膜(振動板)の表面に形成された2次元回折格子を説明するための模式的な鳥瞰図である。It is a typical bird's-eye view for demonstrating the two-dimensional diffraction grating formed in the surface of the semiconductor diaphragm (diaphragm) which is an element of the optical microphone which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る光マイクロフォンにおいて、発光素子と振動板との距離と、発光素子と受光素子との距離との間の関係を説明するための模式図である。In the optical microphone which concerns on the 1st Embodiment of this invention, it is a schematic diagram for demonstrating the relationship between the distance of a light emitting element and a diaphragm, and the distance of a light emitting element and a light receiving element. 図4(a)は、本発明の第2の実施の形態に係る光マイクロフォンの要素である実装基板の裏面から見たパターンを示す平面図で、図4(b)は、第2の実施の形態に係る光マイクロフォンの実装基板、ガラス基板(透明基板)、半導体基板からなる3層構造を説明する模式的な断面図である。FIG. 4A is a plan view showing a pattern viewed from the back surface of the mounting substrate that is an element of the optical microphone according to the second embodiment of the present invention, and FIG. 4B is a diagram showing the second embodiment. It is typical sectional drawing explaining the 3 layer structure which consists of the mounting substrate of the optical microphone which concerns on a form, a glass substrate (transparent substrate), and a semiconductor substrate. 図5(a)は、本発明の第3の実施の形態に係る光マイクロフォンの要素である透明テープ(透明基板)の裏面より、実装基板の裏面を透視した平面図で、図5(b)は、第3の実施の形態に係る光マイクロフォンの実装基板、透明テープ(透明基板)、半導体基板からなる3層構造を説明する模式的な断面図である。FIG. 5A is a plan view in which the back surface of the mounting substrate is seen through from the back surface of the transparent tape (transparent substrate) that is an element of the optical microphone according to the third embodiment of the present invention. These are typical sectional drawings explaining the 3 layer structure which consists of the mounting substrate of the optical microphone which concerns on 3rd Embodiment, a transparent tape (transparent substrate), and a semiconductor substrate. 本発明の第4の実施の形態に係る光マイクロフォンの要素である実装基板の裏面から見たパターンを示す平面図である。It is a top view which shows the pattern seen from the back surface of the mounting substrate which is an element of the optical microphone which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態に係る光マイクロフォンの音声の周波数成分を選択する機能を説明するための周波数スペクトルである。It is a frequency spectrum for demonstrating the function which selects the frequency component of the sound of the optical microphone which concerns on the 4th Embodiment of this invention. 本発明の他の実施の形態に係る光マイクロフォンのフォトダイオードアレイを説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the photodiode array of the optical microphone which concerns on other embodiment of this invention. 本発明の更に他の実施の形態に係る光マイクロフォンのマイクロレンズアレイを説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the microlens array of the optical microphone which concerns on other embodiment of this invention. 本発明の更に他の実施の形態に係る光マイクロフォンの第1及び第2半導体基板からなる2層構造を説明する模式的な断面図である。It is typical sectional drawing explaining the 2 layer structure which consists of the 1st and 2nd semiconductor substrate of the optical microphone which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

11…半導体基板(第1半導体基板)
13…透明基板(ガラス基板)
14…透明基板(透明テープ)
15…凹部
15,16…実装基板
17…底部空洞部
18…第2半導体基板
19…エピタキシャル成長層
21…発光素子
21A…低周波用発光素子
21B…高周波用発光素子
23…受光素子
23A…低周波用受光素子
23B…高周波用受光素子
113…振動板
113A…低周波用振動板
113B…高周波用振動板
115a,115b…弾性梁
117…底部空洞部側壁
135A,135B…マイクロレンズアレイ
141,142,143,144…実装配線
151a〜151h,153a〜153d…パッド
152a〜152h…配線
154a〜154d…チップ側配線
162a〜162h,164a〜164d…ボンディングワイヤ
155,155A,155B,156,156A,156B…凹部
159…反射鏡
181…素子分離領域
182…p側電極
191…n側ブラッグ反射膜
192…n側クラッド層
193…活性層
194…p側クラッド層
195…p側ブラッグ反射膜
Φ…音波
PD1,PD2,PD3,PD4…フォトダイオード
11 ... Semiconductor substrate (first semiconductor substrate)
13 ... Transparent substrate (glass substrate)
14 ... Transparent substrate (transparent tape)
DESCRIPTION OF SYMBOLS 15 ... Recessed part 15, 16 ... Mounting substrate 17 ... Bottom cavity part 18 ... 2nd semiconductor substrate 19 ... Epitaxial growth layer 21 ... Light emitting element 21A ... Light emitting element for low frequency 21B ... Light emitting element for high frequency 23 ... Light receiving element 23A ... For low frequency Light receiving element 23B ... High frequency light receiving element 113 ... Vibration plate 113A ... Low frequency vibration plate 113B ... High frequency vibration plate 115a, 115b ... Elastic beam 117 ... Bottom cavity side wall 135A, 135B ... Micro lens array 141, 142, 143 144 ... Mounting wiring 151a-151h, 153a-153d ... Pad 152a-152h ... Wiring 154a-154d ... Chip-side wiring 162a-162h, 164a-164d ... Bonding wire 155, 155A, 155B, 156, 156A, 156B ... Recess 159 ... Reflector 181 ... Elementary Isolation region 182 ... p-side electrode 191 ... n-side Bragg reflection layer 192 ... n-side cladding layer 193 ... the active layer 194 ... p-side cladding layer 195 ... p-side Bragg reflection layer [Phi ... waves PD 1, PD 2, PD 3 , PD 4 … Photodiode

Claims (5)

回折格子を有する半導体振動板を、該半導体振動板の下面から入射した音波の音圧により振動させ、該半導体振動板の変位を電気信号に変換する光マイクロフォンであって、
半導体からなる平板状の固定部と、該固定部の下面から上面に貫通する空洞部に収納され、且つ該空洞部の側壁に固定された前記半導体振動板とを有する半導体基板と、
前記半導体振動板に対向する面側に発光素子用凹部及び受光素子用凹部が互いに独立して設けられ、前記発光素子用凹部に前記半導体振動板の上面に斜め方向の入射角で光を照射する発光素子を実装し、前記受光素子用凹部に前記半導体振動板の前記回折格子で回折した光を検知し電気信号に変換する受光素子を実装し、前記固定部の上面側に積層された平板状の実装基板と、
前記半導体基板と前記実装基板とを貼り合わせるように、前記半導体基板と前記実装基板との間に挿入され、前記固定部の上面に下面を接した透明基板
とを備え、前記固定部の上面レベルと前記半導体振動板の上面との間に空隙部が設けられ、前記固定部の下面レベルと前記半導体振動板の下面との間に、音波の入射窓となる凹部が設けられ、
前記発光素子が面発光型半導体発光素子であり、前記発光素子用凹部の前記発光素子の固定面が、前記入射角相当分、前記半導体振動板の上面に対して傾いていることを特徴とする光マイクロフォン
An optical microphone that vibrates a semiconductor diaphragm having a diffraction grating by the sound pressure of a sound wave incident from the lower surface of the semiconductor diaphragm, and converts the displacement of the semiconductor diaphragm into an electric signal,
A semiconductor substrate having a flat plate-like fixing portion made of a semiconductor, and the semiconductor diaphragm housed in a hollow portion penetrating from the lower surface to the upper surface of the fixing portion and fixed to a side wall of the hollow portion;
A light emitting element recess and a light receiving element recess are provided independently on the surface facing the semiconductor diaphragm, and the light emitting element recess is irradiated with light at an oblique incident angle on the upper surface of the semiconductor diaphragm. A light emitting element is mounted, a light receiving element that detects light diffracted by the diffraction grating of the semiconductor diaphragm and converts it into an electrical signal is mounted in the light receiving element recess, and is laminated on the upper surface side of the fixed part Mounting board,
A transparent substrate that is inserted between the semiconductor substrate and the mounting substrate so that the semiconductor substrate and the mounting substrate are bonded together, and has a lower surface in contact with the upper surface of the fixing portion
A gap portion is provided between the upper surface level of the fixed portion and the upper surface of the semiconductor diaphragm, and a sound wave entrance window is provided between the lower surface level of the fixed portion and the lower surface of the semiconductor diaphragm. A recess is provided,
The light emitting element is surface-emitting type semiconductor light-emitting element, fixed surface of the light emitting element of the recess for the light emitting element, the incident angle equivalent, characterized in that is tilted with respect to the upper surface of the semiconductor diaphragm Optical microphone .
回折格子を有する半導体振動板を、該半導体振動板の下面から入射した音波の音圧により振動させ、該半導体振動板の変位を電気信号に変換する光マイクロフォンであって、
半導体からなる平板状の固定部と、該固定部の下面から上面に貫通する空洞部に収納され、且つ該空洞部の側壁に固定された前記半導体振動板とを有する半導体基板と、
前記半導体振動板に対向する面側に発光素子用凹部及び受光素子用凹部が互いに独立して設けられ、前記発光素子用凹部に前記半導体振動板の上面に斜め方向の入射角で光を照射する発光素子を実装し、前記受光素子用凹部に前記半導体振動板の前記回折格子で回折した光を検知し電気信号に変換する受光素子を実装し、前記固定部の上面側に積層された平板状の実装基板と、
前記半導体基板と前記実装基板とを貼り合わせるように、前記半導体基板と前記実装基板との間に挿入され、前記固定部の上面に下面を接した透明基板
とを備え、前記固定部の上面レベルと前記半導体振動板の上面との間に空隙部が設けられ、前記固定部の下面レベルと前記半導体振動板の下面との間に、音波の入射窓となる凹部が設けられ、
前記発光素子が端面発光型半導体発光素子であり、
前記発光素子用凹部に、前記発光素子からの光を前記半導体振動板の上面に斜め方向から入射させるための反射鏡を更に備えることを特徴とする光マイクロフォン
An optical microphone that vibrates a semiconductor diaphragm having a diffraction grating by the sound pressure of a sound wave incident from the lower surface of the semiconductor diaphragm, and converts the displacement of the semiconductor diaphragm into an electric signal,
A semiconductor substrate having a flat plate-like fixing portion made of a semiconductor, and the semiconductor diaphragm housed in a hollow portion penetrating from the lower surface to the upper surface of the fixing portion and fixed to a side wall of the hollow portion;
A light emitting element recess and a light receiving element recess are provided independently on the surface facing the semiconductor diaphragm, and the light emitting element recess is irradiated with light at an oblique incident angle on the upper surface of the semiconductor diaphragm. A light emitting element is mounted, a light receiving element that detects light diffracted by the diffraction grating of the semiconductor diaphragm and converts it into an electrical signal is mounted in the light receiving element recess, and is laminated on the upper surface side of the fixed part Mounting board,
A transparent substrate that is inserted between the semiconductor substrate and the mounting substrate so that the semiconductor substrate and the mounting substrate are bonded together, and has a lower surface in contact with the upper surface of the fixing portion
A gap portion is provided between the upper surface level of the fixed portion and the upper surface of the semiconductor diaphragm, and a sound wave entrance window is provided between the lower surface level of the fixed portion and the lower surface of the semiconductor diaphragm. A recess is provided,
The light-emitting element is an edge-emitting semiconductor light-emitting element;
An optical microphone , further comprising a reflecting mirror for causing light from the light emitting element to enter the upper surface of the semiconductor diaphragm from an oblique direction in the recess for the light emitting element.
前記透明基板は、前記発光素子の波長を透過し、外部からの背景光は遮断する波長選択性を有することを特徴とする請求項1又は2に記載の光マイクロフォン。 The transparent substrate is transmitted through the wavelength of the light emitting element, an optical microphone according to claim 1 or 2, wherein the background light from the outside having wavelength selectivity for blocking. 回折格子を有する半導体振動板を、該半導体振動板の下面から入射した音波の音圧により振動させ、該半導体振動板の変位を電気信号に変換する光マイクロフォンの製造方法であって、
半導体基板に、半導体からなる平板状の固定部と、該固定部の下面から上面に貫通する空洞部に収納され、且つ該空洞部の側壁に固定された前記半導体振動板とを設け、前記半導体振動板に、前記回折格子を形成する工程と、
平板状の実装基板の一方の面に発光素子用凹部及び受光素子用凹部を形成する工程と、
前記発光素子用凹部に発光素子を、前記受光素子用凹部に受光素子をそれぞれ実装する工程と、
前記発光素子の光が前記半導体振動板の上面に斜め方向の入射角で入射し、前記半導体振動板の前記回折格子で回折した光が前記受光素子により検知され電気信号に変換されるように、前記発光素子用凹部及び受光素子用凹部を前記振動板に対向させ、前記実装基板を前記固定部の上面に下面を接した透明基板を介して前記半導体基板上に貼り合わせて、前記実装基板を前記半導体基板の前記固定部の上面側に積層する工程
とを含み、前記固定部の上面レベルと前記半導体振動板の上面との間に空隙部が設けられ、前記固定部の下面レベルと前記半導体振動板の下面との間に、音波の入射窓となる凹部が設けられ、
前記発光素子が面発光型半導体発光素子であり、
前記実装基板に発光素子用凹部を形成する工程では、前記発光素子用凹部の前記発光素子の固定面が、前記入射角相当分、前記半導体振動板の上面に対して傾くように形成することを特徴とする光マイクロフォンの製造方法。
A method of manufacturing an optical microphone, wherein a semiconductor diaphragm having a diffraction grating is vibrated by sound pressure of a sound wave incident from the lower surface of the semiconductor diaphragm, and the displacement of the semiconductor diaphragm is converted into an electric signal,
A semiconductor substrate is provided with a flat plate-shaped fixing portion made of a semiconductor and the semiconductor diaphragm housed in a hollow portion penetrating from the lower surface to the upper surface of the fixing portion and fixed to a side wall of the hollow portion. Forming the diffraction grating on the diaphragm;
Forming a light emitting element recess and a light receiving element recess on one surface of a flat mounting substrate;
Mounting a light emitting element in the light emitting element recess, and mounting a light receiving element in the light receiving element recess;
The light of the light emitting element is incident on the upper surface of the semiconductor diaphragm at an oblique incident angle, and the light diffracted by the diffraction grating of the semiconductor diaphragm is detected by the light receiving element and converted into an electrical signal. The light emitting element recess and the light receiving element recess are opposed to the vibration plate, and the mounting substrate is bonded to the semiconductor substrate via a transparent substrate having a lower surface in contact with an upper surface of the fixing portion. Laminating on the upper surface side of the fixed portion of the semiconductor substrate
A gap portion is provided between the upper surface level of the fixed portion and the upper surface of the semiconductor diaphragm, and a sound wave entrance window is provided between the lower surface level of the fixed portion and the lower surface of the semiconductor diaphragm. A recess is provided,
The light emitting element is a surface emitting semiconductor light emitting element;
In the step of forming the recess for the light emitting element on the mounting substrate, the fixing surface of the light emitting element of the recess for the light emitting element is formed to be inclined with respect to the upper surface of the semiconductor diaphragm by an amount corresponding to the incident angle. A method of manufacturing an optical microphone.
回折格子を有する半導体振動板を、該半導体振動板の下面から入射した音波の音圧により振動させ、該半導体振動板の変位を電気信号に変換する光マイクロフォンの製造方法であって、
半導体基板に、半導体からなる平板状の固定部と、該固定部の下面から上面に貫通する空洞部に収納され、且つ該空洞部の側壁に固定された前記半導体振動板とを設け、前記半導体振動板に、前記回折格子を形成する工程と、
平板状の実装基板の一方の面に発光素子用凹部及び受光素子用凹部を形成する工程と、
前記発光素子用凹部に発光素子を、前記受光素子用凹部に受光素子をそれぞれ実装する工程と、
前記発光素子の光が前記半導体振動板の上面に斜め方向の入射角で入射し、前記半導体振動板の前記回折格子で回折した光が前記受光素子により検知され電気信号に変換されるように、前記発光素子用凹部及び受光素子用凹部を前記振動板に対向させ、前記実装基板を前記固定部の上面に下面を接した透明基板を介して前記半導体基板上に貼り合わせて、前記実装基板を前記半導体基板の前記固定部の上面側に積層する工程
とを含み、前記固定部の上面レベルと前記半導体振動板の上面との間に空隙部が設けられ、前記固定部の下面レベルと前記半導体振動板の下面との間に、音波の入射窓となる凹部が設けられ、
前記発光素子が端面発光型半導体発光素子であり、
前記実装基板に発光素子用凹部を形成する工程の後、前記発光素子用凹部に、前記発光素子からの光を前記半導体振動板の上面に斜め方向から入射させるための反射鏡を設ける工程を更に含むことを特徴とする光マイクロフォンの製造方法。
A method of manufacturing an optical microphone, wherein a semiconductor diaphragm having a diffraction grating is vibrated by sound pressure of a sound wave incident from the lower surface of the semiconductor diaphragm, and the displacement of the semiconductor diaphragm is converted into an electric signal,
A semiconductor substrate is provided with a flat plate-shaped fixing portion made of a semiconductor and the semiconductor diaphragm housed in a hollow portion penetrating from the lower surface to the upper surface of the fixing portion and fixed to a side wall of the hollow portion. Forming the diffraction grating on the diaphragm;
Forming a light emitting element recess and a light receiving element recess on one surface of a flat mounting substrate;
Mounting a light emitting element in the light emitting element recess, and mounting a light receiving element in the light receiving element recess;
The light of the light emitting element is incident on the upper surface of the semiconductor diaphragm at an oblique incident angle, and the light diffracted by the diffraction grating of the semiconductor diaphragm is detected by the light receiving element and converted into an electrical signal. The light emitting element recess and the light receiving element recess are opposed to the vibration plate, and the mounting substrate is bonded to the semiconductor substrate via a transparent substrate having a lower surface in contact with an upper surface of the fixing portion. Laminating on the upper surface side of the fixed portion of the semiconductor substrate
A gap portion is provided between the upper surface level of the fixed portion and the upper surface of the semiconductor diaphragm, and a sound wave entrance window is provided between the lower surface level of the fixed portion and the lower surface of the semiconductor diaphragm. A recess is provided,
The light-emitting element is an edge-emitting semiconductor light-emitting element;
After the step of forming the recess for the light emitting element on the mounting substrate, the step of providing a reflecting mirror for causing the light from the light emitting element to enter the upper surface of the semiconductor diaphragm from an oblique direction in the recess for the light emitting element. An optical microphone manufacturing method comprising:
JP2004006674A 2004-01-14 2004-01-14 Optical microphone and manufacturing method thereof Expired - Fee Related JP4112505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004006674A JP4112505B2 (en) 2004-01-14 2004-01-14 Optical microphone and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004006674A JP4112505B2 (en) 2004-01-14 2004-01-14 Optical microphone and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005203944A JP2005203944A (en) 2005-07-28
JP4112505B2 true JP4112505B2 (en) 2008-07-02

Family

ID=34820569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004006674A Expired - Fee Related JP4112505B2 (en) 2004-01-14 2004-01-14 Optical microphone and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4112505B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8638955B2 (en) 2006-11-22 2014-01-28 Funai Electric Advanced Applied Technology Research Institute Inc. Voice input device, method of producing the same, and information processing system
EP2101513A4 (en) * 2006-11-22 2011-09-28 Funai Eaa Tech Res Inst Inc Voice input device, its manufacturing method and information processing system
JP5088950B2 (en) 2006-11-22 2012-12-05 株式会社船井電機新応用技術研究所 Integrated circuit device, voice input device, and information processing system
JP4264667B2 (en) 2007-02-16 2009-05-20 ソニー株式会社 Vibration detector
JP2008261684A (en) * 2007-04-11 2008-10-30 Sony Corp Vibration detecting apparatus
TWI365525B (en) * 2007-12-24 2012-06-01 Ind Tech Res Inst An ultra thin package for a sensor chip of a micro electro mechanical system
JP6193279B2 (en) * 2015-01-16 2017-09-06 株式会社レーベン販売 Optical microphone and hearing aid
EP3885311B1 (en) * 2020-03-27 2024-05-01 ams International AG Apparatus for sound detection, sound localization and beam forming and method of producing such apparatus

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183616A (en) * 1985-02-08 1986-08-16 Nec Corp Voice information fetching device
JPS62216600A (en) * 1986-03-18 1987-09-24 Oki Electric Ind Co Ltd Photo-acoustic transducing device
JPH0682325A (en) * 1992-09-04 1994-03-22 Canon Inc Optical integration sensor
JPH0735606A (en) * 1993-07-23 1995-02-07 Takaoka Electric Mfg Co Ltd Optical type vibration sensor
JPH0735605A (en) * 1993-07-23 1995-02-07 Takaoka Electric Mfg Co Ltd Optical type vibration sensor
JP3437709B2 (en) * 1996-04-16 2003-08-18 株式会社東芝 Three-dimensional wiring type optical coupling device and reflection type optical coupling device
US5831262A (en) * 1997-06-27 1998-11-03 Lucent Technologies Inc. Article comprising an optical fiber attached to a micromechanical device
JPH11308679A (en) * 1998-04-17 1999-11-05 Nippon Ceramic Co Ltd Optical microphone
JPH11331989A (en) * 1998-05-11 1999-11-30 Nippon Ceramic Co Ltd Optical microphone
JP2000292433A (en) * 1999-04-05 2000-10-20 Japan Science & Technology Corp Optical vibration sensor and optical vibration evaluation method
JP2001057964A (en) * 1999-08-23 2001-03-06 Canon Inc Projected imaging device
JP3679298B2 (en) * 2000-02-28 2005-08-03 株式会社ケンウッド Video camera with microphone
JP3522212B2 (en) * 2000-11-10 2004-04-26 株式会社ケンウッド Small displacement detection device using sound, etc.
JP2003218033A (en) * 2002-01-21 2003-07-31 Nikko Materials Co Ltd Method for epitaxial growth
JP2003249687A (en) * 2002-02-26 2003-09-05 Kyocera Corp Semiconductor device and optical module using the same

Also Published As

Publication number Publication date
JP2005203944A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP4416731B2 (en) Light emitting diode package and manufacturing method thereof
JP4457545B2 (en) OPTICAL / ELECTRIC WIRING BOARD, MOUNTING BOARD, AND OPTOELECTRIC WIRING BOARD MANUFACTURING METHOD
US8356517B2 (en) Integrated optical and acoustic transducer device
US7456434B2 (en) Micro optical bench structure
JP2004501507A (en) Light emitting diode chip and method of manufacturing the same
US20050241398A1 (en) Acoustoelectric conversion device
JP4112505B2 (en) Optical microphone and manufacturing method thereof
JP2009238957A (en) Via forming method on board
KR20210020910A (en) Optical microphone assembly
JP5026416B2 (en) Integrated circuit device having optically coupled layers
JP4506216B2 (en) Optical coupling device and manufacturing method thereof
JP2003050328A (en) Optic/electric wiring board, method for manufacturing the board and package board
JP3277736B2 (en) Semiconductor element sealing structure
JP3440679B2 (en) Semiconductor device
JP5431232B2 (en) Semiconductor device
JP2010061171A (en) Optical coupling device and its manufacturing method
JP2009206187A (en) Light-emitting device and method of manufacturing the same
JP3481180B2 (en) Acoustic-electric converter
JP2011253064A (en) Filter element and optical module using the same, and manufacturing method thereof
JP5350859B2 (en) OPTICAL MEMBER, OPTICAL DEVICE MANUFACTURING METHOD, AND OPTICAL DEVICE
KR100590534B1 (en) Micro optical bench structure and method of manufacturing the same
JP3536835B2 (en) Light emitting device and manufacturing method thereof
KR100601940B1 (en) Micro optical pickup and method for manufacturing the same
JP2009206217A (en) Manufacturing method of light emitting device
JP2006147616A (en) Manufacturing method of light emitting/receiving device and light emitting/receiving device manufactured thereby

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees