JP4106445B2 - Method for obtaining internal structure information of large structures by horizontal cosmic ray muon multiple division type detection means - Google Patents

Method for obtaining internal structure information of large structures by horizontal cosmic ray muon multiple division type detection means Download PDF

Info

Publication number
JP4106445B2
JP4106445B2 JP2005103681A JP2005103681A JP4106445B2 JP 4106445 B2 JP4106445 B2 JP 4106445B2 JP 2005103681 A JP2005103681 A JP 2005103681A JP 2005103681 A JP2005103681 A JP 2005103681A JP 4106445 B2 JP4106445 B2 JP 4106445B2
Authority
JP
Japan
Prior art keywords
position sensitive
muon
horizontal
detection means
sensitive detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005103681A
Other languages
Japanese (ja)
Other versions
JP2006284329A (en
Inventor
謙忠 永嶺
宏幸 田中
Original Assignee
大学共同利用機関法人 高エネルギー加速器研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大学共同利用機関法人 高エネルギー加速器研究機構 filed Critical 大学共同利用機関法人 高エネルギー加速器研究機構
Priority to JP2005103681A priority Critical patent/JP4106445B2/en
Publication of JP2006284329A publication Critical patent/JP2006284329A/en
Application granted granted Critical
Publication of JP4106445B2 publication Critical patent/JP4106445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Radiation (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、例えば製鉄用高炉、発電用ダム、橋脚、高架道路、船舶、車輌等の大型構造物の内部構造情報を、水平宇宙線ミュオン多重分割型検出手段を用いて得る方法に関する。   The present invention relates to a method for obtaining internal structure information of a large structure such as a steel blast furnace, a power generation dam, a bridge pier, an elevated road, a ship, a vehicle or the like by using a horizontal cosmic ray muon multiple division type detection means.

大型構造物、例えば高炉のような大型構造物は、一旦設置され定常運転に入ると解体でもしない限り内部構造情報を得ることは難しい。
このような内部構造情報を、大型構造物の形態を維持し運転中の状態で得ることができればきわめて有用である。
Large structures, such as large structures such as blast furnaces, are difficult to obtain internal structure information unless they are once dismantled once installed and in steady operation.
It is extremely useful if such internal structure information can be obtained while maintaining the form of a large structure and in operation.

大型構造物の形態を維持した状態で内部構造情報を得るための従来法としては、例えば、本発明者らのうちの一人が提案した特許文献1の方法がある。この方法は、図1に示すように、宇宙から大気を通過して地表に降り注ぐミュオンを利用して、高炉201を貫通するミュオンの強度変化に基づいて炉壁202若しくは炉底部204の耐火物の厚さを非破壊で測定する方法であり、より具体的には、正方形状の測定面をもつ3枚の位置敏感検出器(シンチレーター)211〜213を間隔をあけて互いに平行に配置し、各位置敏感検出器211、212、213には、4隅に光電子増倍管を設置し、位置検出器211〜213の測定面をミュオンが貫通すると、貫通位置で光を発する。この発した光を前記測定面の4隅に設置した光電子増倍管で検知し、この検知した光情報をパルス信号に変換し、これら光電子増倍管で検知するまでの時間の差から、位置検出器211〜213の測定面をミュオンが貫通した位置を特定することができる。平行に配置した3枚の位置検出器211〜213の各測定面での貫通位置を求めることによって、ミュオンが高炉201を貫通したときの経路Hが算出でき、この経路ごとのミュオン強度の減衰を知ることによって、高炉の内部構造情報を得る方法である。
特開平8−261741号公報
As a conventional method for obtaining internal structure information while maintaining the form of a large structure, for example, there is a method of Patent Document 1 proposed by one of the present inventors. As shown in FIG. 1, this method uses muons that pass through the atmosphere from space and pour onto the surface of the earth, and based on a change in the strength of the muons that penetrate the blast furnace 201, It is a method for measuring the thickness nondestructively, more specifically, three position sensitive detectors (scintillators) 211 to 213 having a square measurement surface are arranged in parallel with each other at intervals, In the position sensitive detectors 211, 212, and 213, photomultiplier tubes are installed at the four corners. When the muon penetrates the measurement surface of the position detectors 211 to 213, light is emitted at the penetration position. The emitted light is detected by photomultiplier tubes installed at the four corners of the measurement surface, the detected optical information is converted into pulse signals, and the position difference is detected from the difference in time until these photomultiplier tubes detect the position. The position where the muon penetrates the measurement surface of the detectors 211 to 213 can be specified. By calculating the penetration position on each measurement surface of the three position detectors 211 to 213 arranged in parallel, the path H when the muon penetrates the blast furnace 201 can be calculated, and the attenuation of the muon intensity for each path is calculated. It is a method to obtain the internal structure information of the blast furnace by knowing.
JP-A-8-261741

しかしながら、本発明者らが上記従来法(アナログ法)についてさらに詳細に検討したところ、各光電子増倍管からのパルス波形が、測定する雰囲気温度等によって変化して長時間安定性が得られない場合があり、かかる場合には、高炉等の構造物の内部構造情報を精度よく得られないことが判明した。   However, when the present inventors examined the above-mentioned conventional method (analog method) in more detail, the pulse waveform from each photomultiplier tube changes depending on the ambient temperature to be measured, etc., and long-term stability cannot be obtained. In such cases, it has been found that the internal structure information of structures such as blast furnaces cannot be obtained with high accuracy.

また、大気中には、光や電子等のような軟成物宇宙線バックグラウンド成分が、水平ミュオンに対し数10倍程度存在するため、ミュオンを用いて大型構造物の内部構造情報を正確に得るには、3枚のアナログ型検出器211〜213を用いたのでは不十分で、かかる軟成物バックグラウンド成分とミュオンとを区別できるような手段を講じる必要があった。   Also, in the atmosphere, soft cosmic ray background components such as light and electrons are several tens of times larger than the horizontal muon, so the internal structure information of large structures can be accurately obtained using muons. In order to obtain this, it was not sufficient to use three analog detectors 211 to 213, and it was necessary to take measures to distinguish between such soft background components and muons.

さらに、ミュオンを用いて大型構造物の内部構造情報を得る場合、大型構造物の測定対象部を貫通し位置敏感検出手段に到達するミュオンの強度変化から、大型構造物の内部構造情報を得ることを期待したが、長期安定低バックグラウンド測定が出来ないため、大型構造物の内部構造情報を精度よく得ることができないことが判明した。   Furthermore, when obtaining the internal structure information of a large structure using a muon, the internal structure information of the large structure is obtained from the intensity change of the muon that passes through the measurement target part of the large structure and reaches the position sensitive detection means. However, it was found that the internal structure information of large structures could not be obtained accurately because long-term stable low background measurement was not possible.

さらにまた、宇宙から大気を通過して地表に降り注ぐミュオンの物質貫通力は、地表に降り注ぐ角度、即ち垂直方向に対する角度である天頂角によって異なり、特に、天頂角50〜90°の範囲で地表に降り注ぐ水平ミュオンは、強度としては弱いものの、物質を貫通する力、すなわち透過性が高いため、上記軟成物バックグラウンド成分を除去できる手段があれば、大型構造物の内部構造情報を得る上できわめて有用であり、また、水平に近い宇宙線ミュオンを用いることにより、対象物に対して検出器の設置が容易で、垂直方向のミュオンを用いる場合に必要なトンネル等の構築は不要である。   Furthermore, the muon's penetration through the atmosphere from space through the atmosphere depends on the angle at which it falls on the surface, i.e., the zenith angle, which is the angle with respect to the vertical direction, and in particular in the range of 50-90 ° zenith angle. Although the horizontal muon that pours in is weak in strength, it has high permeability to penetrate the material, that is, high permeability. Therefore, if there is a means that can remove the soft background component, it is necessary to obtain information on the internal structure of large structures. It is extremely useful, and by using a nearly horizontal cosmic ray muon, it is easy to install a detector on the object, and it is not necessary to construct a tunnel or the like necessary when using a vertical muon.

この発明の目的は、強度としては弱いものの、物質を貫通する力、すなわち透過性が高い水平ミュオンを用いて精度よく大型構造物の内部構造情報を得る方法を提供する。   An object of the present invention is to provide a method of obtaining the internal structure information of a large structure with high accuracy using a horizontal muon having a high penetrability, that is, a penetrating material, although its strength is weak.

上記目的を達成するため、この発明の要旨は以下のとおりである。
(I) 大型構造物の測定対象部に対向する側方の有限間隔位置に、測定系として位置敏感検出手段を配置し、宇宙からの1次宇宙線により大気でつくられ地表に降り注ぐ素粒子ミュオンが、大型構造物の測定対象部を貫通して、位置敏感検出手段を構成する測定系に到達したときのミュオン強度を所定時間間隔で測定し、前記ミュオン強度の通過経路ごとの分布を知ることによって大型構造物の内部構造情報を得る方法であって、位置敏感検出手段は、水平方向に沿って所定幅で多数のプラスチックシンチレーターの横長部材に区画された正方形状の第1検出板と、垂直方向に沿って所定幅で多数の縦長部材に区画された正方形状の第2検出板とをもつ位置敏感検出器複合体を2基有し、2基の位置敏感検出器複合体は所定間隔で配設され、各位置敏感検出器複合体は、第1および第2検出板に到達したミュオンを同時計測して横縦のxy座標を特定するため、横長部材と縦長部材が直交するように配置され、前記位置敏感検出器複合体の間に、鉄または鉄よりも重い金属からなる金属部材を配設し、前記ミュオンのうち、天頂角50〜90°の範囲で地表に降り注ぐ高エネルギーの水平ミュオンを用い、大型構造物の測定対象部を貫通して第1位置敏感検出器複合体に到達する前方水平ミュオンが、つづいて第2位置敏感検出器複合体に到達する際に、それぞれの到達位置をつないだ直線を逆にたどることで、前方水平ミュオンが貫通する前記測定対象部内の経路が特定され、大型構造物の測定対象部、第1位置敏感検出器複合体および金属部材を順次貫通して第2位置敏感検出器複合体に到達する前方水平ミュオンの強度と、前記位置敏感検出手段を挟んで大型構造物とは反対側から第2位置敏感検出器複合体および金属部材を順次貫通して第1位置敏感検出器複合体に到達する後方水平ミュオンの強度の双方を同じ位置敏感検出手段で測定し、大型構造物の内部構造が時間と共に変化する場合、測定される全てのデータに、コンピューターで記録する際に、絶対時間をマイクロ秒以下の精度で付記し、測定した前方および後方水平ミュオンの強度比から大型構造物の内部構造情報を得ることを特徴とする多重分割水平ミュオン検出手段を用いて大型構造物の内部構造情報を得る方法。
In order to achieve the above object, the gist of the present invention is as follows.
(I) Position sensitive detection means as a measurement system at a finite distance on the side facing the measurement target part of a large structure, and a particle muon created in the atmosphere by primary cosmic rays from the universe and falling on the ground Measures the muon intensity at a predetermined time interval when it reaches the measurement system that constitutes the position sensitive detection means through the measurement target part of the large structure, and knows the distribution of the muon intensity for each passing path. The position sensitive detection means includes a square-shaped first detection plate partitioned into a plurality of horizontally long members of a plastic scintillator with a predetermined width in the horizontal direction, and a vertical detection method. Two position sensitive detector complexes having a square second detector plate divided into a number of vertically long members with a predetermined width along the direction, and the two position sensitive detector complexes at predetermined intervals Arranged The sensitive detector complex is arranged so that the horizontally long member and the vertically long member are orthogonal to each other so as to specify the horizontal and vertical xy coordinates by simultaneously measuring the muons reaching the first and second detection plates. A metal member made of iron or a metal heavier than iron is placed between the vessel complex, and among the muons, a large structure using a high-energy horizontal muon that falls on the ground surface in the range of zenith angle 50 to 90 ° When a forward horizontal muon that reaches the first position-sensitive detector complex through the object's measurement target part and subsequently reaches the second position-sensitive detector complex, a straight line connecting the respective arrival positions is obtained. By tracing in reverse, the path in the measurement target portion through which the front horizontal muon penetrates is specified, and the second position sensitivity is sequentially passed through the measurement target portion of the large structure, the first position sensitive detector complex, and the metal member. To the detector complex The strength of the front horizontal muon and the second position sensitive detector complex and the metal member are sequentially penetrated from the opposite side of the large structure across the position sensitive detection means to reach the first position sensitive detector complex. When both the horizontal horizontal muon intensity measured by the same position sensitive detection means and the internal structure of the large structure changes with time, the absolute time is recorded in the computer when recording all measured data. The internal structure information of the large structure is obtained by using the multi-division horizontal muon detection means characterized in that the internal structure information of the large structure is obtained from the measured intensity ratio of the front and rear horizontal muons. How to get.

(II)位置敏感検出手段は、大型構造物の側方であって、その周りに異なる角度間隔で複数基配設することを特徴とする上記(I)記載の大型構造物の内部構造情報を得る方法。 (II) The position sensitive detection means is located on the side of the large structure, and a plurality of units are arranged at different angular intervals around the large structure. How to get.

この発明によれば、大型構造物の内部構造情報を非破壊で正確に得ることができる。
また、この発明では、真上から降り注ぐ垂直ミュオンを検出する場合のように、位置敏感検出手段を穴を掘って配置するなどの空間的制限が少なく、大型構造物の側方の有限間隔位置に配置することができる。このため、位置敏感検出手段の周りに、異なる角度間隔で複数基配設することも可能であり、このように複数基配設すれば、複数の異なる角度での切断面に対する密度長観測が可能で、測定物である大型構造物の3次元断層像を得ること(トモグラフィック観測)ができる。
According to the present invention, it is possible to accurately obtain the internal structure information of a large structure in a non-destructive manner.
In addition, in the present invention, there are few spatial restrictions such as arranging the position sensitive detection means by digging a hole, as in the case of detecting a vertical muon pouring from directly above, and the finite interval positions on the side of the large structure are reduced. Can be arranged. For this reason, it is possible to arrange a plurality of units at different angular intervals around the position sensitive detection means, and if a plurality of units are arranged in this way, it is possible to observe the density length on the cut surface at a plurality of different angles. Thus, it is possible to obtain a three-dimensional tomographic image of a large structure as a measurement object (tomographic observation).

さらに、位置敏感検出手段を構成する測定系(計測回路系)について、シンチレーターからの高速パルスに対して、ナノ秒以下の高速電子回路を使用することにより、対象物である大型構造物を貫通する前方水平ミュオンの信号(F)と、丁度反対側の観測角度を持つ「空」の部分を貫通する(、言い換えれば物体を貫通しないで直接到達する)後方水平ミュオンの信号(B)とを区別して測定することができる。また、前方水平ミュオンの信号(F)と後方水平ミュオンの信号(B)とを区別するための他の手段として、ミュオンが地表に対し上方から降り注ぐものに限られ、下方からくるミュオンが存在しないという現象を利用して、各位置敏感検出器複合体を構成する第2検出板を水平ミュオンが貫通するy座標(垂直座標)の位置の上下関係から両信号(FとB)を区別する方法を用いることもできる。この方法の場合、高速電子回路が不要となるという利点がある。かくして得られるF/B強度比をデータとして取り込むことにより、きわめて安定なデータ取得をすることが出来る。加えてマイクロ秒以下の精度で絶対時間を付記してデータ取得を行うことにより、数々の実時間変化の追跡や、周期的な内部構造の時間変動に同期したストロボスコピックな解析を可能にする。   Furthermore, the measurement system (measurement circuit system) constituting the position sensitive detection means penetrates a large structure as an object by using a high-speed electronic circuit of nanosecond or less with respect to a high-speed pulse from a scintillator. Separate the front horizontal muon signal (F) and the rear horizontal muon signal (B) that passes through the “sky” part with the observation angle just opposite (in other words, it reaches directly without passing through the object). It can be measured separately. In addition, other means for distinguishing the front horizontal muon signal (F) from the rear horizontal muon signal (B) are limited to those where the muon pours into the ground from above, and there are no muons coming from below. The method of distinguishing both signals (F and B) from the vertical relationship of the y-coordinate (vertical coordinate) position through which the horizontal muon penetrates the second detection plate constituting each position-sensitive detector complex using the phenomenon Can also be used. This method has the advantage that a high-speed electronic circuit is not required. By capturing the F / B intensity ratio thus obtained as data, extremely stable data acquisition can be achieved. In addition, by acquiring data by adding absolute time with sub-microsecond accuracy, it is possible to track numerous real-time changes and perform stroboscopic analysis in synchronization with periodic internal structure time fluctuations. .

この発明に従う実施形態について図面を参照しながら以下に説明する。
図2は、この発明に従う大型構造物の内部構造情報を得る方法に用いるのに最適な位置敏感検出手段の配置構成を示す図である。
図2に示す位置敏感検出手段1は、2基の位置敏感検出器複合体2、3と、鉄または鉄のような重い金属からなる金属部材、図2では、2枚の金属部材4、4とで主として構成されている。
Embodiments according to the present invention will be described below with reference to the drawings.
FIG. 2 is a diagram showing an arrangement configuration of position sensitive detection means optimum for use in the method for obtaining the internal structure information of a large structure according to the present invention.
The position sensitive detection means 1 shown in FIG. 2 includes two position sensitive detector complexes 2 and 3 and a metal member made of heavy metal such as iron or iron. In FIG. And is mainly composed.

各位置敏感検出器複合体2、3は、第1検出板5と第2検出板6とで構成されている。
第1検出板5は、水平方向Hに沿って所定幅W1で多数の横長部材7、図2では10個の1m長10cm幅の横長部材7に区画され、全体として正方形状をなす。
第2検出板6は、垂直方向Vに沿って所定幅W2で多数の縦長部材8、図2では10個の1m長10cm幅の縦長部材8に区画され、全体として正方形状をなす。
Each position sensitive detector complex 2, 3 is composed of a first detection plate 5 and a second detection plate 6.
The first detection plate 5 is divided into a large number of horizontally long members 7 having a predetermined width W1 along the horizontal direction H, and in FIG. 2, 10 horizontally long members 7 having a length of 1 m and a width of 10 cm have a square shape as a whole.
The second detection plate 6 is divided into a number of vertically long members 8 having a predetermined width W2 along the vertical direction V, and in FIG. 2, 10 vertically long members 8 having a length of 1 m and a width of 10 cm have a square shape as a whole.

前記横長部材7および縦長部材8は、それぞれ第1検出板5および第2検出板6の測定面が同一の場合、幅が狭く配設数が多いほど、ミュオンの貫通位置の測定精度が高まるため好ましいが、具体的には検出回路のコストや占有空間率などで制限がある。このため、各検出板5,6を構成する各部材7,8の配設数は、
5〜20個の範囲がより好適である。
When the horizontally long member 7 and the vertically long member 8 have the same measurement surface of the first detection plate 5 and the second detection plate 6, respectively, the measurement accuracy of the penetrating position of the muon increases as the width becomes narrower and the number of arrangements increases. Although it is preferable, specifically, there are limitations due to the cost of the detection circuit and the occupied space ratio. For this reason, the number of members 7 and 8 constituting each detection plate 5 and 6 is as follows.
A range of 5 to 20 is more preferable.

各横長部材7および各縦長部材8は、1個のプラスチックシンチレーター9と、該プラスチックシンチレーター9の一端に設けられた光電子増倍管10とを有し、図2で示すように、これらのプラスチックシンチレーター9および光電子増倍管10がアルミニウム製のケースに収納されている。   Each horizontally long member 7 and each vertically long member 8 has one plastic scintillator 9 and a photomultiplier tube 10 provided at one end of the plastic scintillator 9, and these plastic scintillators are shown in FIG. 9 and the photomultiplier tube 10 are housed in an aluminum case.

金属部材4は、光や電子等のような軟成物バックグラウンド成分を除去するため、位置敏感検出器複合体2および3の間に配設される。
金属部材4としては、軟成物バックグラウンド成分を除去する金属部材であればよく、特に限定はしないが、例えば、鉄または鉄よりも重い金属からなる金属部材が挙げられる。しかしながら、コストの点で鉄部材を用いるのが特に好ましい。なお、鉄部材を用いる場合には、鉄部材の厚さを20〜200mmにすることが好ましい。鉄部材の厚さが20mm未満だと、軟成物バックグラウンド成分除去効果が認められなくなり、200mmを超えると、水平ミュオンの強度が変化してしまう。
Metal member 4 is disposed between position sensitive detector complexes 2 and 3 to remove soft background components such as light and electrons.
The metal member 4 is not particularly limited as long as it is a metal member that removes a soft material background component, and examples thereof include a metal member made of iron or a metal heavier than iron. However, it is particularly preferable to use an iron member in terms of cost. In addition, when using an iron member, it is preferable that the thickness of an iron member shall be 20-200 mm. When the thickness of the iron member is less than 20 mm, the effect of removing the soft background component is not recognized, and when it exceeds 200 mm, the strength of the horizontal muon changes.

また、図2では、光電子増倍管10からの情報が、配線を介してNIM高速回路、CAMAC高速回路およびコンピューターに順次送られ、データ処理される場合を示すが、前方水平ミュオンの信号(F)と後方水平ミュオンの信号(B)とを区別するための手段として、各位置敏感検出器複合体2,3を構成する第2検出板6を水平ミュオンが貫通するy座標(垂直座標)の位置の上下関係から両信号(FとB)を区別する方法を用いる場合には、光電子増倍管10からの情報を、配線を介し、時間分解能が比較的低速(例えば0.1〜1マイクロ秒)の電子回路を経て、コンピューターに送って、データ処理すればよい。   FIG. 2 shows a case where information from the photomultiplier tube 10 is sequentially sent to the NIM high-speed circuit, the CAMAC high-speed circuit, and the computer through the wiring and processed, but the front horizontal muon signal (F ) And the rear horizontal muon signal (B) as a means for distinguishing the y-coordinate (vertical coordinate) through which the horizontal muon penetrates the second detection plate 6 constituting each position sensitive detector complex 2, 3. In the case of using a method for distinguishing both signals (F and B) from the positional relationship of the position, the time resolution of information from the photomultiplier tube 10 is relatively low (for example, 0.1 to 1 microsecond) via the wiring. The data may be sent to a computer via the electronic circuit and processed.

ところで、ミュオンは、宇宙から飛来する陽子を主体とする一次宇宙線がバーン・アレン帯及び大気を通過する際に発生して地表に降り注ぐ宇宙線の一種である。ミュオンは、中性子に次いで寿命が長く、重さは電子の約207倍で、+及び−の電荷を有する素粒子であり、他の粒子との間で電磁気力のみ作用するだけで、強い相互作用(核力)がない。従って、パイオンや陽子、中性子などのように電磁気力と核力の双方の強度減衰をもつものに比べ、物質貫通力が高く、また相互作用の解析も容易である。加えて、電荷があるために、シンチレーターなどの検出器で、100 %の検出効率を持つ。電子は同じ性質を持つが質量が軽いため、物質中ですぐに光に変わり、厚い物体では利用できない。   By the way, muons are a kind of cosmic rays that are generated when primary cosmic rays mainly composed of protons flying from space pass through the Burn-Allen belt and the atmosphere and fall on the surface of the earth. Muons are long-lived next to neutrons, are approximately 207 times the weight of electrons, are elementary particles with + and-charges, and interact only with electromagnetic forces with other particles, and have strong interactions. There is no (nuclear power). Therefore, it has a higher material penetrating force and easier to analyze the interaction than those having both electromagnetic and nuclear strength attenuation such as pion, proton and neutron. In addition, because of the charge, detectors such as scintillators have 100% detection efficiency. Electrons have the same properties but light mass, so they quickly turn into light in the material and cannot be used with thick objects.

本発明者らは、前記宇宙線ミュオンのうち、天頂角50〜90°の範囲で地表に降り注ぐ水平ミュオンの透過後の強度が、図3に示すように、他の天頂角のミュオンに比べて高いことを見出した。   Among the cosmic ray muons, the present inventors show that the intensity after transmission of a horizontal muon that falls on the ground surface in the range of zenith angle 50 to 90 ° is higher than that of other zenith angle muons as shown in FIG. Found it expensive.

しかしながら、大気中には、光や電子等のような軟成物バックグラウンド成分が、ミュオンに対し数10倍程度存在し、さらに、水平ミュオンは、地表に降り注ぐ量が少ないため、水平ミュオンを用いて測定するには、軟成物バックグラウンド成分を除去する手段が必要である。   However, soft air background components such as light and electrons are present in the atmosphere about several tens of times that of muons, and horizontal muons use a horizontal muon because the amount that falls on the ground is small. Measurement requires a means to remove the soft background component.

このため、軟成物バックグラウンド成分を除去する手段を検討したところ、位置敏感検出器複合体2,3の間に、鉄のような重い金属からなる金属部材4を配設すると、1個の軟成分が第1(第2)の検出器複合体2を貫通してから金属部材4を通過すると、複数個の信号が第2(第1)の検出器複合体3に発生するという事実を用いて、軟成物バックグラウンド成分を有効に除去できることを見出し、その結果、この発明では、量が少なくバックグラウンドが大きいものの、透過後の強度が高い水平ミュオンを用いることを可能にした。   For this reason, when a means for removing the soft background component was examined, when a metal member 4 made of a heavy metal such as iron is disposed between the position sensitive detector complexes 2 and 3, one piece is provided. The fact that when the soft component passes through the metal member 4 after passing through the first (second) detector complex 2, a plurality of signals are generated in the second (first) detector complex 3. As a result, the present invention has made it possible to effectively remove the soft background component, and as a result, in the present invention, although the amount is small and the background is large, it is possible to use a horizontal muon having high intensity after transmission.

次に、この発明に従う大型構造物11の内部構造情報を得る方法について以下に説明する。
まず、図4に示すように、高炉等の大型構造物11の測定対象部12に対向する側方の有限間隔位置に位置敏感検出手段1を配置する。
Next, a method for obtaining the internal structure information of the large structure 11 according to the present invention will be described below.
First, as shown in FIG. 4, the position sensitive detection means 1 is arrange | positioned in the finite space | interval position of the side facing the measurement object part 12 of large sized structures 11, such as a blast furnace.

位置敏感検出手段1は、宇宙から大気を通過して地表に降り注ぐミュオンのうち、水平ミュオンを用い、この前方水平ミュオンMが、大型構造物11の測定対象部12を貫通してから位置検出手段1を構成する位置敏感検出複合体2、2枚の鉄部材4、4および位置検出複合体3を順次貫通するように配置する。図中、一点鎖線は、前方水平ミュオンMの飛来軌跡である。 Position-sensitive detector 1 is out of the muons falling on the ground through the air from space, using the horizontal muons, this forward horizontal muon M F is, the position detected through the target portion 12 of the large structure 11 The position sensitive detection complex 2, the two iron members 4, 4 and the position detection complex 3 constituting the means 1 are arranged so as to pass through sequentially. In the figure, the dashed line is the flying trajectory of the front horizontal muon M F.

このとき、前方水平ミュオンMは、貫通した第1検出板5および第2検出板6の位置から入射角αを算出し、この角度αから前方水平ミュオンMの飛来軌跡が特定され、これにより、前方水平ミュオンMの測定対象部での通過位置も特定される。 At this time, the forward horizontal muon M F, and calculates the incident angle alpha from a position of the first detection plate 5 and the second detection plate 6 penetrates, the flying trajectory of the front horizontal muon M F identified from this angle alpha, which , even passing position in the target portion of the front horizontal muons M F are identified.

第1検出板5および第2検出板6に到達したときのミュオン強度を色々なαについて、所定時間、例えば500時間で測定する。   The muon intensity when reaching the first detection plate 5 and the second detection plate 6 is measured for various α in a predetermined time, for example, 500 hours.

また、本発明では、前方水平ミュオンMの強度(F)を測定すると同時に、前記位置敏感検出手段1を挟んで大型構造物11とは反対側から、第2位置敏感検出器複合体3および金属部材4を貫通してから第1位置敏感検出器複合体2に到達する後方水平ミュオンMの強度(B)も同様な色々なαについて測定し、これら前方および後方水平ミュオンの同じαについての強度比(F/B)から大型構造物11の内部構造情報を算出することとした。これにより、高精度の内部構造情報を安定に得られる。 In the present invention, at the same time to measure the intensity (F) of the front horizontal muon M F, from the opposite side of the large structure 11 across the position-sensitive detector 1, second position sensitive detector complex 3 and strength of the rear horizontal muons M B arriving from through the metal member 4 in the first position sensitive detector complex 2 (B) was also measured for various α similar, for the same α of these front and rear horizontal muons The internal structure information of the large structure 11 was calculated from the intensity ratio (F / B). Thereby, highly accurate internal structure information can be obtained stably.

さらに、2基の位置敏感検知器複合体2,3からなる位置敏感検出手段1は、大型構造物11の側方の有限間隔位置であって、その周りに異なる角度間隔で複数基、好適には90°間隔で2基配設すれば、トモグラフィックな観測が可能で、測定物である大型構造物の3次元断層像を得ることもできる。   Further, the position sensitive detection means 1 including the two position sensitive detector complexes 2 and 3 is a finite interval position on the side of the large-sized structure 11, and a plurality of units are preferably arranged at different angular intervals around it. If two are arranged at intervals of 90 °, tomographic observation is possible, and a three-dimensional tomographic image of a large structure as a measurement object can be obtained.

次に、この発明に従う方法を用いて大型構造物である高炉の内部構造を調べたので以下に状況を説明する。
高炉の測定対象部である炉床部に対向する側方の位置に、図4に示すように、測定系として、第1及び第2位置敏感検出器複合体2,3と、それらの間に配置した2枚の鉄部材4,4とで構成される位置敏感検出手段1を配置する。各位置敏感検出器複合体2,3は、1m長10cm幅の10枚の横長部材を水平方向に沿って配設した1m角の正方形状の第1検出板と、1m長10cm幅の10枚の縦長部材を垂直方向に沿って配設した1m角の正方形状の第2検出板とを重ね合わせて構成した。各横長部材と各縦長部材は、1個のプラスチックシンチレーター(バイクロン社製、品番BC−408)と、該プラスチックシンチレーター9の一端に設けられた光電子増倍管(浜松ホトニクス社製、品番H7195)とをアルミニウム製のケースに収納することによって構成した。各鉄部材は、それぞれ板厚5mmの鉄板を20枚重ねて総板厚10cmとしたものを用いた。なお、本発明では、位置敏感検出器複合体2,3の間に配置する鉄部材4,4は、1枚で構成してもよいが、1枚で構成すると重量の点から設置作業性が悪いため、上述したように複数枚の鉄板を重ねて構成してなる2枚の鉄部材で構成することが好ましい。第1位置敏感検出器複合体2と第2位置敏感検出器複合体3との配設間隔は1500mmとした。前方および後方水平ミュオンの強度比(F/B)から、透過するミュオンの経路ごとの強度変化をF/B比で表示している。縦横座標を宇宙線経路の角度α(mrad)で表し、図5(a)〜(c)に示す高炉の内部構造情報が得られることになる。
図5(a)〜(c)は、炉底高さが、基準位置から垂直方向位置0cm、−50cmおよび−100cmの位置に変化したときに、位置敏感検出手段1でそれぞれ水平ミュオン強度をシュミレーション計算し、図4に示す高炉の中心線上の直角断面(紙面に対し直交する断面)で見て、垂直方向角度を縦軸とし、水平方向角度を横軸として、高炉の内部構造の変化に対応するF/B比のミュオン経路当りの強度分布を示したものである。図5(d)は、それらをまとめて、平均F/B比と炉底高さとの関係を算出した結果をプロットしたものである。尚、図5(d)中の黒塗り四角印は、実際の高炉の炉底部厚さの測定値をプロットしたものである。
Next, since the internal structure of the blast furnace which is a large structure was investigated using the method according to the present invention, the situation will be described below.
As shown in FIG. 4, as a measurement system, the first and second position sensitive detector complexes 2, 3 are arranged between the first and second position sensitive detector complexes 2, 3 at the side position opposite to the hearth part which is the measurement target part of the blast furnace. Position sensitive detection means 1 composed of two disposed iron members 4 and 4 is disposed. Each position sensitive detector complex 2, 3 is a 1 m square first detector plate in which 10 horizontally long members 1 m long and 10 cm wide are arranged along the horizontal direction, and 10 pieces of 1 m long 10 cm wide. And a 1 m square second detection plate arranged along the vertical direction. Each horizontally long member and each vertically long member are composed of one plastic scintillator (Bikelon, product number BC-408) and a photomultiplier tube provided at one end of the plastic scintillator 9 (manufactured by Hamamatsu Photonics, product number H7195). Were housed in an aluminum case. As each iron member, a steel plate having a total thickness of 10 cm was obtained by stacking 20 iron plates each having a thickness of 5 mm. In the present invention, the iron members 4 and 4 disposed between the position sensitive detector composites 2 and 3 may be composed of a single sheet. Since it is bad, it is preferable to configure with two iron members formed by stacking a plurality of iron plates as described above. The arrangement interval between the first position sensitive detector complex 2 and the second position sensitive detector complex 3 was set to 1500 mm. From the intensity ratio (F / B) of the front and rear horizontal muons, the intensity change for each path of the transmitted muon is indicated by the F / B ratio. The ordinate and abscissa are expressed by the angle α (mrad) of the cosmic ray path, and the internal structure information of the blast furnace shown in FIGS. 5A to 5C is obtained.
FIGS. 5A to 5C show the horizontal muon intensity simulated by the position sensitive detection means 1 when the furnace bottom height is changed from the reference position to the vertical position 0 cm, −50 cm and −100 cm. Corresponding to changes in the internal structure of the blast furnace with the vertical angle as the vertical axis and the horizontal angle as the horizontal axis, as calculated and viewed in the right-angle cross section (cross section perpendicular to the paper surface) on the center line of the blast furnace shown in FIG. It shows the intensity distribution per muon path of the F / B ratio. FIG. 5D is a plot of the results of calculating the relationship between the average F / B ratio and the furnace bottom height. In addition, the black square mark in FIG.5 (d) plots the measured value of the actual furnace bottom thickness of a blast furnace.

図5に示す結果から、本発明の方法によって測定された高炉の炉底部厚さは、実際の高炉の炉底部厚さと一致しており、高炉の内部構造が非破壊で精度よく得られている。   From the results shown in FIG. 5, the thickness of the bottom of the blast furnace measured by the method of the present invention is the same as the thickness of the actual bottom of the blast furnace, and the internal structure of the blast furnace is obtained non-destructively and accurately. .

尚、上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。特に、本発明では、大型構造物として高炉を例にして述べてきたが、高炉だけには限定されず、発電用ダム、橋脚、高架道路、船舶、車輌など、種々の大型構造物の内部構造情報を得ることができるのは言うまでもない。   The above description only shows an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims. In particular, in the present invention, a blast furnace has been described as an example of a large structure. However, the present invention is not limited to the blast furnace, and the internal structure of various large structures such as a power generation dam, a bridge pier, an elevated road, a ship, and a vehicle. Needless to say, you can get information.

この発明によれば、大型構造物の内部構造情報を非破壊で正確に得ることができる。
また、この発明では、真上から降り注ぐ垂直ミュオンを検出する場合のように、位置敏感検出手段を穴を掘って配置するなどの空間的制限が少なく、大型構造物の側方の有限間隔位置に配置することができる。このため、1つの位置敏感検出手段の周りに、異なる角度間隔で複数基配設することも容易であり、このように複数基配設すれば、複数の異なる角度での切断面に対する密度長観測が可能で、測定物である大型構造物の3次元断層像を得ること(トモグラフィック観測)ができる。
According to the present invention, it is possible to accurately obtain the internal structure information of a large structure in a non-destructive manner.
In addition, in the present invention, there are few spatial restrictions such as arranging the position sensitive detection means by digging a hole, as in the case of detecting a vertical muon pouring from directly above, and the finite interval positions on the side of the large structure are reduced. Can be arranged. For this reason, it is easy to arrange a plurality of units at different angular intervals around one position sensitive detection means. If a plurality of units are arranged in this way, density length observation on a cut surface at a plurality of different angles is possible. It is possible to obtain a three-dimensional tomographic image of a large structure as a measurement object (tomographic observation).

さらに、位置敏感検出手段を構成する測定系(計測回路系)について、シンチレーターからの高速パルスに対して、ナノ秒以下の高速電子回路を使用することにより、対象物である大型構造物を貫通する前方水平ミュオンの信号(F)と、丁度反対側の観測角度を持つ「空」の部分を貫通する(、言い換えれば物体を貫通しないで直接到達する)後方水平ミュオンの信号(B)とを区別して測定することができる。かくして得られるF/B強度比をデータとして取り込むことにより、きわめて安定なデータ取得をすることが出来る。加えてマイクロ秒以下の精度で絶対時間を付記してデータ取得を行うことにより、数々の実時間変化の追跡や、周期的な内部構造の時間変動に同期したストロボスコピックな解析を可能にする。   Furthermore, the measurement system (measurement circuit system) constituting the position sensitive detection means penetrates a large structure as an object by using a high-speed electronic circuit of nanosecond or less with respect to a high-speed pulse from a scintillator. Separate the front horizontal muon signal (F) and the rear horizontal muon signal (B) that passes through the “sky” part with the observation angle just opposite (in other words, it reaches directly without passing through the object). It can be measured separately. By capturing the F / B intensity ratio thus obtained as data, extremely stable data acquisition can be achieved. In addition, by acquiring data by adding absolute time with sub-microsecond accuracy, it is possible to track numerous real-time changes and perform stroboscopic analysis in synchronization with periodic internal structure time fluctuations. .

特許文献1記載の従来法を説明するための図である。It is a figure for demonstrating the conventional method of patent document 1. FIG. この発明に従う方法に用いるのに適した位置検出手段の概略構成例を示す斜視図である。It is a perspective view which shows the example of schematic structure of the position detection means suitable for using for the method according to this invention. 種々のミュオンを用い、物体の透過厚さと透過後のミュオン強度を示すグラフである。It is a graph which shows the muon intensity | strength after permeation | transmission thickness of an object and permeation | transmission using various muons. 測定対象物体である高炉と位置検出手段の相対的な位置関係を示した図である。It is the figure which showed the relative positional relationship of the blast furnace which is a measurement object, and a position detection means. この発明に従う方法によって、図4の測定状況での高炉の内部構造の測定のシュミレーションを示す図である。色々な炉底高さに対してのシュミレーション結果で、実験結果との比較から炉底高さが決まる。It is a figure which shows the simulation of a measurement of the internal structure of a blast furnace in the measurement condition of FIG. 4 by the method according to this invention. Simulation results for various furnace bottom heights, which are determined from comparison with experimental results.

符号の説明Explanation of symbols

1 位置敏感検出手段
2 第1位置敏感検出器複合体
3 第2位置敏感検出器複合体
4 金属部材
5 第1検出板
6 第2検出板
7 横長部材
8 縦長部材
9 プラスチックシンチレーター
10 光電子増倍管
11 大型構造物
12 大型構造物の測定対象部
DESCRIPTION OF SYMBOLS 1 Position sensitive detection means 2 1st position sensitive detector complex 3 2nd position sensitive detector complex 4 Metal member 5 1st detection plate 6 2nd detection plate 7 Horizontal member 8 Vertical member 9 Plastic scintillator 10 Photomultiplier tube 11 Large structure 12 Measurement target part of large structure

Claims (2)

大型構造物の測定対象部に対向する側方の有限間隔位置に、測定系として位置敏感検出手段を配置し、宇宙からの1次宇宙線により大気でつくられ地表に降り注ぐ素粒子ミュオンが、大型構造物の測定対象部を貫通して、位置敏感検出手段を構成する測定系に到達したときのミュオン強度を所定時間間隔で測定し、前記ミュオン強度の通過経路ごとの分布を知ることによって大型構造物の内部構造情報を得る方法であって、
位置敏感検出手段は、水平方向に沿って所定幅で多数のプラスチックシンチレーターの横長部材に区画された正方形状の第1検出板と、垂直方向に沿って所定幅で多数の縦長部材に区画された正方形状の第2検出板とをもつ位置敏感検出器複合体を2基有し、
2基の位置敏感検出器複合体は所定間隔で配設され、
各位置敏感検出器複合体は、第1および第2検出板に到達したミュオンを同時計測して横縦のxy座標を特定するため、横長部材と縦長部材が直交するように配置され、
前記位置敏感検出器複合体の間に、鉄または鉄よりも重い金属からなる金属部材を配設し、
前記ミュオンのうち、天頂角50〜90°の範囲で地表に降り注ぐ高エネルギーの水平ミュオンを用い、
大型構造物の測定対象部を貫通して第1位置敏感検出器複合体に到達する前方水平ミュオンが、つづいて第2位置敏感検出器複合体に到達する際に、それぞれの到達位置をつないだ直線を逆にたどることで、前方水平ミュオンが貫通する前記測定対象部内の経路が特定され、
大型構造物の測定対象部、第1位置敏感検出器複合体および金属部材を順次貫通して第2位置敏感検出器複合体に到達する前方水平ミュオンの強度と、前記位置敏感検出手段を挟んで大型構造物とは反対側から第2位置敏感検出器複合体および金属部材を順次貫通して第1位置敏感検出器複合体に到達する後方水平ミュオンの強度の双方を同じ位置敏感検出手段で測定し、大型構造物の内部構造が時間と共に変化する場合、測定される全てのデータに、コンピューターで記録する際に、絶対時間をマイクロ秒以下の精度で付記し、測定した前方および後方水平ミュオンの強度比から大型構造物の動的内部構造情報を得ることを特徴とする多重分割水平ミュオン検出手段を用いて大型構造物の内部構造情報を得る方法。
Position sensitive detection means as a measurement system is placed at a finite distance on the side facing the measurement target part of a large structure, and a large particle muon that is created in the atmosphere by primary cosmic rays from the space and falls on the ground surface Large structure by measuring the muon intensity at a predetermined time interval when it reaches the measurement system that constitutes the position sensitive detection means through the measurement target part of the structure, and knowing the distribution of the muon intensity for each passing path A method for obtaining internal structure information of an object,
The position sensitive detection means is divided into a first detection plate having a square shape and a plurality of horizontally long members of a plastic scintillator with a predetermined width along the horizontal direction, and a plurality of vertically long members with a predetermined width along the vertical direction. Two position sensitive detector complexes with a square second detector plate;
Two position sensitive detector complexes are arranged at predetermined intervals,
Each position sensitive detector complex is arranged so that the horizontally long member and the vertically long member are orthogonal to each other to simultaneously measure the muons that have reached the first and second detection plates to identify the horizontal and vertical xy coordinates.
A metal member made of iron or a metal heavier than iron is disposed between the position sensitive detector complexes,
Among the muons, using a high-energy horizontal muon that falls on the surface of the earth with a zenith angle of 50 to 90 °,
When the forward horizontal muon that reaches the first position-sensitive detector complex through the measurement target part of the large structure and subsequently reaches the second position-sensitive detector complex, the respective arrival positions are connected. By following the straight line, the path in the measurement target part through which the front horizontal muon penetrates is specified,
The strength of the front horizontal muon that reaches the second position sensitive detector complex by sequentially passing through the measurement target portion of the large structure, the first position sensitive detector complex and the metal member, and sandwiching the position sensitive detection means Measure both the strength of the rear horizontal muon that reaches the first position sensitive detector complex through the second position sensitive detector complex and the metal member sequentially from the opposite side of the large structure with the same position sensitive detection means. However, when the internal structure of a large structure changes with time, the absolute time is added with an accuracy of microseconds or less when all the measured data is recorded by a computer . A method for obtaining internal structure information of a large structure by using a multi-division horizontal muon detection means characterized by obtaining dynamic internal structure information of the large structure from an intensity ratio.
位置敏感検出手段は、大型構造物の側方であって、その周りに異なる角度間隔で複数基配設することを特徴とする請求項1記載の大型構造物の内部構造情報を得る方法。   2. The method for obtaining internal structure information of a large structure according to claim 1, wherein a plurality of the position sensitive detection means are arranged on the side of the large structure at different angular intervals.
JP2005103681A 2005-03-31 2005-03-31 Method for obtaining internal structure information of large structures by horizontal cosmic ray muon multiple division type detection means Active JP4106445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103681A JP4106445B2 (en) 2005-03-31 2005-03-31 Method for obtaining internal structure information of large structures by horizontal cosmic ray muon multiple division type detection means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103681A JP4106445B2 (en) 2005-03-31 2005-03-31 Method for obtaining internal structure information of large structures by horizontal cosmic ray muon multiple division type detection means

Publications (2)

Publication Number Publication Date
JP2006284329A JP2006284329A (en) 2006-10-19
JP4106445B2 true JP4106445B2 (en) 2008-06-25

Family

ID=37406418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103681A Active JP4106445B2 (en) 2005-03-31 2005-03-31 Method for obtaining internal structure information of large structures by horizontal cosmic ray muon multiple division type detection means

Country Status (1)

Country Link
JP (1) JP4106445B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2729951C1 (en) * 2019-12-26 2020-08-13 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Dynamically similar aerodynamic surface model

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853804B2 (en) * 2005-10-31 2012-01-11 新日本製鐵株式会社 Blast furnace bottom management method
JP4853803B2 (en) * 2005-10-31 2012-01-11 新日本製鐵株式会社 Blast furnace bottom management method
US7633062B2 (en) * 2006-10-27 2009-12-15 Los Alamos National Security, Llc Radiation portal monitor system and method
JP2008145141A (en) * 2006-12-06 2008-06-26 Nippon Steel Corp Method of estimating state in blast furnace
JP5463552B2 (en) * 2008-10-22 2014-04-09 国立大学法人 東京大学 Internal structure analysis device for giant objects
JP5638912B2 (en) * 2010-10-15 2014-12-10 電気化学工業株式会社 Density distribution estimation method inside reactor using muon
WO2013116795A1 (en) * 2012-02-01 2013-08-08 Muons, Inc. Method and apparatus for very large acceptance gamma ray detector for security applications
RU2503075C1 (en) * 2012-05-24 2013-12-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" Method of diagnostics of emergency nuclear reactor
JP6885806B2 (en) * 2017-06-30 2021-06-16 国立大学法人東海国立大学機構 How to get information inside the blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2729951C1 (en) * 2019-12-26 2020-08-13 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Dynamically similar aerodynamic surface model

Also Published As

Publication number Publication date
JP2006284329A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4106445B2 (en) Method for obtaining internal structure information of large structures by horizontal cosmic ray muon multiple division type detection means
JP2007271400A (en) Method of acquiring internal structure information of structure using multi-division horizontal muon detecting means
JP4486623B2 (en) Compton imaging camera
US7724869B2 (en) Detector array and device using the same
CN105393111B (en) μ detector arrays station
US20070034805A1 (en) Linear array detector system and inspection method
US9557427B2 (en) Thin gap chamber neutron detectors
RU2009119985A (en) DETECTION OF PARTICLES AND OPTIONS FOR APPLICATION FOR SAFETY AND PORTAL CONTROL
CN103975253A (en) X-ray detection apparatus
KR20100135230A (en) Device for nondestructively examining composite structure and nondestructive examination method
CN105549103A (en) Method, device and system for inspecting moving object based on cosmic rays
CN103245680A (en) Fast neutron imaging method and system based on time-of-flight method
US10996352B2 (en) Imaging radiation detector array
JPH05501608A (en) Defective point detection device in pipeline
WO2020194560A1 (en) Tsunami detection system and tsunami detection method
CN110531418A (en) A kind of breakpoint three-dimensional finely positioning method based on Hilbert polarization imaging
US10884144B2 (en) Directional array with alternating short and long detectors
CN112285758B (en) Nuclear radiation field probe, detector and detection system
US8878138B2 (en) Multi-sensor neutron source location system
CN109655929B (en) Method for accurately determining land mine position based on PGNAA technology
CN2303294Y (en) Compton scattering nondestructive testing apparatus
CA3141591A1 (en) Apparatus, system and method regarding borehole muon detector for muon radiography and tomography
US11994645B2 (en) Apparatus, system and method regarding borehole muon detector for muon radiography and tomography
JP5507904B2 (en) Displacement measuring device
US10330804B1 (en) One-dimensional directional particle detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150