JP4098056B2 - Transparent sheet - Google Patents

Transparent sheet Download PDF

Info

Publication number
JP4098056B2
JP4098056B2 JP2002298658A JP2002298658A JP4098056B2 JP 4098056 B2 JP4098056 B2 JP 4098056B2 JP 2002298658 A JP2002298658 A JP 2002298658A JP 2002298658 A JP2002298658 A JP 2002298658A JP 4098056 B2 JP4098056 B2 JP 4098056B2
Authority
JP
Japan
Prior art keywords
transparent
roll
resin layer
transparent sheet
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002298658A
Other languages
Japanese (ja)
Other versions
JP2004130709A (en
Inventor
敏正 江口
宏典 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002298658A priority Critical patent/JP4098056B2/en
Publication of JP2004130709A publication Critical patent/JP2004130709A/en
Application granted granted Critical
Publication of JP4098056B2 publication Critical patent/JP4098056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示素子用基板、有機EL表示素子用基板、太陽電池基板等に好適に利用できる透明なシートに関する。
【0002】
【従来の技術】
一般に、液晶表示素子用基板、有機EL表示素子用基板、太陽電池基板等には、ガラス板が多く用いられている。しかし、割れ易い、曲げられない、比重が大きく軽量化に不向き等の問題から、近年、ガラス板の代わりにプラスチックを用いる試みが数多く行われるようになってきた。例えば、脂環式構造、芳香族等を持つ特定のビス(メタ)アクリレートを含む組成物を活性エネルギー線等により硬化させ成形した透明基板を用いてなる液晶表示素子が検討されている。(例えば、特許文献1参照。)
しかしながら、プラスチックは、ガラス板に比べ線膨張係数が大きいため、表示素子用基板の中でも、特にアクティブマトリックス表示素子用基板に用いた場合、その製造時の加熱工程おいて、金属やシリコン及びそれらの酸化物などの無機薄膜にクラックが発生したり、剥離する等の不具合が生じる場合があり問題となっている。したがって、軽く、曲げることができ、軽いと同時に線膨張係数の小さいシートが望まれている。
【0003】
一方、ガラス基板を出来る限り薄くすることで、軽く、曲げることができるようにすることも検討されている。このような場合、割れやすさを回避するために樹脂を塗布することなどが提案されている。(例えば、非特許文献1参照。)しかし、ガラス基板を薄くすることは50μm程度が下限であり、プラスチックほどの軽量化は困難であるとともに、このような薄いガラスは、より厚いガラスを研磨やエッチングすることで得るために高コストになってしまう。
従来、ガスバリア層として樹脂フィルムに透明無機薄膜を成膜することが行われている。(例えば、特許文献2,3参照。)しかし、これらは線膨張係数を下げる目的で発明されたものではなく、片面に樹脂層が無い場合にも割れない厚さである0.01〜0.1μmという薄い厚さで用いられるため線膨張係数を下げるには有効ではない。また、線膨張係数が低い樹脂フィルムとしては、ポリイミドやポリエチレンナフタレート(PEN)が知られているが、前者は一般に可視光でも短波長域に吸収を持ち黄色〜褐色であり光学用途には好ましくなく、後者は大きな位相差を持つために光学等方性が必要な用途には好ましくない。
【0004】
【特許文献1】
特開平10−90667号公報(第2−3頁)
【非特許文献1】
A.Weber, Thin Glass−Polymer System as Flexible Substrate for Displays, SID INTERNATIONAL SYMPOSIUM DIGEST OFTECHNICAL PAPERS 2002 Vol.XXXIII, No.1 P.53−55
【特許文献2】
特開平9−39151号公報(第1−3頁)
【特許文献3】
特開平10−329254号公報(第2−3頁)
【0005】
【発明が解決しようとする課題】
本発明は、線膨張係数が低く、液晶表示素子用基板、有機EL表示素子用基板、太陽電池基板等に好適に利用できる透明シートを提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を達成すべく鋭意検討した結果、少なくとも厚さ0.6μm以上10μm以下の透明無機層及びそれを挟む透明樹脂層を有するシートが液晶表示素子用基板や有機EL表示素子用基板、特にアクティブマトリックス表示素子用基板に好適に用いられることを見出し、本発明に至った。
すなわち本発明は、
(1) 液晶表示素子用基板又は有機EL素子用基板に用いる透明シートであって、少なくとも厚さ0.6μm以上50μm未満の透明無機層及びこれを挟む透明樹脂層1並びに透明樹脂層2を有し、30℃から100℃における面内方向の線膨張係数が40ppm/℃以下であり、位相差が10nm以下であり、波長400nmにおける光線透過率が80%以上である透明シートであり、透明樹脂層1及び透明樹脂層2が、ポリカーボネート、ポリエーテルスルホン、シクロオレフィンポリマー、エポキシ樹脂を活性エネルギー線または熱によって架橋させた樹脂、又はアクリレートを活性エネルギー線または熱によって架橋させた樹脂からなる透明シート
(2) 前記透明無機層が物理気相成長法および/または化学気相成長法により成膜される(1)の透明シート、
(3) 前記物理気相成長法が真空蒸着法またはイオンプレーティング法である(2)の透明シート、
(4) 前記化学気相成長法が大気圧下で行なわれる(2)の透明シート、
(5) 前記透明樹脂層1上に透明無機層および透明樹脂層2をロールツーロール方式で積層した(1)〜(4)の透明シート、
である。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明中の透明無機層の例としては、酸化珪素,酸化窒化珪素などの可視光の透過性を有する珪素化合物や、酸化アルミニウム,酸化鉛,酸化亜鉛,酸化チタン,酸化タンタルなどの可視光の透過性を有する金属酸化物などが挙げられる。これらは、単層で用いても2層以上を用いても良い。
透明無機層の成膜は、真空蒸着,イオンプレーティング,スパッタリングなどの物理気相成長法、真空中でのプラズマCVD,触媒CVD,大気圧下でのCVDなどの化学気相成長法、ゾル−ゲル法等の湿式塗布法により行うことができる。これらのうち、物理気相成長法,化学気相成長法は低温で緻密な膜を得られやすく好ましい。更に、物理気相成長法の中でも真空蒸着とイオンプレーティングは成膜速度が速く、0.2μm以上50μm未満の膜を連続的に成膜する際に好ましい。また、化学気相成長法では、大気圧下でこれを行う方法が、真空工程を必要とせずタクトタイムを短くできる点から好ましい。
【0008】
本発明中の透明樹脂層1および透明樹脂層2に用いる透明樹脂とは、可視光線の透過性を有する樹脂を示す。本発明の透明樹脂の透明性は、シートにした際の550nmでの光線透過率が80%以上のものが好ましく、より好ましくは85%以上、最も好ましくは90%以上である。表示素子用基板として用いる場合には、85%以上が好ましい。
本発明の透明樹脂のガラス転移温度は、120℃以上であることが好ましく、より好ましくは180℃以上、さらに好ましくは200℃以上である。ガラス転移温度が120℃未満の樹脂を用いた場合、例えば液晶表示素子基板に適用すると、配向膜形成や基板はり合わせなどの加熱工程で変形やうねりが生じる恐れがある。更に透明性や位相差が小さいことから、本発明中の透明樹脂層に用いる透明樹脂は非晶質であることが好ましい。位相差が10nmを超える場合、偏光を利用する表示素子の場合にコントラストの低下や色ムラが発生する場合があるため、透明シートの位相差は10nm以下である必要がある。
【0009】
本発明の透明樹脂の例としては、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、シクロオレフィンポリマーなどの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂、アクリレートなどの反応性モノマーを活性エネルギー線で架橋させた樹脂などがあげられ、耐溶剤性に優れていることからアクリレートやエポキシ樹脂などの反応性モノマーを活性エネルギー線および/または熱によって架橋させた樹脂が好ましい。反応性モノマーとしては、熱や活性エネルギー線で架橋させることができるものであれば特に制限されないが、透明性や耐熱性の面から2つ以上の官能基を有する(メタ)アクリレートや2つ以上の官能基を有するエポキシ樹脂が好ましく、特に2つ以上の官能基を有する(メタ)アクリレートが好ましい。これら樹脂は、単独で用いても2種以上を併用しても良い。さらに各透明樹脂層は、2層以上の多層構成であってもかまわない。また、透明樹脂層1と透明樹脂層2とは、同一の樹脂構成であっても、異なるものでも良い。
【0010】
本発明の透明樹脂層1は、架橋させうる樹脂の場合は注型法,流延法などで、熱可塑性樹脂の場合は溶融押出法や溶液流延法などで成膜することができる。紫外線等の活性エネルギー線により架橋させて製造する場合は、樹脂組成物中にラジカルを発生する光重合開始剤を含有させることが好ましい。その際に用いる光重合開始剤としては、例えばベンゾフェノン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ジエトキシアセトフェノン、1−ヒドロキシ−シクロヘキシル−フェニルケトン、2,6−ジメチルベンゾイルジフェニルホスフィンオキシド、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシドが挙げられる。これらの光重合開始剤は2種以上を併用しても良い。
【0011】
本発明で、透明樹脂層1上に、透明無機層および透明樹脂層2を順次積層する場合は、製造工程中で透明無機層に傷や割れが発生することを防ぐことから、ベースとなるロール状の透明シート原反等である透明樹脂層1上に、ロールツーロール方式で透明無機層を成膜した後、連続してその上層に、やはりロールツーロール方式で透明樹脂層2を成膜することが好ましい。この場合、透明樹脂層2の成膜方法としては、透明無機層を物理気相成長法などにより真空チャンバー中で成膜する場合には蒸着重合法が、ゾル−ゲル法や大気圧下での化学気相成長法により成膜する場合にはグラビアコートやダイコート等の湿式塗布法を用いることができる。
【0012】
本発明の透明樹脂層中には、必要に応じて、透明性、耐熱性等の特性を損なわない範囲で、酸化防止剤、紫外線吸収剤、染顔料を含んでいても良い。
【0013】
本発明の透明シートの線膨張係数は40ppm/℃以下であることが必要である。従来の透明シートで得られているような50ppm/℃を超える線膨張係数の場合、表示素子の製造時の加熱工程おいて、金属やシリコン及びそれらの酸化物などの無機薄膜にクラックが発生したり、剥離する等の不具合が生じる場合がある。
【0014】
【実施例】
以下、本発明の内容を実施例により詳細に説明するが、本発明は、その要旨を越えない限り以下の例に限定されるものではない。
(実施例1)
溶融押出法により幅600mm厚さ10μmのポリカーボネートフィルムのロール品を作成した。このフィルム上に、グラビアコーターとUV照射装置を有するロールツーロール方式の塗工機を用いて、ノルボルナンジメチロールジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物をグラビアコーターにより膜厚1μmで塗布した後、500mJ/cm2のUV光を照射して硬化させ、透明樹脂層1を作製した。シートを300mm×400mmの大きさに切断して板状治具に固定した後、パルスDC式多層スパッタリング装置によりAlターゲットを用いた反応性スパッタリグでAl2O3を膜厚0.6μmにスパッタし、透明無機層を成膜した。治具に固定したシートをスパッタリング装置から取り出し、枚葉式ダイコーターを用いてノルボルナンジメチロールジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物を膜厚3μmに塗布し、UV照射装置により500mJ/cm2のUV光を照射して硬化させ、枚葉の透明シートを得た。
【0015】
(実施例2)
溶融押出法により幅600mm厚さ10μmのポリエーテルスルホンフィルムのロール品を作成した。このフィルム上に、グラビアコーターとUV照射装置を有するロールツーロール方式の塗工機を用いて、ノルボルナンジメチロールジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物をグラビアコーターにより膜厚1μmで塗布した後、500mJ/cm2のUV光を照射して硬化させ、透明樹脂層1を作製した。続いて、ロールツーロール方式の真空蒸着装置を用いてSiO2を膜厚1μmに蒸着し、透明無機層を成膜した。真空成膜から取り出した後、再度ロールツーロール方式の塗工機を用いて、ノルボルナンジメチロールジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物を膜厚3μmで塗布し、500mJ/cm2のUV光を照射して硬化させ、ロール状で透明シートを得た。
【0016】
(実施例3)
溶融押出法により幅600mm厚さ10μmのポリエーテルスルホンフィルムのロール品を作成した。このフィルム上に、グラビアコーターとUV照射装置を有するロールツーロール方式の塗工機を用いて、ジシクロペンタジエニルジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物をグラビアコーターにより膜厚1μmで塗布した後、500mJ/cm2のUV光を照射して硬化させ、透明樹脂層1を作製した。ロールツーロール方式の、大気圧CVD装置,グラビアコーター,UV照射装置を有する塗工機を用い、CVDによりテトラメトキシシランを原料ガスとして透明無機層であるSiO2を膜厚3μmに成膜し、続いてジシクロペンタジエニルジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物を膜厚5μmにグラビアコーターで塗布し、500mJ/cm2のUV光を照射して硬化させ、ロール状で透明シートを得た。
【0017】
(実施例4)
グラビアコーターとUV照射装置を有するロールツーロール方式の塗工機を用いて、離型処理した厚さ25μmのポリエステルフィルム上に、ジシクロペンタジエニルジアクリレート70重量部と平均分子量500であるエポキシアクリレート30重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物を膜厚10μmに塗布し、750mJ/cm2のUV光を照射して硬化させ、透明樹脂層1を得た。ロールツーロール方式のイオンプレーティング装置により透明無機層であるSiO2を厚さ2μmに成膜した。イオンプレーティング装置から取り出した後、再度ロールツーロール方式の塗工機を用いて、ジシクロペンタジエニルジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物を膜厚8μmに塗布し、750mJ/cm2のUV光を照射して硬化させ、ポリエステルフィルムから剥離して透明シートを得た。
【0018】
(比較例1)
ジシクロペンタジエニルジアクリレート70重量部と平均分子量500であるエポキシアクリレート30重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトンを0.5重量部を加えた樹脂組成物を、離型処理したガラス板に枚葉式ダイコーターで塗布し、両面から300mJ/cm2のUV光を照射して硬化させた。さらに真空オーブン中で、約100℃で3時間加熱後、さらに約250℃で3時間加熱し、厚さ20μmの透明シートを得た。
【0019】
(比較例2)
溶融押出法により幅600mm厚さ10μmのポリエーテルスルホンフィルムのロール品を作成した。このフィルム上に、グラビアコーターとUV照射装置を有するロールツーロール方式の塗工機を用いて、ノルボルナンジメチロールジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物をグラビアコーターにより膜厚1μmで塗布した後、500mJ/cm2のUV光を照射して硬化させ、透明樹脂層を成膜した。続いて、ロールツーロール方式のパルスDC式スパッタリング装置によりSiターゲットを用いた反応性スパッタリグでガスバリア層であるSiOx(1.5<x<2.0)を膜厚0.1μmに蒸着し、透明無機層を成膜した。真空成膜から取り出した後、再度ロールツーロール方式の塗工機を用いて、ノルボルナンジメチロールジアクリレート90重量部と平均分子量500であるエポキシアクリレート10重量部の混合物に光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン0.5重量部を加えた樹脂組成物を膜厚3μmで塗布し、500mJ/cm2のUV光を照射して硬化させ、ロール状で透明シートを得た。
【0020】
以上のようにして作製した光学シートについて、下記に示す評価方法により、各種特性を測定した。
a)線膨張係数
セイコー電子(株)製TMA/SS120C型熱応力歪測定装置を用いて、窒素雰囲気下、1分間に5℃の割合で温度を30℃から150℃まで上昇させた後、一旦0℃まで冷却し、再び1分間に5℃の割合で温度を上昇させて30℃〜100℃の時の値を測定して求めた。荷重を5gにし、引張モードで測定を行った。測定は、独自に設計した石英引張チャック(材質:石英,線膨張係数0.5ppm/℃)を用いた。一般に使われているインコネル製のチャックは、それ自体の線膨張が高いことやサンプルの支持形態に不具合があり、測定ばらつきが大きくなる問題があった。したがって、石英引張チャックを独自に設計し、それを用いて線膨張係数を測定することにした。この引張チャックを用いることにより、圧縮モードで測定した場合とほぼ同様の値で測定できることを確認している。
b)耐熱性(ガラス転移温度)
セイコー電子(株)製DMS―210型粘弾性測定装置で測定し、1Hzでのtanδの最大値をガラス転移温度(Tg)とした。
c)光線透過率
分光光度計U3200(日立製作所製)で550nmの光線透過率を測定した。
d)位相差
王子計測器(株)製自動複屈折計KOBRA−21を用いて入社角度0度の値を測定した。
評価結果を表1に示す。
【0021】
【表1】

Figure 0004098056
【0022】
実施例1〜4は低線膨張係数、高耐熱性、高透明性(高光線透過率)、低位相差であり、良好な特性を示した。
比較例1では透明無機層を有しないために線膨張係数が大きな値となってしまった。
比較例2では、透明無機層を有するものの、ガスバリア層として形成された厚さ0.6μm未満の層であるために線膨張係数が40ppm/℃を超えた大きな値となってしまった。
【発明の効果】
本発明の光学シートは、低線膨張係数、透明性、耐熱性に優れるため、アクティブマトリックスタイプの液晶表示素子用基板や有機EL素子用基板に好適に利用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent sheet that can be suitably used for a liquid crystal display element substrate, an organic EL display element substrate, a solar cell substrate, and the like.
[0002]
[Prior art]
In general, glass plates are often used for liquid crystal display element substrates, organic EL display element substrates, solar cell substrates, and the like. However, in recent years, many attempts have been made to use plastic instead of a glass plate because of problems such as being easily broken, not being bent, having a large specific gravity, and not suitable for weight reduction. For example, a liquid crystal display element using a transparent substrate obtained by curing and molding a composition containing a specific bis (meth) acrylate having an alicyclic structure, an aromatic group or the like with active energy rays or the like has been studied. (For example, refer to Patent Document 1.)
However, plastics have a larger coefficient of linear expansion than glass plates, and therefore, when used for display element substrates, particularly active matrix display element substrates, in the heating process at the time of manufacture, metals, silicon, and their Inorganic thin films such as oxides may cause problems such as cracking or peeling. Therefore, there is a demand for a sheet that is light and bendable, and that is light and has a low coefficient of linear expansion.
[0003]
On the other hand, it has been studied to make the glass substrate as thin as possible so that it can be bent lightly. In such a case, it has been proposed to apply a resin in order to avoid easy cracking. (For example, refer nonpatent literature 1.) However, about 50 micrometers is thinnest about making a glass substrate thin, and while weight reduction like plastic is difficult, such a thin glass polishes thicker glass. It becomes expensive because it is obtained by etching.
Conventionally, a transparent inorganic thin film is formed on a resin film as a gas barrier layer. (For example, refer to Patent Documents 2 and 3.) However, these are not invented for the purpose of reducing the linear expansion coefficient, and have a thickness that does not crack even when there is no resin layer on one side. Since it is used at a thickness as thin as 1 μm, it is not effective in reducing the linear expansion coefficient. In addition, as a resin film having a low linear expansion coefficient, polyimide and polyethylene naphthalate (PEN) are known. However, the former is generally yellow to brown having absorption in a short wavelength region even with visible light, and is preferable for optical applications. The latter has a large phase difference and is not preferable for applications that require optical isotropy.
[0004]
[Patent Document 1]
JP-A-10-90667 (page 2-3)
[Non-Patent Document 1]
A. Weber, Thin Glass-Polymer System as Flexible Substrate for Displays, SID INTERNATIONAL SYMPOSIUM DIGITAL OFTECHNICAL PAPERS 2002 Vol. XXXIII, No. 1 P.M. 53-55
[Patent Document 2]
JP-A-9-39151 (page 1-3)
[Patent Document 3]
JP-A-10-329254 (page 2-3)
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a transparent sheet that has a low linear expansion coefficient and can be suitably used for a liquid crystal display element substrate, an organic EL display element substrate, a solar cell substrate, and the like.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above problems, the present inventors have found that a sheet having at least a transparent inorganic layer having a thickness of 0.6 μm or more and 10 μm or less and a transparent resin layer sandwiching the transparent inorganic layer is a substrate for a liquid crystal display element or an organic EL display It has been found that it can be suitably used for an element substrate, particularly an active matrix display element substrate, and has led to the present invention.
That is, the present invention
(1) A transparent sheet used for a substrate for a liquid crystal display element or a substrate for an organic EL element, having at least a transparent inorganic layer having a thickness of 0.6 μm or more and less than 50 μm, a transparent resin layer 1 and a transparent resin layer 2 sandwiching the transparent inorganic layer A transparent sheet having a linear expansion coefficient in the in-plane direction at 30 ° C. to 100 ° C. of 40 ppm / ° C. or less, a phase difference of 10 nm or less, and a light transmittance at a wavelength of 400 nm of 80% or more , and a transparent resin Transparent sheet comprising layer 1 and transparent resin layer 2 made of polycarbonate, polyethersulfone, cycloolefin polymer, resin obtained by crosslinking epoxy resin with active energy rays or heat, or resin obtained by crosslinking acrylate with active energy rays or heat .
(2) The transparent sheet according to (1), wherein the transparent inorganic layer is formed by physical vapor deposition and / or chemical vapor deposition.
(3) The transparent sheet according to (2), wherein the physical vapor deposition method is a vacuum deposition method or an ion plating method,
(4) The transparent sheet according to (2), wherein the chemical vapor deposition method is performed under atmospheric pressure,
(5) The transparent sheet of (1) to (4), wherein a transparent inorganic layer and a transparent resin layer 2 are laminated on the transparent resin layer 1 by a roll-to-roll method,
It is.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Examples of the transparent inorganic layer in the present invention include visible light transmissive silicon compounds such as silicon oxide and silicon oxynitride, and visible light such as aluminum oxide, lead oxide, zinc oxide, titanium oxide, and tantalum oxide. Examples thereof include metal oxides having permeability. These may be used as a single layer or two or more layers.
The transparent inorganic layer can be formed by physical vapor deposition such as vacuum deposition, ion plating, sputtering, chemical vapor deposition such as plasma CVD in vacuum, catalytic CVD, CVD under atmospheric pressure, sol- It can be performed by a wet coating method such as a gel method. Among these, the physical vapor deposition method and the chemical vapor deposition method are preferable because a dense film can be easily obtained at a low temperature. Further, among the physical vapor deposition methods, vacuum deposition and ion plating have a high film formation rate, and are preferable when a film having a thickness of 0.2 μm or more and less than 50 μm is continuously formed. Moreover, in the chemical vapor deposition method, a method of performing this under atmospheric pressure is preferable because a tact time can be shortened without requiring a vacuum process.
[0008]
The transparent resin used for the transparent resin layer 1 and the transparent resin layer 2 in the present invention refers to a resin having visible light transmittance. The transparency of the transparent resin of the present invention is preferably such that the light transmittance at 550 nm when formed into a sheet is 80% or more, more preferably 85% or more, and most preferably 90% or more. When used as a display element substrate, 85% or more is preferable.
The glass transition temperature of the transparent resin of the present invention is preferably 120 ° C. or higher, more preferably 180 ° C. or higher, and further preferably 200 ° C. or higher. When a resin having a glass transition temperature of less than 120 ° C. is used, for example, when applied to a liquid crystal display element substrate, there is a possibility that deformation or undulation may occur in a heating process such as alignment film formation or substrate bonding. Further, since the transparency and retardation are small, the transparent resin used for the transparent resin layer in the present invention is preferably amorphous. When the phase difference exceeds 10 nm, the contrast of the transparent sheet needs to be 10 nm or less because a decrease in contrast or color unevenness may occur in the case of a display element using polarized light.
[0009]
Examples of the transparent resin of the present invention include polycarbonate, polyarylate, polysulfone, polyethersulfone, thermoplastic resin such as cycloolefin polymer, thermosetting resin such as epoxy resin, and reactive monomer such as acrylate with active energy rays. Examples of the resin include a cross-linked resin, and a resin obtained by cross-linking a reactive monomer such as an acrylate or an epoxy resin with active energy rays and / or heat because of excellent solvent resistance. The reactive monomer is not particularly limited as long as it can be cross-linked by heat or active energy rays, but (meth) acrylate having two or more functional groups or two or more from the viewpoint of transparency and heat resistance. An epoxy resin having a functional group is preferable, and (meth) acrylate having two or more functional groups is particularly preferable. These resins may be used alone or in combination of two or more. Furthermore, each transparent resin layer may have a multilayer structure of two or more layers. Further, the transparent resin layer 1 and the transparent resin layer 2 may have the same resin configuration or different ones.
[0010]
The transparent resin layer 1 of the present invention can be formed by a casting method or a casting method in the case of a resin that can be cross-linked, and by a melt extrusion method or a solution casting method in the case of a thermoplastic resin. In the case of producing by crosslinking with active energy rays such as ultraviolet rays, it is preferable to contain a photopolymerization initiator that generates radicals in the resin composition. Examples of the photopolymerization initiator used in this case include benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxy-cyclohexyl-phenyl ketone, 2,6-dimethylbenzoyldiphenylphosphine oxide, 2,4,6. -Trimethylbenzoyldiphenylphosphine oxide. Two or more of these photopolymerization initiators may be used in combination.
[0011]
In the present invention, when the transparent inorganic layer and the transparent resin layer 2 are sequentially laminated on the transparent resin layer 1, a roll serving as a base prevents the transparent inorganic layer from being damaged or cracked during the manufacturing process. After forming a transparent inorganic layer by a roll-to-roll method on a transparent resin layer 1 that is a raw material such as a transparent sheet, a transparent resin layer 2 is also formed continuously by a roll-to-roll method. It is preferable to do. In this case, as a method for forming the transparent resin layer 2, when the transparent inorganic layer is formed in a vacuum chamber by a physical vapor deposition method or the like, the vapor deposition polymerization method is used in the sol-gel method or atmospheric pressure. When a film is formed by chemical vapor deposition, a wet coating method such as gravure coating or die coating can be used.
[0012]
The transparent resin layer of the present invention may contain an antioxidant, an ultraviolet absorber, and a dye / pigment as long as they do not impair the properties such as transparency and heat resistance.
[0013]
The linear expansion coefficient of the transparent sheet of the present invention needs to be 40 ppm / ° C. or less. In the case of a linear expansion coefficient exceeding 50 ppm / ° C. as obtained with conventional transparent sheets, cracks occur in inorganic thin films such as metals, silicon and oxides thereof during the heating process during the production of display elements. Or problems such as peeling off may occur.
[0014]
【Example】
Hereinafter, the contents of the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
Example 1
A roll of polycarbonate film having a width of 600 mm and a thickness of 10 μm was prepared by a melt extrusion method. On this film, using a roll-to-roll coating machine having a gravure coater and a UV irradiation device, photopolymerization was started on a mixture of 90 parts by weight of norbornane dimethylol diacrylate and 10 parts by weight of epoxy acrylate having an average molecular weight of 500. A resin composition containing 0.5 part by weight of 1-hydroxy-cyclohexyl-phenyl-ketone as an agent was applied with a gravure coater to a film thickness of 1 μm, and then cured by irradiation with UV light of 500 mJ / cm 2 to obtain a transparent resin. Layer 1 was made. After the sheet is cut into a size of 300 mm × 400 mm and fixed to a plate-like jig, Al 2 O 3 is sputtered to a thickness of 0.6 μm with a reactive sputtering rig using an Al target by a pulse DC type multilayer sputtering apparatus, and transparent inorganic Layers were deposited. The sheet fixed on the jig is taken out from the sputtering apparatus, and 1-hydroxy as a photopolymerization initiator is added to a mixture of 90 parts by weight of norbornane dimethylol diacrylate and 10 parts by weight of epoxy acrylate having an average molecular weight of 500 using a single wafer die coater. -A resin composition to which 0.5 part by weight of cyclohexyl-phenyl-ketone was added was applied to a film thickness of 3 μm and cured by irradiating with UV light of 500 mJ / cm 2 by a UV irradiation device to obtain a single-wafer transparent sheet It was.
[0015]
(Example 2)
A roll of polyethersulfone film having a width of 600 mm and a thickness of 10 μm was prepared by a melt extrusion method. On this film, using a roll-to-roll coating machine having a gravure coater and a UV irradiation device, photopolymerization was started on a mixture of 90 parts by weight of norbornane dimethylol diacrylate and 10 parts by weight of epoxy acrylate having an average molecular weight of 500. A resin composition containing 0.5 part by weight of 1-hydroxy-cyclohexyl-phenyl-ketone as an agent was applied with a gravure coater to a film thickness of 1 μm, and then cured by irradiation with UV light of 500 mJ / cm 2 to obtain a transparent resin. Layer 1 was made. Subsequently, SiO 2 was deposited to a thickness of 1 μm using a roll-to-roll vacuum deposition apparatus to form a transparent inorganic layer. After taking out from the vacuum film formation, again using a roll-to-roll type coating machine, a mixture of 90 parts by weight of norbornane dimethylol diacrylate and 10 parts by weight of epoxy acrylate having an average molecular weight of 500 is used as a photopolymerization initiator. A resin composition to which 0.5 part by weight of hydroxy-cyclohexyl-phenyl-ketone was added was applied at a film thickness of 3 μm and cured by irradiation with UV light of 500 mJ / cm 2 to obtain a roll-like transparent sheet.
[0016]
(Example 3)
A roll of polyethersulfone film having a width of 600 mm and a thickness of 10 μm was prepared by a melt extrusion method. On this film, using a roll-to-roll type coating machine having a gravure coater and a UV irradiation device, light was applied to a mixture of 90 parts by weight of dicyclopentadienyl diacrylate and 10 parts by weight of epoxy acrylate having an average molecular weight of 500. After applying a resin composition to which 0.5 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone as a polymerization initiator was applied with a gravure coater at a film thickness of 1 μm, the resin composition was cured by irradiation with 500 mJ / cm 2 UV light, A transparent resin layer 1 was produced. Using a roll-to-roll type atmospheric pressure CVD apparatus, gravure coater, and UV irradiating coater, a transparent inorganic layer of SiO 2 is formed to a film thickness of 3 μm using tetramethoxysilane as a source gas by CVD, followed by A resin composition obtained by adding 0.5 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone as a photopolymerization initiator to a mixture of 90 parts by weight of dicyclopentadienyl diacrylate and 10 parts by weight of an epoxy acrylate having an average molecular weight of 500 Was coated with a gravure coater to a film thickness of 5 μm and cured by irradiating with 500 mJ / cm 2 of UV light to obtain a transparent sheet in a roll shape.
[0017]
Example 4
Epoxy having 70 parts by weight of dicyclopentadienyl diacrylate and an average molecular weight of 500 on a 25 μm-thick polyester film subjected to a release treatment using a roll-to-roll type coating machine having a gravure coater and a UV irradiation device A resin composition obtained by adding 0.5 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone as a photopolymerization initiator to a mixture of 30 parts by weight of acrylate is applied to a film thickness of 10 μm, and irradiated with UV light of 750 mJ / cm 2. And cured to obtain a transparent resin layer 1. A transparent inorganic layer of SiO 2 was formed to a thickness of 2 μm by a roll-to-roll type ion plating apparatus. After taking out from the ion plating apparatus, using a roll-to-roll type coating machine again, a photopolymerization initiator is mixed into a mixture of 90 parts by weight of dicyclopentadienyl diacrylate and 10 parts by weight of epoxy acrylate having an average molecular weight of 500. A resin composition to which 0.5 part by weight of 1-hydroxy-cyclohexyl-phenyl-ketone is added is applied to a film thickness of 8 μm, cured by irradiation with UV light of 750 mJ / cm 2 , peeled off from the polyester film and transparent A sheet was obtained.
[0018]
(Comparative Example 1)
Resin composition obtained by adding 0.5 part by weight of 1-hydroxy-cyclohexyl-phenyl-ketone as a photopolymerization initiator to a mixture of 70 parts by weight of dicyclopentadienyl diacrylate and 30 parts by weight of epoxy acrylate having an average molecular weight of 500 Was applied to a release-treated glass plate with a single-wafer die coater, and cured by irradiation with UV light of 300 mJ / cm 2 from both sides. Furthermore, after heating at about 100 ° C. for 3 hours in a vacuum oven, further heating at about 250 ° C. for 3 hours to obtain a transparent sheet having a thickness of 20 μm.
[0019]
(Comparative Example 2)
A roll of polyethersulfone film having a width of 600 mm and a thickness of 10 μm was prepared by a melt extrusion method. On this film, using a roll-to-roll coating machine having a gravure coater and a UV irradiation device, photopolymerization was started on a mixture of 90 parts by weight of norbornane dimethylol diacrylate and 10 parts by weight of epoxy acrylate having an average molecular weight of 500. A resin composition containing 0.5 part by weight of 1-hydroxy-cyclohexyl-phenyl-ketone as an agent was applied with a gravure coater to a film thickness of 1 μm, and then cured by irradiation with UV light of 500 mJ / cm 2 to obtain a transparent resin. Layers were deposited. Subsequently, SiOx (1.5 <x <2.0), which is a gas barrier layer, is vapor-deposited to a thickness of 0.1 μm by a reactive sputtering rig using a Si target by a roll-to-roll type pulse DC sputtering apparatus and transparent. An inorganic layer was formed. After taking out from the vacuum film formation, again using a roll-to-roll type coating machine, a mixture of 90 parts by weight of norbornane dimethylol diacrylate and 10 parts by weight of epoxy acrylate having an average molecular weight of 500 is used as a photopolymerization initiator. A resin composition to which 0.5 part by weight of hydroxy-cyclohexyl-phenyl-ketone was added was applied at a film thickness of 3 μm and cured by irradiation with UV light of 500 mJ / cm 2 to obtain a roll-like transparent sheet.
[0020]
About the optical sheet produced as mentioned above, various characteristics were measured by the evaluation method shown below.
a) Linear expansion coefficient After increasing the temperature from 30 ° C. to 150 ° C. at a rate of 5 ° C. per minute in a nitrogen atmosphere using a TMA / SS120C type thermal stress strain measuring device manufactured by Seiko Electronics Co., Ltd. After cooling to 0 ° C., the temperature was increased again at a rate of 5 ° C. per minute, and the value at 30 ° C. to 100 ° C. was measured and determined. The load was 5 g and the measurement was performed in the tensile mode. For the measurement, an independently designed quartz tension chuck (material: quartz, coefficient of linear expansion 0.5 ppm / ° C.) was used. Inconel chucks that are generally used have a problem in that the linear expansion of the Inconel itself is high and there is a defect in the support form of the sample, resulting in a large measurement variation. Therefore, we decided to design a quartz tensile chuck and use it to measure the linear expansion coefficient. By using this tension chuck, it has been confirmed that it can be measured with a value almost the same as that measured in the compression mode.
b) Heat resistance (glass transition temperature)
Measured with a DMS-210 viscoelasticity measuring device manufactured by Seiko Electronics Co., Ltd., and the maximum value of tan δ at 1 Hz was defined as the glass transition temperature (Tg).
c) Light transmittance The light transmittance at 550 nm was measured with a spectrophotometer U3200 (manufactured by Hitachi, Ltd.).
d) A value at an entrance angle of 0 ° was measured using an automatic birefringence meter KOBRA-21 manufactured by Oji Scientific Instruments.
The evaluation results are shown in Table 1.
[0021]
[Table 1]
Figure 0004098056
[0022]
Examples 1 to 4 exhibited low linear expansion coefficient, high heat resistance, high transparency (high light transmittance), and low phase difference, and showed good characteristics.
In Comparative Example 1, since the transparent inorganic layer was not provided, the linear expansion coefficient was a large value.
In Comparative Example 2, although it had a transparent inorganic layer, it was a layer having a thickness of less than 0.6 μm formed as a gas barrier layer, so that the linear expansion coefficient was a large value exceeding 40 ppm / ° C.
【The invention's effect】
Since the optical sheet of the present invention is excellent in a low linear expansion coefficient, transparency, and heat resistance, it can be suitably used for an active matrix type liquid crystal display element substrate or an organic EL element substrate.

Claims (5)

液晶表示素子用基板又は有機EL素子用基板に用いる透明シートであって、少なくとも厚さ0.6μm以上50μm未満の透明無機層及びこれを挟む透明樹脂層1並びに透明樹脂層2を有し、30℃から100℃における面内方向の線膨張係数が40ppm/℃以下であり、位相差が10nm以下であり、波長400nmにおける光線透過率が80%以上である透明シートであり、透明樹脂層1及び透明樹脂層2が、ポリカーボネート、ポリエーテルスルホン、シクロオレフィンポリマー、エポキシ樹脂を活性エネルギー線または熱によって架橋させた樹脂、又はアクリレートを活性エネルギー線または熱によって架橋させた樹脂からなる透明シート A transparent sheet used for a liquid crystal display element substrate or an organic EL element substrate, having a transparent inorganic layer having a thickness of at least 0.6 μm and less than 50 μm, a transparent resin layer 1 and a transparent resin layer 2 sandwiching the transparent inorganic layer, 30 A transparent sheet having a linear expansion coefficient in the in-plane direction of from 40 ° C. to 100 ° C. of 40 ppm / ° C. or less, a phase difference of 10 nm or less, and a light transmittance of 80% or more at a wavelength of 400 nm , the transparent resin layer 1 and The transparent sheet which the transparent resin layer 2 consists of resin which bridge | crosslinked the polycarbonate, polyether sulfone, cycloolefin polymer, the epoxy resin with the active energy ray or the heat | fever, or the resin which bridge | crosslinked the acrylate with the active energy ray or the heat | fever . 前記透明無機層が物理気相成長法および/または化学気相成長法により積層される請求項1記載の透明シート。  The transparent sheet according to claim 1, wherein the transparent inorganic layer is laminated by physical vapor deposition and / or chemical vapor deposition. 前記物理気相成長法が真空蒸着法またはイオンプレーティング法である請求項2記載の透明シート。  The transparent sheet according to claim 2, wherein the physical vapor deposition method is a vacuum deposition method or an ion plating method. 前記化学気相成長法が大気圧下で行なわれる請求項2記載の透明シート。  The transparent sheet according to claim 2, wherein the chemical vapor deposition method is performed under atmospheric pressure. 前記透明樹脂層1上に透明無機層および透明樹脂層2をロールツーロール方式で積層した請求項1〜4何れか一項記載の透明シート。  The transparent sheet as described in any one of Claims 1-4 which laminated | stacked the transparent inorganic layer and the transparent resin layer 2 on the said transparent resin layer 1 by the roll-to-roll system.
JP2002298658A 2002-10-11 2002-10-11 Transparent sheet Expired - Lifetime JP4098056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298658A JP4098056B2 (en) 2002-10-11 2002-10-11 Transparent sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298658A JP4098056B2 (en) 2002-10-11 2002-10-11 Transparent sheet

Publications (2)

Publication Number Publication Date
JP2004130709A JP2004130709A (en) 2004-04-30
JP4098056B2 true JP4098056B2 (en) 2008-06-11

Family

ID=32287997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298658A Expired - Lifetime JP4098056B2 (en) 2002-10-11 2002-10-11 Transparent sheet

Country Status (1)

Country Link
JP (1) JP4098056B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579054B2 (en) 2004-06-25 2009-08-25 Sumitomo Chemical Company, Limited Substrate for flexible displays
JP4735484B2 (en) * 2006-09-06 2011-07-27 Jsr株式会社 Laminated film
JP2011116054A (en) * 2009-12-04 2011-06-16 Tosoh Corp Transparent laminated film

Also Published As

Publication number Publication date
JP2004130709A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
CN103732391B (en) transparent laminated film
JP7401463B2 (en) Gas barrier laminate
JP5181539B2 (en) Method for producing transparent conductive film, touch panel having film obtained by the method, and display device having the touch panel
JP5196705B2 (en) Optical sheet
JP2004122429A (en) Multi-layered film
JP4098056B2 (en) Transparent sheet
TWI625241B (en) Transparent laminated film
JP2007269957A (en) Gas-barrier film, method for producing the same, and image display element using the same
TW201843197A (en) Transparent composite film and flexible display devices including the same
JP2016126451A (en) Laminate film, transparent conductive film and touch panel
JP3403882B2 (en) Transparent conductive film
KR20230027063A (en) Optical film, manufacturing method of optical film, transparent conductive film, and gas barrier film
JP6307908B2 (en) Transparent laminated film and transparent substrate
JPH09254303A (en) Transparent electrically conductive film
JP6179211B2 (en) Laminated film for transparent substrate and display panel using the same
JPH08224823A (en) Optical plastic laminated sheet and its manufacture
JP5397319B2 (en) Optical sheet
WO2017130568A1 (en) Gas barrier film and method for producing gas barrier film
TW201833168A (en) Optical film, production method, and multilayer film
WO2023063128A1 (en) Retardation layer–equipped polarizing plate and image display device using same
WO2023063129A1 (en) Retardation layer–equipped polarizing plate and image display device using same
WO2024048344A1 (en) Adhesive layer-equipped functional film for laminated glass and laminated glass
WO2022163416A1 (en) Optical film, production method therefor, and polarizing film
JP2015214115A (en) Transparent laminate film, transparent conductive film, and transparent substrate
JPH08166581A (en) Heat-resistant optical plastic laminated sheet and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5