JP4097343B2 - Manufacturing method of nitride semiconductor laser device - Google Patents

Manufacturing method of nitride semiconductor laser device Download PDF

Info

Publication number
JP4097343B2
JP4097343B2 JP01695199A JP1695199A JP4097343B2 JP 4097343 B2 JP4097343 B2 JP 4097343B2 JP 01695199 A JP01695199 A JP 01695199A JP 1695199 A JP1695199 A JP 1695199A JP 4097343 B2 JP4097343 B2 JP 4097343B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
plane
gan
substrate
sapphire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01695199A
Other languages
Japanese (ja)
Other versions
JP2000216502A (en
Inventor
慎一 長濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP01695199A priority Critical patent/JP4097343B2/en
Publication of JP2000216502A publication Critical patent/JP2000216502A/en
Application granted granted Critical
Publication of JP4097343B2 publication Critical patent/JP4097343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明はLED(発光ダイオード)、LD(レーザダイオード)等の発光素子、あるいは太陽電池、光センサー等の受光素子、あるいはトランジスタ、集積回路等に使用される窒化物半導体(AlXInYGa1-X-YN、0≦X、0≦Y、X+Y<1)素子の製造方法に関する。
【0002】
【発明の属する技術分野】
【従来の技術】
我々はGaN基板の上に、活性層を含む窒化物半導体レーザ素子を作製して、世界で初めて室温での連続発振1万時間以上を達成したことを発表した(INCS'97 予稿集,October 27-31,1997,P444-446、及びJpn.J.Appl.Phys.Vol.36(1997)pp.L1568-L1571,Part2,No.12A,1 December 1997)。さらに、前記レーザ素子よりサファイア基板を除去してGaN単独とすることにより、5mW出力でも1万時間以上の連続発振に成功したことを発表した(Jpn.J.Appl.Phys.Vol.37(1998)pp.L309-L312,及びAppl.Phys.Lett.Vol.72(1998)No.16,2014-2016)。
【0003】
従来、窒化物半導体レーザ素子の作製方法としてサファイアなどの異種基板上に窒化物半導体を積層する。これは窒化物半導体を基板上に成長させる際、成長させる半導体と格子整合した基板が世の中に存在しないことから、一般にサファイア、スピネル、炭化ケイ素のような窒化物半導体と格子整合しない異種基板の上に成長されている。
【0004】
本発明者等は、結晶欠陥を大幅に低減できる窒化物半導体の結晶成長方法として、窒化物半導体と異なる異種基板上にGaN基板を形成し、そのGaN基板上に素子構造を形成することにより、波長約400nm、光出力2mWで連続発振約1万時間を達成できる窒化物半導体レーザ素子などを開示している(例えば「InGaN系多重量子井戸構造半導体レーザの現状」,第58回応用物理学会学術講演会,講演番号4aZC−2,1997年10月、”Presennt Status of InGaN/AlGaN based Laser Diodes”,The Second International Conference on Nitride Semiconductors (ICNS’97),講演番号S−1,1997年10月などに記載されている。)。
【0005】
この方法により得られる窒化物半導体を保護膜上で横方向に成長させることから、一般にラテラルオーバーグロウスGaN(lateral overgrowth GaN:LOG、ラテラル成長GaN)と呼ばれている。
【0006】
上記窒化物半導体レーザ素子の結晶成長方法は、あらかじめA面{112−0}をオリフラ面として設けられた、C面{0001}を主面とするサファイア基板上に、従来の結晶欠陥が非常に多いGaN層を薄く成長させ、その上にSiO2よりなる保護膜をストライプ状に形成するかまたはGaNを選択的にエッチングしストライプ状のGaNを形成し、その上からハライド気相成長法(HVPE)、有機金属気相成長法(MOVPE)等の気相成長法により、GaNの横方向への成長を利用し、再度GaN層を成長させることにより結晶欠陥の少ないGaN基板(膜厚10μm)を形成することができる。オリフラ面とは、正確にはオリエンテーションフラット面といい、結晶軸方向を示すために円板状のウエハーの端に切り欠きを入れて示した面のことをいう。
【0007】
このGaN基板を形成する際、GaNの性質としてサファイアC面の上に成長させた場合、GaNのM面{11−00}がサファイアのA面と平行になる。我々は、基板上にGaNを形成する際、まずストライプ状に形成する保護膜またはGaNをサファイアのA面を基準にしてA面に対して垂直に形成し、さらにその上に素子構造となる窒化物半導体を積層する際、レーザの共振器方向がサファイアのA面と垂直になるように、素子構造を形成していく。このようにして素子構造を形成した後、少なくともレーザの出射面側をGaNのM面で劈開をして、良好な共振器面を得ている。
【0008】
【発明が解決しようとする課題】
しかし、このあらかじめ設けられたオリフラ面(これを第1のオリフラ面とする。)は、一般には研磨機等の機械を用いて設けられた面であり、正確にA面を示しているものではなく、いくらかの誤差が生じているものがある。従って、このA面とする第1のオリフラ面を基準として保護膜またはGaNおよび共振器を形成しても、共振器方向と共振器面との関係が垂直にならず、ずれが生じてしまい、良好なレーザ素子が得られない。
【0009】
【課題を解決するための手段】
本発明は上記課題に鑑みなされたものである。
本発明の窒化物半導体レーザ素子の製造方法は、C面を主面とし、A面及びM面をオリフラ面とするサファイア基板上にストライプ状の保護膜を前記サファイア基板の M 面に対して平行方向にパターン形成し、その上にGaNを選択成長させて窒化物半導体を形成し、前記窒化物半導体からサファイア基板及びストライプ状の保護膜を除去してGaNのみの窒化物半導体基板とする第1の工程と、前記窒化物半導体基板を、M面で劈開することにより、第2のオリフラ面を少なくとも1つ形成する第2の工程と、前記窒化物半導体基板上に、窒化物半導体を積層させると共に、前記第2のオリフラ面に対して共振器方向が垂直となるように素子構造を形成する第3の工程と、前記窒化物半導体基板をチップ化する第4の工程と、を備えることを特徴とする。
前記第3の工程後、前記窒化物半導体基板を GaN M 面方向で劈開して共振器を形成し、その後、前記第4の工程において、前記窒化物半導体基板をチップ化することが好ましい。前記第2の工程において、前記窒化物半導体基板の一部に切溝を入れ、外力を加えることにより劈開を行うことが好ましい。
前記第3の工程の後、前記窒化物半導体基板のサファイア基板を除去した側の表面にn電極を形成する工程を備えることが好ましい。
【0010】
【発明の実施の形態】
以下に図1から図3を用いて本発明を詳細に説明する。
図1は、本発明の窒化物半導体素子の製造工程の一実施の形態を示したサファイア基板をC面方向から見た図である。図に示したサファイアA面、M面は紙面に垂直な方向を指し、この場合、A面が第1のオリフラ面、M面が第2のオリフラ面となる。
【0011】
基板としては、サファイアC面の他にサファイアR面、GaN、SiC(6H、4Hを含む)、スピネル(MgAl24)、Si、GaAs、ZnOなどがある。GaNの場合{0001}面を主面とし、{11−00}で劈開することによりオリフラ面を形成し、SiCの場合{0001}面を主面とし、{11−00}で劈開することによりオリフラ面を形成し、スピネルの場合{111}面を主面とし{100}面で劈開することによりオリフラ面を形成し、SiおよびGaAsの場合{111}面を主面とし、{11−0}面で劈開することによりオリフラ面を形成する。これらの基板上にも窒化物半導体を積層することが可能であり、それぞれの劈開によって得た第2のオリフラ面を基準面として素子構造を形成していくことで、良好な窒化物半導体レーザ素子を得ることができる。
【0012】
本発明において、劈開することによって得た第2のオリフラ面は、図2のように2つ設けてもよい。図2のように第2のオリフラ面を2つ設けることにより、基準面に対して、保護膜またはGaNおよび共振器方向をさらに正確に形成でき、歩留も向上し良好なレーザ素子が得られる。
また、本発明において、あらかじめ形成された第1のオリフラ面は図3のように2つ設けられたものでもよい。
【0013】
本発明において、具体的に劈開することによって第2のオリフラ面を得る方法を説明すると、GaNやSiCなどの劈開性の強い基板の場合、ダイサー等の装置を用いて一部分に切溝を入れ、あとは少しの外力を加えるだけできれいに劈開でき、オリフラ面を得ることができる。また、サファイアやスピネルなどの劈開性の弱い基板の場合、劈開したい面に沿ってスクライビングやハーフダイシングをすることによって、端から端まで全体的に切溝を入れ、その後に外力を加えると切溝の範囲内において劈開が起こり、オリフラ面を得ることができる。
【0014】
また本発明において、基板はステップ状にオフアングル(傾斜)した基板を用いてもよい。この場合、共振器方向はステップに沿う方向(段差方向)に対して平行となるように形成する。このことはサファイア基板の場合、ステップに沿う方向(段差方向)は第2のオリフラ面に対して平行となる基板を用いることを意味する。さらにオフアングルのオフ角を0.1°〜0.2°の範囲にすることで良好なレーザ素子が得られる。
また、本発明では劈開性は弱いが、劈開性を有するサファイアのM面で劈開を行うことで、新たに第2のオリフラ面を設け、これを基準面として保護膜またはGaNをストライプ状に形成し、共振器方向を決定していく。すなわち、劈開によって得たサファイアのM面に対して、ストライプ状の保護膜またはGaNを平行に形成し、また共振器方向も平行となるように素子構造を形成することで、共振器方向とレーザ出射面との間のずれをなくし、歩留を向上させ、良好なレーザ素子を得る。
【0015】
また本発明の窒化物半導体素子の製造方法は、窒化物半導体レーザ素子に限るものではない。
【0016】
【実施例】
[実施例1]
図4は本発明の一実施の形態にかかる窒化物半導体レーザ素子の構造を示す模式断面図であり、具体的にはレーザ素子の構造を示している。以下、図1及び図4を元に実施例1について説明する。
図1に示すようにあらかじめA面{112−0}が第1のオリフラ面として形成されているC面{0001}を主面とするサファイア基板1を用意する。まずサファイアの劈開性を用いて、A面とほぼ垂直な方向で劈開をし、サファイアのM面{11−00}を露出させる。これを第2のオリフラ面として、C面上に以下のように素子構造を形成していく。
【0017】
まず、サファイア基板1をMOCVD反応容器内にセットし、下地層として500℃にてアンドープのGaNよりなる層を200オングストロームと、続けて1050℃にてアンドープのGaNよりなる層を2.5μmの、総膜厚が約2.5μmとなる第1の窒化物半導体層を形成する。
【0018】
次に第1の窒化物半導体層を成長させた後、第1の窒化物半導体層表面にストライプ状のフォトマスクを形成し、CVD装置によりストライプ幅10μm、窓部5μmのSiO2よりなる保護膜を0.5μmの膜厚で形成する。このとき、ストライプ方向は第2のオリフラ面に対して平行に形成する。
【0019】
ストライプ状の保護膜形成後、ウエハーを反応容器に移し、1050℃にて、原料ガスにTMG、アンモニアを用い、アンドープのGaNよりなる第2の窒化物半導体層を15μmの膜厚で成長させる。以上のようにして窒化物半導体基板2を得る。
【0020】
次に得られた窒化物半導体基板2の上に素子となる構造を形成していく。まずGaNまたはAlGaNよりなるn側コンタクト層3、InGaNよりなるクラック防止層(これは省略が可能である。)、AlGaNとSiドープのGaNとの超格子からなるn側クラッド層4、GaNよりなるn側光ガイド層5、InGaNよりなる多重量子井戸構造(MQW)の活性層6、MgドープのAlGaNよりなるp側キャップ層7、MgドープのGaNよりなるp側光ガイド層8、AlGaNとMgドープのGaNとの超格子からなるp側クラッド層9、MgドープのGaNよりなるp側コンタクト層10を順に積層する。
【0021】
次にp側コンタクト層10の一部をドライエッチングしてn側コンタクト層3を露出させる。更にp側層をp側クラッド層9までRIEによりエッチングしてリッジを形成し、リッジ上に保護膜としてTiO2などの絶縁膜30とそれぞれのコンタクト層上にp電極20とpパッド電極21、n電極22とnパッド電極23を形成する。
最後にウエハーをGaNのM面方向で劈開して共振器を形成し、チップ化する。
【0022】
以上のようにして得られたレーザチップをフェースアップ(基板とヒートシンクとが対抗した状態)でヒートシンクに設置し、それぞれの電極をワイヤーボンディングして、室温で連続発振を試みたところ、閾値電流密度2kA/cm2、20mWの出力において、発振波長405nmの連続発振が確認され、1000時間以上の寿命を示した。
【0023】
[実施例2]
あらかじめA面{112−0}が第1のオリフラ面として形成されているC面{0001}を主面とするサファイア基板1において、サファイアの劈開性を用いて、A面とほぼ垂直な方向で図2のように両側の2カ所で劈開をし、サファイアのM面{11−00}を露出させる。これを第2のオリフラ面として、C面上に実施例1と同様に素子構造を形成していく。
以上のようにして得られた素子を室温で連続発振を試みたところ、実施例1と同様に閾値電流密度2kA/cm2、20mWの出力において、発振波長405nmの連続発振が確認され、1000時間以上の寿命を示し、さらに歩留をあげることができた。
【0024】
[実施例3]
あらかじめA面{112−0}が第1のオリフラ面として形成されているC面{0001}を主面とするサファイア基板1において、さらにステップ状にオフアングルされ、そのオフ角が0.13°、ステップに沿う方向(段差方向)がA面に垂直に形成された基板を用いる。まずサファイアの劈開性を用いて、A面とほぼ垂直な方向で劈開をし、サファイアのM面{11−00}を露出させる。これを第2のオリフラ面として、C面上に実施例1と同様に素子構造を形成していく。
以上のようにして得られたレーザ素子は実施例1とほぼ同等の特性を示した。
【0025】
[実施例4]
図1に示すようにあらかじめA面が第1のオリフラ面として形成されているC面を主面とするサファイア基板1を用意する。まずサファイアの劈開性を用いて、A面とほぼ垂直な方向で劈開をし、サファイアのM面を露出させる。これを第2のオリフラ面として、C面上に以下のように素子構造を形成していく。
まず、サファイア基板1をMOCVD反応容器内にセットし、下地層として500℃にてアンドープのGaNよりなる層を200オングストロームと、続けて1050℃にてアンドープのGaNよりなる層を2.5μmの、総膜厚が約2.5μmとなる窒化物半導体層を形成する。
【0026】
次に窒化物半導体層を成長させた後、窒化物半導体層表面にストライプ状のフォトマスクを形成し、CVD装置によりストライプ幅10μm、窓部5μmのSiO2よりなる保護膜を0.5μmの膜厚で形成する。このとき、ストライプ方向は第2のオリフラ面に対して平行に形成する。
続いて、RIE装置によりSiO2膜の形成されていない部分のGaNをサファイア基板が露出されるまでエッチングして凹凸を形成することで、GaNをストライプ状にし、最後に凸部上部のSiO2を除去する。
【0027】
ストライプ状のGaNを形成後、ウエハーを反応容器に移し、1050℃にて、原料ガスにTMG、アンモニアを用い、アンドープのGaNよりなる第2の窒化物半導体層を15μmの膜厚で成長させる。以上のようにして窒化物半導体基板2を得る。
その他は実施例1と同様にしてレーザ素子を作製したところ、実施例1とほぼ同等の特性を示した。
【0028】
[実施例
図1に示すようにあらかじめA面が第1のオリフラ面として形成されているC面を主面とするサファイア基板1を用意する。まずサファイアの劈開性を用いて、A面とほぼ垂直な方向で劈開をし、サファイアのM面を露出させる。これを第2のオリフラ面として、C面上に以下のように素子構造を形成していく。
【0029】
まず、サファイア基板1をMOCVD反応容器内にセットし、下地層として500℃にてアンドープのGaNよりなる層を200オングストロームと、続けて1050℃にてアンドープのGaNよりなる層を2.5μmの、総膜厚が約2.5μmとなる第1の窒化物半導体層を形成する。
以上のように作製したサファイア基板1上にn側コンタクト層3、n側クラッド層4、n側光ガイド層5、多重量子井戸構造からなる活性層6、p側キャップ層7、p側光ガイド層8、p側クラッド層9、p側コンタクト層10までを積層する。
【0030】
次にp側コンタクト層10上にp電極20とpパッド電極21を、またエッチングにより露出させたn側コンタクト層3上にn電極22とnパッド電極23を形成させる際、両電極をサファイアのM面と平行となるように第2のオリフラ面に対して平行に、バー状で形成する。
最後にウエハーをGaNのM面方向で劈開して共振器を形成し、チップ化する。
【0031】
以上のようにして得られたレーザ素子は、実施例1よりは少し劣るが室温で閾値電流密度2kA/cm2、20mWの出力において、発振波長405nmの連続発振が確認され、1000時間以上の寿命を示した。
【0032】
[実施例
図5は本発明の一実施の形態にかかる窒化物半導体レーザ素子の構造を示す模式断面図であり、具体的にはレーザ素子の構造を示している。以下、図1及び図5を元に実施例6について説明する。
図1に示すようにあらかじめA面{112−0}が第1のオリフラ面として形成されているC面{0001}を主面とするサファイア基板1を用意する。まずサファイアの劈開性を用いて、A面とほぼ垂直な方向で劈開をし、サファイアのM面{11−00}を露出させる。これを第2のオリフラ面として、C面上に実施例1と同様に素子構造を形成していく。
【0033】
SiO2からなる保護膜および第2の窒化物半導体を成長させるまでは実施例1と同様にして、次に得られた窒化物半導体基板をサファイア側からアンドープのGaNからなる下地層、または第1の窒化物半導体層が露出するまで研磨してGaNのみの窒化物半導体基板2を得る。この窒化物半導体基板2をM面で劈開することで、第2のオリフラ面を形成する。
【0034】
次に窒化物半導体基板2上に素子構造を形成していくが、GaNの場合、GaNのM面が第2のオリフラ面に該当するため、素子の共振器方向を第2のオリフラ面に対して垂直に形成する。
最後にp電極20をp側コンタクト層上に形成し、n電極22を研磨して得られた窒化物半導体表面上に形成して、チップ化する。
【0035】
以上のようにして得られたレーザ素子は、実施例1とほぼ同等の、室温で閾値電流密度2kA/cm2、20mWの出力において、発振波長405nmの連続発振が確認され、1000時間以上の寿命を示した。
【0036】
【発明の効果】
以上のように本発明によると、あらかじめ第1のオリフラ面が設けられている基板平面上に気相成長法を用いて窒化物半導体をエピタキシャル成長させる窒化物半導体素子の製造方法において、素子構造となる窒化物半導体を積層させる前に、前記基板を、劈開することにより、第2のオリフラ面を少なくとも1つ形成することで、共振器方向とレーザ出射面との間のずれをなくし、歩留を向上させ、良好なレーザ素子が得られる。
【図面の簡単な説明】
【図1】本発明の製造工程の一実施の形態を示したサファイア基板をC面の方向から見た図。
【図2】本発明の製造工程の他の実施の形態を示したサファイア基板をC面の方向から見た図。
【図3】本発明の製造工程の他の実施の形態を示したサファイア基板をC面の方向から見た図。
【図4】本発明の一実施の形態にかかる窒化物半導体レーザ素子の構造を示す模式断面図。
【図5】本発明の他の実施の形態にかかる窒化物半導体レーザ素子の構造を示す模式断面図。
[0001]
[Industrial application fields]
The present invention relates to a light emitting element such as an LED (light emitting diode) or LD (laser diode), a light receiving element such as a solar cell or an optical sensor, or a nitride semiconductor (Al x In y Ga 1 ) used in a transistor, an integrated circuit, or the like. -XY N, 0≤X , 0≤Y , X + Y <1) The present invention relates to a device manufacturing method.
[0002]
BACKGROUND OF THE INVENTION
[Prior art]
We have fabricated a nitride semiconductor laser device including an active layer on a GaN substrate, and have announced the world's first continuous oscillation at room temperature of over 10,000 hours (INCS'97 Proceedings, October 27) -31, 1997, P444-446, and Jpn. J. Appl. Phys. Vol. 36 (1997) pp. L1568-L1571, Part2, No. 12A, 1 December 1997). Furthermore, by removing the sapphire substrate from the laser element and using GaN alone, it has been announced that continuous oscillation of 10,000 hours or more was achieved even at 5 mW output (Jpn. J. Appl. Phys. Vol. 37 (1998). pp. L309-L312, and Appl. Phys. Lett. Vol. 72 (1998) No. 16, 2014-2016).
[0003]
Conventionally, a nitride semiconductor is laminated on a heterogeneous substrate such as sapphire as a method of manufacturing a nitride semiconductor laser device. This is because, when a nitride semiconductor is grown on a substrate, there is no substrate that is lattice-matched with the semiconductor to be grown. Therefore, it is generally on a heterogeneous substrate that is not lattice-matched with a nitride semiconductor such as sapphire, spinel, or silicon carbide. Has grown into.
[0004]
As a method of growing a nitride semiconductor crystal that can greatly reduce crystal defects, the present inventors formed a GaN substrate on a different substrate different from the nitride semiconductor, and formed an element structure on the GaN substrate. Nitride semiconductor laser devices capable of achieving continuous oscillation of about 10,000 hours at a wavelength of about 400 nm and an optical output of 2 mW are disclosed (for example, “Current Status of InGaN-based Multiple Quantum Well Structure Semiconductor Lasers”, 58th JSAP Lecture, Lecture No. 4aZC-2, October 1997, “Present Status of InGaN / AlGaN based Laser Diodes”, The Second International Conference on Nitride Semiconductor-1 (1997) Such as are described in the month.).
[0005]
Since the nitride semiconductor obtained by this method is grown laterally on the protective film, it is generally called lateral overgrowth GaN (LOG, laterally grown GaN).
[0006]
The nitride semiconductor laser device has a crystal growth method in which a conventional crystal defect is extremely present on a sapphire substrate having a C-plane {0001} as a main surface, which is previously provided with an A-plane {112-0} as an orientation flat surface. A large number of GaN layers are grown thinly, and a protective film made of SiO 2 is formed thereon in a stripe shape, or GaN is selectively etched to form a stripe GaN, from which a halide vapor phase growth method (HVPE) is formed. ), By utilizing the lateral growth of GaN by vapor phase growth method such as metal organic chemical vapor deposition (MOVPE) and growing the GaN layer again, a GaN substrate (thickness 10 μm) with few crystal defects is obtained. Can be formed. The orientation flat surface is precisely called an orientation flat surface, which is a surface obtained by cutting out a disk-shaped wafer to indicate the crystal axis direction.
[0007]
When this GaN substrate is formed, when grown on the sapphire C surface as a property of GaN, the M surface {11-00} of GaN becomes parallel to the A surface of sapphire. When forming GaN on a substrate, first, a protective film or GaN formed in a stripe shape is formed perpendicularly to the A surface with respect to the A surface of sapphire, and further nitrided to form an element structure thereon. When stacking physical semiconductors, the element structure is formed so that the laser resonator direction is perpendicular to the A-plane of sapphire. After forming the element structure in this manner, at least the laser emission surface side is cleaved with the GaN M-plane to obtain a good resonator surface.
[0008]
[Problems to be solved by the invention]
However, this pre-installed orientation flat surface (this is referred to as the first orientation flat surface) is generally a surface provided by using a machine such as a polishing machine, and does not accurately indicate the A surface. There are some that have some errors. Therefore, even if the protective film or GaN and the resonator are formed on the basis of the first orientation flat surface as the A surface, the relationship between the resonator direction and the resonator surface is not perpendicular, and a deviation occurs. A good laser element cannot be obtained.
[0009]
[Means for Solving the Problems]
The present invention has been made in view of the above problems.
In the method for manufacturing a nitride semiconductor laser device of the present invention, a stripe-shaped protective film is parallel to the M plane of the sapphire substrate on a sapphire substrate having the C plane as the main plane and the A plane and the M plane as the orientation flat plane. A nitride semiconductor layer is formed by forming a pattern in a direction and selectively growing GaN thereon, and removing the sapphire substrate and the stripe-shaped protective film from the nitride semiconductor layer to obtain a nitride semiconductor substrate made of only GaN. A first step, a second step of forming at least one second orientation flat surface by cleaving the nitride semiconductor substrate at the M plane, and a nitride semiconductor on the nitride semiconductor substrate. And a third step of forming an element structure so that a resonator direction is perpendicular to the second orientation flat surface, and a fourth step of chipping the nitride semiconductor substrate. This And features.
After the third step, the nitride semiconductor substrate is cleaved in M plane direction of the GaN to form a cavity, then, in the fourth step, the nitride semiconductor substrate is preferably to chip. In the second step, it is preferable to cleave by cutting a part of the nitride semiconductor substrate and applying an external force.
After the third step, it is preferable to include a step of forming an n-electrode on the surface of the nitride semiconductor substrate on the side where the sapphire substrate is removed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to FIGS.
FIG. 1 is a view of a sapphire substrate showing an embodiment of a manufacturing process of a nitride semiconductor device of the present invention as viewed from the C-plane direction. The sapphire A plane and M plane shown in the figure indicate directions perpendicular to the paper plane. In this case, the A plane is the first orientation flat surface and the M plane is the second orientation flat surface.
[0011]
Examples of the substrate include a sapphire R plane, GaN, SiC (including 6H, 4H), spinel (MgAl 2 O 4 ), Si, GaAs, ZnO and the like in addition to the sapphire C plane. In the case of GaN, the orientation plane is formed by cleaving at {11-00} with the {0001} plane as the principal plane, and in the case of SiC by cleaving at {11-00} with the {0001} plane as the principal plane. An orientation flat surface is formed, and in the case of spinel, the orientation surface is formed by cleaving the {111} plane as the main surface and {100} plane, and in the case of Si and GaAs, the {111} surface is the main surface, and {11-0 } The orientation flat surface is formed by cleaving at the surface. Nitride semiconductors can be stacked on these substrates, and a good nitride semiconductor laser element can be formed by forming an element structure using the second orientation flat surface obtained by the respective cleavage as a reference plane. Can be obtained.
[0012]
In the present invention, two second orientation flat surfaces obtained by cleaving may be provided as shown in FIG. By providing two second orientation flat surfaces as shown in FIG. 2, the protective film or GaN and resonator directions can be formed more accurately with respect to the reference surface, and the yield can be improved and a good laser element can be obtained. .
In the present invention, two first orientation flat surfaces formed in advance may be provided as shown in FIG.
[0013]
In the present invention, a method for obtaining the second orientation flat surface by cleaving will be described specifically. In the case of a substrate with strong cleaving ability such as GaN or SiC, a kerf is partially inserted using a device such as a dicer, After that, it can be cleaved neatly by applying a little external force, and the orientation flat surface can be obtained. In addition, in the case of a substrate with a low cleavage property such as sapphire or spinel, scribing or half dicing along the surface to be cleaved makes an overall kerf from end to end, and then an external force is applied to the kerf. Cleavage occurs within the range, and an orientation flat surface can be obtained.
[0014]
In the present invention, the substrate may be an off-angle (tilted) substrate in a step shape. In this case, the resonator direction is formed to be parallel to the direction along the step (step direction). This means that, in the case of a sapphire substrate, a substrate in which the direction along the step (step direction) is parallel to the second orientation flat surface is used. Furthermore, a favorable laser element can be obtained by setting the off angle of the off angle in the range of 0.1 ° to 0.2 °.
Further, in the present invention, the cleavage property is weak, but by cleaving on the M-plane of sapphire having cleavage property, a second orientation flat surface is newly provided, and this is used as a reference surface to form a protective film or GaN in a stripe shape. Then, the direction of the resonator is determined. That is, a stripe-shaped protective film or GaN is formed in parallel to the M-plane of sapphire obtained by cleavage, and the element structure is formed so that the resonator direction is also parallel. A deviation from the emission surface is eliminated, the yield is improved, and a good laser element is obtained.
[0015]
The method for manufacturing a nitride semiconductor device of the present invention is not limited to a nitride semiconductor laser device.
[0016]
【Example】
[Example 1]
FIG. 4 is a schematic cross-sectional view showing the structure of the nitride semiconductor laser device according to one embodiment of the present invention, and specifically shows the structure of the laser device. Hereinafter, Example 1 is demonstrated based on FIG.1 and FIG.4.
As shown in FIG. 1, a sapphire substrate 1 is prepared which has a C plane {0001}, in which an A plane {112-0} is formed as a first orientation flat surface in advance. First, the cleavage of sapphire is used to cleave the sapphire M-plane {11-00} in a direction substantially perpendicular to the A-plane. Using this as the second orientation flat surface, an element structure is formed on the C surface as follows.
[0017]
First, the sapphire substrate 1 is set in a MOCVD reaction vessel, and a layer made of undoped GaN at 500 ° C. is formed as an underlayer at 200 ° C., followed by 2.5 μm of a layer made of undoped GaN at 1050 ° C., A first nitride semiconductor layer having a total film thickness of about 2.5 μm is formed.
[0018]
Next, after growing the first nitride semiconductor layer, a striped photomask is formed on the surface of the first nitride semiconductor layer, and a protective film made of SiO 2 having a stripe width of 10 μm and a window portion of 5 μm is formed by a CVD apparatus. Is formed with a film thickness of 0.5 μm. At this time, the stripe direction is formed in parallel to the second orientation flat surface.
[0019]
After forming the stripe-shaped protective film, the wafer is transferred to a reaction vessel, and a second nitride semiconductor layer made of undoped GaN is grown to a thickness of 15 μm at 1050 ° C. using TMG and ammonia as source gases. The nitride semiconductor substrate 2 is obtained as described above.
[0020]
Next, a device structure is formed on the obtained nitride semiconductor substrate 2. First, an n-side contact layer 3 made of GaN or AlGaN, a crack prevention layer made of InGaN (this can be omitted), an n-side cladding layer 4 made of a superlattice of AlGaN and Si-doped GaN, made of GaN n-side light guide layer 5, multi-quantum well structure (MQW) active layer 6 made of InGaN, p-side cap layer 7 made of Mg-doped AlGaN, p-side light guide layer 8 made of Mg-doped GaN, AlGaN and Mg A p-side cladding layer 9 made of a superlattice with doped GaN and a p-side contact layer 10 made of Mg-doped GaN are sequentially stacked.
[0021]
Next, part of the p-side contact layer 10 is dry-etched to expose the n-side contact layer 3. Further, the p-side layer is etched to the p-side cladding layer 9 by RIE to form a ridge, an insulating film 30 such as TiO 2 as a protective film on the ridge, and a p-electrode 20 and a p-pad electrode 21 on each contact layer, An n electrode 22 and an n pad electrode 23 are formed.
Finally, the wafer is cleaved in the M-plane direction of GaN to form a resonator, and a chip is formed.
[0022]
The laser chip obtained as described above was placed face-up (with the substrate and heat sink facing each other) on the heat sink, each electrode was wire-bonded, and continuous oscillation was attempted at room temperature. At an output of 2 kA / cm 2 and 20 mW, continuous oscillation with an oscillation wavelength of 405 nm was confirmed, indicating a lifetime of 1000 hours or longer.
[0023]
[Example 2]
In a sapphire substrate 1 having a C plane {0001} as a main surface, in which the A plane {112-0} is formed as a first orientation flat surface in advance, in a direction substantially perpendicular to the A plane using the cleavage of sapphire. As shown in FIG. 2, cleaving is performed at two locations on both sides to expose the M-plane {11-00} of sapphire. Using this as the second orientation flat surface, an element structure is formed on the C surface in the same manner as in the first embodiment.
When the device obtained as described above was tried to continuously oscillate at room temperature, continuous oscillation at an oscillation wavelength of 405 nm was confirmed at an output of a threshold current density of 2 kA / cm 2 and 20 mW as in Example 1, and 1000 hours. The lifetime was shown above, and the yield could be further increased.
[0024]
[Example 3]
In the sapphire substrate 1 whose principal surface is the C plane {0001}, in which the A plane {112-0} is formed as the first orientation flat surface in advance, the off angle is further stepped, and the off angle is 0.13 °. A substrate in which the direction along the step (step difference direction) is formed perpendicular to the A plane is used. First, the cleavage of sapphire is used to cleave the sapphire M-plane {11-00} in a direction substantially perpendicular to the A-plane. Using this as the second orientation flat surface, an element structure is formed on the C surface in the same manner as in the first embodiment.
The laser element obtained as described above exhibited almost the same characteristics as in Example 1.
[0025]
[Example 4]
As shown in FIG. 1, a sapphire substrate 1 is prepared which has a C-plane with the A-plane formed in advance as a first orientation flat surface. First, the cleavage of sapphire is used to cleave the sapphire in the direction substantially perpendicular to the A plane to expose the M plane of sapphire. Using this as the second orientation flat surface, an element structure is formed on the C surface as follows.
First, the sapphire substrate 1 is set in a MOCVD reaction vessel, and a layer made of undoped GaN at 500 ° C. is formed as an underlayer at 200 ° C., followed by 2.5 μm of a layer made of undoped GaN at 1050 ° C., A nitride semiconductor layer having a total film thickness of about 2.5 μm is formed.
[0026]
Next, after a nitride semiconductor layer is grown, a striped photomask is formed on the surface of the nitride semiconductor layer, and a protective film made of SiO 2 having a stripe width of 10 μm and a window portion of 5 μm is formed by a CVD apparatus with a thickness of 0.5 μm. Form with thickness. At this time, the stripe direction is formed in parallel to the second orientation flat surface.
Subsequently, a portion of the GaN on which the SiO 2 film is not formed is etched by the RIE until the sapphire substrate is exposed to form irregularities, thereby forming the GaN in a stripe shape, and finally the SiO 2 on the upper portion of the convex portion is formed. Remove.
[0027]
After forming the striped GaN, the wafer is transferred to a reaction vessel, and at 1050 ° C., a second nitride semiconductor layer made of undoped GaN is grown to a thickness of 15 μm using TMG and ammonia as source gases. The nitride semiconductor substrate 2 is obtained as described above.
Other than that, a laser device was fabricated in the same manner as in Example 1, and showed almost the same characteristics as in Example 1.
[0028]
[Example 5 ]
As shown in FIG. 1, a sapphire substrate 1 is prepared which has a C-plane with the A-plane formed in advance as a first orientation flat surface. First, the cleavage of sapphire is used to cleave the sapphire in the direction substantially perpendicular to the A plane to expose the M plane of sapphire. Using this as the second orientation flat surface, an element structure is formed on the C surface as follows.
[0029]
First, the sapphire substrate 1 is set in a MOCVD reaction vessel, and a layer made of undoped GaN at 500 ° C. is formed as an underlayer at 200 ° C., followed by 2.5 μm of a layer made of undoped GaN at 1050 ° C., A first nitride semiconductor layer having a total film thickness of about 2.5 μm is formed.
On the sapphire substrate 1 fabricated as described above, the n-side contact layer 3, the n-side cladding layer 4, the n-side light guide layer 5, the active layer 6 having a multiple quantum well structure, the p-side cap layer 7, and the p-side light guide. Layer 8, p-side cladding layer 9 and p-side contact layer 10 are laminated.
[0030]
Next, when the p-electrode 20 and the p-pad electrode 21 are formed on the p-side contact layer 10 and the n-electrode 22 and the n-pad electrode 23 are formed on the n-side contact layer 3 exposed by etching, both electrodes are made of sapphire. It is formed in a bar shape parallel to the second orientation flat surface so as to be parallel to the M surface.
Finally, the wafer is cleaved in the M-plane direction of GaN to form a resonator, and a chip is formed.
[0031]
Although the laser device obtained as described above is slightly inferior to Example 1, continuous oscillation at an oscillation wavelength of 405 nm is confirmed at room temperature at a threshold current density of 2 kA / cm 2 and an output of 20 mW, and a lifetime of 1000 hours or more. showed that.
[0032]
[Example 6 ]
FIG. 5 is a schematic cross-sectional view showing the structure of the nitride semiconductor laser device according to one embodiment of the present invention, and specifically shows the structure of the laser device. Hereinafter, Example 6 is demonstrated based on FIG.1 and FIG.5.
As shown in FIG. 1, a sapphire substrate 1 is prepared which has a C plane {0001}, in which an A plane {112-0} is formed as a first orientation flat surface in advance. First, the cleavage of sapphire is used to cleave the sapphire M-plane {11-00} in a direction substantially perpendicular to the A-plane. Using this as the second orientation flat surface, an element structure is formed on the C surface in the same manner as in the first embodiment.
[0033]
Until the protective film made of SiO 2 and the second nitride semiconductor are grown, the next nitride semiconductor substrate obtained from the sapphire side is used as the underlayer made of undoped GaN or the first layer, as in Example 1. Polishing is performed until the nitride semiconductor layer is exposed to obtain a nitride semiconductor substrate 2 made of only GaN. The nitride semiconductor substrate 2 is cleaved at the M plane to form a second orientation flat surface.
[0034]
Next, an element structure is formed on the nitride semiconductor substrate 2. In the case of GaN, since the M-plane of GaN corresponds to the second orientation flat surface, the resonator direction of the element is set with respect to the second orientation flat surface. To form vertically.
Finally, the p-electrode 20 is formed on the p-side contact layer, and the n-electrode 22 is formed on the nitride semiconductor surface obtained by polishing to form a chip.
[0035]
The laser device obtained as described above was confirmed to exhibit continuous oscillation at an oscillation wavelength of 405 nm at a threshold current density of 2 kA / cm 2 and an output of 20 mW at room temperature, which was almost the same as in Example 1, and had a lifetime of 1000 hours or longer. showed that.
[0036]
【The invention's effect】
As described above, according to the present invention, an element structure is obtained in a method for manufacturing a nitride semiconductor device in which a nitride semiconductor is epitaxially grown using a vapor phase growth method on a substrate plane on which a first orientation flat surface is provided in advance. Before laminating the nitride semiconductor, the substrate is cleaved to form at least one second orientation flat surface, thereby eliminating the deviation between the cavity direction and the laser emission surface, and improving the yield. As a result, a good laser element can be obtained.
[Brief description of the drawings]
FIG. 1 is a view of a sapphire substrate showing an embodiment of a manufacturing process of the present invention as viewed from the direction of a C-plane.
FIG. 2 is a view of a sapphire substrate showing another embodiment of the manufacturing process of the present invention as seen from the direction of the C-plane.
FIG. 3 is a view of a sapphire substrate showing another embodiment of the manufacturing process of the present invention as viewed from the direction of the C-plane.
FIG. 4 is a schematic cross-sectional view showing the structure of a nitride semiconductor laser device according to an embodiment of the present invention.
FIG. 5 is a schematic cross-sectional view showing the structure of a nitride semiconductor laser device according to another embodiment of the present invention.

Claims (4)

C面を主面とし、A面及びM面をオリフラ面とするサファイア基板上にストライプ状の保護膜を前記サファイア基板の M 面に対して平行方向にパターン形成し、その上にGaNを選択成長させて窒化物半導体を形成し、前記窒化物半導体からサファイア基板及びストライプ状の保護膜を除去してGaNのみの窒化物半導体基板とする第1の工程と、
前記窒化物半導体基板を、M面で劈開することにより、第2のオリフラ面を少なくとも1つ形成する第2の工程と、
前記窒化物半導体基板上に、窒化物半導体を積層させると共に、前記第2のオリフラ面に対して共振器方向が垂直となるように素子構造を形成する第3の工程と、
前記窒化物半導体基板をチップ化する第4の工程と、を備えることを特徴とする窒化物半導体レーザ素子の製造方法。
A stripe-shaped protective film is formed in a direction parallel to the M surface of the sapphire substrate on the sapphire substrate with the C surface as the main surface and the A surface and the M surface as the orientation flat surfaces, and GaN is selectively grown thereon. by forming a nitride semiconductor layer, a first step of the nitride semiconductor substrate of only GaN and the sapphire substrate is removed and a stripe-shaped protective layer from the nitride semiconductor layer,
A second step of forming at least one second orientation flat surface by cleaving the nitride semiconductor substrate at the M plane;
A third step of laminating a nitride semiconductor on the nitride semiconductor substrate and forming an element structure so that a resonator direction is perpendicular to the second orientation flat surface;
And a fourth step of forming the nitride semiconductor substrate into a chip. A method for manufacturing a nitride semiconductor laser device, comprising:
前記第3の工程後、前記窒化物半導体基板を GaN M 面方向で劈開して共振器を形成し、その後、前記第4の工程において、前記窒化物半導体基板をチップ化することを特徴とする請求項1に記載の窒化物半導体レーザ素子の製造方法。 After the third step, by cleaving the nitride semiconductor substrate at the M-plane direction of the GaN to form a cavity, then, in the fourth step, and characterized in that chips of the nitride semiconductor substrate The method for manufacturing a nitride semiconductor laser device according to claim 1. 前記第2の工程において、前記窒化物半導体基板の一部に切溝を入れ、外力を加えることにより劈開を行うことを特徴とする請求項1又は2に記載の窒化物半導体レーザ素子の製造方法。In the second step, put kerf in a part of the nitride semiconductor substrate, the manufacturing method of the nitride semiconductor laser device according to claim 1 or 2, characterized in that the cleavage by applying an external force . 前記第3の工程の後、前記窒化物半導体基板のサファイア基板を除去した側の表面にn電極を形成する工程を備えたことを特徴とする請求項1乃至のいずれか1項に記載の窒化物半導体レーザ素子の製造方法。After the third step, according to any one of claims 1 to 3, further comprising a step of forming an n-electrode on the surface on which the removal of the sapphire substrate of the nitride semiconductor substrate A method for manufacturing a nitride semiconductor laser device.
JP01695199A 1999-01-26 1999-01-26 Manufacturing method of nitride semiconductor laser device Expired - Fee Related JP4097343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01695199A JP4097343B2 (en) 1999-01-26 1999-01-26 Manufacturing method of nitride semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01695199A JP4097343B2 (en) 1999-01-26 1999-01-26 Manufacturing method of nitride semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2000216502A JP2000216502A (en) 2000-08-04
JP4097343B2 true JP4097343B2 (en) 2008-06-11

Family

ID=11930442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01695199A Expired - Fee Related JP4097343B2 (en) 1999-01-26 1999-01-26 Manufacturing method of nitride semiconductor laser device

Country Status (1)

Country Link
JP (1) JP4097343B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055503B2 (en) 2001-07-24 2008-03-05 日亜化学工業株式会社 Semiconductor light emitting device
EP1495169B1 (en) 2002-04-15 2012-10-10 The Regents of The University of California Dislocation reduction in non-polar gallium nitride thin films
EP3166152B1 (en) 2003-08-19 2020-04-15 Nichia Corporation Semiconductor light emitting diode and method of manufacturing its substrate
US7326477B2 (en) * 2003-09-23 2008-02-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
JP4590905B2 (en) * 2003-10-31 2010-12-01 豊田合成株式会社 Light emitting element and light emitting device
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation
TWI377602B (en) 2005-05-31 2012-11-21 Japan Science & Tech Agency Growth of planar non-polar {1-100} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd)
JP4868114B2 (en) * 2005-08-11 2012-02-01 日立電線株式会社 Nitride-based semiconductor substrate and method for manufacturing the same

Also Published As

Publication number Publication date
JP2000216502A (en) 2000-08-04

Similar Documents

Publication Publication Date Title
JP3770014B2 (en) Nitride semiconductor device
JP3436128B2 (en) Method for growing nitride semiconductor and nitride semiconductor device
JP3491538B2 (en) Method for growing nitride semiconductor and nitride semiconductor device
JP4304750B2 (en) Nitride semiconductor growth method and nitride semiconductor device
WO2003036771A1 (en) Nitride semiconductor laser element, and production method therefor
KR100874077B1 (en) Nitride semiconductor laser device and method of manufacturing the same
JP2002246698A (en) Nitride semiconductor light-emitting device and method of manufacturing the same
JP2010109147A (en) Light emitting element and method of manufacturing the same
KR20070109918A (en) Method for manufacturing nitride semiconductor laser device and nitride semiconductor laser device
JP3460581B2 (en) Method for growing nitride semiconductor and nitride semiconductor device
JP2953326B2 (en) Method of manufacturing gallium nitride based compound semiconductor laser device
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JP4665394B2 (en) Nitride semiconductor laser device
JP3395631B2 (en) Nitride semiconductor device and method of manufacturing nitride semiconductor device
JP4043087B2 (en) Nitride semiconductor device manufacturing method and nitride semiconductor device
JP4097343B2 (en) Manufacturing method of nitride semiconductor laser device
JP3678061B2 (en) Nitride semiconductor growth method and nitride semiconductor device
US20060209395A1 (en) Semiconductor laser and method for manufacturing the same
JP2001326425A (en) Semiconductor device and manufacturing method of substrate therefor
JP2000068609A (en) Semiconductor substrate and semiconductor laser
JP2000058972A (en) Nitride semiconductor laser element
JP4784012B2 (en) Nitride semiconductor substrate and manufacturing method thereof
JP3933637B2 (en) Gallium nitride semiconductor laser device
JPH11340573A (en) Gallium nitride based semiconductor laser element
JPH1027939A (en) Nitride semiconductor laser element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060814

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees