JP4094206B2 - Power system stabilizer - Google Patents

Power system stabilizer Download PDF

Info

Publication number
JP4094206B2
JP4094206B2 JP2000175563A JP2000175563A JP4094206B2 JP 4094206 B2 JP4094206 B2 JP 4094206B2 JP 2000175563 A JP2000175563 A JP 2000175563A JP 2000175563 A JP2000175563 A JP 2000175563A JP 4094206 B2 JP4094206 B2 JP 4094206B2
Authority
JP
Japan
Prior art keywords
generator
control
index
effect index
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000175563A
Other languages
Japanese (ja)
Other versions
JP2001352678A (en
Inventor
彩登 久米
康生 佐藤
昌洋 谷津
努 鈴木
雅一 佐藤
正人 西川
芳紀 中地
良彦 和澤
浩一 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Hitachi Ltd
Original Assignee
Chubu Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Hitachi Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2000175563A priority Critical patent/JP4094206B2/en
Publication of JP2001352678A publication Critical patent/JP2001352678A/en
Application granted granted Critical
Publication of JP4094206B2 publication Critical patent/JP4094206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力系統安定化装置に関する。
【0002】
【従来の技術】
電力系統に系統事故が発生すると、事故によって系統の需給アンバランスを生じて、事故の影響が系統内に波及するのを防止するため、系統内の複数の発電機が動揺または脱調する前に、発電機等を系統から切り離すための系統安定化制御が行われる。系統安定化制御は事故直後に過渡安定度演算を行い、過渡安定度維持に切離しが必要な発電機を選択して電源制限(電制)を行う。また、分離系統の発生に伴い周波数安定度演算、さらには電圧安定度演算を行い、系統の周波数や電圧を一定に保つための電制や負荷制限(負制)を行う。従来は、上記の各安定度維持制御をそれぞれ個別に実施している。個別の系統安定化制御の例として、過渡安定度維持制御に関して特開昭61−46123号、特開平10−42740号など、系統周波数維持制御に関して特開平6−113464号、特開平9−46908号などがある。
【0003】
また、系統安定化制御方式には事前演算方式と事後演算方式がある。前者は、予め想定した事故について、電力系統の動特性モデルにしたがって過渡的な状態変化波及推移を予測演算し、この予測結果から電制により安定化できる発電機を予め選定しておき、事故発生時に、予め選定された発電機の中から電制用発電機を決定する。後者は、事故発生後に、事故情報などを取り込み、事故の影響により発電機が動揺または脱調するか否かを予測演算し、この演算結果から制御が必要であると判定したときには、制御すべき発電機を選定し、系統が動揺または脱調に至る前に、選定した発電機を系統から切り離す(特開平6−269123号、特開平8−182199号)。
【0004】
【発明が解決しようとする課題】
系統安定化制御は、系統に対する制御量(電制量・負制量)が少なく、かつ、系統の動揺を速やかに抑止できることが望ましい。少ない制御量でより速く安定化可能であるということは、系統信頼性の向上および電力発生から供給までのトータルエネルギー効率の向上につながる。
【0005】
しかし、従来の系統安定化制御では、3つの系統安定度維持制御を個別に行っているために、各制御間での協調に欠け、後の制御での安定化が困難になったり、制御量が増大するという問題がある。たとえば、過渡安定度維持制御の後に、周波数安定度維持に最適な電制量の発電機が残っていないことがある。このため、必要な電制量よりも多すぎる電制を実施しなければならなくなり、需給バランスから負制が必要になるなど、制御量(電制量・負制量)が増大して系統運用効率が低下するだけでなく、系統安定化までに時間がかかる。
【0006】
本発明の目的は、上記従来技術の問題点に鑑み、複数の安定度維持制御の協調を考慮し、事故後の系統が最小の制御量で速やかに安定化される信頼性の高い電力系統安定化装置を提供することにある。本発明によれば、系統運用効率の向上が可能になる。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明は、系統事故の発生により過渡安定度維持の制御を行う場合に、周波数安定度および電圧安定度を同時に考慮し、3つの系統安定度の協調が図られるように電制発電機を選定する制御アルゴリズムを創成して成し得たものである。
【0008】
本発明は、事故情報を含む系統運用情報を入力し、系統事故時に前記情報に基づいて求めた系統の過渡安定度から、安定化に必要な電源制限(以下、電制)に適した発電機を系統内から選定し、選定した発電機の遮断指令を出力する電力系統安定化装置において、前記電源制限に必要な発電機(以下、電制発電機)の選定のために、系統の過渡安定度維持に効果のある指標(以下、過渡安定度効果指標)と周波数安定度維持に効果のある指標(以下、周波数安定度効果指標)、または、前記過渡安定度効果指標、前記周波数安定度効果指標及び電圧安定度維持に効果のある指標(以下、電圧安定度効果指標)の各指標値を系統内の発電機毎に算出し、算出した各指標値に基づいて総合化した電制効果指標値を演算し、前記電制効果指標値が最も高い発電機を電制候補として選択する電制候補選択手段を設けている。
【0009】
そして、前記電制候補の発電機を系統から切り離して系統の安定化が可能となると判定される場合は、当該電制候補を前記電制発電機として選択する。一方、系統の安定化が不可能と判定される場合は、追加の電制発電機を選定するために前記電制候補選択手段による前記電制候補の選択を繰り返す。
【0010】
前記電制効果指標値は、前記過渡安定度効果指標と周波数安定度効果指標の積、またはそれらと前記電圧安定度効果指標の積により求める。
【0011】
前記過渡安定度効果指標は、前記電制発電機または前記電制候補に選択済のものを除外する選択絶対条件指標と脱調傾向が高い発電機ほど選択され易くする発電機加速指標の積を含み、前記周波数安定度効果指標は、事故点から作成する想定分離系統内において、電制発電機の合計出力が事故前に事故点に流れていた潮流量を超えないように、かつ、前記潮流量に近い出力の発電機ほど選択され易くする需給バランス指標を含んでいる。
【0012】
また、前記電制候補選択手段は、系統内の全ての発電機について前記電制効果指標値が規定値以下(ゼロ以上の所定値)で、かつ系統の安定化が不可能と判定される場合に、前記周波数安定度効果指標、または前記周波数安定度効果指標及び前記電圧安定度効果指標の各指標値が前記規定値以下にならないように緩和した演算式を用いて、系統内の発電機毎に各指標値を算出し、算出した各指標値に基づいて総合化した電制効果指標値を演算し、緩和した演算式による電制効果指標値が最も高い発電機を電制候補として選択する。
【0013】
本発明の作用を説明する。図2は本発明における電制発電機選択の概要を示している。系統事故が検出されると、事故情報(事故点、事故種別など)を含む系統運用情報に基づいて系統過渡安定度を演算する。すなわち、事故の影響により発電機が動揺または脱調するかを予測演算(過渡安定度演算)し、不安定(動揺または脱調)になると判定される場合は、系統を安定化させるために必要な電制発電機の候補を選択し、再度、過渡安定度演算を行う。この結果、安定化可能となれば、電制候補を電制用発電機に選定して遮断指令を出力する。
【0014】
本発明では、電制候補を選択する場合、過渡安定度維持とともに、周波数安定度維持、さらには電圧安定度維持も考慮した電制効果指標、即ち、数1による統合型電制効果指標を系統内の発電機毎に演算し、この統合型指標が最も高くなる発電機を電制候補として選択する。
【0015】
【数1】
Tn=An・Bn・Cn (or)
Tn=An・Bn
ここで、An:過渡安定度効果指標関数、Bn:周波数安定度効果指標関数、Cn:電圧安定度効果指標関数である。
【0016】
【発明の実施の形態】
以下、本発明による電力系統安定化装置の実施の形態について、図面を参照しながら説明する。図1は電力系統安定化装置の概略のシステム構成を示す。本システムは中央演算装置10、伝送路20、複数の情報収集端末30、複数の制御端末40を備えている。中央演算装置10は伝送路20を介して各情報収集端末30に接続されているとともに、伝送路20を介して各制御端末40に接続されている。
【0017】
情報収集端末30は電力系統に分散して配置されており、電力系統の系統運用情報であるTM(テレメータ)データ、例えば、発電機の端子電圧、有効・無効電力、送電線の有効・無効電力、負荷母線の電圧、消費有効・無効電力などのデータを取り込むとともに、SV(スーバーバイザ)データ、例えば、リレーの動作や遮断器の開閉状態およびその状態変化など、機器構成の変化データを入力し、入力した系統運用情報を伝送路20を介して中央演算装置10に伝送する。なお、各情報収集端末30は、事故発生時にアナログ情報である変圧器(PT)、変流器(CT)や接点入力(保護リレー動作など)を入力することも可能である。
【0018】
中央演算装置10の系統安定化制御演算部101は、各情報収集端末30からの情報を基に、事前演算と事後演算を併用して、電力系統の事故発生時に、複数の制御対象、例えば、系統に分散して配置された複数の発電機を順次選択するための演算を行ない、この積算結果にしたがった制御指令を伝送路20を介して制御端末40に出力する。
【0019】
系統安定化制御演算部101による事前演算は、情報収集端末30からの系統運用情報を基に、予め想定した事故ケースに対し、電力系統の動特性モデルにしたがった過渡安定度計算、安定判定(脱調判定)、安定化対策演算(電制候補選択演算)を行ない、各演算結果にしたがって、安定化対策上制御すべき発電機などを、予め想定した事故ケースに関連づけて事前に登録しておく。
【0020】
系統事故が発生し、安定化制御が必要なときは、事前登録された発電機を電制候補として過渡安定度演算を行い、安定化可能であれば、当該発電機の遮断指令を制御端末40に出力する。安定化不可能であれば、電制候補を再選択して、上記処理を繰り返す。事故後、直に事前演算で登録された発電機を遮断し、それでも制御量が不足しているときは、他の電制発電機を選択して切り離すための制御演算を行うようにしてもよい。
【0021】
本実施例の中央演算装置10は、上述した系統安定化制御演算部101とともに統合型電制指標演算部102を備えていて、事故後の安定度計算の結果、系統が安定化できないと判定される場合に、発電機ごとに電制効果指標Tnを演算し、Tnが最も高い発電機を電制候補に追加する安定化対策演算を実施している。統合型電制指標演算部102は後述する電制効果指標演算アルゴリズムを主体とし、記憶媒体に格納して、従来型の過渡安定度維持の系統安定化装置に容易に付加できる。なお、系統安定化制御演算部101と統合型電制指標演算部102は一体構成されてもよい。
【0022】
本実施例では事故前演算と事故後演算を併用する系統安定化制御方式としている。しかし、事故前演算を行わない制御方式に対しても、発電機ごとに電制効果指標Tnを演算して電制候補を選択する本発明の方法は適用可能である。また、事故前演算による制御方式の決定にも適用可能である。
【0023】
制御端末40は、制御設備単位あるいは制御設備のある電気所単位に配置されており、中央演算装置10において演算された制御指令として、事前演算による制御指令と事後演算による制御指令が伝送路20を介して入力されるようになっている。そして、演算装置10から制御指令が入力された制御端末40では、系統安定化制御として、指定の発電機を系統から切り離す電制を行なったり、特定の負荷を系統から切り離す負制を行なったりするとともに、変電所などに設置された電力用コンデンサ(SC)や分路リアクトル(ShR)の入り切り制御を同時に行なうようになっている。制御端末40によって発電機が系統から切り離される制御が行なわれると、系統が安定化されることになる。
【0024】
図3は、電力系統安定化演算装置の処理フローの一例を示す。まず、情報収集端末30から系統運用情報(TMデータ、SVデータ)を順次入力し、入力した系統運用情報を基に過渡安定度計算に必要な系統モデルを作成する(S10‐1)。次に、予め想定された事故地点に対し、事故シーケンス(分離系統モデル)を仮定して過渡安定度計算(S10‐2)、脱調判定(S10‐3)、安定化対策演算(S10‐4)が行なわれる。
【0025】
ここでの事故シーケンスとしては、事故の発生する事故点、事故点における事故インピーダンス、事故の発生する様相、遮断器の再閉路方式、遮断器の再閉路の成功/失敗、線路開放の有無および各事象の発生タイミングなどが考慮される。具体的に仮定される事故シーケンスは、例えば、3サイクル遮断(超高圧系統を想定し、保護リレーの動作を仮定)とする設定や、あるいは事故発生個所を線路の負荷側至近端とする設定が可能である。
【0026】
ステップS10‐2の過渡安定度計算では、電力系統の動特性シミュレーションが行なわれる。一例として、Y法アルゴリズムを説明する。制御系の内部状態を表現する微分方程式と、各発電機を互いに接続する回路網の連立方程式を組み合わせた数2によりインターフエース計算を行なう。
【0027】
【数2】
dx/dt=Ax+Bu
YE=I
u=g(y,E)
I=h(y,E)
ただし、x:状態ベクトル、u:入力信号、A,B:定数、I:ノードインジェクション電流、E:ノード電圧、Y:ノードアドミッタンス行列である。上記方程式を解くことで、例えば発電機の状態として位相角が求められ、この位相角と基準発電機との位相角差を求めることができる。
【0028】
ステップS10‐3における脱調判定では、過渡安定度計算結果(ここでは、位相角差)が用いられ、系統に接続されている発電機の脱調判定が行なわれる。脱調する発電機がある場合、安定度計算結果は不安定となるので、制御対象の選択が行なわれる。脱調判定方法の一例として、過渡安定度計算結果による波形データを基に、基準発電機に対する各発電機の内部位相角差による安定判別方法を説明する。
【0029】
過渡安定度計算において、動特性を示す微分方程式を用いて時間ごとの過渡状態を演算し、各発電機の内部位相角が求められる。ここで、基準発電機と各発電機の内部位相角差を求めることにより、各発電機が事故により安定度的にどのような影響を受けているかを判定できる。すなわち、基準発電機に対する位相角差が増大し発散傾向にあるときには、当該発電機は脱調傾向にあり、安定化対策を行なわなければ発電機の同期運転ができなくなり、大規模な停電を引き起こすことになる。
【0030】
本実施例では、発電機が脱調しているか否かの判定に、発電機の位相角差に対する一定のしきい値を用いる。また、各時間刻みの位相角差を基に波形を認識し、波形データの極大値、極小直より振幅を求め、各振幅ごとに発散傾向(不安定)か収束傾向(安定)か否かを判定することもできる。また、各発電機の位相角差の代わりに、各発電機の角速度や加速エネルギーを用いて脱調判定を行なうことも可能である。
【0031】
S10‐3で、脱調判定結果が不安定と判定されたときには、系統安定化上必要となる制御対象を選択するための演算が行なわれる(S10‐4)。系統安定化上必要な制御対象としては、発電機、需要家などの負荷、あるいは変電所などに設置された電力用コンデンサ(SC)や分路リアクトル(ShR)などがあるが、以下では発電機を選定する場合について説明する。
【0032】
S10‐4の電制用発電機の選定は、まず、発電機毎の電制効果指標Tnを後述するように演算し、指標が最も高くなる発電機を電制候補とする。次に、その電制候補を系統から切り離したシーケンスの各発電機について、上述の過渡安定度計算を行いその結果が安定であれば、つまり、事故後の系統内の各発電機に脱調が生じなければ、それまでの電制候補を電制用発電機とする。
【0033】
S10‐3で、脱調判定の結果が安定と判定されたときには、計算結果登録が行われる(S10‐5)。それぞれの想定事故ケースに対して、S10‐4で求めた電制用発電機が対応するように関連づけられてテーブルに登録される。
【0034】
次に、情報収集端末30からの情報を基に電力系統で事故が発生したか否かの判定が行なわれる(S20)。ここでは、各情報収集端末30からのアナログ情報(PT、CTなど)や接点入力(リレー動作など)を基に、事故発生の有無、事故様相(事故ケース)などが判定される。なお、ステップS20において、併せて事故点標定演算を行い、事故点標定装置によらずに事故点を求めることも可能である。
【0035】
ステップS20において、事故が発生したと判定されたときには、ステップS10‐5で登録された電制用発電機の遮断指令が出力されるとともに、ステップS30からの事後演算に移る。事故が発生していないときにはステップS1O‐1に戻り、新しく入力されたデータにしたがってステップS10、S20の処理が繰り返される。
【0036】
事故後の演算では、事前演算の結果と事故点、事故様相の情報を反映して過渡安定度演算が行われる(S30)。ここでの安定度演算は、上述と同様に位相角差を求め、安定か不安定か、つまり脱調が生じるか否かを判定する(S40)。なお、事前登録された発電機が直ちに遮断される場合は、遮断後のシーケンスでの過渡安定度演算が行われる。また、事前登録された事故ケースと同一のものがない場合は、事故後の系統運用情報による過渡安定度演算が行われる。
【0037】
安定度計算結果の判定が“安定”とならなければ、電制効果指標Tnを系統内の全ての発電機(1〜n)を対象に、数1により算出する(S50)。そして、Tnが規定値より大きくなる発電機があるか判定し(S60)、あれば、Tnが最大となる発電機Gnを電制候補として選択し(S70)、ステップS30に戻る。なお、既に電制済みの発電機や、電制候補に上げられている発電機は、後述のように、Tn=規定値となる運用指標が含まれているので、再度選択されることはない。なお、規定値は0以上の所定値で、通常は0より大きな値が設定されている。
【0038】
ステップS60で、すべての発電機の電制効果指標が規定値となった場合には、電制効果指標演算式の切り替えを行い(S100)、次に述べるように条件緩和を行う。指標Bn、Cnの関数は、数3で示されるように、0になりうる関数として定義されている。これに対して、数4の関数を用意し、指標が0にならないようにする。
【0039】
【数3】
Bn=αB (αB≧0)
Cn=αC (αC≧0)
【0040】
【数4】
Bn’=1+Bn
Cn’=1+Cn
この数4のタイプの関数を用いると、数1の電制効果指標Tnは数5のTn’に切り替えられる。
【0041】
【数5】
Tn’=An・Bn’・Cn’
ステップS100で電制効果指標の計算式を切り替えた後、S50〜S60と同様に、S110〜S120で電制効果指標T1’〜Tn’を演算し、指標が最大となった発電機をS70で電制候補へ追加していく。ここで、S120で電制効果指標Tn’がすべて規定値以下となった場合には、電制不足メッセージを表示し(S130)、ステップS80へ計算結果を出力する。
【0042】
上記の電制選択アルゴリズムで電制効果指標値Tnがすべて規定値以下となる場合には、追加される電制候補がなくなる。たとえば、過渡安定度維持の指標値Anが大きくなったとしても、周波数安定度、電圧安定度の指標値Bn、CnがゼロになるとTnがゼロとなるために、電制発電機が選択されなくなり、過渡安定度維持の制御も困難になる。そこで、上記の切り替えによって電制候補発電機の選択条件を緩和し、系統安定化のための制御量を確保する。
【0043】
上記のような効果指標の切り替えによっても、周波数安定度および電圧安定度維持はある程度考慮されるので、従来の個別制御に比べて系統安定化の信頼性は向上する。
【0044】
ここで、電制効果指標Tnを構成する指標An、Bn及びCnの各数式と内容について説明する。過渡安定度効果指標An、周波数安定度効果指標Bn、電圧安定度効果指標Cnは数8で表され、それぞれ1ないし複数の指標(≧0)の積で重み付けされる指標である。
【0045】
【数6】
An=A1n×A2n×A3n×・・・
Bn=B1n×B2n×・・・
Cn=C1n×・・・
過渡安定度効果指標の中で、主要な指標を以下に説明する。選択絶対条件A1nは制御対象から除いて置くための指標で、発電量が定格より十分小さい、系統事故発生後の発電量の出力変化が小さい、または既に電制または電制候補となっている発電機を対象とし、該当する発電機はA1n=0とし、それ以外のものはA1n=1とする。
【0046】
発電機加速指標(発電機位相角差)A2nは過渡安定度維持に最も影響を与える必須の指標である。系統の状態は、発電機の回転子が系統の基本周波数から同期ずれを起こすと、系統自体の基本周波数に影響を与える。逆に、系統事故などで系統動揺が起こると、発電機の振舞いが系統の動揺にふられて定常状態にならず、安定度が失われていく。従って、系統の安定化のためには同期ずれが大きな発電機を切り離す必要がある。発電機加速指標A2nは、この発電機回転子と系統周期の同期ずれ量に対応した大きさの重み付けをもつ値となる。A2nの具体的な値は、安定度計算が打ち切られるまでに、系統状態に対する発電機位相角差が電制候補しきい値δ0を超えた場合、その超過した時の系統状態に対する発電機位相角差に比例した値となる。
【0047】
電制優先指標A3nは運用条件や発電機特性上から、発電機毎に電制優先順位を設定した指標で、設定パラメータα3n(≧0)から、A3n=1+α3nと算出される。たとえば、起動に時間のかかる発電機の優先順位は低くなる。
【0048】
周波数安定度効果指標Bnのなかで、最も周波数安定度に影響を与える指標として、想定分離系統内需給バランス指標B1nがある。系統の周波数は、系統を構成する発電量および負荷量の需給量の均衡がとれているときに基本周波数(50Hz/60Hz)の定常状態になるよう運用される。しかし、系統事故で系統が分断されたり、負荷脱落がおきると、系統の需給量に不均衡が生じ、周波数が変動する。
【0049】
系統状態を基本周波数で周波数安定化させるためには、対象系統の需給バランスをとる必要がある。故障地点から算出する想定分離系統について、分離系統内の需給不均衡が生じないように電制を実施しておけば、分離系統発生後の周波数制御での制御量を減少させることが可能である。分離系統内の需給不均衡量は、故障発生前に分離系統から本系統に流れていた潮流量となるため、電制発電機の出力合計が故障発生前に故障地点で流れていた潮流を超えないように、かつ、この潮流量と電制量が近くなる発電機が選択されるように、数7で定義した指標を計算する。
【0050】
【数7】
B1n=a×h(絶対条件時) (or)
B1n’=1+a×h(優先条件時)
ただし、PG(SHD(N−1)+Gk)<ΔPの場合、
h=ΔP/(ΔP−PG(SHD(N−1)+Gk))
また、PG(SHD(N−1)+Gk)>ΔPの場合、
h=(ΔP−PG(SHD(N−1)+Gk))/ΔP
ここで、a:分離系統内需給バランス優先パラメータ、Gk:N回目選択ステップで電制候補になった発電機、SHD(N−1):(N−1)選択ステップまでに選択済みの電制発電機集合、SUB(S):想定分離系統S内の発電機集合、PG(X):発電機集合Xが保持する発電量(MW)、ΔP:分離系統から本系統に流れていた潮流である。
【0051】
図4の系統モデルを参照し、上述の定義に従って想定分離系統内需給バランス指標B1nの計算例を説明する。系統の事故発生地点F点から図示の想定分離系統Sの発電機集合は数8で表される。
【0052】
【数8】
SUB(S)={A,B,C,D,E}
今、第1回目の電制候補として、SHD(1)={A}によりAが選択されていたとする。このとき、発電機Bの需給バランス指標を求めるには、まず、PG({A,B})、すなわち、発電機AとBの合計発電量が、事故発生地点F点の事故発生前の事前潮流量ΔPより小さいか比較する。図示例では、100+300<500の関係にあるので、分離系統内の電制量が事前潮流量を超えない場合となり、B1nは数9のように算出される。aは設定パラメータである。
【0053】
【数9】

Figure 0004094206
一方、分離系統内の電制量が事前潮流を超える場合は、B1nは数10により算出される。
【0054】
【数10】
B1n=a×(事前潮流量―分離系統内電制量)/(事前潮流量)
指標B1n以外にも周波数安定度のために考慮できる指標として、想定分離系統内瞬動予備力優先指標、想定分離系統内発電機タイプ優先指標、想定分離系統内電制機出力分散指標があり、本実施例では分離系統内瞬動予備力優先指標B2nを用いている。
【0055】
たとえば、発電機の瞬動予備力は周波数変動に対する調整力を意味する。B2nは分離系統における瞬動予備力合計がある規定値以上残るように、電制発電機を選択することを目的とした指標で、数11で計算する。
【0056】
【数11】
B2n=i×Gn(絶対条件時) (or)
B2n’=1+i×Gn(優先条件時)
ただし、GF(SUB(S)−SHD(N−1)−Gk)>CONSTの場合、Gn=1
また、GF(SUB(S)−SHD(N−1)−Gk)<CONSTの場合、Gn=0
ここで、i:分離系統内瞬動予備力優先パラメータ、CONST:定数(設定パラメータ)、Gk:N回目選択ステップで電制候補になった発電機、SHD(N−1):(N−1)回目選択ステップまでに選択済みの電制発電機集合、SUB(S):想定分離系統S内の発電機集合、GF(X):発電機集合Xが保持するガバナフリー量(%)である。
【0057】
電圧安定度効果指標Cnのなかで、最も電圧安定度に影響を与える指標として、無効電力余裕量優先指標C1nがある。発電機の無効電力余裕量は電圧降下を防止して電圧を維持できる調整量を意味し、指標C1nはこの調整量を系統内に残しておくことを目的とする。対象系統内の無効電力余裕量の合計値がある規定値以上となるように指標C1nを以下のように求める。
【0058】
発電機の無効電力余裕量は、発電機可能出力曲線(MELカーブ)を使用し、発電機可能出力曲線(MELカーブ)と故障発生前の有効出力から最大無効出力を求め、求めた最大無効出力から故障発生前の無効電力を差し引き、無効電力余裕量とする。この条件は、以下により定式化する。
【0059】
Gk:N回目選択ステップで電制候補になった発電機、SHD(N−1):(N−1)回目選択ステップまでに選択済みの電制発電機集合、SUB(S):対象系統S内の発電機集合、RQ(X):発電機集合Xが保持する無効電力余裕量(%)、q:対象系統内無効電力余裕量優先パラメータ、CONST:定数(設定値)として、数12より求める。
【0060】
【数12】
Cn=q×Gn(絶対条件時) (or)
Cn’=1+q×Gn(優先条件時)
ただし、RQ(SUB(S)−SHD(N−1)−Gk)>CONSTの場合、Gn=1
また、RQ(SUB(S)−SHD(N−1)−Gk)<CONSTの場合、Gn=0
図5に、電制効果指標値及び電制発電機候補の管理テーブルを示す。図示例は、対象系統にある発電機G1〜Gnから、電制候補発電機を選択する過程を示している。本実施例では、過渡安定度効果指標AnにA1n,A2n,A3n、周波数安定度効果指標BnにB1n,B2n、電圧安定度効果指標CnにC1nを用い、電制効果指標Tnはこれら各指標の積として算出される。図示のように、発電機G1はA1n=0、T1=0で、既に、電制候補となっている。今回の演算では、発電機G2の電制効果指標T2が120と最も高く、電制候補に選択される。
【0061】
図6に、本実施例と従来例の系統安定化制御の比較例を示す。(a)は対象となる系統モデル(事故シーケンス)で、P点で系統事故(地絡)が発生した場合を検討する。(b)は制御結果の比較表を示す。
【0062】
従来の系統安定化制御では、事故発生時、まず、過渡安定度演算制御、次いで周波数安定度演算制御が個別に行われる。P点の事故で、過渡安定度維持に必要な電制量が300MWと算出されたとすると、F発電所の発電機G1(400MW)が最適な電制用発電機に選択される。
【0063】
次に、進展故障により、P点で系統が分断すると、点線で示す分離系統内では需給不均衡量が+300MW(発電量超過分)となるので、更に300MWの電制が必要になる。しかし、G1は電制済みのため、次に電制量の小さいF発電所のG2(700MW)が電制される。この結果、分離系統内では、需給不均衡量が−400MWとなって供給不足を生じるため、次の周波数安定度維持制御で、B変電所の負荷制限(400MW)が実施される。結局、従来の制御方式では、過渡安定度維持制御によるF発電所G1及び周波数安定度維持制御によるF発電所G2の電制が2回行われ、制御量の合計が1100MW、また、周波数安定度維持制御によるB変電所の負制が1回行われ、制御量400MWとなる。
【0064】
これに対し、本実施例の系統安定化制御では、最初のP点における事故発生時の統合型電効果指標の演算から、最適な電制候補としてF発電所のG2(700MW)が選択される。これは、P点における事故前の事前潮流量が700MWであり、過渡安定度としては300MWで安定化できることから、F発電所G2に対する想定分離系統内需給バランス指標Bnの値が大きくなり、統合電制効果指標TnとしてはG2の値が最も大きくなるためである。この結果、進展故障により、P点で系統が分断しても、分離系統の需給バランスが保たれているため、系統内の各発電機に脱調を生じるものがなく、本例この後の電制や負制が必要なくなる。この結果、従来方式に比べて、制御量、制御回数を大幅に低減できる。
【0065】
【発明の効果】
本発明の電力系統安定化制御装置によれば、系統の周波数安定度、さらには電圧安定度と協調性のある過渡安定度維持の制御が可能となり、系統安定化のための制御量や制御回数を大幅に低減できる。また、系統の安定化にとって多観点から最適な制御対象を選択できるので、システムの信頼性を向上できる。
【図面の簡単な説明】
【図1】本発明の一実施例による電力系統安定化装置の構成図。
【図2】本発明の系統安定化制御の概要を示す説明図。
【図3】本発明による系統安定化制御の処理手順の一例を示すフローチャート。
【図4】想定分離系統内需給バランス指標の算出方法を示す系統図。
【図5】電制効果指標値及び電制発電機候補の管理テーブルのデータ構成図。
【図6】系統安定化制御の本実施例と従来例を比較する説明図。
【符号の説明】
10…中央演算装置、20…伝送路、30…情報収集端末、40…制御端末、101…系統安定化制御演算部、102…統合型電制効果指標演算部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power system stabilizing device.
[0002]
[Prior art]
When a grid fault occurs in the power system, before the multiple generators in the grid are shaken or stepped out in order to prevent the system from causing an imbalance in the power supply and demand due to the accident, System stabilization control is performed to disconnect the generator and the like from the system. System stabilization control performs transient stability calculation immediately after an accident, selects a generator that needs to be disconnected to maintain transient stability, and performs power limitation (electric control). In addition, frequency stability calculation and voltage stability calculation are performed along with the generation of the separated system, and electric control and load limitation (negative control) are performed to keep the frequency and voltage of the system constant. Conventionally, each of the above stability maintenance controls is performed individually. As examples of individual system stabilization control, JP-A 61-46123 and JP-A 10-42740 are related to transient stability maintenance control, and JP-A 6-113464 and JP-A 9-46908 are related to system frequency maintenance control. and so on.
[0003]
In addition, the system stabilization control method includes a pre-calculation method and a post-calculation method. The former predicts and calculates a transient state change spillover transition in accordance with the power system dynamic characteristics model for the accident assumed in advance, and selects a generator that can be stabilized by electric control from this prediction result. Sometimes, the generator for electric control is determined from among the generators selected in advance. The latter should capture accident information, etc. after the accident occurs, predict whether the generator will shake or step out due to the influence of the accident, and control when it is determined that control is necessary from the result of the calculation. A generator is selected, and the selected generator is disconnected from the system before the system is shaken or stepped out (JP-A-6-269123 and JP-A-8-182199).
[0004]
[Problems to be solved by the invention]
It is desirable that the system stabilization control has a small control amount (electric control amount / negative control amount) with respect to the system and can quickly suppress the fluctuation of the system. Being able to stabilize more quickly with a small amount of control leads to improved system reliability and total energy efficiency from power generation to supply.
[0005]
However, in the conventional system stabilization control, since the three system stability maintenance controls are performed individually, there is a lack of cooperation between the controls, making it difficult to stabilize in later control, There is a problem that increases. For example, after the transient stability maintenance control, there may be no generator with the optimal amount of control for maintaining the frequency stability. For this reason, it is necessary to carry out electric control that is more than the required electric control amount, and negative control is necessary from the balance of supply and demand. For example, the control amount (electric control amount / negative control amount) increases and system operation increases. Not only will efficiency decrease, it will take time to stabilize the grid.
[0006]
The object of the present invention is to take into account the problems of the prior art described above, considering the coordination of a plurality of stability maintenance controls, the system after an accident is quickly stabilized with a minimum control amount, and a highly reliable power system stability It is in providing a conversion apparatus. According to the present invention, the system operation efficiency can be improved.
[0007]
[Means for Solving the Problems]
The present invention that achieves the above object is designed so that the frequency stability and the voltage stability are considered simultaneously when the control of the transient stability maintenance is performed due to the occurrence of a system fault so that the three system stability can be coordinated. This was achieved by creating a control algorithm for selecting a damp generator.
[0008]
The present invention inputs system operation information including accident information, and is a generator suitable for power supply restriction (hereinafter referred to as electric control) necessary for stabilization from the transient stability of the system obtained based on the information at the time of the system accident. In the power system stabilization device that selects the generator from the system and outputs a shutoff command for the selected generator, the transient stability of the system is selected in order to select the generator (hereinafter referred to as the “electric generator”) necessary for the power source limitation. Index effective in maintaining the degree of stability (hereinafter referred to as transient stability effect index) and index effective in maintaining the frequency stability (hereinafter referred to as frequency stability effect index), or the transient stability effect index, the frequency stability effect Each index value of the index and the index effective for maintaining the voltage stability (hereinafter referred to as the voltage stability effect index) is calculated for each generator in the system, and the control effect index integrated based on each calculated index value Value is calculated and the electric control effect index value is Is provided with a electrically controlled candidate selecting means for selecting a high power motor as the electrically controlled candidate.
[0009]
When it is determined that the power generation candidate generator is disconnected from the grid and the system can be stabilized, the power control candidate is selected as the power generation generator. On the other hand, when it is determined that the stabilization of the system is impossible, the selection of the electric control candidate by the electric control candidate selection means is repeated in order to select an additional electric generator.
[0010]
The electric control effect index value is obtained by a product of the transient stability effect index and a frequency stability effect index, or a product of these and the voltage stability effect index.
[0011]
The transient stability effect index is a product of a selected absolute condition index that excludes those selected as the control generator or the control candidate and a generator acceleration index that makes it easier to select a generator with a higher tendency to step out. The frequency stability effect index includes, in the assumed separation system created from the accident point, the total output of the electric generator does not exceed the tidal flow that was flowing to the accident point before the accident, and the tidal current It includes a supply and demand balance index that makes it easier to select a generator with an output close to the quantity.
[0012]
Further, the power control candidate selecting means determines that the power control effect index value is not more than a specified value (predetermined value not less than zero) for all the generators in the system, and the system cannot be stabilized. For each generator in the system using an arithmetic expression relaxed so that the frequency stability effect index, or each index value of the frequency stability effect index and the voltage stability effect index does not become the specified value or less. Each index value is calculated, and an integrated control effect index value is calculated based on each calculated index value, and the generator with the highest control effect index value according to the relaxed calculation formula is selected as a control candidate. .
[0013]
The operation of the present invention will be described. FIG. 2 shows an outline of selection of the electric generator according to the present invention. When a system fault is detected, the system transient stability is calculated based on system operation information including accident information (accident point, accident type, etc.). In other words, it is necessary to stabilize the system when it is determined that the generator will be shaken or stepped out due to the accident (transient stability calculation) and it is determined that the generator will be unstable (swing or stepped out). Select a candidate for an electrical generator and perform the transient stability calculation again. As a result, if stabilization can be achieved, the candidate for electric control is selected as an electric generator for electric control, and a cutoff command is output.
[0014]
In the present invention, when selecting an electric control candidate, an electric control effect index taking into account the maintenance of the transient stability, the maintenance of the frequency stability, and also the maintenance of the voltage stability, that is, the integrated electric control effect index according to Equation 1 is systematized. The generator having the highest integrated index is selected as a candidate for electric control.
[0015]
[Expression 1]
Tn = An · Bn · Cn (or)
Tn = An · Bn
Here, An is a transient stability effect index function, Bn is a frequency stability effect index function, and Cn is a voltage stability effect index function.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a power system stabilizing device according to the present invention will be described with reference to the drawings. FIG. 1 shows a schematic system configuration of the power system stabilizing device. This system includes a central processing unit 10, a transmission path 20, a plurality of information collection terminals 30, and a plurality of control terminals 40. The central processing unit 10 is connected to each information collection terminal 30 via the transmission line 20 and is connected to each control terminal 40 via the transmission line 20.
[0017]
The information collection terminals 30 are distributed in the power system, and TM (telemeter) data, which is system operation information of the power system, for example, the generator terminal voltage, active / reactive power, transmission line active / reactive power , Load bus voltage, consumption active / reactive power and other data, and input SV (supervisor) data, for example, data on device configuration changes such as relay operation, circuit breaker switching status and status changes. Then, the inputted system operation information is transmitted to the central processing unit 10 through the transmission path 20. Each information collecting terminal 30 can also input a transformer (PT), a current transformer (CT), or a contact input (such as a protection relay operation) that is analog information when an accident occurs.
[0018]
Based on the information from each information collection terminal 30, the system stabilization control calculation unit 101 of the central processing unit 10 uses a combination of pre-calculation and post-calculation, and when a power system accident occurs, a plurality of control objects, for example, A calculation for sequentially selecting a plurality of generators distributed in the system is performed, and a control command according to the integration result is output to the control terminal 40 via the transmission line 20.
[0019]
Prior calculation by the system stabilization control calculation unit 101 is based on the system operation information from the information collecting terminal 30, and for the accident case assumed in advance, transient stability calculation according to the power system dynamic characteristic model, stability determination ( Step-out judgment), stabilization countermeasure calculation (electric control candidate selection calculation) is performed, and the generators to be controlled for stabilization measures are registered in advance in association with the assumed accident case according to each calculation result. deep.
[0020]
When a grid fault occurs and stabilization control is required, a transient stability calculation is performed using a pre-registered generator as a power control candidate. If stabilization is possible, a shutoff command for the generator is issued to the control terminal 40. Output to. If stabilization is impossible, the control candidate is reselected and the above process is repeated. Immediately after the accident, the generator registered in advance calculation is shut off, and if the control amount is still insufficient, the control calculation for selecting and disconnecting another electric generator may be performed. .
[0021]
The central processing unit 10 of the present embodiment includes an integrated electric control index calculation unit 102 together with the system stabilization control calculation unit 101 described above. As a result of the stability calculation after the accident, it is determined that the system cannot be stabilized. In this case, a stabilization measure calculation is performed for calculating the electric control effect index Tn for each generator and adding the generator having the highest Tn to the electric control candidates. The integrated power control index calculation unit 102 is mainly composed of a power control effect index calculation algorithm which will be described later, and can be stored in a storage medium and easily added to a conventional system stabilizing device for maintaining transient stability. Note that the system stabilization control calculation unit 101 and the integrated electric control index calculation unit 102 may be integrally configured.
[0022]
In this embodiment, the system stabilization control method uses both pre-accident calculation and post-accident calculation. However, the method of the present invention is also applicable to a control method that does not perform the pre-accident calculation, and calculates a power control effect index Tn for each generator and selects a power control candidate. Moreover, it is applicable also to the determination of the control system by calculation before an accident.
[0023]
The control terminal 40 is arranged in units of control equipment or electrical facilities with control equipment. As control commands calculated in the central processing unit 10, control commands based on pre-calculation and control commands based on post-calculation are transmitted through the transmission line 20. Input. Then, in the control terminal 40 to which the control command is input from the arithmetic device 10, as a system stabilization control, an electric control for disconnecting a specified generator from the system or a negative control for disconnecting a specific load from the system is performed. At the same time, on / off control of power capacitors (SC) and shunt reactors (ShR) installed in substations and the like is performed simultaneously. When control is performed so that the generator is disconnected from the system by the control terminal 40, the system is stabilized.
[0024]
FIG. 3 shows an example of the processing flow of the power system stabilization arithmetic device. First, system operation information (TM data, SV data) is sequentially input from the information collection terminal 30, and a system model necessary for transient stability calculation is created based on the input system operation information (S10-1). Next, assuming the accident sequence (separated system model) for the accident point assumed in advance, transient stability calculation (S10-2), step-out determination (S10-3), stabilization countermeasure calculation (S10-4) ) Is performed.
[0025]
The accident sequence here includes the accident point where the accident occurred, the accident impedance at the point of the accident, the aspect where the accident occurred, the circuit breaker reclosing method, the success / failure of the circuit breaker reopening, the presence or absence of the line opening, and each The occurrence timing of events is considered. The specific accident sequence is, for example, a setting that interrupts three cycles (assuming an ultra-high voltage system and assuming the operation of a protection relay), or a setting where the location where the accident occurred is the load side closest end of the line Is possible.
[0026]
In the transient stability calculation in step S10-2, a dynamic characteristic simulation of the power system is performed. As an example, the Y method algorithm will be described. The interface calculation is performed by Equation 2, which combines a differential equation expressing the internal state of the control system and a simultaneous equation of a circuit network connecting each generator.
[0027]
[Expression 2]
dx / dt = Ax + Bu
YE = I
u = g (y, E)
I = h (y, E)
Where x: state vector, u: input signal, A, B: constant, I: node injection current, E: node voltage, Y: node admittance matrix. By solving the above equation, for example, the phase angle is obtained as the state of the generator, and the phase angle difference between this phase angle and the reference generator can be obtained.
[0028]
In step-out determination in step S10-3, the transient stability calculation result (here, phase angle difference) is used, and step-out determination of the generator connected to the system is performed. If there is a generator to be stepped out, the stability calculation result becomes unstable, and the control target is selected. As an example of the step-out determination method, a stability determination method based on the internal phase angle difference of each generator with respect to the reference generator will be described based on waveform data based on the transient stability calculation result.
[0029]
In transient stability calculation, a transient state is calculated for each time using a differential equation indicating dynamic characteristics, and an internal phase angle of each generator is obtained. Here, by determining the internal phase angle difference between the reference generator and each generator, it is possible to determine how the respective generators are stably affected by the accident. In other words, when the phase angle difference with respect to the reference generator increases and tends to diverge, the generator tends to step out, and unless the stabilization measures are taken, the generator cannot be operated synchronously, causing a large-scale power outage. It will be.
[0030]
In this embodiment, a certain threshold value for the phase angle difference of the generator is used to determine whether or not the generator is out of step. In addition, it recognizes the waveform based on the phase angle difference of each time step, finds the amplitude from the maximum value and minimum value of the waveform data, and determines whether each amplitude is divergent (unstable) or convergent (stable). It can also be determined. Further, the step-out determination can be performed using the angular velocity or acceleration energy of each generator instead of the phase angle difference of each generator.
[0031]
When it is determined in S10-3 that the step-out determination result is unstable, an operation for selecting a control target necessary for system stabilization is performed (S10-4). Control targets necessary for system stabilization include loads such as generators and consumers, or power capacitors (SC) and shunt reactors (ShR) installed in substations. The case of selecting is described.
[0032]
In the selection of the power generator for power control in S10-4, first, a power control effect index Tn for each generator is calculated as described later, and the generator having the highest index is set as a power control candidate. Next, for each generator in the sequence in which the candidate for electric control is disconnected from the system, if the above-mentioned transient stability calculation is performed and the result is stable, that is, each generator in the system after the accident is out of step. If it does not occur, the previous electric control candidate is set as the electric generator for electric control.
[0033]
When the result of the step-out determination is determined to be stable in S10-3, the calculation result is registered (S10-5). For each assumed accident case, the electric power generator determined in S10-4 is associated with each other and registered in the table.
[0034]
Next, it is determined whether an accident has occurred in the power system based on information from the information collection terminal 30 (S20). Here, based on analog information (PT, CT, etc.) and contact input (relay operation, etc.) from each information collection terminal 30, the presence / absence of an accident, the appearance of an accident (accident case), etc. are determined. In step S20, it is also possible to calculate the accident point location calculation and obtain the accident point without using the accident point location device.
[0035]
If it is determined in step S20 that an accident has occurred, the control generator shut-off command registered in step S10-5 is output, and the process proceeds to post-calculation from step S30. When no accident has occurred, the process returns to step S1O-1, and the processes of steps S10 and S20 are repeated according to the newly input data.
[0036]
In the calculation after the accident, the transient stability calculation is performed by reflecting the result of the pre-calculation, the information on the accident point and the aspect of the accident (S30). In this stability calculation, the phase angle difference is obtained in the same manner as described above, and it is determined whether it is stable or unstable, that is, whether or not a step-out occurs (S40). When the pre-registered generator is shut off immediately, the transient stability calculation is performed in the sequence after the shut-off. Further, when there is no identical accident case registered in advance, a transient stability calculation is performed based on system operation information after the accident.
[0037]
If the determination of the stability calculation result is not “stable”, the electric control effect index Tn is calculated by Equation 1 for all the generators (1 to n) in the system (S50). Then, it is determined whether there is a generator whose Tn is larger than the specified value (S60). If there is a generator, the generator Gn having the maximum Tn is selected as a candidate for power control (S70), and the process returns to step S30. Note that generators that have already been controlled or generators that have been raised as candidates for control are not selected again because they include an operation index with Tn = specified value, as will be described later. . The specified value is a predetermined value equal to or greater than 0, and usually a value greater than 0 is set.
[0038]
In step S60, when the power control effect index of all the generators reaches the specified value, the power control effect index calculation formula is switched (S100), and the condition is relaxed as described below. The functions of the indices Bn and Cn are defined as functions that can be 0, as shown in Equation 3. On the other hand, a function of Formula 4 is prepared so that the index does not become zero.
[0039]
[Equation 3]
Bn = αB (αB ≧ 0)
Cn = αC (αC ≧ 0)
[0040]
[Expression 4]
Bn ′ = 1 + Bn
Cn ′ = 1 + Cn
When this type 4 function is used, the electrical control effect index Tn in formula 1 is switched to Tn ′ in formula 5.
[0041]
[Equation 5]
Tn '= An / Bn' / Cn '
After switching the calculation formula of the electric control effect index in step S100, the electric control effect index T1 ′ to Tn ′ is calculated in S110 to S120 in the same manner as S50 to S60, and the generator having the maximum index is determined in S70. We add to electric control candidate. Here, when all the electric control effect indexes Tn ′ are equal to or less than the specified value in S120, an electric control insufficient message is displayed (S130), and the calculation result is output to step S80.
[0042]
When all the electric control effect index values Tn are equal to or less than the specified value in the electric control selection algorithm, there are no additional electric control candidates. For example, even if the index value An for maintaining the transient stability becomes large, Tn becomes zero when the index values Bn and Cn for frequency stability and voltage stability become zero, so the electric generator is not selected. Also, control of maintaining transient stability becomes difficult. Therefore, the above-mentioned switching relaxes the selection conditions for the power generation candidate generator and secures a control amount for system stabilization.
[0043]
Even by switching the effect index as described above, since the frequency stability and the voltage stability maintenance are considered to some extent, the reliability of system stabilization is improved as compared with the conventional individual control.
[0044]
Here, each numerical formula and content of the indices An, Bn, and Cn constituting the electric control effect index Tn will be described. The transient stability effect index An, the frequency stability effect index Bn, and the voltage stability effect index Cn are expressed by Equation 8 and are weighted by the product of one or a plurality of indexes (≧ 0).
[0045]
[Formula 6]
An = A1n × A2n × A3n ×...
Bn = B1n × B2n ×...
Cn = C1n ×...
Among the transient stability effect indicators, the main indicators are described below. The selected absolute condition A1n is an index to be excluded from the control target, and the power generation amount is sufficiently smaller than the rating, the output change of the power generation amount after the occurrence of a system fault is small, or power generation that has already become a power control or power control candidate The target generator is A1n = 0, and other generators are A1n = 1.
[0046]
The generator acceleration index (generator phase angle difference) A2n is an indispensable index that most affects the maintenance of transient stability. The state of the grid affects the fundamental frequency of the grid itself when the generator rotor deviates from the fundamental frequency of the grid. On the other hand, when a system sway occurs due to a system fault, the behavior of the generator is affected by the sway of the system and does not reach a steady state, and stability is lost. Therefore, in order to stabilize the system, it is necessary to disconnect the generator having a large synchronization shift. The generator acceleration index A2n is a value having a weight corresponding to the amount of synchronization deviation between the generator rotor and the system cycle. The specific value of A2n is determined as follows: the generator phase angle difference with respect to the system state is the electric control candidate threshold δ before the stability calculation is terminated. 0 When the value is exceeded, the value is proportional to the generator phase angle difference with respect to the system state when the value is exceeded.
[0047]
The electric control priority index A3n is an index in which the electric control priority is set for each generator from the operational conditions and generator characteristics, and is calculated as A3n = 1 + α3n from the setting parameter α3n (≧ 0). For example, the priority of generators that take time to start becomes lower.
[0048]
Among the frequency stability effect indexes Bn, an index that influences the frequency stability most is a supply / demand balance index B1n in the assumed separated system. The frequency of the system is operated so as to be in a steady state of the basic frequency (50 Hz / 60 Hz) when the power generation amount and load amount constituting the system are balanced. However, when the system is divided or a load drop occurs due to a system fault, an imbalance occurs in the supply and demand of the system, and the frequency fluctuates.
[0049]
In order to stabilize the system state at the fundamental frequency, it is necessary to balance the supply and demand of the target system. It is possible to reduce the amount of control in the frequency control after the separation system is generated if the control system is implemented so that the supply and demand imbalance in the separation system does not occur for the assumed separation system calculated from the failure point. . Since the supply and demand imbalance in the separated system is the tidal flow that was flowing from the separated system to the main system before the failure occurred, the total output of the control generator exceeds the tidal current that was flowing at the failure point before the failure occurred The index defined in Equation 7 is calculated so that the generator with which the tidal flow rate and the electric control amount are close to each other is selected.
[0050]
[Expression 7]
B1n = a × h (in absolute condition) (or)
B1n ′ = 1 + a × h (priority condition)
However, if PG (SHD (N−1) + Gk) <ΔP,
h = ΔP / (ΔP−PG (SHD (N−1) + Gk))
If PG (SHD (N−1) + Gk)> ΔP,
h = (ΔP−PG (SHD (N−1) + Gk)) / ΔP
Where: a: Supply / demand balance priority parameter in the separated system, Gk: Generator selected as the control candidate in the Nth selection step, SHD (N−1): Control already selected by the (N−1) selection step Generator set, SUB (S): Generator set in assumed separation system S, PG (X): Power generation amount (MW) held by generator set X, ΔP: Current flow from the separation system to this system is there.
[0051]
With reference to the system model of FIG. 4, the example of calculation of the supply / demand balance index B1n in assumption separation system according to the above-mentioned definition is demonstrated. The generator set of the assumed separated system S shown in the figure from the point F of the system where the accident occurs is expressed by Equation 8.
[0052]
[Equation 8]
SUB (S) = {A, B, C, D, E}
Now, assume that A is selected as SHD (1) = {A} as the first electric control candidate. At this time, in order to obtain the supply-demand balance index of the generator B, first, PG ({A, B}), that is, the total power generation amount of the generators A and B is determined in advance before the occurrence of the accident at the point F where the accident occurred. Compare if the tidal flow rate ΔP is smaller. In the illustrated example, since there is a relationship of 100 + 300 <500, the control amount in the separation system does not exceed the pre-tidal flow rate, and B1n is calculated as in Equation 9. a is a setting parameter.
[0053]
[Equation 9]
Figure 0004094206
On the other hand, when the power control amount in the separated system exceeds the prior power flow, B1n is calculated by Equation 10.
[0054]
[Expression 10]
B1n = a x (pre-tide flow rate-control amount in the separation system) / (pre-tide flow rate)
In addition to the indicator B1n, the indicators that can be considered for the frequency stability include the instantaneous separation reserve priority indicator in the assumed separated system, the generator type priority indicator in the assumed separated system, and the electric power generator output dispersion index in the assumed separated system, In this embodiment, the instantaneous power reserve reserve index B2n in the separated system is used.
[0055]
For example, the instantaneous reserve capacity of the generator means an adjustment force for frequency fluctuation. B2n is an index for the purpose of selecting an electric power generator so that the instantaneous reserve capacity in the separated system remains above a predetermined value, and is calculated by Equation 11.
[0056]
[Expression 11]
B2n = i × Gn (in absolute condition) (or)
B2n ′ = 1 + i × Gn (priority condition)
However, when GF (SUB (S) −SHD (N−1) −Gk)> CONST, Gn = 1
If GF (SUB (S) −SHD (N−1) −Gk) <CONST, Gn = 0
Here, i: instantaneous power reserve reserve parameter in the separated system, CONST: constant (setting parameter), Gk: generator that is a candidate for control in the Nth selection step, SHD (N−1): (N−1 ) Electric generator set selected up to the first selection step, SUB (S): generator set in the assumed separation system S, GF (X): governor-free amount (%) held by the generator set X .
[0057]
Among the voltage stability effect indexes Cn, there is a reactive power margin priority index C1n as an index that most affects the voltage stability. The reactive power margin of the generator means an adjustment amount that can maintain a voltage by preventing a voltage drop, and the index C1n aims to leave this adjustment amount in the system. The index C1n is obtained as follows so that the total value of the reactive power margin in the target system is equal to or greater than a specified value.
[0058]
The reactive power margin of the generator uses the generator possible output curve (MEL curve), finds the maximum invalid output from the generator possible output curve (MEL curve) and the valid output before the failure occurs, and finds the maximum reactive output obtained Subtract the reactive power before the failure from, and use it as the reactive power margin. This condition is formulated as follows.
[0059]
Gk: generator that has become a candidate for control at the Nth selection step, SHD (N-1): set of control generators selected by the (N-1) th selection step, SUB (S): target system S Generator set, RQ (X): Reactive power margin (%) held by generator set X, q: Reactive power margin priority parameter in target system, CONST: Constant (setting value) Ask.
[0060]
[Expression 12]
Cn = q × Gn (in absolute condition) (or)
Cn ′ = 1 + q × Gn (priority condition)
However, when RQ (SUB (S) -SHD (N-1) -Gk)> CONST, Gn = 1
If RQ (SUB (S) −SHD (N−1) −Gk) <CONST, Gn = 0
FIG. 5 shows a management table of control effect index values and control generator candidates. The illustrated example shows a process of selecting a control candidate generator from the generators G1 to Gn in the target system. In this embodiment, A1n, A2n, A3n are used as the transient stability effect index An, B1n, B2n are used as the frequency stability effect index Bn, and C1n is used as the voltage stability effect index Cn. Calculated as product. As shown in the figure, the generator G1 is already a candidate for electric control with A1n = 0 and T1 = 0. In this calculation, the power control effect index T2 of the generator G2 is the highest, 120, and is selected as a power control candidate.
[0061]
FIG. 6 shows a comparative example of system stabilization control between the present embodiment and the conventional example. (A) is a system model (accident sequence) to be examined, and a case where a system accident (ground fault) occurs at point P is examined. (B) shows a comparison table of control results.
[0062]
In the conventional system stabilization control, when an accident occurs, first, transient stability calculation control and then frequency stability calculation control are individually performed. If the power control amount necessary for maintaining the transient stability is calculated as 300 MW in the accident at point P, the generator G1 (400 MW) of the F power plant is selected as the optimal power generator.
[0063]
Next, if the system is divided at point P due to a progressive failure, the supply / demand imbalance amount is +300 MW (excess amount of power generation) in the separated system indicated by the dotted line, and therefore 300 MW electric control is required. However, since G1 has already been controlled, G2 (700 MW) of the F power plant with the next smallest control amount is controlled. As a result, the supply / demand imbalance amount becomes −400 MW in the separated system, resulting in a shortage of supply. Therefore, the load limit (400 MW) of the B substation is implemented in the next frequency stability maintenance control. After all, in the conventional control method, the F power plant G1 by the transient stability maintenance control and the F power plant G2 by the frequency stability maintenance control are performed twice, the total control amount is 1100 MW, and the frequency stability The negative control of B substation by maintenance control is performed once, and the control amount becomes 400 MW.
[0064]
On the other hand, in the system stabilization control of the present embodiment, G2 (700 MW) of the F power plant is selected as the optimal power control candidate from the calculation of the integrated electric effect index at the time of the accident at the first P point. . This is because the pre-tidal flow before the accident at point P is 700 MW, and the transient stability can be stabilized at 300 MW. Therefore, the value of the supply / demand balance index Bn in the assumed separated system for F power plant G2 increases, and the integrated power This is because the value of G2 is the largest as the braking effect index Tn. As a result, even if the system is divided at point P due to a developmental failure, the supply and demand balance of the separated system is maintained, so that there is no out-of-step in each generator in the system. There is no longer a need for a system or a negative system. As a result, the control amount and the number of times of control can be greatly reduced as compared with the conventional method.
[0065]
【The invention's effect】
According to the power system stabilization control device of the present invention, it is possible to control the frequency stability of the system, and further to maintain the transient stability in cooperation with the voltage stability, and the control amount and the number of control times for system stabilization. Can be greatly reduced. In addition, since the optimum control target can be selected from many viewpoints for system stabilization, the reliability of the system can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a power system stabilizing device according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing an outline of system stabilization control according to the present invention.
FIG. 3 is a flowchart showing an example of a processing procedure of system stabilization control according to the present invention.
FIG. 4 is a system diagram showing a method for calculating a supply and demand balance index in an assumed separated system.
FIG. 5 is a data configuration diagram of a management table of control effect index values and control generator candidates.
FIG. 6 is an explanatory diagram comparing the present embodiment of the system stabilization control with a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Central processing unit, 20 ... Transmission path, 30 ... Information collection terminal, 40 ... Control terminal, 101 ... System stabilization control calculating part, 102 ... Integrated electric control effect parameter | index calculating part.

Claims (5)

事故情報を含む系統運用情報を入力し、系統事故時に前記情報に基づいて求めた系統の過渡安定度から、安定化に必要な電源制限(以下、電制)に適した発電機を系統内から選定し、選定した発電機の遮断指令を出力する電力系統安定化装置において、
前記電源制限に必要な発電機(以下、電制発電機)の選定のために、系統の過渡安定度維持に効果のある指標(以下、過渡安定度効果指標)と周波数安定度維持に効果のある指標(以下、周波数安定度効果指標)、または、前記過渡安定度効果指標、前記周波数安定度効果指標及び電圧安定度維持に効果のある指標(以下、電圧安定度効果指標)の各指標値を系統内の発電機毎に算出し、算出した各指標値に基づいて総合化した電制効果指標値を演算し、前記電制効果指標値が最も高い発電機を電制候補として選択する電制候補選択手段を設け、
前記電制候補の発電機を系統から切り離して系統の安定化が可能となると判定される場合に、当該発電機を前記電制発電機として選択し、系統の安定化が不可能と判定される場合に、追加の電制発電機を選定するために前記電制候補選択手段による前記電制候補の選択を繰り返すことを特徴とする電力系統安定化装置。
System operation information including accident information is input, and a generator suitable for power supply restriction (hereinafter referred to as electric control) necessary for stabilization is determined from the system's transient stability obtained based on the information in the event of a system failure. In the power system stabilization device that selects and outputs the shutdown command of the selected generator,
In order to select a generator (hereinafter referred to as a “electric generator”) necessary for the power source limitation, an index effective for maintaining the transient stability of the system (hereinafter referred to as a transient stability effect index) and an effect effective in maintaining the frequency stability Each index value of a certain index (hereinafter referred to as frequency stability effect index), or the transient stability effect index, the frequency stability effect index, and an index effective in maintaining voltage stability (hereinafter referred to as voltage stability effect index) Is calculated for each generator in the system, an integrated control effect index value is calculated based on the calculated index values, and the generator having the highest control effect index value is selected as a control candidate. Providing a candidate selection means,
When it is determined that the power generation candidate generator is separated from the grid and the system can be stabilized, the power generator is selected as the power control generator, and it is determined that the system cannot be stabilized. In this case, the power system stabilizing device is characterized in that selection of the control candidates by the control candidate selection means is repeated in order to select an additional control generator.
請求項1において、
前記電制効果指標値は、前記過渡安定度効果指標と周波数安定度効果指標の積、またはそれらと前記電圧安定度効果指標の積により求めることを特徴とする電力系統安定化装置。
In claim 1,
The power control effect index value is obtained by a product of the transient stability effect index and a frequency stability effect index or a product of the voltage stability effect index and the voltage stability effect index.
請求項1または2において、
前記過渡安定度効果指標は、脱調傾向が高い発電機ほど選択され易くする発電機加速指標の積を含み、
前記周波数安定度効果指標は、事故点から作成する想定分離系統内において、電制発電機の合計出力が事故前に事故点に流れていた潮流量を超えないように、かつ、前記潮流量に近い出力の発電機ほど選択され易くする需給バランス指標を含んでいることを特徴とする電力系統安定化装置。
In claim 1 or 2,
The transient stability effect index includes a product of a generator acceleration index that makes it easier to select a generator with a higher out-of-step tendency,
The frequency stability effect index is set so that the total output of the electric generator does not exceed the tidal flow that was flowing to the accident point before the accident in the assumed separation system created from the accident point, and A power system stabilizing device including a supply and demand balance index that makes it easier to select a generator having a closer output.
請求項1、2または3において、
前記電制候補選択手段は、系統内の全ての発電機について前記電制効果指標値が規定値以下で、かつ系統の安定化が不可能と判定される場合に、
前記周波数安定度効果指標、または前記周波数安定度効果指標及び前記電圧安定度効果指標の各指標値が前記規定値以下にならないように緩和した演算式を用いて、系統内の発電機毎に各指標値を算出し、算出した各指標値に基づいて総合化した電制効果指標値を演算し、前記電制効果指標値が最も高い発電機を電制候補として選択することを特徴とする電力系統安定化装置。
In claim 1, 2 or 3,
The electric control candidate selection means, when it is determined that the electric control effect index value is less than or equal to a specified value for all the generators in the system, and the stabilization of the system is impossible,
The frequency stability effect index, or each of the index values of the frequency stability effect index and the voltage stability effect index is calculated for each generator in the system using an arithmetic expression relaxed so as not to be equal to or less than the specified value. Electric power characterized by calculating an index value, calculating an integrated electric control effect index value based on each calculated index value, and selecting a generator having the highest electric control effect index value as an electric control candidate System stabilization device.
請求項1、2、3または4において、
前記電力系統安定化装置が、系統事故の発生前に想定事故毎の系統の過渡安定度から安定化に必要な電制発電機を予め選定して記憶されている場合は、系統事故の発生後に、該当事故に対して記憶されている電制発電機の遮断後または遮断前に、系統事故後の系統運用情報に基づいて系統の過渡安定度を求め、該過渡安定度から系統の安定化が不可能と判定されるときは、追加の電制発電機を選定するために前記電制候補選択手段による前記電制候補の選択を行うことを特徴とする電力系統安定化装置。
In claim 1, 2, 3 or 4,
If the power system stabilizing device is pre-selected and stored from the transient stability of the system for each assumed accident before the occurrence of a system fault, and stored, Then, before or after shutting down the electrical generator stored for the relevant accident, the system transient stability is obtained based on the grid operation information after the grid fault, and the system stability is determined from the transient stability. When it is determined that the electric power generation candidate is not possible, the electric power system stabilization device performs selection of the electric power control candidate by the electric power control candidate selection unit in order to select an additional electric power generator.
JP2000175563A 2000-06-07 2000-06-07 Power system stabilizer Expired - Fee Related JP4094206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000175563A JP4094206B2 (en) 2000-06-07 2000-06-07 Power system stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000175563A JP4094206B2 (en) 2000-06-07 2000-06-07 Power system stabilizer

Publications (2)

Publication Number Publication Date
JP2001352678A JP2001352678A (en) 2001-12-21
JP4094206B2 true JP4094206B2 (en) 2008-06-04

Family

ID=18677422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000175563A Expired - Fee Related JP4094206B2 (en) 2000-06-07 2000-06-07 Power system stabilizer

Country Status (1)

Country Link
JP (1) JP4094206B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103995948A (en) * 2013-07-19 2014-08-20 南方电网科学研究院有限责任公司 Oscillation center voltage prediction method based on polynomial model

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840101B1 (en) 2006-09-25 2008-06-19 박은희 Protection method of fault propagation using real time transient stability criterion in power systems
KR100872273B1 (en) 2007-03-23 2008-12-05 박은희 Real time transient stability criterion and protection method of fault propagation using time synchronized measurement signal in power systems
KR100987167B1 (en) 2008-10-01 2010-10-11 한국전력공사 Multiple FACTS control system and method therefor
JP2011015564A (en) * 2009-07-03 2011-01-20 Hitachi Ltd Stability calculation method by system search and generator phase angle determination
JP5399284B2 (en) * 2010-02-05 2014-01-29 中国電力株式会社 Voltage stabilization device and voltage stabilization method
JP5651495B2 (en) * 2011-02-09 2015-01-14 東北電力株式会社 Power system stabilization control method and apparatus
JP5710304B2 (en) * 2011-02-09 2015-04-30 東北電力株式会社 Power system stabilizing device and control method thereof
CN102510072B (en) * 2011-11-15 2013-09-25 河海大学 Power grid system transient destabilization differentiation method
JP6005403B2 (en) * 2012-05-29 2016-10-12 株式会社東芝 System stabilizing device and method for controlling system stabilizing device
JP5986827B2 (en) * 2012-07-03 2016-09-06 一般財団法人電力中央研究所 Power system stabilization analysis device, power system stabilization analysis method, and power system stabilization analysis program
KR101540943B1 (en) 2013-12-10 2015-08-03 한국전기연구원 SPS Operating System and Control Method therefor
JP6223833B2 (en) 2014-01-09 2017-11-01 株式会社東芝 Power system stabilizer
KR101787320B1 (en) * 2017-04-27 2017-10-18 한국전력공사 Ess control apparatus and method by the status of transient stability
CN108923441B (en) * 2018-05-17 2021-09-14 云南电网有限责任公司 PSS parameter optimization setting method utilizing phase-frequency characteristic six-point numerical value
JP7131971B2 (en) * 2018-06-11 2022-09-06 東北電力株式会社 Power system stabilization system and power system stabilization method
CN109713664B (en) * 2019-01-10 2021-01-15 清华大学 Network source coordination control strategy calculation method and system with stable direct current island frequency
JP7234174B2 (en) * 2020-03-09 2023-03-07 株式会社東芝 Power system stabilization system
JP7434113B2 (en) 2020-08-26 2024-02-20 株式会社東芝 Grid stabilization device, grid stabilization method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103995948A (en) * 2013-07-19 2014-08-20 南方电网科学研究院有限责任公司 Oscillation center voltage prediction method based on polynomial model
CN103995948B (en) * 2013-07-19 2017-11-24 南方电网科学研究院有限责任公司 A kind of voltage of oscillation center Forecasting Methodology based on multinomial model

Also Published As

Publication number Publication date
JP2001352678A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
JP4094206B2 (en) Power system stabilizer
US11368048B2 (en) Microgrid power flow monitoring and control
Marzband et al. Adaptive load shedding scheme for frequency stability enhancement in microgrids
US9971371B2 (en) Method for predicting a voltage collapse in a micro-grid connected to a power distribution network
Kirschen et al. Computing the value of security
JP4776475B2 (en) Power grid interconnection system
Cai et al. A hierarchical multi-agent control scheme for a black start-capable microgrid
JP2007288877A (en) Power quality maintenance supporting method and system for power distribution system in linkage with a plurality of decentralized power sources
JP5436958B2 (en) System stabilization system with post-correction function
CN109872021B (en) Dynamic matching assessment method for low excitation limit and loss of excitation protection
JP6410696B2 (en) System control device and system stabilization system
Robak et al. Transient stability improvement by generator tripping and real-time instability prediction based on local measurements
JP2007189840A (en) Power system stabilizing apparatus
US20120147506A1 (en) Method of detecting an unintentional island condition of a distributed resource of a utility grid, and protective apparatus and controller including the same
JP7115169B2 (en) Power system monitoring control system and reactive power compensator control constant setting support system
JP7106348B2 (en) System stabilizer
US11555839B2 (en) Rate of change of power element and enter service supervision method
JP3399778B2 (en) Power system evaluation device, power system power flow optimization method and device, and power system planning support method and device
SAPARI et al. Load shedding scheme based on frequency and voltage stability for an islanding operation of a distribution network connected to mini-hydro generation
GB2606467A (en) Renewable energy system stabilization system and system stabilization support method
Tofis et al. A plug and play, approximation-based, selective load shedding mechanism for the future electrical grid
KR100538439B1 (en) Islanding detection method for distributed generations interconnected with utility networks
JP2603929B2 (en) Power system preventive control device
KR20150045081A (en) Method and Apparatus for Predictive Contol for Operating Point of FACTS Device
WO2023203653A1 (en) Electric power control device, electric power control method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees