JP4093818B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4093818B2
JP4093818B2 JP2002230409A JP2002230409A JP4093818B2 JP 4093818 B2 JP4093818 B2 JP 4093818B2 JP 2002230409 A JP2002230409 A JP 2002230409A JP 2002230409 A JP2002230409 A JP 2002230409A JP 4093818 B2 JP4093818 B2 JP 4093818B2
Authority
JP
Japan
Prior art keywords
groove
die pad
semiconductor element
conductive foil
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002230409A
Other languages
Japanese (ja)
Other versions
JP2004071898A (en
Inventor
幸嗣 高橋
則明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002230409A priority Critical patent/JP4093818B2/en
Priority to TW092118684A priority patent/TWI240603B/en
Priority to KR1020030053069A priority patent/KR20040026129A/en
Priority to CNB031526179A priority patent/CN100492632C/en
Publication of JP2004071898A publication Critical patent/JP2004071898A/en
Application granted granted Critical
Publication of JP4093818B2 publication Critical patent/JP4093818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Die Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体素子を固着するロウ材の流出を防止することができる回路装置およびその製造方法に関するものである。
【0002】
【従来の技術】
従来、電子機器にセットされる回路装置は、携帯電話、携帯用のコンピューター等に採用されるため、小型化、薄型化、軽量化が求められている。例えば、回路装置として半導体装置を例にして述べると、一般的な半導体装置として、従来通常のトランスファーモールドで封止されたパッケージ型半導体装置がある。この半導体装置は、図11のように、プリント基板PSに実装される。
【0003】
またこのパッケージ型半導体装置61は、半導体チップ62の周囲を樹脂層63で被覆し、この樹脂層63の側部から外部接続用のリード端子64が導出されたものである。しかし、このパッケージ型半導体装置61は、リード端子64が樹脂層63から外に出ており、全体のサイズが大きく、小型化、薄型化および軽量化を満足するものではなかった。そのため、各社が競って小型化、薄型化および軽量化を実現すべく、色々な構造を開発し、最近ではCSP(チップサイズパッケージ)と呼ばれる、チップのサイズと同等のウェハスケールCSP、またはチップサイズよりも若干大きいサイズのCSPが開発されている。
【0004】
図12は、支持基板としてガラスエポキシ基板65を採用した、チップサイズよりも若干大きいCSP66を示すものである。ここではガラスエポキシ基板65にトランジスタチップTが実装されたものとして説明していく。
【0005】
このガラスエポキシ基板65の表面には、第1の電極67、第2の電極68およびダイパッド69が形成され、裏面には第1の裏面電極70と第2の裏面電極71が形成されている。そしてスルーホールTHを介して、前記第1の電極67と第1の裏面電極70が、第2の電極68と第2の裏面電極71が電気的に接続されている。またダイパッド69には前記ベアのトランジスタチップTが固着され、トランジスタのエミッタ電極と第1の電極67が金属細線72を介して接続され、トランジスタのベース電極と第2の電極68が金属細線72を介して接続されている。更にトランジスタチップTを覆うようにガラスエポキシ基板65に樹脂層73が設けられている。
【0006】
前記CSP66は、ガラスエポキシ基板65を採用するが、ウェハスケールCSPと違い、チップTから外部接続用の裏面電極70、71までの延在構造が簡単であり、安価に製造できるメリットを有する。また前記CSP66は、図11のように、プリント基板PSに実装される。プリント基板PSには、電気回路を構成する電極、配線が設けられ、前記CSP66、パッケージ型半導体装置61、チップ抵抗CRまたはチップコンデンサCC等が電気的に接続されて固着される。そしてこのプリント基板で構成された回路は、色々なセットの中に取り付けられていた。
【0007】
【発明が解決しようとする課題】
しかしながら、上述したような半導体装置では、トランジスタTは、ダイパット69上に塗布された半田等のロウ材を融解させるリフロー工程により固着されていた。従って、トランジスタTを融解した半田上に載置すると、半田がダイパッド69上から流出して、ダイパッド69と他の電極とがショートしてしまう問題があった。
【0008】
更に、ダイパッド69から流出した半田が、第2の電極68に到達してしまうのを防止するために、ダイパッド69と第2の電極68とは離間させており、このことが装置全体の大型化を招いていた。
【0009】
本発明はこのような問題を鑑みて成されたものであり、本発明の主な目的は、ロウ材を介して半導体素子をダイパッドに実装する際に、ロウ材がダイパッドから流出するのを防止する回路装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明の半導体装置の製造方法は、ダイパッドを含む導電パターンが凸状を呈するように上面から分離溝が形成されると共に、前記ダイパッドの領域内に前記分離溝よりも浅い溝が形成された導電箔を用意する第1工程と、前記溝に囲まれる領域の前記ダイパッドの上面に、溶融された半田を介して半導体素子を固着する第2工程と、前記半導体素子および前記導電箔の上面が被覆されると共に、前記分離溝および前記溝に充填されるように絶縁性樹脂を形成する第3工程と、前記分離溝に充填された前記絶縁性樹脂が露出するまで前記導電箔を裏面から除去する第4工程と、を具備し、前記第1工程では、前記分離溝が形成される領域に第1開口部を有し、前記溝が形成される領域に前記第1開口部よりも幅が狭い第2開口部を有するエッチングマスクにより前記導電箔の上面を被覆してエッチングを行うことにより、前記溝を前記分離溝よりも浅く形成し、前記第4工程では、前記分離溝に充填された前記絶縁性樹脂が露出すると共に、前記溝に充填された前記絶縁性樹脂が露出しない様に、前記導電箔を裏面から除去することを特徴とする。
【0023】
【発明の実施の形態】
(回路装置10の構成を説明する第1の実施の形態)
図1を参照して、本発明の回路装置10の構成等を説明する。図1(A)は回路装置10の平面図であり、図1(B)は回路装置10の断面図である。
【0024】
図1(A)および図1(B)を参照して、回路装置10は次のような構成を有する。即ち、ロウ材19を介して実装される半導体素子13とほぼ同等の大きさに形成されたダイパッド11と、ダイパッド11に近接して設けられたボンディングパッド12と、半導体素子13を囲むようにダイパッド11の周辺部に形成され且つロウ材19が流出するのを防止する溝14と、ダイパッド11およびボンディングパッド12の裏面を露出させてダイパッド11、ボンディングパッド12および半導体素子13を封止する絶縁性樹脂16等から回路装置10は構成されている。このような各構成要素を以下にて説明する。
【0025】
ダイパッド11は、半導体素子13が実装される導電パターンであり、銅箔等の金属から成り、裏面を露出させて絶縁性樹脂16に埋め込まれている。そしてダイパッド11の平面的な大きさは、実装される半導体素子よりも若干大きく形成され、その周辺部には溝14が形成されている。同図(A)では、ダイパッド11が中央部に形成され、ICチップ等から成る半導体素子13がロウ材19を介して実装されている。また、半導体素子13が実装される領域に対応するダイパッド11の表面には、Ag等から成るメッキ膜が形成されている。
【0026】
ボンディングパッド12は、金属細線15がボンディングされる導電パターンであり、裏面を露出させて絶縁性樹脂16に埋め込まれている。ここでは、装置の中央部に形成されたダイパッド11を囲むように円形状の多数個のボンディングパッド12が形成されている。同図(A)に於いて、ダイパッド11の左右両側に形成されたボンディングパッド12Aは、電気的に独立して設けられている。そして、ダイパッド11の上下両側に形成されたボンディングパッド12Bは、ダイパッド11と連続して形成されており、電気的にも繋がっている。そして、ボンディングパッド12の表面には、ボンディングされる金属細線の接着性を向上させるために、Ag等から成るメッキ膜が形成されている。
【0027】
半導体素子13は、ロウ材19を介してダイパッド11の表面に実装され、ここでは半導体素子のなかでも比較的大型のICチップがロウ材19を介して実装されている。そして、金属細線15を介して、半導体素子13の表面に形成された電極と、ボンディングパッド12とは電気的に接続されている。また、電気的にダイパッド11と接続されたボンディングパッド12も、金属細線15を介して半導体素子13に電気的に接続されている。ここで使用するロウ材としては、半田やAgペースト等の導電性接着剤を使用することができる。更に、絶縁性樹脂を用いて、半導体素子13をダイパッド11に実装することも可能である。
【0028】
溝14は、半導体素子13を囲むようにダイパッド11の周辺部に形成されており、絶縁性樹脂16が充填されている。また、溝14の深さは、ダイパッド11の厚みよりも浅く形成されている。このように、半導体素子13が実装される領域を囲むように溝14を形成することにより、融解したロウ材19上部に半導体素子13を実装する工程で、ダイパッド11からロウ材19が流出するのを防止することができる。具体的には、半導体素子13が実装される領域からロウ材19が流出しても、溝14にロウ材19が貯留される。従って、溝14は、ロウ材19がダイパッド11から流出するのを防止する阻止領域として機能している。また、溝14の製造方法に関しては後述するが、溝14は分離溝16と共にエッチングにより製造される。従って、溝14の断面の幅は、分離溝16の幅よりも狭く形成されている。
【0029】
絶縁性樹脂16は、ダイパッド11およびボンディングパッド12の裏面を露出させて、全体を封止している。更に、ダイパッド11の表面に形成された溝14にも絶縁性樹脂16は充填されている。ここでは、半導体素子13、金属細線15、ダイパッド11およびボンディングパッド12を封止している。絶縁性樹脂16の材料としては、トランスファーモールドにより形成される熱硬化性樹脂や、インジェクションモールドにより形成される熱可塑性樹脂を採用することができる。
【0030】
ロウ材19は、半田やAgペースト等の導電性のペーストであり、半導体素子13とダイパッド11とを接着させる働きを有する。ロウ材19は導電性の材料であるので、半導体素子13の裏面とダイパッド11とは電気的に接続される。また、ダイパッド11の上下両側に形成されたボンディングパッド12Bは、ダイパッド11と電気的にも接続している。従って、金属細線15を用いて、半導体素子13の電極とボンディングパッド12Bとを接続することにより、半導体素子13の表面に形成された回路と半導体素子13の裏面とを電気的に接続することができる。
【0031】
図2を参照して、回路装置の裏面に形成される外部電極17について説明する。外部電極17は、ダイパッド11を囲むようにして設けられたボンディングパッド12の裏面に形成されている。更に、ダイパッド11の裏面にも多数個の外部電極が設けられており、従って、外部電極17は、回路装置10裏面の全域にマトリックス状に等間隔に多数個が設けられている。このことにより、外部電極17を介して、マザーボード等の実装基板に回路装置10を実装した際に、外部電極17に作用する応力を小さくすることができる。
【0032】
図2(B)を参照して、ダイパッド11の裏面に形成される外部電極17の位置および大きさは、レジスト18の開口部により規制されている。そして、ボンディングパッド12の裏面に形成される外部電極17の位置および大きさは、ボンディングパッド12の裏面により形成されている。ボンディングパッド12の材料である銅等の金属は濡れ性が良い材料であり、この濡れ性により外部電極17の位置および大きさは規制されている。このように、ボンディングパッド12の裏面に形成される外部電極17の位置および大きさを、ボンディングパッド12の濡れ性を用いて規制することにより、レジスト18の開口部の位置がずれた場合でも精度良く外部電極17を形成することができる。
【0033】
本発明の特徴は、半導体素子13を囲むようにダイパッド11の周辺部に溝14を形成したことにある。即ち、融解されたロウ材19に半導体素子13を実装すると、半導体素子13の重み等によりロウ材19は周囲に広がるが、周囲に広がったロウ材19は溝14に貯留されるので、ダイパッド11の表面からロウ材19が流出してしまうのを防止することができる。従って、流出したロウ材19がボンディングパッド12に接触することによるパッド同士のショートを防止することができる。また、このことにより、ダイパッド11をそこに実装される半導体素子13とほぼ同等に形成することができる。更には、ダイパッド11とボンディングパッド12とを接近させて形成することが可能となり、回路装置10全体のサイズを小さくすることができる。更にまた、このようにダイパッド11の表面に溝14を形成することにより、ダイパッド11と絶縁性樹脂16とか接触する面積を増大させることなできるので、ダイパッド11と絶縁性樹脂13との接着力を向上させることができる。
【0034】
図3を参照して、他の形態の回路装置10Aを説明する。図3(A)は回路装置10Aの断面図であり、図3(B)は図3(A)のX−X’線での断面図である。回路装置10Aは、図1で説明した回路装置10とほぼ同様の構成を有し、ダイパッド11の表面に形成された溝14で囲まれる領域に、更に、格子状に溝14Aが形成されている。
【0035】
溝14は、半導体素子13を固着させるロウ材19がダイパッド11の表面から流出してしまうのを防止するのを目的として、ダイパッド11の周辺部に設けられている。更にここでは、溝14で囲まれる領域に、格子状に溝14Aが形成されている。格子状に形成される溝14Aも、溝14と同じ断面形状を有する。このように格子状に溝14を形成することにより、より多量のロウ材19を、溝14に貯留させることができるので、ロウ材19がダイパッド11の表面から流出してしまうのを防止することができる。更に、ダイパッド11と絶縁性樹脂16とが接触する面積を更に増大させることができるので、ダイパッド11と絶縁性樹脂16との密着性を向上させることができる。
【0036】
溝14を設けることの更なるメリットを述べる。ロウ材19は、ディスペンサ等のロウ材を供給する機械を用いて、ダイパッド11の表面に塗布されるが、このディスペンサで供給できるロウ材20の最小塗布量は決まっている。従って、半導体素子13をダイパッド11に実装するのに必要なロウ材19の量よりも、ディスペンサの最小塗布量が多い場合には、ロウ材19がダイパッド11の表面から流出する恐れがある。このことから、溝14を設けることにより、ロウ材19が流出してしまうのを防止することができる。
【0037】
(回路装置10の製造方法を説明する第2の実施の形態)
本実施例では、回路装置10の製造方法を説明する。本実施の形態では、回路装置10は次の様な工程で製造される。即ち、導電箔40を用意する工程と、導電箔40にその厚みよりも浅い分離溝16を形成して複数個の回路装置部45を構成するダイパッド11およびボンディングパッド12を形成すると同時に、固着予定の半導体素子13の領域を囲むようにダイパッド11に分離溝16よりも浅い溝14を形成する工程と、ダイパッド11にロウ材19を介して半導体素子13を固着する工程と、半導体素子13と所望のボンディングパッド12とのワイヤボンディングを行う工程と、半導体素子13を被覆し、分離溝16および溝14に充填されるように絶縁性樹脂16で共通モールドする工程と、絶縁性樹脂16が露出するまで導電箔40の裏面を除去する工程と、絶縁性樹脂16をダイシングすることにより各回路装置10に分離する工程とから構成されている。以下に、本発明の各工程を図4〜図10を参照して説明する。
【0038】
本発明の第1の工程は、図4から図6に示すように、導電箔40を用意し、導電箔40にその厚みよりも浅い分離溝16を形成して複数個の回路装置部45を構成するダイパッド11およびボンディングパッド12を形成すると同時に、固着予定の半導体素子13の領域を囲むようにダイパッド11に分離溝16よりも浅い溝14を形成することにある。
【0039】
本工程では、まず図4(A)の如く、シート状の導電箔40を用意する。この導電箔40は、ロウ材の付着性、ボンディング性、メッキ性が考慮されてその材料が選択され、材料としては、Cuを主材料とした導電箔、Alを主材料とした導電箔またはFe−Ni等の合金から成る導電箔等が採用される。
【0040】
導電箔の厚さは、後のエッチングを考慮すると10μm〜300μm程度が好ましいが、300μm以上でも10μm以下でも基本的には良い。後述するように、導電箔40の厚みよりも浅い分離溝16が形成できればよい。
【0041】
尚、シート状の導電箔40は、所定の幅、例えば45mmでロール状に巻かれて用意され、これが後述する各工程に搬送されても良いし、所定の大きさにカットされた短冊状の導電箔40が用意され、後述する各工程に搬送されても良い。
【0042】
具体的には、図4(B)に示す如く、短冊状の導電箔40に多数の回路装置部45が形成されるブロック42が4〜5個離間して並べられる。各ブロック42間にはスリット43が設けられ、モールド工程等での加熱処理で発生する導電箔40の応力を吸収する。また導電箔40の上下周端にはインデックス孔44が一定の間隔で設けられ、各工程での位置決めに用いられる。続いて、導電パターンを形成する。
【0043】
まず、図5に示す如く、導電箔60の上に、ホトレジスト(耐エッチングマスク)PRを形成し、導電パターン51となる領域を除いた導電箔40が露出するようにホトレジストPRをパターニングする。そして、図6(A)に示す如く、導電箔40を選択的にエッチングする。ここでは、導電パターン51は、各回路装置部45のダイパッド11およびボンディングパッド12を形成している。
【0044】
図6(A)を参照して、溝14および分離溝16が形成される箇所にはホトレジストの開口部が設けられている。そして、溝14が形成される箇所の開口部の幅は、分離溝16が形成される箇所よりもその幅が狭く形成されている。具体的にその幅は半分以下に形成される。エッチングによる導電箔40の除去は等方性を持って行われるので、このように溝14に対応するホトレジストの開口部を狭く形成することにより、溝14の深さを分離溝16よりも浅く形成することができる。なお、上記したエッチングの工程は、エッチャント液に導電箔40をデッピングさせることにより行うことができる。
【0045】
図6(B)にダイパッド11およびボンディングパッド12を形成する導電パターン51を示す。本図は図4(B)で示したブロック42の1個を拡大したもの対応する。ハッチング部分の1個が1つの回路装置部45であり、1つのブロック42には2行2列のマトリックス状に多数の回路装置部45が配列され、各回路装置部45毎に同一の導電パターン51が設けられている。各ブロックの周辺には枠状のパターン46が設けられ、それと少し離間しその内側にダイシング時の位置合わせマーク47が設けられている。枠状のパターン46はモールド金型との嵌合に使用し、また導電箔40の裏面エッチング後には絶縁性樹脂16の補強をする働きを有する。また、各回路装置部に於いて、ダイパッド11の上下両側に形成されるボンディングパッド12は、ダイパッド11と一体化されており、電気的にも両者は接続している。
【0046】
本発明の第2の工程は、図7に示す如く、各回路装置部45のダイパッド11にロウ材19を介して半導体素子13を固着することにある。
【0047】
図7(A)を参照して、ダイパッド11にロウ材19を介して半導体素子13を実装する。ここで、ロウ材19としては、半田またはAgペースト等の導電性のペーストが使用される。本工程では、ロウ材19は融解した状態であるので、ロウ材19の上部に半導体素子13を載置することにより、半導体素子13の重み等によりロウ材19は周囲に広がる。ここで、半導体素子13が載置される領域を囲むように、ダイパッド11の周辺部には溝14が形成されているので、広がったロウ材19はダイパッド11から流出しない。溝14に到達したロウ材19は、溝14に流れ込む形となるので、溝14は半田の流出を阻止する阻止領域として機能している。更に、絶縁性樹脂を用いて、半導体素子13をダイパッド11に実装することも可能である。
【0048】
本発明の第3の工程は、図8に示す如く、半導体素子13と所望のボンディングパッド12とのワイヤボンディングを行うことにある。
【0049】
具体的には、各回路装置部に実装された半導体素子13の電極と所望のボンディングパッド12とを、熱圧着によるボールボンディング及び超音波によるウェッヂボンディングにより一括してワイヤボンディングを行う。
【0050】
本発明の第4の工程は、図9に示す如く、半導体素子13を被覆し、分離溝16および溝14に充填されるように絶縁性樹脂16で共通モールドすることにある。
【0051】
本工程では、図9(A)に示すように、絶縁性樹脂16は半導体素子13および複数のダイパッド11およびボンディングパッド12を完全に被覆し、分離溝16および溝14には絶縁性樹脂16が充填され、分離溝41と嵌合して強固に結合する。そして絶縁性樹脂16によりダイパッド11およびボンディングパッド12が支持されている。
【0052】
また本工程では、トランスファーモールド、インジェクションモールド、またはポッティングにより実現できる。樹脂材料としては、エポキシ樹脂等の熱硬化性樹脂がトランスファーモールドで実現でき、ポリイミド樹脂、ポリフェニレンサルファイド等の熱可塑性樹脂はインジェクションモールドで実現できる。
【0053】
更に、本工程でトランスファーモールドあるいはインジェクションモールドする際に、図9(B)に示すように各ブロック42は1つの共通のモールド金型に回路装置部63を納め、各ブロック毎に1つの絶縁性樹脂16で共通にモールドを行う。このために従来のトランスファーモールド等の様に各回路装置部を個別にモールドする方法に比べて、大幅な樹脂量の削減が図れる。
【0054】
本工程の特徴は、絶縁性樹脂16を被覆するまでは、導電パターン51となる導電箔40が支持基板となることである。従来では、本来必要としない支持基板を採用して導電パターンを形成しているが、本発明では、支持基板となる導電箔40は、電極材料として必要な材料である。そのため、構成材料を極力省いて作業できるメリットを有し、コストの低下も実現できる。
【0055】
また分離溝41は、導電箔の厚みよりも浅く形成されているため、導電箔40が導電パターン51として個々に分離されていない。従ってシート状の導電箔40として一体で取り扱え、絶縁性樹脂16をモールドする際、金型への搬送、金型への実装の作業が非常に楽になる特徴を有する。
【0056】
本発明の第5の工程は、絶縁性樹脂が露出するまで導電箔40の裏面を除去することにある。
【0057】
本工程は、導電箔40の裏面を化学的および/または物理的に除き、導電パターン51として分離するものである。この工程は、研磨、研削、エッチング、レーザの金属蒸発等により施される。
【0058】
実験では導電箔40を全面ウェトエッチングし、分離溝41から絶縁性樹脂16を露出させている。この露出される面を図9(A)では点線で示している。その結果、導電パターン51となって分離される。この結果、絶縁性樹脂16に導電パターン51の裏面が露出する構造となる。すなわち、分離溝41に充填された絶縁性樹脂16の表面と導電パターン51の表面は、実質的に一致している構造となっている。
【0059】
更に、導電パターン51の裏面処理を行い、例えば図1に示す最終構造を得る。すなわち、必要によって露出した導電パターン51に半田等の導電材を被着し、回路装置として完成する。
【0060】
更にまた、本工程に於いては、分離溝16に充填された絶縁性樹脂16は裏面に露出するが、溝14に充填された絶縁性樹脂16は裏面に露出しない。
【0061】
本発明の第6の工程は、図10に示す如く、絶縁性樹脂16を各回路装置部45毎にダイシングにより分離することにある。
【0062】
本工程では、ブロック42をダイシング装置の載置台に真空で吸着させ、ダイシングブレード49で各回路装置部45間のダイシングライン(一点鎖線)に沿って分離溝41の絶縁性樹脂16をダイシングし、個別の回路装置に分離する。
【0063】
本工程で、ダイシングブレード49はほぼ絶縁性樹脂16を切断する切削深さで行い、ダイシング装置からブロック42を取り出した後にローラでチョコレートブレークするとよい。ダイシング時は予め前述した第1の工程で設けた各ブロックの位置合わせマーク47を認識して、これを基準としてダイシングを行う。周知ではあるが、ダイシングは縦方向にすべてのダイシングラインをダイシングをした後、載置台を90度回転させて横方向のダイシングライン70に従ってダイシングを行う。
【0064】
【発明の効果】
本発明では、以下に示すような効果を奏することができる。
【0065】
第1に、本発明では、半導体素子13を囲むようにダイパッド11の周辺部に溝14を設けて、半導体素子13を固着するロウ材19が流出するのを防止したので、流出したロウ材19により、導電パターン同士がショートしてしまうのを防止することができる。
【0066】
第2に、溝14により、ロウ材19の流出を防止することができるので、ダイパッド11とボンディングパッド12とを接近させることが可能となり、装置全体を小型化することができる。
【0067】
第3に、半導体素子13を実装する工程に於いて、ボンディングパッド12の周辺部に設けた溝14がロウ材の流出を阻止する阻止領域として機能し、ロウ材19が外部に流出ことによる導電パターン同士のショートを防止することができる。
【図面の簡単な説明】
【図1】本発明の回路装置を説明する平面図(A)、断面図(B)である。
【図2】本発明の回路装置を説明する裏面図(A)、断面図(B)である。
【図3】本発明の回路装置を説明する断面図(A)、平面図(B)である。
【図4】本発明の回路装置の製造方法を説明する断面図(A)、平面図(B)である。
【図5】本発明の回路装置の製造方法を説明する断面図である。
【図6】本発明の回路装置の製造方法を説明する断面図(A)、平面図(B)である。
【図7】本発明の回路装置の製造方法を説明する断面図(A)、平面図(B)である。
【図8】本発明の回路装置の製造方法を説明する断面図(A)、平面図(B)である。
【図9】本発明の回路装置の製造方法を説明する断面図(A)、平面図(B)である。
【図10】本発明の回路装置の製造方法を説明する平面図である。
【図11】従来の回路装置を説明する断面図である。
【図12】従来の回路装置を説明する断面図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circuit device capable of preventing outflow of a brazing material for fixing a semiconductor element, and a method for manufacturing the circuit device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a circuit device set in an electronic device is employed in a mobile phone, a portable computer, and the like, and thus, a reduction in size, thickness, and weight are required. For example, a semiconductor device as an example of a circuit device will be described. As a general semiconductor device, there is a package type semiconductor device sealed by a conventional transfer mold. This semiconductor device is mounted on a printed circuit board PS as shown in FIG.
[0003]
In the package type semiconductor device 61, the semiconductor chip 62 is covered with a resin layer 63, and lead terminals 64 for external connection are led out from the side portions of the resin layer 63. However, the package type semiconductor device 61 has the lead terminals 64 protruding from the resin layer 63 and has a large overall size, which does not satisfy the reduction in size, thickness and weight. Therefore, various companies have competed to develop various structures to achieve miniaturization, thinning, and weight reduction, and recently called CSP (chip size package), wafer scale CSP equivalent to chip size, or chip size A slightly larger CSP has been developed.
[0004]
FIG. 12 shows a CSP 66 that employs a glass epoxy substrate 65 as a support substrate and is slightly larger than the chip size. Here, description will be made assuming that the transistor chip T is mounted on the glass epoxy substrate 65.
[0005]
A first electrode 67, a second electrode 68, and a die pad 69 are formed on the surface of the glass epoxy substrate 65, and a first back electrode 70 and a second back electrode 71 are formed on the back surface. The first electrode 67 and the first back electrode 70, and the second electrode 68 and the second back electrode 71 are electrically connected through the through hole TH. Further, the bare transistor chip T is fixed to the die pad 69, the emitter electrode of the transistor and the first electrode 67 are connected via the fine metal wire 72, and the base electrode of the transistor and the second electrode 68 are connected to the fine metal wire 72. Connected through. Further, a resin layer 73 is provided on the glass epoxy substrate 65 so as to cover the transistor chip T.
[0006]
The CSP 66 employs a glass epoxy substrate 65, but unlike the wafer scale CSP, the extending structure from the chip T to the backside electrodes 70 and 71 for external connection is simple and has the merit that it can be manufactured at low cost. The CSP 66 is mounted on the printed circuit board PS as shown in FIG. The printed circuit board PS is provided with electrodes and wirings constituting an electric circuit, and the CSP 66, the package type semiconductor device 61, a chip resistor CR, a chip capacitor CC, and the like are electrically connected and fixed. And the circuit comprised with this printed circuit board was attached in various sets.
[0007]
[Problems to be solved by the invention]
However, in the semiconductor device as described above, the transistor T is fixed by a reflow process in which a brazing material such as solder applied on the die pad 69 is melted. Therefore, when the transistor T is placed on the melted solder, there is a problem that the solder flows out from the die pad 69 and the die pad 69 and other electrodes are short-circuited.
[0008]
Further, in order to prevent the solder flowing out from the die pad 69 from reaching the second electrode 68, the die pad 69 and the second electrode 68 are separated from each other, which increases the size of the entire apparatus. Was invited.
[0009]
The present invention has been made in view of such problems, and the main object of the present invention is to prevent the brazing material from flowing out of the die pad when the semiconductor element is mounted on the die pad via the brazing material. An object of the present invention is to provide a circuit device.
[0010]
[Means for Solving the Problems]
In the method of manufacturing a semiconductor device according to the present invention, the separation groove is formed from the upper surface so that the conductive pattern including the die pad has a convex shape, and the groove having the shallower groove than the separation groove is formed in the region of the die pad. A first step of preparing a foil; a second step of fixing a semiconductor element on the upper surface of the die pad in a region surrounded by the groove through a melted solder; and covering the upper surface of the semiconductor element and the conductive foil. And a third step of forming an insulating resin so as to fill the separation groove and the groove, and removing the conductive foil from the back surface until the insulating resin filled in the separation groove is exposed. And a fourth step, wherein the first step has a first opening in the region where the separation groove is formed, and the width is narrower than the first opening in the region where the groove is formed. An edge having a second opening The upper surface of the conductive foil is covered with an etching mask and etched to form the groove shallower than the separation groove. In the fourth step, the insulating resin filled in the separation groove is exposed. The conductive foil is removed from the back surface so that the insulating resin filled in the groove is not exposed .
[0023]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment illustrating the configuration of the circuit device 10)
With reference to FIG. 1, the configuration of the circuit device 10 of the present invention will be described. FIG. 1A is a plan view of the circuit device 10, and FIG. 1B is a cross-sectional view of the circuit device 10.
[0024]
Referring to FIGS. 1A and 1B, circuit device 10 has the following configuration. That is, the die pad 11 formed to be approximately the same size as the semiconductor element 13 mounted via the brazing material 19, the bonding pad 12 provided close to the die pad 11, and the die pad so as to surround the semiconductor element 13. Insulation that seals the die pad 11, the bonding pad 12, and the semiconductor element 13 by exposing the back surface of the die pad 11 and the bonding pad 12 to the groove 14 that prevents the brazing material 19 from flowing out. The circuit device 10 is composed of the resin 16 or the like. Each of these components will be described below.
[0025]
The die pad 11 is a conductive pattern on which the semiconductor element 13 is mounted, is made of a metal such as copper foil, and is embedded in the insulating resin 16 with its back surface exposed. The planar size of the die pad 11 is slightly larger than the semiconductor element to be mounted, and a groove 14 is formed in the periphery thereof. In FIG. 1A, a die pad 11 is formed at the center, and a semiconductor element 13 made of an IC chip or the like is mounted via a brazing material 19. A plating film made of Ag or the like is formed on the surface of the die pad 11 corresponding to the region where the semiconductor element 13 is mounted.
[0026]
The bonding pad 12 is a conductive pattern to which the fine metal wire 15 is bonded, and is embedded in the insulating resin 16 with the back surface exposed. Here, a large number of circular bonding pads 12 are formed so as to surround the die pad 11 formed at the center of the apparatus. In FIG. 2A, bonding pads 12A formed on both left and right sides of the die pad 11 are provided electrically independently. The bonding pads 12B formed on both upper and lower sides of the die pad 11 are formed continuously with the die pad 11 and are electrically connected. A plating film made of Ag or the like is formed on the surface of the bonding pad 12 in order to improve the adhesion of the fine metal wires to be bonded.
[0027]
The semiconductor element 13 is mounted on the surface of the die pad 11 via the brazing material 19, and here, a relatively large IC chip is mounted via the brazing material 19 among the semiconductor elements. The electrode formed on the surface of the semiconductor element 13 and the bonding pad 12 are electrically connected via the fine metal wire 15. Further, the bonding pad 12 that is electrically connected to the die pad 11 is also electrically connected to the semiconductor element 13 through the fine metal wire 15. As the brazing material used here, a conductive adhesive such as solder or Ag paste can be used. Furthermore, the semiconductor element 13 can be mounted on the die pad 11 using an insulating resin.
[0028]
The groove 14 is formed in the periphery of the die pad 11 so as to surround the semiconductor element 13 and is filled with an insulating resin 16. Further, the depth of the groove 14 is shallower than the thickness of the die pad 11. Thus, by forming the groove 14 so as to surround the region where the semiconductor element 13 is mounted, the brazing material 19 flows out from the die pad 11 in the process of mounting the semiconductor element 13 on the molten brazing material 19. Can be prevented. Specifically, even if the brazing material 19 flows out of the region where the semiconductor element 13 is mounted, the brazing material 19 is stored in the groove 14. Therefore, the groove 14 functions as a blocking region that prevents the brazing material 19 from flowing out of the die pad 11. Although a method for manufacturing the groove 14 will be described later, the groove 14 is manufactured together with the separation groove 16 by etching. Accordingly, the width of the cross section of the groove 14 is narrower than the width of the separation groove 16.
[0029]
The insulating resin 16 exposes the back surfaces of the die pad 11 and the bonding pad 12 to seal the whole. Further, the insulating resin 16 is filled in the grooves 14 formed on the surface of the die pad 11. Here, the semiconductor element 13, the fine metal wire 15, the die pad 11 and the bonding pad 12 are sealed. As a material of the insulating resin 16, a thermosetting resin formed by transfer molding or a thermoplastic resin formed by injection molding can be employed.
[0030]
The brazing material 19 is a conductive paste such as solder or Ag paste, and has a function of bonding the semiconductor element 13 and the die pad 11. Since the brazing material 19 is a conductive material, the back surface of the semiconductor element 13 and the die pad 11 are electrically connected. The bonding pads 12B formed on the upper and lower sides of the die pad 11 are also electrically connected to the die pad 11. Therefore, by connecting the electrode of the semiconductor element 13 and the bonding pad 12B using the thin metal wire 15, the circuit formed on the surface of the semiconductor element 13 and the back surface of the semiconductor element 13 can be electrically connected. it can.
[0031]
With reference to FIG. 2, the external electrode 17 formed on the back surface of the circuit device will be described. The external electrode 17 is formed on the back surface of the bonding pad 12 provided so as to surround the die pad 11. Furthermore, a large number of external electrodes are also provided on the back surface of the die pad 11, and accordingly, a large number of external electrodes 17 are provided at regular intervals in a matrix form throughout the back surface of the circuit device 10. Thereby, when the circuit device 10 is mounted on a mounting board such as a mother board via the external electrode 17, the stress acting on the external electrode 17 can be reduced.
[0032]
Referring to FIG. 2B, the position and size of external electrode 17 formed on the back surface of die pad 11 are restricted by the opening of resist 18. The position and size of the external electrode 17 formed on the back surface of the bonding pad 12 are formed by the back surface of the bonding pad 12. A metal such as copper which is a material of the bonding pad 12 is a material having good wettability, and the position and size of the external electrode 17 are regulated by this wettability. As described above, by regulating the position and size of the external electrode 17 formed on the back surface of the bonding pad 12 using the wettability of the bonding pad 12, even when the position of the opening portion of the resist 18 is shifted, the accuracy is improved. The external electrode 17 can be formed well.
[0033]
A feature of the present invention is that a groove 14 is formed in the peripheral portion of the die pad 11 so as to surround the semiconductor element 13. That is, when the semiconductor element 13 is mounted on the melted brazing material 19, the brazing material 19 spreads around due to the weight of the semiconductor element 13, but the brazing material 19 spreading around is retained in the groove 14. It is possible to prevent the brazing material 19 from flowing out of the surface. Accordingly, it is possible to prevent the pads from shorting due to the leaked brazing material 19 coming into contact with the bonding pads 12. In addition, this makes it possible to form the die pad 11 substantially equivalent to the semiconductor element 13 mounted thereon. Furthermore, the die pad 11 and the bonding pad 12 can be formed close to each other, and the overall size of the circuit device 10 can be reduced. Furthermore, by forming the groove 14 on the surface of the die pad 11 in this way, the area where the die pad 11 and the insulating resin 16 are in contact with each other can be increased, so that the adhesive force between the die pad 11 and the insulating resin 13 is increased. Can be improved.
[0034]
With reference to FIG. 3, a circuit device 10A of another form will be described. 3A is a cross-sectional view of the circuit device 10A, and FIG. 3B is a cross-sectional view taken along line XX ′ of FIG. 3A. The circuit device 10 </ b> A has substantially the same configuration as the circuit device 10 described in FIG. 1, and grooves 14 </ b> A are further formed in a lattice shape in a region surrounded by the grooves 14 formed on the surface of the die pad 11. .
[0035]
The groove 14 is provided in the peripheral portion of the die pad 11 for the purpose of preventing the brazing material 19 for fixing the semiconductor element 13 from flowing out of the surface of the die pad 11. Further, here, grooves 14 </ b> A are formed in a lattice shape in a region surrounded by the grooves 14. The grooves 14 </ b> A formed in a lattice shape also have the same cross-sectional shape as the grooves 14. By forming the grooves 14 in a lattice shape in this manner, a larger amount of brazing material 19 can be stored in the grooves 14, thereby preventing the brazing material 19 from flowing out of the surface of the die pad 11. Can do. Furthermore, since the area where the die pad 11 and the insulating resin 16 contact can be further increased, the adhesion between the die pad 11 and the insulating resin 16 can be improved.
[0036]
A further merit of providing the groove 14 will be described. The brazing material 19 is applied to the surface of the die pad 11 using a machine for supplying a brazing material such as a dispenser. The minimum amount of the brazing material 20 that can be supplied by the dispenser is determined. Therefore, when the minimum application amount of the dispenser is larger than the amount of the brazing material 19 necessary for mounting the semiconductor element 13 on the die pad 11, the brazing material 19 may flow out from the surface of the die pad 11. Thus, by providing the groove 14, it is possible to prevent the brazing material 19 from flowing out.
[0037]
(Second Embodiment Explaining Method of Manufacturing Circuit Device 10)
In this embodiment, a method for manufacturing the circuit device 10 will be described. In the present embodiment, the circuit device 10 is manufactured by the following process. That is, the step of preparing the conductive foil 40 and the die pad 11 and the bonding pad 12 constituting the plurality of circuit device portions 45 by forming the separation groove 16 shallower than the thickness of the conductive foil 40 and simultaneously fixing the conductive foil 40 are planned. A step of forming a groove 14 shallower than the separation groove 16 in the die pad 11 so as to surround the region of the semiconductor element 13, a step of fixing the semiconductor element 13 to the die pad 11 via a brazing material 19, Wire bonding with the bonding pad 12, a step of covering the semiconductor element 13, and performing a common molding with the insulating resin 16 so as to fill the separation groove 16 and the groove 14, and the insulating resin 16 is exposed. From the step of removing the back surface of the conductive foil 40 and the step of separating each circuit device 10 by dicing the insulating resin 16 It has been made. Below, each process of this invention is demonstrated with reference to FIGS.
[0038]
In the first step of the present invention, as shown in FIGS. 4 to 6, a conductive foil 40 is prepared, and a separation groove 16 shallower than the thickness is formed in the conductive foil 40 to form a plurality of circuit device portions 45. At the same time as forming the die pad 11 and the bonding pad 12, the groove 14 shallower than the separation groove 16 is formed in the die pad 11 so as to surround the region of the semiconductor element 13 to be fixed.
[0039]
In this step, first, a sheet-like conductive foil 40 is prepared as shown in FIG. The conductive foil 40 is selected in consideration of the adhesiveness, bonding property, and plating property of the brazing material. As the material, a conductive foil mainly composed of Cu, a conductive foil mainly composed of Al, or Fe is used. A conductive foil made of an alloy such as Ni is employed.
[0040]
The thickness of the conductive foil is preferably about 10 μm to 300 μm in consideration of later etching, but it is basically good if it is 300 μm or more or 10 μm or less. As will be described later, it is sufficient that the separation groove 16 shallower than the thickness of the conductive foil 40 can be formed.
[0041]
In addition, the sheet-like conductive foil 40 is prepared by being wound into a roll with a predetermined width, for example, 45 mm, and this may be conveyed to each step described later, or a strip-shaped cut into a predetermined size. The conductive foil 40 may be prepared and conveyed to each process described later.
[0042]
Specifically, as shown in FIG. 4B, 4 to 5 blocks 42 in which a large number of circuit device portions 45 are formed are arranged on the strip-shaped conductive foil 40 so as to be spaced apart. A slit 43 is provided between each block 42 to absorb the stress of the conductive foil 40 generated by the heat treatment in the molding process or the like. Also, index holes 44 are provided at regular intervals at the upper and lower peripheral ends of the conductive foil 40, and are used for positioning in each step. Subsequently, a conductive pattern is formed.
[0043]
First, as shown in FIG. 5, a photoresist (etching resistant mask) PR is formed on the conductive foil 60, and the photoresist PR is patterned so that the conductive foil 40 excluding the region to be the conductive pattern 51 is exposed. Then, as shown in FIG. 6A, the conductive foil 40 is selectively etched. Here, the conductive pattern 51 forms the die pad 11 and the bonding pad 12 of each circuit device unit 45.
[0044]
Referring to FIG. 6A, a photoresist opening is provided at a location where groove 14 and separation groove 16 are formed. And the width | variety of the opening part of the location in which the groove | channel 14 is formed is narrower than the location in which the isolation | separation groove | channel 16 is formed. Specifically, the width is less than half. Since the conductive foil 40 is removed by isotropic etching, the opening of the photoresist corresponding to the groove 14 is narrowly formed in this manner, so that the depth of the groove 14 is shallower than that of the separation groove 16. can do. Note that the above-described etching step can be performed by dipping the conductive foil 40 in an etchant solution.
[0045]
FIG. 6B shows a conductive pattern 51 for forming the die pad 11 and the bonding pad 12. This figure corresponds to an enlarged view of one of the blocks 42 shown in FIG. One hatched portion is one circuit device unit 45, and in one block 42, a large number of circuit device units 45 are arranged in a matrix of 2 rows and 2 columns, and the same conductive pattern is provided for each circuit device unit 45. 51 is provided. A frame-like pattern 46 is provided in the periphery of each block, and a positioning mark 47 for dicing is provided inside the pattern slightly apart from the frame-like pattern 46. The frame-shaped pattern 46 is used for fitting with the mold, and has a function of reinforcing the insulating resin 16 after the back surface etching of the conductive foil 40. In each circuit device portion, bonding pads 12 formed on both upper and lower sides of the die pad 11 are integrated with the die pad 11 and are electrically connected to each other.
[0046]
The second step of the present invention is to fix the semiconductor element 13 to the die pad 11 of each circuit device section 45 through the brazing material 19 as shown in FIG.
[0047]
With reference to FIG. 7A, the semiconductor element 13 is mounted on the die pad 11 via the brazing material 19. Here, as the brazing material 19, a conductive paste such as solder or Ag paste is used. In this step, since the brazing material 19 is in a molten state, by placing the semiconductor element 13 on the brazing material 19, the brazing material 19 spreads around due to the weight of the semiconductor element 13 and the like. Here, since the groove 14 is formed in the peripheral portion of the die pad 11 so as to surround the region where the semiconductor element 13 is placed, the spread brazing material 19 does not flow out of the die pad 11. Since the brazing material 19 that has reached the groove 14 flows into the groove 14, the groove 14 functions as a blocking region that prevents the solder from flowing out. Furthermore, the semiconductor element 13 can be mounted on the die pad 11 using an insulating resin.
[0048]
The third step of the present invention is to perform wire bonding between the semiconductor element 13 and a desired bonding pad 12 as shown in FIG.
[0049]
Specifically, wire bonding of the electrodes of the semiconductor element 13 and the desired bonding pads 12 mounted on each circuit device unit is performed collectively by ball bonding by thermocompression bonding and wedge bonding by ultrasonic waves.
[0050]
As shown in FIG. 9, the fourth step of the present invention is to cover the semiconductor element 13 and perform common molding with the insulating resin 16 so as to fill the separation groove 16 and the groove 14.
[0051]
In this step, as shown in FIG. 9A, the insulating resin 16 completely covers the semiconductor element 13 and the plurality of die pads 11 and the bonding pad 12, and the insulating resin 16 is formed in the separation grooves 16 and the grooves 14. Filled and fits firmly into the separation groove 41. The die pad 11 and the bonding pad 12 are supported by the insulating resin 16.
[0052]
Further, this step can be realized by transfer molding, injection molding, or potting. As the resin material, a thermosetting resin such as an epoxy resin can be realized by transfer molding, and a thermoplastic resin such as polyimide resin or polyphenylene sulfide can be realized by injection molding.
[0053]
Further, when performing transfer molding or injection molding in this step, each block 42 stores the circuit device portion 63 in one common mold as shown in FIG. 9B, and one insulating property is provided for each block. The resin 16 is molded in common. For this reason, the amount of resin can be greatly reduced as compared with a method in which each circuit device unit is individually molded, such as a conventional transfer mold.
[0054]
The feature of this step is that the conductive foil 40 that becomes the conductive pattern 51 becomes a support substrate until the insulating resin 16 is coated. Conventionally, the conductive pattern is formed by using a support substrate that is not originally required, but in the present invention, the conductive foil 40 serving as the support substrate is a material necessary as an electrode material. Therefore, there is a merit that the work can be performed with the constituent materials omitted as much as possible, and the cost can be reduced.
[0055]
Further, since the separation groove 41 is formed shallower than the thickness of the conductive foil, the conductive foil 40 is not individually separated as the conductive pattern 51. Therefore, the sheet-like conductive foil 40 can be handled as a unit, and when the insulating resin 16 is molded, it has a feature that the work of transporting to the mold and mounting to the mold becomes very easy.
[0056]
The fifth step of the present invention is to remove the back surface of the conductive foil 40 until the insulating resin is exposed.
[0057]
In this step, the back surface of the conductive foil 40 is chemically and / or physically removed and separated as the conductive pattern 51. This step is performed by polishing, grinding, etching, laser metal evaporation, or the like.
[0058]
In the experiment, the entire surface of the conductive foil 40 is wet-etched to expose the insulating resin 16 from the separation groove 41. The exposed surface is indicated by a dotted line in FIG. As a result, the conductive pattern 51 is separated. As a result, the back surface of the conductive pattern 51 is exposed to the insulating resin 16. That is, the surface of the insulating resin 16 filled in the separation groove 41 and the surface of the conductive pattern 51 are substantially matched.
[0059]
Furthermore, the back surface treatment of the conductive pattern 51 is performed to obtain, for example, the final structure shown in FIG. That is, a conductive material such as solder is deposited on the exposed conductive pattern 51 as necessary to complete the circuit device.
[0060]
Furthermore, in this step, the insulating resin 16 filled in the separation groove 16 is exposed on the back surface, but the insulating resin 16 filled in the groove 14 is not exposed on the back surface.
[0061]
The sixth step of the present invention is to separate the insulating resin 16 by dicing for each circuit device section 45 as shown in FIG.
[0062]
In this step, the block 42 is vacuum-adsorbed on the mounting table of the dicing device, and the insulating resin 16 in the separation groove 41 is diced along a dicing line (one-dot chain line) between the circuit device portions 45 with a dicing blade 49, Separate into separate circuit devices.
[0063]
In this step, the dicing blade 49 may be cut at a cutting depth that substantially cuts the insulating resin 16, and after taking out the block 42 from the dicing apparatus, a chocolate break may be caused by a roller. At the time of dicing, the alignment mark 47 of each block provided in the first step described above is recognized in advance and dicing is performed based on this. As is well known, dicing is performed by dicing all dicing lines in the vertical direction, rotating the mounting table 90 degrees, and performing dicing according to the dicing lines 70 in the horizontal direction.
[0064]
【The invention's effect】
In the present invention, the following effects can be obtained.
[0065]
First, in the present invention, the groove 14 is provided in the periphery of the die pad 11 so as to surround the semiconductor element 13 to prevent the brazing material 19 that fixes the semiconductor element 13 from flowing out. Therefore, it is possible to prevent the conductive patterns from being short-circuited.
[0066]
Second, since the groove 14 can prevent the brazing material 19 from flowing out, the die pad 11 and the bonding pad 12 can be brought close to each other, and the entire apparatus can be downsized.
[0067]
Third, in the process of mounting the semiconductor element 13, the groove 14 provided in the peripheral portion of the bonding pad 12 functions as a blocking region for preventing the brazing material from flowing out, and the electric conduction caused by the brazing material 19 flowing out to the outside. Short circuit between patterns can be prevented.
[Brief description of the drawings]
1A and 1B are a plan view and a cross-sectional view illustrating a circuit device according to the present invention.
2A and 2B are a back view and a cross-sectional view illustrating a circuit device according to the present invention.
FIG. 3 is a cross-sectional view (A) and a plan view (B) illustrating a circuit device of the present invention.
4A and 4B are a cross-sectional view (A) and a plan view (B) illustrating a method for manufacturing a circuit device according to the present invention.
FIG. 5 is a cross-sectional view illustrating a method for manufacturing a circuit device according to the present invention.
6A and 6B are a cross-sectional view (A) and a plan view (B) illustrating a method for manufacturing a circuit device according to the present invention.
7A and 7B are a cross-sectional view (A) and a plan view (B) illustrating a method for manufacturing a circuit device according to the present invention.
FIGS. 8A and 8B are a cross-sectional view (A) and a plan view (B) illustrating a method for manufacturing a circuit device of the present invention. FIGS.
9A and 9B are a cross-sectional view (A) and a plan view (B) illustrating a method for manufacturing a circuit device according to the present invention.
FIG. 10 is a plan view illustrating the method for manufacturing the circuit device according to the present invention.
FIG. 11 is a cross-sectional view illustrating a conventional circuit device.
FIG. 12 is a cross-sectional view illustrating a conventional circuit device.

Claims (5)

ダイパッドを含む導電パターンが凸状を呈するように上面から分離溝が形成されると共に、前記ダイパッドの領域内に前記分離溝よりも浅い溝が形成された導電箔を用意する第1工程と、
前記溝に囲まれる領域の前記ダイパッドの上面に、溶融された半田を介して半導体素子を固着する第2工程と、
前記半導体素子および前記導電箔の上面が被覆されると共に、前記分離溝および前記溝に充填されるように絶縁性樹脂を形成する第3工程と、
前記分離溝に充填された前記絶縁性樹脂が露出するまで前記導電箔を裏面から除去する第4工程と、を具備し、
前記第1工程では、前記分離溝が形成される領域に第1開口部を有し、前記溝が形成される領域に前記第1開口部よりも幅が狭い第2開口部を有するエッチングマスクにより前記導電箔の上面を被覆してエッチングを行うことにより、前記溝を前記分離溝よりも浅く形成し、
前記第4工程では、前記分離溝に充填された前記絶縁性樹脂が露出すると共に、前記溝に充填された前記絶縁性樹脂が露出しない様に、前記導電箔を裏面から除去することを特徴とする半導体装置の製造方法。
A first step of preparing a conductive foil in which a separation groove is formed from an upper surface so that a conductive pattern including a die pad has a convex shape, and a groove shallower than the separation groove is formed in the region of the die pad ;
A second step of fixing a semiconductor element to the upper surface of the die pad in a region surrounded by the groove via a molten solder ;
A third step of forming an insulating resin so that upper surfaces of the semiconductor element and the conductive foil are covered, and the separation groove and the groove are filled;
And a fourth step of removing the conductive foil from the back surface until the insulating resin filled in the separation groove is exposed,
In the first step, an etching mask having a first opening in a region where the separation groove is formed and a second opening narrower than the first opening in a region where the groove is formed. By covering the upper surface of the conductive foil and performing etching, the groove is formed shallower than the separation groove,
In the fourth step, the conductive foil is removed from the back surface so that the insulating resin filled in the separation groove is exposed and the insulating resin filled in the groove is not exposed. A method for manufacturing a semiconductor device.
前記分離溝と前記溝とを一度のエッチング工程にて同時に形成することを特徴とする請求項1記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, wherein the separation groove and the groove are simultaneously formed by a single etching process. 前記第2開口部の幅は、前記第1開口部の幅の半分以下であることを特徴とする請求項1記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1 , wherein the width of the second opening is not more than half of the width of the first opening. 前記第2工程では、前記ダイパッドの上面から流出した液状の前記半田を、前記溝に流れ込ませることを特徴とする請求項1記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, wherein in the second step, the liquid solder that has flowed out from the upper surface of the die pad flows into the groove. 前記第4工程では、前記導電箔を裏面から全面的にエッチングすることを特徴とする請求項1記載の半導体装置の製造方法。  The method of manufacturing a semiconductor device according to claim 1, wherein in the fourth step, the conductive foil is entirely etched from the back surface.
JP2002230409A 2002-08-07 2002-08-07 Manufacturing method of semiconductor device Expired - Fee Related JP4093818B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002230409A JP4093818B2 (en) 2002-08-07 2002-08-07 Manufacturing method of semiconductor device
TW092118684A TWI240603B (en) 2002-08-07 2003-07-09 Manufacturing method of circuit device
KR1020030053069A KR20040026129A (en) 2002-08-07 2003-07-31 Circuit device and method for manufacturing the same
CNB031526179A CN100492632C (en) 2002-08-07 2003-08-01 Circuit device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230409A JP4093818B2 (en) 2002-08-07 2002-08-07 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004071898A JP2004071898A (en) 2004-03-04
JP4093818B2 true JP4093818B2 (en) 2008-06-04

Family

ID=32016494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230409A Expired - Fee Related JP4093818B2 (en) 2002-08-07 2002-08-07 Manufacturing method of semiconductor device

Country Status (4)

Country Link
JP (1) JP4093818B2 (en)
KR (1) KR20040026129A (en)
CN (1) CN100492632C (en)
TW (1) TWI240603B (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782225B1 (en) * 2005-09-02 2007-12-05 엘에스전선 주식회사 Lead frame having recessed diepad and semiconductor package
KR100672214B1 (en) * 2005-12-30 2007-01-22 김대성 A bicycle
US7836586B2 (en) * 2008-08-21 2010-11-23 National Semiconductor Corporation Thin foil semiconductor package
JP2010050491A (en) * 2009-12-02 2010-03-04 Renesas Technology Corp Method of manufacturing semiconductor device
JP5689462B2 (en) * 2010-05-12 2015-03-25 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US8502377B2 (en) * 2010-08-06 2013-08-06 Mediatek Inc. Package substrate for bump on trace interconnection
JP5533619B2 (en) * 2010-12-14 2014-06-25 株式会社デンソー Semiconductor device
US9385102B2 (en) 2012-09-28 2016-07-05 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming supporting layer over semiconductor die in thin fan-out wafer level chip scale package
JP2014203861A (en) * 2013-04-02 2014-10-27 三菱電機株式会社 Semiconductor device and semiconductor module
CN103716993A (en) * 2014-01-07 2014-04-09 上海铁路通信有限公司 Printed circuit board with barrier dam protection layer
JP5939474B2 (en) * 2014-07-02 2016-06-22 大日本印刷株式会社 Lead frame and manufacturing method thereof, and semiconductor device and manufacturing method thereof
JP6430843B2 (en) * 2015-01-30 2018-11-28 株式会社ジェイデバイス Semiconductor device
JP6537866B2 (en) * 2015-03-30 2019-07-03 株式会社フジクラ Semiconductor package and pressure sensor package
JP6500562B2 (en) * 2015-03-31 2019-04-17 アイシン・エィ・ダブリュ株式会社 Semiconductor module
CN104779224B (en) * 2015-04-15 2017-07-28 苏州聚达晟芯微电子有限公司 A kind of QFN encapsulating structures of power device
JP6678506B2 (en) * 2016-04-28 2020-04-08 株式会社アムコー・テクノロジー・ジャパン Semiconductor package and method of manufacturing semiconductor package
WO2018159464A1 (en) 2017-03-03 2018-09-07 株式会社村田製作所 Circuit board
JP6907671B2 (en) * 2017-04-17 2021-07-21 富士電機株式会社 Semiconductor device
DE102017123278A1 (en) * 2017-10-06 2019-04-11 Schott Ag Body with soldered ground pin, process for its preparation and its uses
FR3094564A1 (en) * 2019-03-28 2020-10-02 Stmicroelectronics (Grenoble 2) Sas Cooling of electronic circuits
JP7235379B2 (en) 2019-06-19 2023-03-08 住友電工デバイス・イノベーション株式会社 Electronic device manufacturing method
JP6753498B1 (en) * 2019-09-19 2020-09-09 株式会社明電舎 Emitter support structure and field emission device
CN113594051B (en) * 2021-07-09 2024-02-20 苏州汉天下电子有限公司 Semiconductor packaging method
CN117529804A (en) * 2021-09-07 2024-02-06 华为技术有限公司 Chip package structure and method for manufacturing the same
CN114975342A (en) * 2022-04-18 2022-08-30 华为数字能源技术有限公司 Power module and vehicle-mounted power circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596666A (en) * 1979-01-18 1980-07-23 Mitsubishi Electric Corp Method of fabricating semiconductor device substrate
JPH0637122A (en) * 1992-07-15 1994-02-10 Hitachi Ltd Semiconductor device
JP3062691B1 (en) * 1999-02-26 2000-07-12 株式会社三井ハイテック Semiconductor device
JP3600131B2 (en) * 2000-09-04 2004-12-08 三洋電機株式会社 Circuit device manufacturing method
JP2002110888A (en) * 2000-09-27 2002-04-12 Rohm Co Ltd Island exposure type semiconductor device

Also Published As

Publication number Publication date
CN100492632C (en) 2009-05-27
CN1501490A (en) 2004-06-02
TW200405779A (en) 2004-04-01
KR20040026129A (en) 2004-03-27
JP2004071898A (en) 2004-03-04
TWI240603B (en) 2005-09-21

Similar Documents

Publication Publication Date Title
JP4093818B2 (en) Manufacturing method of semiconductor device
US7125798B2 (en) Circuit device and manufacturing method of circuit device
JP4618941B2 (en) Semiconductor device
JP4353853B2 (en) Circuit device manufacturing method and plate-like body
JP2002280480A (en) Method for fabricating circuit device
US7053492B2 (en) Circuit device and method of manufacturing the same
JP2005129900A (en) Circuit device and manufacturing method thereof
US7417309B2 (en) Circuit device and portable device with symmetrical arrangement
JP3600131B2 (en) Circuit device manufacturing method
JP2004158595A (en) Circuit device, circuit module, and method for manufacturing circuit device
JP4073308B2 (en) Circuit device manufacturing method
JP2005286057A (en) Circuit device and its manufacturing method
US11869844B2 (en) Semiconductor device
JP2001274282A (en) Semiconductor device
JP2006156574A (en) Circuit device and its manufacturing method
JP3863816B2 (en) Circuit equipment
JP4803931B2 (en) Circuit module
JP3600137B2 (en) Circuit device manufacturing method
JP4097486B2 (en) Circuit device manufacturing method
JP3913622B2 (en) Circuit equipment
JP3600135B2 (en) Circuit device manufacturing method
JP2004071900A (en) Circuit device
JP4166065B2 (en) Circuit device manufacturing method
JP2007036015A (en) Circuit device and manufacturing method thereof
JP3600132B2 (en) Circuit device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees