JP4093050B2 - 自動クラッチシステムの制御装置 - Google Patents

自動クラッチシステムの制御装置 Download PDF

Info

Publication number
JP4093050B2
JP4093050B2 JP2002368118A JP2002368118A JP4093050B2 JP 4093050 B2 JP4093050 B2 JP 4093050B2 JP 2002368118 A JP2002368118 A JP 2002368118A JP 2002368118 A JP2002368118 A JP 2002368118A JP 4093050 B2 JP4093050 B2 JP 4093050B2
Authority
JP
Japan
Prior art keywords
operation amount
clutch
torque
engine
transmission torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002368118A
Other languages
English (en)
Other versions
JP2004197861A (ja
Inventor
秀男 渡辺
秀顕 大坪
孝志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002368118A priority Critical patent/JP4093050B2/ja
Publication of JP2004197861A publication Critical patent/JP2004197861A/ja
Application granted granted Critical
Publication of JP4093050B2 publication Critical patent/JP4093050B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンと変速機との間に介在するクラッチの伝達トルクをアクチュエータによる押圧操作を通じて調節する自動クラッチシステムの制御装置に関する。
【0002】
【従来の技術】
通常、変速機が搭載された車両にあっては、エンジンから変速機への動力伝達を断続するために、それらエンジンの出力軸と変速機の入力軸との間にクラッチが介在されている。そして近年では、このクラッチの伝達トルクをアクチュエータによる押圧操作を通じて自動的に調節する自動クラッチシステムの制御装置が提案され、実用化されている。この装置では、例えばアクチュエータの操作量と同操作量によって得られるクラッチを介して伝達されるトルク(目標伝達トルク)との対応関係が予め定められ、その対応関係に基づいてアクチュエータの駆動が制御される。これにより、クラッチによる動力伝達の態様(トルク伝達特性)が、車両停止状態からのアクセルペダルの踏込量や、車両走行中における変速操作等に応じて、適切に自動制御される。
【0003】
ここで、こうしたシステムでは、クラッチディスクの摩耗等によってクラッチのトルク伝達特性が変化すると、アクチュエータの操作量と同操作量によって実際に得られる伝達トルク(実伝達トルク)との関係が変化する。このため、従来より、例えば特許文献1に見られるように、そうした実伝達トルクの変化に応じて、上記対応関係を補正する装置が提案されている。
【0004】
この装置では、実伝達トルクを所定量だけ上昇させるために必要なアクチュエータの実際の操作量Aと上記対応関係から得られる操作量Bを求めるとともに、これらの変化率A/Bを算出し、その変化率A/Bを同対応関係に定められた目標伝達トルクに乗ずるようにしている。すなわち、この装置では、上述した実伝達トルクの変化分を補償するために、上記対応関係に定められた目標伝達トルクがその全領域において一定比率だけ増減される。
【0005】
【特許文献1】
特開平9−287625号公報(第10頁、第3図)
【0006】
【発明が解決しようとする課題】
ところで、本発明者らの実験によれば、上述した実伝達トルクの変化率は、厳密には一定ではなく、アクチュエータの操作量により区分される領域毎に異なる比率になることが確認された。
【0007】
このため、上記従来の装置のように、目標伝達トルクをその全領域にわたって一定比率をもって増減させていたのでは、過剰な補正がなされたり、或いは逆に補正が過小になるなどして、その補正精度を高めることができず、上記実伝達トルクの変化分を的確に補償するにも限界が生じていた。特に、車両発進時においては、そうした補正によるずれも大きくなるために、ドライバビリティの低下が避けきれないものとなっていた。
【0008】
本発明は、こうした実情に鑑みてなされたものであって、その目的は、自動クラッチシステムのクラッチにおけるトルク伝達特性を好適に補正することのできる自動クラッチシステムの制御装置を提供することにある。
【0009】
【課題を解決するための手段】
以下、上記目的を達成するための手段及びその作用効果について記載する。
先ず、請求項1に記載の発明は、エンジンと変速機との間に介在するクラッチの伝達トルクをその押圧操作を通じて調節するアクチュエータと、このアクチュエータの操作量に対応する前記伝達トルクの目標値を記憶する記憶手段と、前記伝達トルクの実際値を推定し、その推定される実際値と前記目標値との比較を通じて前記目標値を補正する補正手段とを備える自動クラッチシステムの制御装置において、前記補正手段は前記目標値の補正に際してその補正度合を前記操作量の大きさに応じて区分される各領域のうち前記操作量が小さい領域ほど大きく設定することをその要旨とする。
【0010】
トルク伝達特性の経時変化に起因するアクチュエータの操作によって実際に得られる伝達トルクの変化の比率は、同アクチュエータの操作量によって区分される領域毎に異なる比率となる。この点、上記構成によれば、クラッチのトルク伝達特性の変化がアクチュエータの操作量により区分される領域で異なる場合であっても、それに合わせるかたちでこれを補正することができる。具体的には、アクチュエータの操作量の小さい領域、すなわちクラッチの伝達トルクが小さい領域ほど、クラッチの使用継続に伴う上記実際に得られる伝達トルクの変化率が高い比率になる装置にあって、その変化分を好適に補償することができるようになる。従って、自動クラッチシステムのクラッチにおけるトルク伝達特性を好適に補正することができるようになる。
【0011】
また、請求項2に記載の発明は、エンジンと変速機との間に介在するクラッチの伝達トルクをその押圧操作を通じて調節するアクチュエータと、エンジン回転速度に対応する前記アクチュエータの操作量を記憶する記憶手段と、前記伝達トルクの実際値を推定し、その推定される実際値と前記操作量から求められる前記伝達トルクの目標値との比較を通じて前記操作量を補正する補正手段とを備える自動クラッチシステムの制御装置において、前記補正手段は前記操作量の補正に際してその補正度合を前記操作量の大きさに応じて区分される各領域のうち前記操作量が小さい領域ほど大きく設定することをその要旨とする。
【0012】
自動クラッチシステムにあって、エンジンの出力軸の回転速度とアクチュエータの操作量との対応関係が予め定められ、その対応関係からそのときどきに必要とされる伝達トルクが得られるアクチュエータの操作量を算出するといった制御手法が用いられるものがある。こうしたシステムにおいて、アクチュエータの操作量により区分される領域について各別の補正度合をもって上記対応関係を補正するようにした上記構成によれば、その領域毎でトルク伝達特性の変化態様が異なる場合であっても、それに応じたかたちで、予め定められた対応関係を補正することができるようになる。具体的には、アクチュエータの操作量の小さい領域、すなわちクラッチの伝達トルクが小さい領域ほど、クラッチの使用継続に伴う上記実際に得られる伝達トルクの変化率が高い比率になる装置にあって、その変化分を好適に補償することができるようになる。従って、自動クラッチシステムのクラッチにおけるトルク伝達特性を好適に補正することができるようになる。
【0013】
また、請求項3に記載の発明は、請求項2に記載の自動クラッチシステムの制御装置において、前記記憶される対応関係は、前記エンジンを駆動源とする車両の発進時におけるエンジン回転速度と同エンジン回転速度における前記伝達トルクの目標値との関係を定める第1の対応関係、並びに、この伝達トルクの目標値と前記操作量との関係を定める第2の対応関係とからなり、これら各対応関係のうち少なくとも第1の対応関係を前記補正の対象とすることをその要旨とする。
【0014】
上記構成によれば、上記実際に得られる伝達トルクの変化率に応じたかたちで、車両の発進に際して用いられる第1の対応関係を好適に補正することができるようになる。これにより、第2の対応関係から求められるアクチュエータの操作量の変化を好適に抑制することができるようになり、ひいては車両発進時に得られる伝達トルクの変化分を好適に補償することができるようになる。
【0016】
また、請求項に記載の発明は、請求項1〜の何れかに記載の自動クラッチシステムの制御装置において、少なくとも前記操作量が小さい領域を同操作量の大きさに応じて区分するとともに、前記補正度合をそれら区分される領域毎に各別に設定することをその要旨とする。
【0018】
クラッチの伝達トルクの小さい領域は車両発進時に用いられるが、この領域はクラッチの伝達トルク全体のうちでも上記補正分の占める割合が大きくなる領域であるため、同補正分に誤差が生じるとドライバビリティの低下が避けきれないものとなる。この点、請求項に記載の発明の構成によれば、少なくとも、そうした車両発進時におけるドライバビリティの低下についてこれを好適に抑制することができるようになる。
【0019】
また、請求項に記載の発明は、請求項1〜の何れかに記載の自動クラッチシステムの制御装置において、前記伝達トルクの実際値は、前記クラッチが非継合状態であるときのエンジン出力トルクと前記アクチュエータにより前記クラッチが押圧操作されたときのエンジン出力トルクとの差に基づいて推定されることをその要旨とする。
【0020】
クラッチの伝達トルクはエンジンの出力トルクに基づいて推定することができるが、この出力トルクには個体差があるために、その影響を受けて上記推定の精度低下を招く懸念がある。この点、上記構成のように、伝達トルクをクラッチが非継合状態であるときの出力トルクとアクチュエータが操作されたときの出力トルクとの差として求めることで、上記個体差を相殺してそれによる悪影響を極力排除することができ、伝達トルクの精度の良い推定が可能になる。
【0021】
【発明の実施の形態】
以下、本発明にかかる自動クラッチシステムの制御装置を具体化した第1の実施の形態について説明する。
【0022】
ここでは先ず、図1を参照して、本実施の形態が適用される車両の概略構成について説明する。
同図1に示されるように、車両10には駆動源としてエンジン11が搭載されている。エンジン11の出力軸であるクランク軸12には、フライホイール13が一体回転可能に取付けられている。フライホイール13には、クラッチ14を介して変速機15が接続されている。このクラッチ14は、クランク軸12の回転トルクを変速機15に伝達したり、そのトルク伝達を遮断したりするためのものである。このクラッチ14の近傍には、そうしたトルク伝達の実行や遮断を自動的に行うためのクラッチ用アクチュエータ57が設けられている。このクラッチ14及びその周辺機器の具体的な構造は後に詳述する。
【0023】
また、上記変速機15は、例えば前進5段、後進1段の平行歯車式といった一般的な手動変速機と同様の構成を有している。変速機15は入力軸17及び出力軸(図示略)を備えている。入力軸17は、クラッチディスク18に連結されている。出力軸は、ドライブシャフト19、ディファレンシャルギヤ20、車軸21等を介して駆動輪22に接続されている。そして、上記出力軸の回転は、それらドライブシャフト19、ディファレンシャルギヤ20、及び車軸21を通じて駆動輪22に伝達される。
【0024】
変速機15は、上記入力軸17及び出力軸に加え、複数対の変速ギヤ列(変速段)と複数個のスリーブとを備えている。また、変速機15の変速段を切り替えるために、電動モータ等により構成される変速機用アクチュエータ23が設けられている。そして、この変速機用アクチュエータ23の作動により、変速機15ではスリーブが出力軸の軸方向に移動される。この移動によりギヤが噛合い、特定の変速ギヤ列における動力伝達が可能となる。また、各スリーブが対の変速ギヤ列における中間(ニュートラル)位置に移動されると、各変速ギヤ列での動力伝達が遮断される。
【0025】
また、車両10の運転席の近傍にはシフト装置24が設けられている。シフト装置24には、シフトレバー25がシフトゲートに沿って変位可能に設けられている。シフトゲートには、例えば「N」、「R」、「M」、「+」、「−」、「A」といったシフト位置が設定されており、運転者が所望のシフト位置へシフトレバー25を変位させることが可能となっている。
【0026】
「N」位置は、変速機15の入力軸17と出力軸との連結を遮断する際に選択される位置である。すなわち、シフトレバー25が「N」位置に操作されると、変速機15は動力伝達を遮断する状態に切り替えられる。「R」位置は、車両10を後退させる際に選択される位置である。すなわち、シフトレバー25が「R」位置に操作されると、変速機15は後進変速段に切り替えられる。
【0027】
「M」位置は、複数の前進変速段についての変速動作を運転者が手動によって行う際に選択される位置である。「M」位置の両側には「+」位置及び「−」位置が設けられている。「+」位置はシフトアップに際しシフトレバー25が操作される位置であり、「−」位置は、シフトダウンに際しシフトレバー25が操作される位置である。なお、シフト装置24には、「+」位置や、「−」位置へ操作されたシフトレバー25を「M」位置に復帰させるための復帰機構が設けられている。そして、シフトレバー25が「M」位置に操作されているときに、同シフトレバー25が「M」位置を中立位置として「+」位置または「−」位置へ操作されると、変速機15の複数の前進変速段がアップまたはダウンされる。「+」位置はアップ位置であり、1回の操作毎に変速段はアップすなわち変速比の小さい高速段側へ1段ずつ変速される。一方、「−」位置はダウン位置であり、1回の操作毎に変速段はダウンすなわち変速比の大きい低速段側へ1段ずつ変速される。
【0028】
「A」位置は、上記変速動作を、運転者によるシフトレバー25の操作によらず、車両10の運転状態やアクセルペダル26の踏み込み量等に応じて自動的に行わせる場合に選択される位置である。すなわち、「A」位置が選択された場合には、上記変速機15は、いわゆる自動変速機として機能する。なお、こうした変速動作の自動化は、予め設定されている変速線図に基づく、変速機用アクチュエータ23の駆動制御により実現されている。
【0029】
また、上記エンジン11の吸気通路11aには、ブレーキペダル27の踏み込み操作に際して、その操作力を同吸気通路11a内の圧力と大気圧との圧力差を用いて軽減する装置、いわゆるブレーキブースタ28が設けられている。
【0030】
一方、車両10には、その運転状態やエンジン11の運転状態を検出するために各種のセンサやスイッチが設けられている。例えば、車両10の走行速度(車速SPD)を検出するための車速センサ31が設けられている。また、エンジン11には、そのクランク軸12の回転速度(エンジン回転速度NE)を検出するためのエンジン回転速度センサ32や、冷却水の温度(THW)を検出するための水温センサ33、吸入空気量GAを検出するための吸入空気量センサ34等が設けられている。更に、上記アクセルペダル26の踏み込み量を検出するためのアクセルセンサ35や、前記クラッチ用アクチュエータ57の操作位置を検出するための位置センサ36も設けられている。加えて、上記変速機15の入力軸17の回転速度(変速機回転速度NI)を検出するための変速機回転速度センサ37や、ブレーキペダル27の踏み込みの有無を検出するためのブレーキスイッチ38等も設けられている。
【0031】
また、本実施の形態の装置は電子制御ユニット41を備えている。この電子制御ユニット41は、各センサ31〜37やブレーキスイッチ38等の検出信号をそれぞれ取り込むとともに各種の演算を行い、その演算結果に基づいてエンジン11や、変速機15、クラッチ用アクチュエータ57等を制御することで、車両10の運転状態を総合的に制御する。
【0032】
この電子制御ユニット41は、詳しくは、それぞれ例えばマイクロコンピュータ等からなるエンジン制御装置42、車両制御装置43等を備えている。エンジン制御装置42は、例えば周知の燃料噴射制御や点火時期制御等、エンジン制御にかかる各種制御を実行する。車両制御装置43は、変速機用アクチュエータ23の駆動制御を通じた変速機15の変速段の切り替え制御(変速制御)や、クラッチ用アクチュエータ57の駆動制御を通じたクラッチ14の継合態様の制御(クラッチ制御)等といった、車両運動制御にかかる各種制御を実行する。
【0033】
次に、図2〜図4を参照して、クラッチ14の構造及びその周辺構造を具体的に説明する。なお、クラッチ14としては、乾式単板式摩擦クラッチが用いられている。
【0034】
図2に示されるように、エンジン11のクランク軸12に取り付けられたフライホイール13にはクラッチカバー51が一体回転可能に取付けられている。一方、変速機15の入力軸17にはハブ17aがスプライン結合されている。また、このハブ17aには、複数のクッションプレート17bが入力軸17を中心に放射状に取り付けられている。各クッションプレート17bの外周側部分にはそれらの表裏両側の面にそれぞれクラッチディスク18が取り付けられている。このクラッチディスク18は、ハブ17a、クッションプレート17bとともに、入力軸17と一体回転しつつ、軸方向(図2の左右方向)にスライド可能である。
【0035】
クラッチディスク18とクラッチカバー51との間にはプレッシャプレート52が配置されている。プレッシャプレート52は、ダイヤフラムスプリング53の外端部によってフライホイール13側へ押し付けられている。この押し付けにより、クラッチディスク18とプレッシャプレート52との間、及びフライホイール13とクラッチディスク18との間でそれぞれ摩擦力が発生する。そして、この摩擦力により、クラッチ14がいわゆる接続(継合)された状態となり、フライホイール13、クラッチディスク18及びプレッシャプレート52が一体となって回転する。このようにして、エンジン11から変速機15への動力伝達が行われる。なお、この動力伝達の程度は、エンジン11からクラッチ14を介して変速機15に伝達されるトルクの大きさにより表すことができる。
【0036】
一方、変速機15の入力軸17には、レリーズベアリング54が軸方向へのスライド可能に装着されている。また、レリーズベアリング54の近傍にはレリーズフォーク55が軸56により回動可能に支持されており、その一端部(図2の下端部)がレリーズベアリング54に当接している。レリーズフォーク55の他端部(図2の上端部)には、例えば電動モータ等からなる前記クラッチ用アクチュエータ57がギヤ機構等を介して連結されている。
【0037】
そして、このクラッチ用アクチュエータ57が駆動されて、レリーズフォーク55が時計周り方向へ回動されると、レリーズベアリング54がフライホイール13側へ押される。そして、同方向にレリーズベアリング54が移動することにより、ダイヤフラムスプリング53の内周部が同方向へ弾性変形する。その結果、ダイヤフラムスプリング53のプレッシャプレート52を押し付ける力が弱まり、上記摩擦力が減少する。このように本実施の形態にかかるクラッチ14にあっては、クラッチ用アクチュエータ57の操作量(ST)に応じて上記摩擦力が変化する。
【0038】
他方、クッションプレート17bは、以下のように設けられている。
図3は、クッションプレート17b及びその周辺構造を図2の矢印X方向から見た側面構造を示している。同図3に示すように、各クッションプレート17bは、入力軸17側に位置する部分がハブ17aに固定されるとともに、それらと反対側に位置する部分が2枚のクラッチディスク18間に挟まれている。なお、このクッションプレート17bは全体が板ばね等に用いられる材料によって形成されている。また、図4に図3の4−4線に沿った断面構造を示すように、クッションプレート17bにおいて、クラッチディスク18間に挟まれる部分は、断面波形状に形成されている。
【0039】
そして、このクッションプレート17bは、クラッチ用アクチュエータ57の操作量STの増大に伴って徐々に弾性変形される。従って、クラッチ14による動力伝達に際しては、ダイヤフラムスプリング53の弾性力によって生じる押付け力と、クッションプレート17bの弾性力によって生じる押付け力との合力により、2枚のクラッチディスク18がプレッシャプレート52あるいはフライホイール13に押付けられる。
【0040】
なお、本実施の形態では、前記クラッチ制御を通じて、クラッチ用アクチュエータ57の操作量STが調節され、これにより車両10の発進動作時や変速機15の変速動作時におけるクラッチ14の継合と同継合の遮断(非継合)との切り替え操作が自動的に行われる。
【0041】
以下、上記クラッチ制御を通じたクラッチ14の切り替え操作のうち、特に車両発進時の切り替え操作におけるクラッチ用アクチュエータ57の駆動制御の概要について説明する。
【0042】
車両10の発進に際しては、先ず、そのときどきのエンジン回転速度NEの上昇量に基づいて図5に実線で示すAマップから制御目標となる目標伝達トルクTTrが算出される。
【0043】
なお、このAマップは、クラッチ用アクチュエータ57の駆動開始時におけるエンジン回転速度(開始時速度NEi)を基準とし、同開始時速度NEiからのエンジン回転速度NEの上昇量に基づき目標伝達トルクTTrを算出するためのマップである。このAマップは、エンジン回転速度NEの上昇量と同上昇量において適切な目標伝達トルクTTrとの関係が実験などにより求められ、前記車両制御装置43のメモリ43aに予め記憶されている。また、上記「適切な目標伝達トルクTTr」とは、車両10の発進時におけるクラッチ14の非継合状態から継合状態への移行を、効率よく、且つ所望の特性をもって行うことの可能な伝達トルクを意味する。本実施の形態では、このAマップが、エンジン回転速度NEと同速度NEにあって必要とされる伝達トルクの目標値との関係を予め定めた第1の対応関係に相当する。また、上記メモリ43aが、エンジン回転速度NEに対応するクラッチ用アクチュエータ57の操作量、及びクラッチ用アクチュエータ57の操作量に対応する伝達トルクの目標値を記憶する記憶手段に相当する。
【0044】
次に、こうして算出された目標伝達トルクTTrに基づいて図6に示すBマップから上記クラッチ用アクチュエータ57の目標操作量Tstが算出される。なお、このBマップは、目標伝達トルクTTrに基づき上記目標操作量Tstを算出するためのマップであり、目標伝達トルクTTrと目標操作量Tstとの関係が実験などにより求められ、これも車両制御装置43のメモリ43aに予め記憶されている。本実施の形態では、このBマップが、伝達トルクの目標値とクラッチ用アクチュエータ57の操作量との関係を予め定めた第2の対応関係に相当する。
【0045】
その後、上記算出された目標操作量Tstに基づいて、クラッチ用アクチュエータ57の駆動が制御される。すなわち、クラッチ用アクチュエータ57が、その操作量STを上記目標操作量Tstとするべく駆動される。
【0046】
本実施の形態の装置では、こうしたクラッチ用アクチュエータ57の駆動制御を通じて、車両10の発進時におけるクラッチ14のトルク伝達特性が所望の特性となるように調節される。
【0047】
ところで、例えば長期使用に伴うクラッチディスク18の摩耗等によってクラッチのトルク伝達特性が変化すると、それに伴ってクラッチ用アクチュエータ57の操作によって得られる伝達トルクの実際値(実伝達トルク)も変化してしまう。そこで、本実施の形態の装置では、こうした実伝達トルクの不要な変化を抑制するために、クラッチのトルク伝達特性の変化を好適に補償するための種々の処理を実行している。以下、これら各処理について順次説明する。
【0048】
まず、本実施の形態の装置では、クラッチ14が継合し始める操作位置(タッチ位置)を「操作量=0%」とする一方、車両10やエンジン11の運転状態によらずクラッチ14が確実に継合状態になる位置(完全継合位置)を「操作量=100%」として設定している。そして、タッチ位置からの操作割合(%)がクラッチ制御に用いるクラッチ用アクチュエータ57の操作量STや目標操作量Tstとして用いられる。
【0049】
ここで、上記タッチ位置は、例えばクラッチ用アクチュエータ57の操作が開始された後において変速機回転速度NIが上昇し始める同クラッチ用アクチュエータ57の操作位置を検出してこれを記憶する、といった手法を用いて適宜のタイミングで学習されている。
【0050】
また、上記完全継合位置は、レリーズベアリング54やレリーズフォーク55がハード諸元により決まるクラッチ継合側の限界位置まで操作されたときのクラッチ用アクチュエータ57の操作位置を検出し、同位置から若干非継合側の操作位置を記憶するなどの手法を用いて学習されている。
【0051】
次に、実伝達トルクの変化を補償するために、先のBマップ(図6)から求められるクラッチ用アクチュエータ57の目標操作量Tstを補正する際の手順について説明する。
【0052】
なお、実伝達トルクの変化分(変化率)は、次のように算出される。エンジン回転速度NEが一定となる定常運転時には、エンジン11の出力トルクとクラッチ14の実伝達トルクとが一致するようになる。従って、この定常状態であるときのエンジン11の出力トルクを推定することで、そのときの実伝達トルクを推定可能である。一方、そのときどきにおける所望の伝達トルク(目標伝達トルクTTr)は、クラッチ用アクチュエータ57の操作量STに基づいてBマップから容易に算出可能である。従って、上記変化率は、定常運転時の出力トルクの推定値(推定エンジントルクTre)と、このときBマップから求められる目標伝達トルクTTrとの比(=Tre/TTr)により算出することができる。
【0053】
本実施の形態では、こうして算出される変化率が補正項Kaとして記憶されるとともに、その後におけるクラッチ用アクチュエータ57の目標操作量Tstの算出に際して、Bマップから求められた目標操作量Tstに補正項Kaが乗ぜられ、その値(=Tst×Ka)が新たな目標操作量Tstとして設定される。すなわち、この補正処理では、その補正態様の一例を示す図7にあって、一点鎖線で示す状態から二点差線で示す状態へと変化させるといったように、Bマップに定められた目標操作量Tstがその全領域において実伝達トルクの変化分を補償することの可能な比率(同図7では「a/b」)をもって増減される。なお、実際の実伝達トルクの変化量は若干量であり、これを補償するための補正度合も小さいが、図7ではその補正度合を誇張して図示している。
【0054】
ここで、実伝達トルクの変化は、実際には、その変化率が上記クラッチ用アクチュエータ57の操作量が小さい領域ほど高い比率になるといったように生じることが発明者らによって確認されている。ちなみに、こうした相違は、クラッチディスク18に取り付けられるクッションプレート17bの特性変化に起因するものであると考えられる。
【0055】
以下、このメカニズムについて、図8及び図9を参照しつつ説明する。なお、図8には図4のY部を拡大して示し、図9には、クッションプレート17bの特性変化に伴う実伝達トルクの変化態様の一例を示す。
【0056】
クラッチディスク18は適度の摩擦力を発生させるために、クッションプレート17bと比較して柔らかい材料で形成されている。このため、このクッションプレート17bの弾性変形と同変形からの復帰といった動作が繰り返されると、それに伴って、図8に示すようにクラッチディスク18の上記クッションプレート17bが当接している部分に窪み18aが生じるようになる。
【0057】
こうした窪み18aが生じると、クッションプレート17bにおいて弾性力の発生に寄与する部分の長さ(実効長さ)L2が、新品時、すなわち窪み18aが生じていないときにおける上記実効長さL1(図6参照)よりも長くなる。これはクッションプレート17bの弾性係数を低下させて、クラッチディスク18とフライホイール13との間、及びクラッチディスク18とプレッシャプレート52との間に生じる摩擦力を低下させる。
【0058】
一方、こうした窪み18aが生じた場合であっても、クッションプレート17bは、クラッチ用アクチュエータ57の操作量STの増大に伴って、図8に実線で示す状態から一点鎖線で示す状態へと徐々に変形する。そして、これに伴ってクッションプレート17bの実効長さも徐々に短くなり、最終的には窪み18aが生じていないときとさほど変わらない長さ(L3)になる。従って、図9にその一例を示すように、上記実伝達トルクの低下率は、クラッチ用アクチュエータ57の操作量STが小さい領域では大きくなるが、同操作量STが増大するとそれに伴って徐々に低くなり、最終的には極めて低くなる(「c/d」>「e/f」>「g/h」)。
【0059】
こうしたクッションプレート17bの弾性特性が変化することに伴う実伝達トルクの低下分については、上述したタッチ位置や完全継合位置の学習処理、及び目標伝達トルクTTrをその全領域において一定比率だけ増減させる補正処理を実行しても、これを適正に補償することはできない。すなわち、これら処理では、クラッチ用アクチュエータ57の操作量STが比較的大きい領域での実伝達トルクの低下分を比較的精度良く補償することが可能ではあるが、同操作量STが小さい領域にあっては実伝達トルクの低下分を適正に補償することができない。このため、上記操作量STが小さい領域における実伝達トルクの変化は避けられず、場合によっては、車両10をクリープ走行させることができなくなるおそれもある。
【0060】
そこで、本実施の形態では、上記種々の処理に併せて、こうしたクラッチ用アクチュエータ57の操作量STが比較的小さい領域における実伝達トルクの低下分を補償するための補正処理を実行している。
【0061】
以下、この補正処理について説明する。
この処理では、クラッチ用アクチュエータ57が操作されていないときであって、エンジン11がアイドル運転状態であるときに、同エンジン11の出力トルクの推定値(推定エンジントルクTri)が算出される。また、車両10がクリープ走行すると、そのときのエンジン11の出力トルクの推定値(推定エンジントルクTrc)が算出される。そして、その推定エンジントルクTrcと、その直前において算出された上記推定エンジントルクTriとのトルク差(=Trc−Tri)が算出され、これが車両10のクリープ走行に際して得られた実伝達トルクとして記憶される。
【0062】
このように、本処理では、実伝達トルクが、エンジン11のアイドル運転時における出力トルクと車両10のクリープ走行時におけるエンジン11の出力トルクとのトルク差に基づき算出される。こうした算出手法を用いるようにしたのは、次の理由による。車両10のクリープ走行時におけるエンジン11の出力トルクのみに基づいて、クラッチ14の実伝達トルクを求めると、その求めた実伝達トルクには同エンジン11の個体差や経時変化に伴う出力トルクの変化が加算されてしまう。そうしたエンジン11の個体差や経時変化に伴う影響は、実伝達トルクが大きい領域にあっては比較的小さいものの、クリープ走行時等、実伝達トルクがごく小さい領域では極めて大きくなってしまうからである。
【0063】
その後、上記記憶された実伝達トルクと予め記憶されている所望の伝達トルクとの差ΔTrが算出されるとともに、この差ΔTrの分だけ、補正項Kbを算出するためのCマップ(図10)が、例えば同図10中に矢印Zで示すように学習更新される。なお、上記補正項Kbは、前記Aマップから算出される目標伝達トルクTTrを補正するための値である。また、上記Cマップは、前記開始時速度NEiからのエンジン回転速度NEの上昇量に基づき補正項Kbを算出するためのマップであり、同エンジン回転速度NEの上昇量と同上昇量において適切な補正項Kbとの関係が実験などにより求められ、前記車両制御装置43のメモリ43aに予め記憶されている。
【0064】
上記Cマップから算出される補正項Kbとしては、以下のような値が算出される。
エンジン回転速度NEが上記開始時速度NEiから所定速度NE1(例えば500回転/分)だけ上昇するまでの期間では、上記補正項Kbとして、一定の値が算出される。なお、この一定の値とは、このとき車両10をクリープ走行させるべくクラッチ用アクチュエータ57を所定量stcだけ操作した場合に、Aマップに予め定められた目標伝達トルクTTrからの実伝達トルクの低下分を補償することの可能な値である。
【0065】
上記開始時速度NEiからのエンジン回転速度NEの上昇量が上記所定速度NE1を超えてから所定速度NE2(例えば1000回転/分)に達するまでの期間では、その上昇量が大きくなるほど徐々に小さい値が補正項Kbとして算出される。なお、上記エンジン回転速度NEの上昇量が上記所定速度NE2以上になると、上記補正項Kbとして「0」が算出される。
【0066】
こうした補正項Kbは、その後における目標伝達トルクTTrの算出に際して、Aマップから求められた目標伝達トルクTTrに加算される。そして、その加算値(=TTr+Kb)が新たな目標伝達トルクTTrとして用いられる。
【0067】
すなわち、こうした補正項Kbに基づく補正処理では、図5にその一例を一点鎖線で示すように、Aマップに定められた目標伝達トルクTTrの、特に上記エンジン回転速度NEの上昇量が小さい領域の目標伝達トルクTTrに、上記実伝達トルクの低下相当分が加算される。これにより、Bマップから求められるクラッチ用アクチュエータ57の目標操作量Tstの、特に同目標操作量Tstが小さい領域についても、上記実伝達トルクの低下相当分だけ増大されるようになる。従って、少なくともクラッチ用アクチュエータ57の操作量STが小さい領域における実伝達トルクの変化分についてはこれが適正に補償されるようになる。そしてこれにより、特に車両10のクリープ走行に際して適正なクラッチ14の実伝達トルクが得られるようになり、同車両10のクリープ走行性能が適正に維持されるようになる。
【0068】
なお、例えば図10に一点鎖線で示すように、Cマップから補正項Kbとして「負」の値が算出されることもあるが、これは上記クッションプレート17bの劣化がある程度進んだときに適切なクラッチ用アクチュエータ57の目標操作量Tstが算出されるようにAマップやBマップを設定しているためである。
【0069】
以下、上記各補正項Ka,Kbを算出する処理、及びそれら補正項Ka,Kbを用いたクラッチ制御処理の具体的な処理手順について、図11〜図13を参照して説明する。
【0070】
なお、図11は上記補正項Kaを算出する際の具体的な処理手順を示すフローチャートであり、図12は上記補正項Kbを算出する際の具体的な処理手順を示すフローチャートである。また、図13はクラッチ制御処理の具体的な処理手順を示すフローチャートである。これらフローチャートに示される一連の処理は、その処理手順を概念的に示したものであり、実際には所定周期毎に実行される処理として、いずれも上記車両制御装置43により実行される処理である。
【0071】
ここでは先ず、図11を参照して、上記補正項Kaを算出する処理の詳細を説明する。
同図11に示すように、この処理では先ず、車速SPDが低い状態(例えば、SPD<5km/h)から、アクセルペダル26が踏み込まれたか否かが判断される(ステップS102)。そして、アクセルペダル26が踏み込まれたと判断されるようになると(ステップS102:YES)、次にエンジン回転速度NEが定常状態になったか否かが判断される(ステップS104)。
【0072】
そして、エンジン回転速度NEが定常状態になると(ステップS104:YES)、エンジン回転速度NEと吸入空気量GAに基づいてDマップから前記推定エンジントルクTreが算出される。また、これと共に、このときのクラッチ用アクチュエータ57の操作量STに基づいてBマップから目標伝達トルクTTrが算出される(ステップS106)。なお、上記Dマップは、エンジン回転速度NEと吸入空気量GAとの関係からエンジン11の出力トルクを算出するためのマップであり、それらエンジン回転速度NE、吸入空気量GA、及びエンジン11の出力トルクの関係が実験などにより求められ、予め記憶されている。
【0073】
その後、それら推定エンジントルクTreと目標伝達トルクTTrとの比(=TTr/Tre)が算出されるとともに、同比が補正項Kaとして記憶された後(ステップS108)、本処理は一旦終了される。
【0074】
次に、図12を参照して、上記補正項Kbを算出する処理の詳細を説明する。
同図12に示すように、この処理では先ず、アイドル安定条件が成立しているか否かが判断される(ステップS202)。なお、このアイドル安定条件は、クラッチ用アクチュエータ57が操作されておらず、且つエンジン11の出力トルクが安定した状態であることを判断するための条件である。このアイドル安定条件の成立は、以下の(条件イ)〜(条件ル)の全てが満たされていることをもって判断される。
(条件イ)エンジン11が起動されていること(エンジン回転速度NE≧所定速度)。
(条件ロ):クラッチ14が非継合状態であること。
(条件ハ):車両10が停止されていること(車速SPD=「0」)。
(条件ニ):(条件ロ)及び(条件ハ)が共に満たされた後、所定時間が経過していること。
(条件ホ):エンジン11がアイドル運転状態であること。
(条件ヘ):(条件ロ)及び(条件ハ)が満たされた後において、エンジン制御装置42で演算されている目標アイドル回転速度が安定していること。
(条件ト):ブレーキペダル27の操作量が安定していること。ブレーキペダル27が操作されると、これに伴ってブレーキブースタ28が作動して吸気通路11a内の圧力が不安定となり、その結果エンジン11の出力トルクが不安定になる。
(条件チ):各種センサ類や電子制御ユニット41が正常に作動していること。
(条件リ):エンジン回転速度NEが安定していること。
(条件ヌ):エンジン11の暖機運転が完了していること(冷却水温度THW≧所定温度)。
(条件ル):(条件イ)〜(条件ヌ)の全てが所定時間にわたり連続して満たされていること。
【0075】
なお、これら各条件のうち、(条件ト)は、ブレーキペダル27の操作に伴ってエンジン11の出力トルクが不安定になったときに、上記推定エンジントルクTriが算出されることを防止するために設定される条件である。
【0076】
そして、アイドル安定条件が成立していると(ステップS202:YES)、その後の所定時間にわたりエンジン回転速度NE及び吸入空気量GAに基づいて先のDマップから、そのときどきのエンジン11の出力トルクが推定される。そして、それら出力トルクのうちの最大値と最小値とについて、それらの平均値(=「最大値+最小値」/2)が算出され、上記推定エンジントルクTriとして記憶される(ステップS204)。
【0077】
その後、車両10をクリープ走行させるクリープ走行条件が成立しているか否かが判断され(ステップS206)、同クリープ走行条件が成立していない場合には(ステップS206:NO)、同条件が満たされるようになるまで、上記ステップS202及びS204の処理が繰り返し実行される。なお、このクリープ走行条件は、例えばシフトレバー25の操作位置が「R」や「M」、「A」であるときに、上記アクセルペダル26が踏み込まれていない状態で、ブレーキペダル27の踏み込みが解除されたことをもって成立した旨の判断がなされる条件である。
【0078】
その後、上記クリープ走行条件が満たされると(ステップS206:YES)、車両10をクリープ走行させるべく、クラッチ用アクチュエータ57の駆動が開始される(ステップS208)。このとき、クラッチ用アクチュエータ57は、その操作量STをクリープ走行の可能な所定操作量stcにまで徐々に移動させるようにその駆動が制御される。
【0079】
また、これと共に、エンジン回転速度NEの制御目標となる回転速度(目標回転速度TNE)が所定速度に設定される(ステップS210)。なお、上記所定速度としては、エンジン11のアイドル運転時に設定される目標アイドル回転速度よりも若干高い速度が設定される。そして、このときエンジン制御装置42によって、エンジン回転速度NEが上記所定速度になるように、上記エンジン制御にかかる各種の制御が実行される。こうした制御を実行するのは、クラッチ用アクチュエータ57の駆動開始に伴う実伝達トルクの発生によってエンジン回転速度NEが低下し、エンジン11の運転状態が不安定になることを防止するためである。
【0080】
そしてその後、発進安定条件が成立しているか否かが判断される(ステップS212)。なお、この発進安定条件は、車両10がクリープ走行状態であるときの中でも、エンジン11の出力トルクが安定した状態であることを判断するための条件である。また、このアイドル安定条件の成立は、上記(条件イ)、(条件ヘ)、(条件ト)、(条件チ)、(条件ヌ)、及び以下の(条件ヲ)〜(条件レ)の全てが満たされていることをもって判断される。
(条件ヲ):目標伝達トルクTTrが安定していること。
(条件ワ):アクセルペダル26が踏み込まれていないこと。
(条件カ):エンジン回転速度NEと変速機回転速度NIとの速度差が所定速度よりも大きいこと。
(条件ヨ):車両10のクリープ走行が開始された後の経過時間が所定時間以内であること。
(条件タ):クラッチ14の温度が所定温度未満であること。
(条件レ):(条件イ)、(条件ヘ)、(条件ト)、(条件チ)、(条件ヌ)、及び(条件ヲ)〜(条件タ)の全てが所定時間にわたり連続して満たされていること。
【0081】
そして、こうした発進安定条件が成立するまで、このステップS212の処理が繰り返し実行され、同条件が成立すると(ステップS212:YES)、その後の所定時間にわたりエンジン回転速度NE及び吸入空気量GAに基づいて先のDマップから、そのときどきのエンジン11の出力トルクが推定される。そして、それら出力トルクのうちの最大値と最小値とが選び出されるとともにそれらの平均値が算出され、上記推定エンジントルクTrcとして記憶される(ステップS214)。
【0082】
その後、この推定エンジントルクTrc及び前記推定エンジントルクTriのトルク差(Trc−Tri)と前記予め記憶されている所望のトルク差との差ΔTrが算出される。これと共に、この差ΔTrとこのときエンジン制御装置42により演算されている目標アイドル回転速度とに基づいてEマップから求められる更新量をもって、Cマップ(図10)が学習・更新される。更には、このときの開始時速度NEiからのエンジン回転速度NEの上昇量に基づいて上記更新されたCマップから、補正項Kbが算出される(ステップS216)。なお、上記Eマップは、上記目標アイドル回転速度によって区分された速度域毎に、上記差ΔTrと同差ΔTrに適した更新量との関係を各別に定めたマップであり、実験等によって求められ、車両制御装置43のメモリ43aに予め記憶されている。
【0083】
このように、上記補正項Kbが算出された後(ステップS216)、本処理は一旦終了される。
次に、図13を参照して、上記クラッチ制御処理の詳細を説明する。
【0084】
なお、本実施の形態では、このクラッチ制御処理が、伝達トルクの目標値を補正する補正手段に相当する。
図13に示すように、この処理では先ず、例えばアクセルペダル26が操作されたことや、ブレーキペダル27の踏み込み操作が解除されたこと等といった車両10の発進条件が成立しているか否かが判断される(ステップS302)。そして、この発進条件が成立していないときには(ステップS302:NO)、以下の処理を実行することなく、本処理は一旦終了される。
【0085】
一方、発進条件が成立していると(ステップS302:YES)、前記開始時速度NEiからのエンジン回転速度NEの上昇量に基づいてAマップから、目標伝達トルクTTrが算出される(ステップS304)。そして、この目標伝達トルクTTrが次式に基づいて補正・更新される(ステップS306)。
TTr←TTr+補正項Kb×所定値α
なお、上記所定値αとしては、「1」よりも小さい正の値(例えば「0.1」)が設定される。目標伝達トルクTTrの補正に際して、上記補正項Kbそのものを用いるのではなく所定値αを乗じた値を用いるようにしたのは、何らかの要因により、先のCマップが過大に学習・更新された場合に、その過大更新に伴う悪影響を抑えることを意図している。
【0086】
そしてその後、こうして更新された目標伝達トルクTTrに基づいてBマップから、クラッチ用アクチュエータ57の目標操作量Tstが算出され(ステップS308)、更には、この算出された目標操作量Tstが次式に基づいて補正・更新される(ステップS310)。
Tst←Tst×補正項Ka
その後、クラッチ用アクチュエータ57の操作量STを上記更新された目標操作量Tstとするべく同クラッチ用アクチュエータ57の駆動が制御された後(ステップS312)、本処理は一旦終了される。
【0087】
以下、上述した各補正項Ka,Kbを算出するとともに、それら補正項Ka,Kbに基づくクラッチ制御を実行することによる作用について、図14を参照しつつ説明する。
【0088】
なお、図14は、上記各補正項Ka,Kbによる補正態様の一例を示すグラフである。また、この例にあって、同図[a]はクラッチ14の使用継続に伴う実伝達トルクの変化の様子を示し、同図[b]はクラッチ用アクチュエータ57の目標操作量Tstについての補正態様を示している。また、この図14においては、実伝達トルクの変化量や、目標操作量Tstの補正量を誇張して図示している。
【0089】
さて、本例では、前述したクラッチ14の個体差やクラッチディスク18の摩耗等の影響によって、クラッチ用アクチュエータ57の操作量STに対する上記実伝達トルクが、同図[a]の一点鎖線で示す値から二点鎖線で示す値へと同操作量STによって区分される各領域においてほぼ一定の比率で低下している。また、本例では、クッションプレート17bの劣化によって、上記実伝達トルクが、同図[a]に二点鎖線で示す値からさらに実線で示す値へと低下している。
【0090】
これに対し、本実施の形態では、上述した補正項Kaに基づく補正により、目標伝達トルクTTrが、同図[b]に一点鎖線で示す値から二点鎖線で示す値へと、クラッチ用アクチュエータ57の操作量STにより区分される全ての領域にわたって一定比率だけ増大補正される。しかも、この補正度合としては、Bマップに予め設定された目標伝達トルクTTrと上記実伝達トルクとのトルク差分を適正に補正することの可能な比率が算出され、用いられる。また、このトルク差としては、アクセルペダル26の踏み込みに伴って車両10が発進された後にエンジン回転速度NEが定常状態になったときのトルク差、すなわちクラッチ用アクチュエータ57の操作量STが比較的大きいときのトルク差が用いられる。
【0091】
このため、補正項Kaに基づく補正により、上記操作量STが比較的大きい領域であって、実伝達トルクの低下率が小さい領域における実伝達トルクの低下分についてはこれが高い精度をもって補正される。
【0092】
また、本実施の形態では、上述した補正項Kbにより、特にクラッチ用アクチュエータ57の操作量STが小さい領域(同図[b]の領域F)において、目標伝達トルクTTrが同図[b]に二点差線で示す値からさらに実線で示す値へと増大補正される。しかも、この増大補正にかかる補正度合は、車両10をクリープ走行させるべくクラッチ用アクチュエータ57を所定操作量stcに操作したときにおける目標伝達トルクTTrと実伝達トルクとのトルク差を適正に補償可能な比率であり、同操作量が小さい領域ほど大きい比率になるように設定される。
【0093】
従って、クラッチ用アクチュエータ57の操作量STが小さい領域ほどその低下率が大きくなる実伝達トルクの低下分のうち、少なくとも同操作量STが小さい領域Fの低下分についてはその低下率の相違に応じたかたちで補正されるようになる。特に、車両10のクリープ走行時に必要とされる実伝達トルクについてはこれが適正に補償されるようになる。
【0094】
以上説明したように、本実施の形態によれば、以下に記載する効果が得られるようになる。
(1)実伝達トルクの変化分を補償すべく、クラッチ用アクチュエータ57の目標操作量Tstを補正するに際して、その補正度合をクラッチ用アクチュエータ57の操作量STの大きさに応じて区分される領域毎に各別に設定するようにした。これにより、各領域毎に異なるトルク伝達特性の変化率に応じたかたちで、上記目標操作量Tstを補正することができる。従って、クラッチ14によるトルク伝達特性を好適に補正することができるようになる。
【0095】
(2)また、そうした補正処理を、車両10の発進時におけるエンジン回転速度NEと同速度NEにおける目標伝達トルクTTrとの関係を定めたAマップに適用するようにした。これにより、上記トルク伝達特性の変化率に応じたかたちで、Aマップから算出される目標伝達トルクTTrを算出することができるようになる。このため、Bマップから算出される目標操作量Tstの変化を好適に抑制することができるようになり、ひいては車両10の発進時に得られる伝達トルクの変化分を好適に補償することができるようになる。
【0096】
(3)また、上記区分される各領域のうちクラッチ用アクチュエータ57の操作量STが小さい領域ほど上記補正度合を大きく設定するようにした。これにより、クラッチ用アクチュエータ57の操作量STの小さい領域ほど高い比率になる上記実伝達トルクの変化に応じたかたちで目標操作量Tstを補正することができるようになり、クラッチ14によるトルク伝達特性を好適に補正することができるようになる。
【0097】
(4)また、上記補正処理をAマップから算出される目標伝達トルクTTrの中でも、クラッチ用アクチュエータ57の操作量STが小さい領域に設定された目標伝達トルクTTrに適用するようにした。このため、クラッチ14の伝達トルク全体のうちでも上記補正分の占める割合が大きくなる上記操作量STが小さい領域、すなわち車両10の発進時に用いられる領域における同操作量STの変化分を好適に補償することができる。従って、車両10のクリープ走行性能を好適に維持することができるようになり、同車両10の発進時におけるドライバビリティの低下を好適に抑制することができるようになる。
【0098】
(5)また、そうした補正処理に用いられる実伝達トルクを、クラッチ14が非継合状態であるときのエンジン11の出力トルクと、クラッチ用アクチュエータ57が車両10のクリープ走行が可能となる所定量stcだけ操作されたときのエンジン11の出力トルクとのトルク差に基づき算出するようにした。これにより、エンジン11の出力トルクからクラッチ14の実伝達トルクを推定するに際して、同エンジン11の個体差や経時変化による影響を極力排除することができるようになり、実伝達トルクを精度良く推定することができるようになる。
【0099】
なお、上記実施の形態は、以下のように変更して実施してもよい。
・上記実施の形態で設定したアイドル安定条件は、クラッチ用アクチュエータ57が操作されておらず、且つエンジン11の出力トルクが安定した状態であることを好適に判断することが可能であれば、任意に変更することができる。
【0100】
・上記実施の形態で設定した発進安定条件についても、適宜変更可能である。要は、発進安定条件により、車両10がクリープ走行状態であるときの中でも、エンジン11の出力トルクが安定した状態であることを的確に判断することができればよい。
【0101】
・上記実施の形態では、Cマップの更新量の算出に用いられる実伝達トルクを、クラッチ14が非継合状態であるときのエンジン11の出力トルクと、車両10のクリープ走行時におけるエンジン11の出力トルクとのトルク差に基づき算出するようにした。これに限らず、上記実伝達トルクの算出手法は、その精度の良い算出が可能であれば、適宜変更可能である。
【0102】
・上記実施の形態では、Cマップから補正項Kbを算出するとともに、その求めた補正項KbをAマップから算出された目標伝達トルクTTrに加算することにより、これを反映させるようにした。これに限らず、例えばこの補正項Kbを目標伝達トルクTTrに乗ずるものとして算出するなど、実伝達トルクの変化傾向に応じたかたちで、その変化分を補償することが可能であれば、補正項Kbの算出態様や反映態様は任意に変更可能である。
【0103】
・上記実施の形態では、異なる補正度合をもって補正する処理を、Aマップにあって、開始時速度NEiからのエンジン回転速度NEの上昇量が所定速度NE2未満である領域にのみ適用するようにしたが、そうした補正処理を、補正項Kbの算出手法を適宜変更した上で、全ての領域に適用するようにしてもよい。こうした構成によれば、クリープ走行性能を含む車両発進性能の好適な維持を図ることが可能になる。
【0104】
・上記実施の形態では、実伝達トルクの低下分を補償することを意図して、補正項Kbに基づく補正処理の補正度合をクラッチ用アクチュエータ57の操作量STが小さい領域ほど高い比率になるように設定した。これに限らず、例えば上記操作量STが小さい領域ほど補正度合を小さく設定したり、複数の領域に区分するとともにそれら領域毎に異なる補正度合を設定する等、補正度合の設定態様を任意に変更することも可能である。こうした構成によれば、実際の実伝達トルクの変化が前述した傾向以外の傾向をもって変化する場合に、その変化の傾向に応じたかたちで補正度合を設定して、その変化を的確に補償することが可能になる。要は、クラッチ14の使用継続に伴う実伝達トルクの低下についてその傾向を正確に把握した上で、その把握した傾向に応じたかたちで各領域毎の補正度合を任意に設定すればよい。
【0105】
・上記実施の形態において、異なる補正度合をもって補正する処理を、補正項Kbの算出態様を適宜変更した上で、Bマップから算出されるクラッチ用アクチュエータ57の目標操作量Tstに適用するようにしてもよい。こうした構成では、このBマップが、車両10の発進及び変速機15の変速動作において共通のマップとして用いられる場合には、車両発進時における実伝達トルクの低下分のみならず、変速動作時における実伝達トルクの低下分についてもこれを好適に抑制することができるようになる。
【図面の簡単な説明】
【図1】本発明の一実施の形態が適用される車両についてその概略構成を示すブロック図。
【図2】同車両に搭載されるクラッチの側面断面図。
【図3】同クラッチのクッションプレート及びその周辺構造を図2の矢印X方向から見た側面図。
【図4】図3の4−4線に沿った断面図。
【図5】目標伝達トルクの算出に用いられるAマップを示す略図。
【図6】目標操作量の算出に用いられるBマップを示す略図。
【図7】補正項Kaによる補正の様子を示すグラフ。
【図8】図4のY部を拡大して示す部分拡大図。
【図9】クッションプレートの劣化に伴う実伝達トルクの変化の様子を示すグラフ。
【図10】補正項Kbの算出に用いられるCマップを示す略図。
【図11】補正項Kaを算出する際の処理手順を示すフローチャート。
【図12】補正項Kbを算出する際の処理手順を示すフローチャート。
【図13】クラッチ制御処理の処理手順を示すフローチャート。
【図14】補正項Ka及びKbによる補正態様の一例を示すグラフ。
【符号の説明】
10…車両、11…エンジン、11a…吸気通路、12…クランク軸、13…フライホイール、14…クラッチ、15…変速機、17…入力軸、17a…ハブ、17b…クッションプレート、18…クラッチディスク、18a…窪み、19…ドライブシャフト、20…ディファレンシャルギア、21…車軸、22…駆動輪、23…変速機用アクチュエータ、24…シフト装置、25…シフトレバー、26…アクセルペダル、27…ブレーキペダル、28…ブレーキブースター、31…車速センサ、32…エンジン回転速度センサ、33…水温センサ、34…吸入空気量センサ、35…アクセルセンサ、36…位置センサ、37…変速機回転速度センサ、38ブレーキスイッチ、41…電子制御装置、42…エンジン制御装置、43…車両制御装置、51…クラッチカバー、52…プレッシャプレート、53…ダイヤフラムスプリング、54…レリーズベアリング、55…レリーズフォーク、56…軸、57…クラッチ用アクチュエータ。

Claims (5)

  1. エンジンと変速機との間に介在するクラッチの伝達トルクをその押圧操作を通じて調節するアクチュエータと、このアクチュエータの操作量に対応する前記伝達トルクの目標値を記憶する記憶手段と、前記伝達トルクの実際値を推定し、その推定される実際値と前記目標値との比較を通じて前記目標値を補正する補正手段とを備える自動クラッチシステムの制御装置において、
    前記補正手段は前記目標値の補正に際してその補正度合を前記操作量の大きさに応じて区分される各領域のうち前記操作量が小さい領域ほど大きく設定する
    ことを特徴とする自動クラッチシステムの制御装置。
  2. エンジンと変速機との間に介在するクラッチの伝達トルクをその押圧操作を通じて調節するアクチュエータと、エンジン回転速度に対応する前記アクチュエータの操作量を記憶する記憶手段と、前記伝達トルクの実際値を推定し、その推定される実際値と前記操作量から求められる前記伝達トルクの目標値との比較を通じて前記操作量を補正する補正手段とを備える自動クラッチシステムの制御装置において、
    前記補正手段は前記操作量の補正に際してその補正度合を前記操作量の大きさに応じて区分される各領域のうち前記操作量が小さい領域ほど大きく設定する
    ことを特徴とする自動クラッチシステムの制御装置。
  3. 前記記憶される対応関係は、前記エンジンを駆動源とする車両の発進時におけるエンジン回転速度と同エンジン回転速度における前記伝達トルクの目標値との関係を定める第1の対応関係、並びに、この伝達トルクの目標値と前記操作量との関係を定める第2の対応関係とからなり、これら各対応関係のうち少なくとも第1の対応関係を前記補正の対象とする
    請求項2に記載の自動クラッチシステムの制御装置。
  4. 少なくとも前記操作量が小さい領域を同操作量の大きさに応じて区分するとともに、前記補正度合をそれら区分される領域毎に各別に設定する
    請求項1〜3の何れかに記載の自動クラッチシステムの制御装置。
  5. 前記伝達トルクの実際値は、前記クラッチが非継合状態であるときのエンジン出力トルクと前記アクチュエータにより前記クラッチが押圧操作されたときのエンジン出力トルクとの差に基づいて推定される
    請求項1〜4の何れかに記載の自動クラッチシステムの制御装置。
JP2002368118A 2002-12-19 2002-12-19 自動クラッチシステムの制御装置 Expired - Fee Related JP4093050B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368118A JP4093050B2 (ja) 2002-12-19 2002-12-19 自動クラッチシステムの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368118A JP4093050B2 (ja) 2002-12-19 2002-12-19 自動クラッチシステムの制御装置

Publications (2)

Publication Number Publication Date
JP2004197861A JP2004197861A (ja) 2004-07-15
JP4093050B2 true JP4093050B2 (ja) 2008-05-28

Family

ID=32764785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368118A Expired - Fee Related JP4093050B2 (ja) 2002-12-19 2002-12-19 自動クラッチシステムの制御装置

Country Status (1)

Country Link
JP (1) JP4093050B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887606B1 (fr) * 2005-06-27 2008-09-12 Peugeot Citroen Automobiles Sa Procede de pilotage d'un dispositif de couplage entre un arbre d'entree et un arbre de sortie
JP4937569B2 (ja) * 2005-11-21 2012-05-23 三菱ふそうトラック・バス株式会社 自動クラッチ制御装置
KR101428337B1 (ko) 2012-12-28 2014-08-07 현대자동차주식회사 차량의 건식클러치 전달토크 특성 탐색방법
JP5851433B2 (ja) * 2013-02-08 2016-02-03 ダイムラー・アクチェンゲゼルシャフトDaimler AG 機械式自動変速機の初期設定方法
JP2016138584A (ja) * 2015-01-27 2016-08-04 アイシン精機株式会社 クラッチトルクマップ演算装置

Also Published As

Publication number Publication date
JP2004197861A (ja) 2004-07-15

Similar Documents

Publication Publication Date Title
JP3573202B2 (ja) ハイブリッド車両のトルク制御装置
JP3546302B2 (ja) 無段変速機を備えた車両の制御装置
JP5652544B2 (ja) ハイブリッド車両の変速制御装置
JP3560363B2 (ja) 自動車の惰力運転相を開始及び終了するためのクラッチの自動制御方法
KR100815008B1 (ko) 차량용 크루즈 제어 장치 및 방법
US7630811B2 (en) Automated manual transmission launch control
CN110077387B (zh) 用于基于调整后的离合器转矩容量控制车辆推进系统的方法和系统
WO2013150641A1 (ja) 車両の発進クラッチ制御装置
US7704189B2 (en) Starting method for internal combustion engines with a double clutch transmission
US9933026B2 (en) Vehicle control system
JP5088447B2 (ja) 車両用駆動システム
JP4093050B2 (ja) 自動クラッチシステムの制御装置
JP3603569B2 (ja) エンジン制御装置
JP5409526B2 (ja) 車両の動力伝達制御装置
JP2017129257A (ja) 車両用動力伝達装置の制御装置
JP2004116748A (ja) クリープトルク制御装置
JP2008180391A (ja) 自動クラッチシステムの制御装置
JPH09236137A (ja) トルク推定方法、トルク算出データ補正方法、およびトルク推定装置
US5096016A (en) Traction control system for a vehicle with an internal combustion engine
JP2004036822A (ja) 自動クラッチシステムの制御装置
JP4687352B2 (ja) 車両の制御装置
JP4185923B2 (ja) クラッチ制御装置及びクラッチ制御方法
JP4910852B2 (ja) 車両の制御装置
CN109751406B (zh) 离合器的转矩-冲程学习方法
JP2004218671A (ja) 自動クラッチ機構の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4093050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees