JP4089344B2 - Guided driving method for omnidirectional automated guided vehicles - Google Patents

Guided driving method for omnidirectional automated guided vehicles Download PDF

Info

Publication number
JP4089344B2
JP4089344B2 JP2002235436A JP2002235436A JP4089344B2 JP 4089344 B2 JP4089344 B2 JP 4089344B2 JP 2002235436 A JP2002235436 A JP 2002235436A JP 2002235436 A JP2002235436 A JP 2002235436A JP 4089344 B2 JP4089344 B2 JP 4089344B2
Authority
JP
Japan
Prior art keywords
steering
tan
distance
vehicle body
deviations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002235436A
Other languages
Japanese (ja)
Other versions
JP2004078386A (en
Inventor
浩一 帯津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2002235436A priority Critical patent/JP4089344B2/en
Publication of JP2004078386A publication Critical patent/JP2004078386A/en
Application granted granted Critical
Publication of JP4089344B2 publication Critical patent/JP4089344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、全方位走行無人搬送車の誘導走行方法に関する。
【0002】
【従来の技術】
全方位走行無人搬送車(以下、単に無人搬送車という)は、図3に示すように、前後に駆動輪11,12及びフリーキャスター31,32を備えると共に誘導センサ21,22,23,24を4方向に備え、誘導線に沿って全方位に走行できるようにしたものである。
ここで、無人搬送車は誘導線に対して、進行方向の誘導センサ21の入力値から2つの駆動輪11,12の操舵角ψ1,ψ2及び走行速度V1,V2を算出している。
【0003】
先ず、誘導センサ21の入力値から(1)式より旋回半径Rを求める。
R=(H/2+δ)L/ε …(1)
ここで、旋回半径Rは旋回中心点Oから無人搬送車の旋回センター点POまでの距離、Hは駆動輪11の操舵中心点Pfと駆動輪12の操舵中心点Prと間の前後方向距離であるホィールベース、Lは誘導センサ21と目標点P1’までの前後方向距離、δは駆動輪11と誘導センサ21までの前後方向距離であるセンサ取付長である。
また、εは進行方向を示す誘導偏差であり、誘導センサ21の誘導センサ中心点P1からの誘導線までの距離として入力される。
【0004】
次に、求めた旋回半径Rから、(2)式より、各駆動輪11,12の操舵角ψ1,ψ2及び走行速度V1,V2を算出する。
ψ1=arctan(P/(R+T/2)) …(2)
ψ2=arctan(P/(R−T/2)) …(3)
1=V{P2+(R+T/2)21/2/R …(4)
2=V{P2+(R−T/2)21/2/R …(5)
但し、P=H/2+δである。
また、Tは駆動輪11とフリーキャスター31との左右方向距離(駆動輪12とフリーキャスター32との左右方向距離)を示すトレッドである。
【0005】
これらの操舵角ψ1,ψ2及び走行速度V1,V2を指令値としておのおの独立にモータを制御することで誘導走行を行っている。
即ち、図4に制御ブロック図を示すように、各駆動輪11,12について、誘導制御部40から操舵角指令値ψ1 *,ψ2 *及び走行速度指令値V1 *,V2 *を駆動輪制御部51,52へ与え、更に、駆動輪制御部51,52から制御量θ1,θ2及びv1,v2をステアリングモータ61,62及びドライブモータ71,72へ与え、操舵角ψ1,ψ2及び走行速度V1,V2となるようにフィードバック制御を行い、無人搬送車80を誘導偏差εで示す方向へ速度Vで走行させるようにしている。
【0006】
【発明が解決しようとする課題】
全方位走行無人搬送車において、誘導走行で旋回性能を向上させるために、図3における目標点P1’を手前に設定すると、つまり、距離Lを小さくすると、(1)式より旋回半径が小さくなり、図5に示すように、直進性が損なわれ、蛇行の原因になる。
一方、目標点P1’を奥に設定すると、つまり、距離Lを大きくすると、(1)式より旋回半径が大きくなり、図6に示すように、曲率の小さいカーブ区間でコースアウトする。
【0007】
【課題を解決するための手段】
上記課題を解決する本発明の請求項1に係る全方位走行無人搬送車の誘導走行方法は、車体の前部及び後部にそれぞれ誘導線との距離を誘導偏差ε1,ε2として検出する誘導センサを有すると共に車体前後にそれぞれ操舵輪を備えた全方位走行無人搬送車に対し、前提条件として前記車体前部の前記誘導線センサから前方に距離Lだけ離れた目標点P 1 ' を設定し、前記距離L及び前記誘導センサにより検出された前記誘導偏差ε1,ε2に基づいて、進行方向に対して前側の前記操舵輪の操舵角ψ1 及び進行方向に対して後側の前記操舵輪の操舵角ψ2計算により求めることにより、全方位走行無人搬送車を誘導走行させる制御において、
前記誘導偏差ε1,ε2について|ε1−ε2|≦Δεが成り立つときには、下式に従って前記操舵角ψ 1 ,ψ 2 を求め(但し、ε=ε 1 、また、
ψ 1 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L+εT/2}]
ψ 2 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L−εT/2}]
前記誘導偏差ε1,ε2について|ε1−ε2|>Δεが成り立つときには、下式の通り右辺の分子項及び分母項にセンターオフセット量γ=F(ε 1 −ε 2 )/ε 1 を加えて前記操舵角ψ 1 ,ψ 2 を補正することにより、
ψ 1 =tan -1 [ε(H/2+δ+γ)/ [ (H/2+δ+γ)L+εT/2}]
ψ 2 =tan -1 [ε(H/2+δ+γ)/ [ (H/2+δ+γ)L−εT/2}]
直進時の直進性及び収束性の向上を図っていることを特徴とする。
但し、はホィールベース、Tはトレッド、δ進行方向に対して前側の前記操舵輪から前記車体前部の前記誘導センサまでの前後方向距離であるセンサ取付長、Δεは所定値、Fは定数であり、最大値はH/2である
【0008】
上記課題を解決する本発明の請求項2に係る全方位走行無人搬送車の誘導走行方法は、車体の前部及び後部にそれぞれ誘導線との距離を誘導偏差ε1,ε2として検出する誘導センサを有すると共に車体前後にそれぞれ操舵輪を備えた全方位走行無人搬送車に対し、前提条件として前記車体前部の前記誘導線センサから前方に距離Lだけ離れた目標点P 1 ' を設定し、前記距離L及び前記誘導センサにより検出された前記誘導偏差ε1,ε2に基づいて、進行方向に対して前側の前記操舵輪の操舵角ψ1 及び進行方向に対して後側の前記操舵輪の操舵角ψ2計算により求めることにより、全方位走行無人搬送車を誘導走行させる制御において、
前記誘導偏差ε1,ε2について|ε1−ε2|≦Δεが成り立つときには、下式に従って前記操舵角ψ 1 ,ψ 2 を求め(但し、ε=ε 1 、また、
ψ 1 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L+εT/2}]
ψ 2 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L−εT/2}]
前記誘導偏差ε1,ε2について|ε1−ε2|>Δεが成り立つときには、下式の通り右辺の分母項にF ' (ε 1 −ε 2 )を加えて前記操舵角ψ 1 ,ψ 2 を補正することにより、
ψ 1 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L+F ' (ε 1 −ε 2 )+εT/2}]
ψ 2 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L+F ' (ε 1 −ε 2 )−εT/2}]
直進時の直進性及び収束性の向上を図っていることを特徴とする。
但し、はホィールベース、Tはトレッド、δ進行方向に対して前側の前記操舵輪から前記車体前部の前記誘導センサまでの前後方向距離であるセンサ取付長、Δεは所定値、F ' は定数であり、最大値はH/2である。
【0009】
【発明の実施の形態】
〔実施例1〕
本実施例は、前提条件として、旋回性能を向上させるために、目標点P1'を手前に設定する。但し、このままでは前述した従来技術に示す問題が発生するので、進行方向の誘導偏差から旋回半径Rを求める際、前後の誘導偏差の偏差量ε1,ε2 で定まるセンターオフセット量γにより旋回センター点P0をずらすことで、直進時の直進性及び収束性の向上を図るものである。偏差量ε 1 は、車体の前部に取り付けられた誘導センサ21により検出された値であり、誘導センサ21の誘導センサ中心点P 1 からの誘導線までの距離である。偏差量ε 2 は、車体の後部に取り付けられた誘導センサ22により検出された値であり、誘導センサ22の誘導センサ中心点からの誘導線までの距離である。
【0010】
先ず、前後の誘導偏差ε1,ε2に対して、(6)式が成り立つ場合は(1)式より求めた旋回半径とする。
|ε1−ε2|≦Δε …(6)
|ε1−ε2|>Δε …(7)
但し、Δεは偏差の不感帯領域として定められる所定値である。
つまり、(6)が成り立つときには、(1)式より求められる旋回半径Rを(2)(3)式に代入することにより、下式に従って操舵角ψ 1 ,ψ 2 を求める(但し、ε=ε 1 )。
ψ 1 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L+εT/2}]
ψ 2 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L−εT/2}]
一方、(7)式が成り立つ場合は、(8)式に示すように、(1)式の分子項のカッコ内の式にセンターオフセット量γを加算することで旋回半径Rを求める。
R=(H/2+δ+γ)L/ε …(8)
但し、εは進行方向を示す誘導偏差ε1である。
【0011】
センターオフセット量γは、図1に示すように、旋回センター点P0をずらす量であり、(9)式で求められる。
γ=F(ε1−ε2)/ε1 …(9)
但し、Fは定数であり、最大値はH/2である。
また、求めた旋回半径Rと、(2)〜(5)式の中のPをP=H/2+δ+γとして操舵角及び走行速度を求める。操舵角ψ 1 は車体の進行方向に対して前側に配置された操舵輪11に対するものであり、また、操舵角ψ 2 は車体の進行方向に対して後側に配置された操舵輪12に対するものであり、次の通りに求める
ψ1=tan-1H/2+δ+γ)/(R+T/2)} …(2)'
ψ2=tan-1H/2+δ+γ)/(R−T/2)} …(3)'
つまり、(7)式が成り立つ場合は、(8)(9)式より求められる旋回半径Rを(2) ' (3) ' 式に代入することにより、下式の通り右辺の分子項及び分母項にセンターオフセット量γを加えて操舵角ψ 1 ,ψ 2 を補正する(但し、ε=ε 1 )。
ψ 1 =tan -1 [ε(H/2+δ+γ)/ [ (H/2+δ+γ)L+εT/2}]
ψ 2 =tan -1 [ε(H/2+δ+γ)/ [ (H/2+δ+γ)L−εT/2}]
【0012】
このように説明したように本実施例では、(1)式の分子項のカッコ内の式にセンターオフセット量γを加算することで、(8)式に示すように旋回半径Rを求め、この旋回半径Rに基づくと共に(2)〜(5)式の中のPをP=H/2+δ+γとして操舵角及び走行速度を求めるものである。
ここで、進行方向の誘導センサ21の誘導偏差ε1が同じ量で、進行方向と反対の誘導センサ22の誘導偏差ε2の大きさが異なる場合の旋回センター点P0及び2つの駆動輪11,12の操舵角ψ1,ψ2の関係を図1に示す。
図1に示すように、センターオフセット量γで旋回センター点P0をずらすことにより、センターオフセット量γで旋回中心点がOからO’へ移動するため、操舵角ψ1,ψ2は小さくなり、直進性及び収束性が向上する。
【0013】
〔実施例2〕
本実施例は、前提条件として、旋回性能を向上させるために、目標点P1'を手前に設定する。但し、このままでは、前述した従来技術に示す問題が発生するので、進行方向の誘導偏差から旋回半径を求める(1)式に対して、前後の誘導センサの入力値の状態からΔRを求め、(1)式に補正値としてΔRを加えて旋回半径Rを求めることで、直進時の直進性及び収束性の向上を図るものである。
先ず、前後の誘導偏差ε1,ε2に対して、(10)式が成リ立つ場合は(1)式より求めた旋回半径とする。
|ε1−ε2|≦Δε …(10)
|ε1−ε2|>Δε …(11)
但し、Δεは偏差の不感帯領域として定められる所定値である。
【0014】
一方、(11)式が成り立つ場合の旋回半径は、(1)式の右辺にΔRを加えた値とする。即ち、(12)式より旋回半径Rを求める。
R=(H/2+δ)L/ε+ΔR …(12)
但し、εは進行方向を示す誘導偏差ε1である。
ΔR=F'(ε1−ε2)/ε1 …(13)
但し、F'は定数であり、最大値はH/2である。
また、求めたRから、(2)〜(5)式より操舵角及び走行速度を求める。
つまり、誘導偏差ε 1 ,ε 2 について(10)式が成り立つときには、(1)式より求められる旋回半径Rを(2)(3)式に代入することにより、下式に従って操舵角ψ 1 ,ψ 2 を求める(但し、ε=ε 1 )。
ψ 1 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L+εT/2}]
ψ 2 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L−εT/2}]
また、誘導偏差ε 1 ,ε 2 について(11)式が成り立つときには、(12)(13)式より求められる旋回半径Rを(2)(3)式に代入することにより、下式の通り右辺の分母項にF ' (ε 1 −ε 2 )を加えて操舵角ψ 1 ,ψ 2 を補正するのである。
ψ 1 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L+F ' (ε 1 −ε 2 )+εT/2}]
ψ 2 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L+F ' (ε 1 −ε 2 )−εT/2}]
【0015】
ここで、進行方向の誘導センサ21の誘導偏差ε1が同じ量で、進行方向と反対の誘導センサ22の誘導偏差ε2の大きさが異なる場合の旋回半径R1,R2及び2つの駆動輪11,12の操舵角ψ1,ψ2の関係を図2に示す。
図2に示すように、2つの旋回半径はR1>R2の関係となるため、旋回半径R1の場合の操舵角ψ2は、旋回半径R2の場合の操舵角ψ2よりも小さくなり、直進性及び収束性の向上が向上する。
【0016】
このように説明したように、前後の誘導偏差ε1,ε2に対して、実施例1では、センターオフセット量γで旋回センター点P0及び旋回中心点O(→O’)をずらすのに対し、実施例2では、旋回半径を補正するものであり、何れの方式にしても、直進性及び収束性の向上が向上するものである。
【0017】
【発明の効果】
以上、詳細に説明したように、本発明によれば、旋回半径を補正し、或いは、旋回中心点をオフセットすることにより、旋回性能を向上させるとともに、直進時の直進性及び収束性を向上させることができる。
【図面の簡単な説明】
【図1】前後の誘導偏差と旋回センターオフセット量の関係を示す説明図である。
【図2】前後の誘導偏差と旋回半径を示す説明図である。
【図3】全方位走行無人搬送車の誘導走行の説明図である。
【図4】制御ブロック図である。
【図5】旋回半径が小さい場合の説明図である。
【図6】旋回半径が大きい場合の説明図である。
【符号の説明】
11,12 駆動輪
21,22,23,24 誘導センサ
31,32 フリーキャスター
40 誘導制御部
51,52 駆動輪制御部
61,62 ステアリングモータ
71,72 ドライブモータ
80 無人搬送車
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a guided traveling method for an omnidirectional automatic guided vehicle.
[0002]
[Prior art]
As shown in FIG. 3, an omnidirectional automatic guided vehicle (hereinafter simply referred to as an automatic guided vehicle) includes driving wheels 11 and 12 and free casters 31 and 32 on the front and rear sides, and induction sensors 21, 22, 23, and 24. It is prepared in four directions so that it can travel in all directions along the guide line.
Here, the automatic guided vehicle calculates the steering angles ψ 1 and ψ 2 and the traveling speeds V 1 and V 2 of the two drive wheels 11 and 12 from the input value of the guidance sensor 21 in the traveling direction with respect to the guide line. Yes.
[0003]
First, the turning radius R is obtained from the input value of the induction sensor 21 from the equation (1).
R = (H / 2 + δ) L / ε (1)
Here, the turning radius R is the distance from the pivot point O to the pivot center point P O AGV, H is the front and rear between the steering center point P r of the drive wheel 12 and the steering center point P f of the drive wheel 11 A wheel base which is a directional distance, L is a longitudinal distance between the induction sensor 21 and the target point P 1 ′, and δ is a sensor mounting length which is a longitudinal distance between the drive wheel 11 and the induction sensor 21.
Further, ε is a guidance deviation indicating the traveling direction, and is input as a distance from the guidance sensor center point P 1 of the guidance sensor 21 to the guidance line.
[0004]
Next, from the obtained turning radius R, the steering angles ψ 1 and ψ 2 and the traveling speeds V 1 and V 2 of the drive wheels 11 and 12 are calculated from the equation (2).
ψ 1 = arctan (P / (R + T / 2)) (2)
ψ 2 = arctan (P / (R−T / 2)) (3)
V 1 = V {P 2 + (R + T / 2) 2 } 1/2 / R (4)
V 2 = V {P 2 + (R−T / 2) 2 } 1/2 / R (5)
However, P = H / 2 + δ.
T is a tread indicating the distance in the left-right direction between the drive wheel 11 and the free caster 31 (the distance in the left-right direction between the drive wheel 12 and the free caster 32).
[0005]
Guided traveling is performed by independently controlling the motors using these steering angles ψ 1 , ψ 2 and traveling speeds V 1 , V 2 as command values.
That is, as shown in the control block diagram of FIG. 4, the steering angle command values ψ 1 * and ψ 2 * and the travel speed command values V 1 * and V 2 * are obtained from the guidance control unit 40 for each drive wheel 11 and 12. The driving wheel control units 51 and 52 are given control amounts θ 1 , θ 2 and v 1 and v 2 from the driving wheel control units 51 and 52 to the steering motors 61 and 62 and the drive motors 71 and 72, respectively. Feedback control is performed so that ψ 1 , ψ 2 and traveling speeds V 1 , V 2 are obtained, and the automatic guided vehicle 80 is caused to travel at a speed V in the direction indicated by the induction deviation ε.
[0006]
[Problems to be solved by the invention]
In an omnidirectional automatic guided vehicle, in order to improve the turning performance by guided traveling, if the target point P 1 ′ in FIG. 3 is set in front, that is, if the distance L is reduced, the turning radius is smaller than the equation (1). Thus, as shown in FIG. 5, the straight running performance is impaired, causing meandering.
On the other hand, when the target point P 1 ′ is set at the back, that is, when the distance L is increased, the turning radius is increased from the expression (1), and the course is out of the curve section with a small curvature as shown in FIG.
[0007]
[Means for Solving the Problems]
The guided traveling method of the omnidirectional automatic guided vehicle according to claim 1 of the present invention for solving the above-described problem is to detect the distances from the guide lines as the guidance deviations ε 1 and ε 2 at the front part and the rear part of the vehicle body, respectively. For an omnidirectional automated guided vehicle having sensors and front and rear steering wheels, as a precondition, a target point P 1 that is a distance L ahead from the guide line sensor at the front of the vehicle body is set. Based on the distance L and the induced deviations ε 1 and ε 2 detected by the guidance sensor, the steering angle ψ 1 of the steered wheel on the front side with respect to the traveling direction and the steering on the rear side with respect to the traveling direction In the control of guiding the omnidirectional automatic guided vehicle by calculating the wheel steering angle ψ 2 by calculation ,
When | ε 1 −ε 2 | ≦ Δε holds for the induced deviations ε 1 and ε 2 , the steering angles ψ 1 and ψ 2 are obtained according to the following equation (where ε = ε 1 ) ,
ψ 1 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L + εT / 2}]
ψ 2 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L−εT / 2}]
When | ε 1 −ε 2 |> Δε holds for the induced deviations ε 1 and ε 2 , the center offset amount γ = F (ε 1 −ε 2 ) / ε 1 is added to the numerator and denominator terms on the right side as shown in the following equation. To correct the steering angles ψ 1 and ψ 2 ,
ψ 1 = tan −1 [ε (H / 2 + δ + γ) / [ (H / 2 + δ + γ) L + εT / 2}]
ψ 2 = tan −1 [ε (H / 2 + δ + γ) / [ (H / 2 + δ + γ) L−εT / 2}]
It is characterized by improving straightness and convergence when going straight.
However, H is wheel base, T is the tread, [delta] is the sensor mounting length is longitudinal distance from the steering wheel of the front with respect to the traveling direction until the inductive sensor of the vehicle body front and delta epsilon predetermined value, F Is a constant and the maximum value is H / 2 .
[0008]
The guided traveling method of the omnidirectional automatic guided vehicle according to claim 2 of the present invention for solving the above-described problems is to detect the distances from the guiding lines at the front part and the rear part of the vehicle body as the guidance deviations ε 1 and ε 2 , respectively. For an omnidirectional automated guided vehicle having sensors and front and rear steering wheels, as a precondition, a target point P 1 that is a distance L ahead from the guide line sensor at the front of the vehicle body is set. Based on the distance L and the induced deviations ε 1 and ε 2 detected by the guidance sensor, the steering angle ψ 1 of the steered wheel on the front side with respect to the traveling direction and the steering on the rear side with respect to the traveling direction In the control of guiding the omnidirectional automatic guided vehicle by calculating the wheel steering angle ψ 2 by calculation ,
When | ε 1 −ε 2 | ≦ Δε holds for the induced deviations ε 1 and ε 2 , the steering angles ψ 1 and ψ 2 are obtained according to the following equation (where ε = ε 1 ) ,
ψ 1 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L + εT / 2}]
ψ 2 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L−εT / 2}]
When | ε 1 −ε 2 |> Δε holds for the induced deviations ε 1 and ε 2 , F 1 −ε 2 ) is added to the denominator term on the right side as shown in the following equation , and the steering angles ψ 1 and ψ By correcting 2
ψ 1 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L + F 1 −ε 2 ) + εT / 2}]
ψ 2 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L + F 1 −ε 2 ) −εT / 2}]
It is characterized by improving straightness and convergence when going straight.
However, H is wheel base, T is the tread, [delta] is the sensor mounting length is longitudinal distance from the steering wheel of the front with respect to the traveling direction until the inductive sensor of the vehicle body front and delta epsilon predetermined value, F ' Is a constant and the maximum value is H / 2.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
In this embodiment, as a precondition, the target point P 1 ′ is set in front to improve the turning performance. However, since the problem shown in the above-described prior art occurs if the state is left as it is, when the turning radius R is obtained from the guidance deviation in the traveling direction, the turning center is determined by the center offset amount γ determined by the deviation amounts ε 1 and ε 2 of the front and rear guidance deviations. By shifting the point P 0 , straightness and convergence are improved when traveling straight. The deviation amount ε 1 is a value detected by the induction sensor 21 attached to the front part of the vehicle body, and is a distance from the induction sensor center point P 1 of the induction sensor 21 to the induction line. The deviation amount ε 2 is a value detected by the guidance sensor 22 attached to the rear part of the vehicle body, and is a distance from the guidance sensor center point of the guidance sensor 22 to the guidance line.
[0010]
First, when the equation (6) is established for the front and rear induced deviations ε 1 and ε 2 , the turning radius obtained from the equation (1) is used.
| Ε 1 −ε 2 | ≦ Δε (6)
| Ε 1 −ε 2 |> Δε (7)
However, Δε is a predetermined value determined as a dead zone of deviation.
That is, when (6) holds, the steering angles ψ 1 and ψ 2 are obtained according to the following equations by substituting the turning radius R obtained from the equation (1) into the equations (2) and (3) (provided that ε = ε 1 ).
ψ 1 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L + εT / 2}]
ψ 2 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L−εT / 2}]
On the other hand, when the formula (7) is established, as shown in the formula (8), the turning radius R is obtained by adding the center offset amount γ to the formula in the numerator of the formula (1).
R = (H / 2 + δ + γ) L / ε (8)
Here, ε is an induced deviation ε 1 indicating the traveling direction.
[0011]
As shown in FIG. 1, the center offset amount γ is an amount by which the turning center point P 0 is shifted, and is obtained by the equation (9).
γ = F (ε 1 −ε 2 ) / ε 1 (9)
However, F is a constant and the maximum value is H / 2.
Further, the steering angle and the traveling speed are obtained by setting the obtained turning radius R and P in the expressions (2) to (5) as P = H / 2 + δ + γ. The steering angle ψ 1 is for the steering wheel 11 disposed on the front side with respect to the traveling direction of the vehicle body, and the steering angle ψ 2 is for the steering wheel 12 disposed on the rear side with respect to the traveling direction of the vehicle body. , and the finding as follows.
ψ 1 = tan −1 { ( H / 2 + δ + γ) / (R + T / 2)} (2) ′
ψ 2 = tan −1 { ( H / 2 + δ + γ) / (RT−2)} (3) ′
In other words, when equation (7) holds , by substituting the turning radius R obtained from equations (8) and (9) into equation (2) ' (3) ' , the numerator and denominator on the right side as shown in the following equation: The steering angle ψ 1 , ψ 2 is corrected by adding the center offset amount γ to the term (where ε = ε 1 ).
ψ 1 = tan −1 [ε (H / 2 + δ + γ) / [ (H / 2 + δ + γ) L + εT / 2}]
ψ 2 = tan −1 [ε (H / 2 + δ + γ) / [ (H / 2 + δ + γ) L−εT / 2}]
[0012]
As described above, in this embodiment, by adding the center offset γ to the expression in the numerator of the expression (1), the turning radius R is obtained as shown in the expression (8). Based on the turning radius R, the steering angle and the traveling speed are obtained with P in the equations (2) to (5) as P = H / 2 + δ + γ.
Here, the turning center point P 0 and the two drive wheels 11 when the guidance deviation ε 1 of the guidance sensor 21 in the traveling direction is the same amount and the magnitude of the guidance deviation ε 2 of the guidance sensor 22 opposite to the traveling direction is different. , the steering angle [psi 1 of 12, showing the [psi 2 in relation to Figure 1.
As shown in FIG. 1, by shifting the turning center point P 0 by the center offset amount γ, the turning center point moves from O to O ′ by the center offset amount γ, so that the steering angles ψ 1 and ψ 2 are reduced. , Straightness and convergence are improved.
[0013]
[Example 2]
In this embodiment, as a precondition, the target point P 1 ′ is set in front to improve the turning performance. However, since the problem shown in the above-mentioned prior art occurs, the ΔR is obtained from the state of the input values of the front and rear guidance sensors with respect to the equation (1) for obtaining the turning radius from the guidance deviation in the traveling direction. By adding ΔR as a correction value to the equation (1) to obtain the turning radius R, the straightness and convergence during straight traveling are improved.
First, when the expression (10) is established for the front and rear induction deviations ε 1 and ε 2 , the turning radius obtained from the expression (1) is used.
| Ε 1 −ε 2 | ≦ Δε (10)
| Ε 1 −ε 2 |> Δε (11)
However, Δε is a predetermined value determined as a dead zone of deviation.
[0014]
On the other hand, the turning radius when equation (11) holds is the value obtained by adding ΔR to the right side of equation (1). That is, the turning radius R is obtained from the equation (12).
R = (H / 2 + δ) L / ε + ΔR (12)
Here, ε is an induced deviation ε 1 indicating the traveling direction.
ΔR = F ′ (ε 1 −ε 2 ) / ε 1 (13)
However, F ′ is a constant, and the maximum value is H / 2.
Further, from the obtained R, the steering angle and the traveling speed are obtained from the equations (2) to (5).
That is, when the equation (10) is established for the induced deviations ε 1 and ε 2 , the steering angle ψ 1 ,, according to the following equation is substituted by substituting the turning radius R obtained from the equation (1) into the equations (2) and (3) . ψ 2 is obtained (where ε = ε 1 ).
ψ 1 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L + εT / 2}]
ψ 2 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L−εT / 2}]
Further, when the equation (11) holds for the induced deviations ε 1 and ε 2 , the right side as shown in the following equation is obtained by substituting the turning radius R obtained from the equations (12) and (13) into the equations (2) and (3). The steering angles ψ 1 and ψ 2 are corrected by adding F 1 −ε 2 ) to the denominator term .
ψ 1 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L + F 1 −ε 2 ) + εT / 2}]
ψ 2 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L + F 1 −ε 2 ) −εT / 2}]
[0015]
Here, the turning radii R 1 and R 2 and the two drives when the guidance deviation ε 1 of the guidance sensor 21 in the traveling direction is the same amount and the magnitude of the guidance deviation ε 2 of the guidance sensor 22 opposite to the traveling direction is different. FIG. 2 shows the relationship between the steering angles ψ 1 and ψ 2 of the wheels 11 and 12.
As shown in FIG. 2, since the two turning radii have a relationship of R 1 > R 2 , the steering angle ψ 2 in the case of the turning radius R 1 is smaller than the steering angle ψ 2 in the case of the turning radius R 2. Thus, the improvement in straightness and convergence is improved.
[0016]
As described above, in the first embodiment, the turning center point P 0 and the turning center point O (→ O ′) are shifted by the center offset amount γ with respect to the front and rear induced deviations ε 1 and ε 2 . On the other hand, in the second embodiment, the turning radius is corrected, and in any method, the improvement in straightness and convergence is improved.
[0017]
【The invention's effect】
As described above in detail, according to the present invention, the turning radius is corrected or the turning center point is offset, thereby improving the turning performance and improving the straightness and convergence during straight running. be able to.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a relationship between front and rear guidance deviations and a turning center offset amount.
FIG. 2 is an explanatory diagram showing front and rear guidance deviations and turning radii.
FIG. 3 is an explanatory diagram of guided traveling of an omnidirectional automatic guided vehicle.
FIG. 4 is a control block diagram.
FIG. 5 is an explanatory diagram when the turning radius is small.
FIG. 6 is an explanatory diagram when the turning radius is large.
[Explanation of symbols]
11, 12 Drive wheels 21, 22, 23, 24 Guidance sensors 31, 32 Free casters 40 Guidance control units 51, 52 Drive wheel control units 61, 62 Steering motors 71, 72 Drive motor 80 Automated guided vehicle

Claims (2)

車体の前部及び後部にそれぞれ誘導線との距離を誘導偏差ε1,ε2として検出する誘導センサを有すると共に車体前後にそれぞれ操舵輪を備えた全方位走行無人搬送車に対し、前提条件として前記車体前部の前記誘導線センサから前方に距離Lだけ離れた目標点P 1 ' を設定し、前記距離L及び前記誘導センサにより検出された前記誘導偏差ε1,ε2に基づいて、進行方向に対して前側の前記操舵輪の操舵角ψ1 及び進行方向に対して後側の前記操舵輪の操舵角ψ2計算により求めることにより、全方位走行無人搬送車を誘導走行させる制御において、
前記誘導偏差ε1,ε2について|ε1−ε2|≦Δεが成り立つときには、下式に従って前記操舵角ψ 1 ,ψ 2 を求め(但し、ε=ε 1 、また、
ψ 1 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L+εT/2}]
ψ 2 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L−εT/2}]
前記誘導偏差ε1,ε2について|ε1−ε2|>Δεが成り立つときには、下式の通り右辺の分子項及び分母項にセンターオフセット量γ=F(ε 1 −ε 2 )/ε 1 を加えて前記操舵角ψ 1 ,ψ 2 を補正することにより、
ψ 1 =tan -1 [ε(H/2+δ+γ)/ [ (H/2+δ+γ)L+εT/2}]
ψ 2 =tan -1 [ε(H/2+δ+γ)/ [ (H/2+δ+γ)L−εT/2}]
直進時の直進性及び収束性の向上を図っていることを特徴とする全方位走行無人搬送車の誘導走行方法。
但し、はホィールベース、Tはトレッド、δ進行方向に対して前側の前記操舵輪から前記車体前部の前記誘導センサまでの前後方向距離であるセンサ取付長、Δεは所定値、Fは定数であり、最大値はH/2である
As a precondition for an omnidirectional automatic guided vehicle that has induction sensors that detect the distance from the guide line as induction deviations ε 1 and ε 2 at the front and rear parts of the vehicle body and that respectively has steering wheels at the front and rear of the vehicle body A target point P 1 set apart from the guide line sensor at the front of the vehicle body by a distance L is set, and the progression proceeds based on the distance L and the guide deviations ε 1 and ε 2 detected by the guide sensor. In the control for guiding the omnidirectional automatic guided vehicle by calculating the steering angle ψ 1 of the steering wheel on the front side with respect to the direction and the steering angle ψ 2 of the steering wheel on the rear side with respect to the traveling direction by calculation ,
When | ε 1 −ε 2 | ≦ Δε holds for the induced deviations ε 1 and ε 2 , the steering angles ψ 1 and ψ 2 are obtained according to the following equation (where ε = ε 1 ) ,
ψ 1 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L + εT / 2}]
ψ 2 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L−εT / 2}]
When | ε 1 −ε 2 |> Δε holds for the induced deviations ε 1 and ε 2 , the center offset amount γ = F (ε 1 −ε 2 ) / ε 1 is added to the numerator term and denominator term on the right side as shown in the following equation. To correct the steering angles ψ 1 and ψ 2 ,
ψ 1 = tan −1 [ε (H / 2 + δ + γ) / [ (H / 2 + δ + γ) L + εT / 2}]
ψ 2 = tan −1 [ε (H / 2 + δ + γ) / [ (H / 2 + δ + γ) L−εT / 2}]
A guided traveling method for an omnidirectional automatic guided vehicle characterized by improving straightness and convergence when traveling straight.
However, H is wheel base, T is the tread, [delta] is the sensor mounting length is longitudinal distance from the steering wheel of the front with respect to the traveling direction until the inductive sensor of the vehicle body front and delta epsilon predetermined value, F Is a constant and the maximum value is H / 2 .
車体の前部及び後部にそれぞれ誘導線との距離を誘導偏差ε1,ε2として検出する誘導センサを有すると共に車体前後にそれぞれ操舵輪を備えた全方位走行無人搬送車に対し、前提条件として前記車体前部の前記誘導線センサから前方に距離Lだけ離れた目標点P 1 ' を設定し、前記距離L及び前記誘導センサにより検出された前記誘導偏差ε1,ε2に基づいて、進行方向に対して前側の前記操舵輪の操舵角ψ1 及び進行方向に対して後側の前記操舵輪の操舵角ψ2計算により求めることにより、全方位走行無人搬送車を誘導走行させる制御において、
前記誘導偏差ε1,ε2について|ε1−ε2|≦Δεが成り立つときには、下式に従って前記操舵角ψ 1 ,ψ 2 を求め(但し、ε=ε 1 、また、
ψ 1 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L+εT/2}]
ψ 2 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L−εT/2}]
前記誘導偏差ε1,ε2について|ε1−ε2|>Δεが成り立つときには、下式の通り右辺の分母項にF ' (ε 1 −ε 2 )を加えて前記操舵角ψ 1 ,ψ 2 を補正することにより、
ψ 1 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L+F ' (ε 1 −ε 2 )+εT/2}]
ψ 2 =tan -1 [ε(H/2+δ)/ [ (H/2+δ)L+F ' (ε 1 −ε 2 )−εT/2}]
直進時の直進性及び収束性の向上を図っていることを特徴とする全方位走行無人搬送車の誘導走行方法。
但し、はホィールベース、Tはトレッド、δ進行方向に対して前側の前記操舵輪から前記車体前部の前記誘導センサまでの前後方向距離であるセンサ取付長、Δεは所定値、F ' は定数であり、最大値はH/2である。
As a precondition for an omnidirectional automatic guided vehicle that has induction sensors that detect the distance from the guide line as induction deviations ε 1 and ε 2 at the front and rear parts of the vehicle body and that respectively has steering wheels at the front and rear of the vehicle body A target point P 1 set apart from the guide line sensor at the front of the vehicle body by a distance L is set, and the progression proceeds based on the distance L and the guide deviations ε 1 and ε 2 detected by the guide sensor. In the control for guiding the omnidirectional automatic guided vehicle by calculating the steering angle ψ 1 of the steering wheel on the front side with respect to the direction and the steering angle ψ 2 of the steering wheel on the rear side with respect to the traveling direction by calculation ,
When | ε 1 −ε 2 | ≦ Δε holds for the induced deviations ε 1 and ε 2 , the steering angles ψ 1 and ψ 2 are obtained according to the following equation (where ε = ε 1 ) ,
ψ 1 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L + εT / 2}]
ψ 2 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L−εT / 2}]
When | ε 1 −ε 2 |> Δε holds for the induced deviations ε 1 and ε 2 , F 1 −ε 2 ) is added to the denominator term on the right side as shown in the following equation , and the steering angles ψ 1 and ψ By correcting 2
ψ 1 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L + F 1 −ε 2 ) + εT / 2}]
ψ 2 = tan −1 [ε (H / 2 + δ) / [ (H / 2 + δ) L + F 1 −ε 2 ) −εT / 2}]
A guided traveling method for an omnidirectional automatic guided vehicle characterized by improving straightness and convergence when traveling straight.
However, H is wheel base, T is the tread, [delta] is the sensor mounting length is longitudinal distance from the steering wheel of the front with respect to the traveling direction until the inductive sensor of the vehicle body front and delta epsilon predetermined value, F ' Is a constant and the maximum value is H / 2.
JP2002235436A 2002-08-13 2002-08-13 Guided driving method for omnidirectional automated guided vehicles Expired - Fee Related JP4089344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235436A JP4089344B2 (en) 2002-08-13 2002-08-13 Guided driving method for omnidirectional automated guided vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235436A JP4089344B2 (en) 2002-08-13 2002-08-13 Guided driving method for omnidirectional automated guided vehicles

Publications (2)

Publication Number Publication Date
JP2004078386A JP2004078386A (en) 2004-03-11
JP4089344B2 true JP4089344B2 (en) 2008-05-28

Family

ID=32019925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235436A Expired - Fee Related JP4089344B2 (en) 2002-08-13 2002-08-13 Guided driving method for omnidirectional automated guided vehicles

Country Status (1)

Country Link
JP (1) JP4089344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256941A (en) * 2009-04-21 2010-11-11 Meidensha Corp Steering drive method and device for automated guided vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826119B (en) * 2012-09-13 2015-01-21 中联重机股份有限公司 Four-wheel independent steering control method for guardrail cleaning truck
JP6263970B2 (en) * 2013-11-11 2018-01-24 村田機械株式会社 Data structure of autonomous traveling vehicle and planned traveling route data
JP7256657B2 (en) * 2019-02-28 2023-04-12 日本車輌製造株式会社 Vehicle and steering control program for the vehicle
CN110103998B (en) * 2019-05-16 2020-06-09 湖南驰众机器人有限公司 Method for controlling AGV steering and translation motion of asymmetric four-steering wheel
DE102019214815B3 (en) * 2019-09-27 2021-03-25 Thyssenkrupp Ag Method for iteratively determining the radius of a motor vehicle wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256941A (en) * 2009-04-21 2010-11-11 Meidensha Corp Steering drive method and device for automated guided vehicle

Also Published As

Publication number Publication date
JP2004078386A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP6332167B2 (en) Lane maintenance support device
JP5170496B2 (en) Electric power steering device
JP5332703B2 (en) Lane maintenance support device and lane maintenance support method
JP2002096751A (en) Front and rear wheel steering angle controller for vehicle
JP2003034261A (en) Linked vehicle retreat control device and retreat control method for the same
US8186477B2 (en) Rear-wheel steering vehicle
JP3819261B2 (en) Electric power steering device
JPWO2010128585A1 (en) Rear wheel toe angle control device and electric actuator reference position calibration method in rear wheel toe angle control device
CN111629943B (en) Driving support device, driving support method, and driving support system
JP3707379B2 (en) Vehicle front and rear wheel steering angle control device
JP6185805B2 (en) Vehicle lane keeping control device
CN106218708A (en) Vehicular steering control apparatus
JP5380861B2 (en) Lane maintenance support device and lane maintenance support method
JP4089344B2 (en) Guided driving method for omnidirectional automated guided vehicles
JP3714269B2 (en) Automatic steering device
JP5380860B2 (en) Lane maintenance support device and lane maintenance support method
JP4264399B2 (en) Automated guided vehicle
JPH075922A (en) Steering control method for unmanned work vehicle
JP3740786B2 (en) Steering assist device
JP3313625B2 (en) Vehicle steering system
JP4135158B2 (en) Vehicle front and rear wheel steering angle control device
JP3896994B2 (en) Vehicle travel support device
JP2000148247A (en) Three-wheel steered unmanned carrier
JP2001225744A (en) Steering control device for unmanned carrying vehicle
JP3166418B2 (en) Unmanned guided vehicle steering control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

R150 Certificate of patent or registration of utility model

Ref document number: 4089344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees