JP4087362B2 - Metal detector - Google Patents

Metal detector Download PDF

Info

Publication number
JP4087362B2
JP4087362B2 JP2004219016A JP2004219016A JP4087362B2 JP 4087362 B2 JP4087362 B2 JP 4087362B2 JP 2004219016 A JP2004219016 A JP 2004219016A JP 2004219016 A JP2004219016 A JP 2004219016A JP 4087362 B2 JP4087362 B2 JP 4087362B2
Authority
JP
Japan
Prior art keywords
magnetic field
detection
metal
signal
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004219016A
Other languages
Japanese (ja)
Other versions
JP2006038637A (en
Inventor
隆次 野崎
聡 三谷
Original Assignee
アンリツ産機システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アンリツ産機システム株式会社 filed Critical アンリツ産機システム株式会社
Priority to JP2004219016A priority Critical patent/JP4087362B2/en
Publication of JP2006038637A publication Critical patent/JP2006038637A/en
Application granted granted Critical
Publication of JP4087362B2 publication Critical patent/JP4087362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、被検査体中に混入した金属の又は金属成分を含む異物(以下、単に金属異物という)を検出する金属検出装置、特に交番磁界中に食品等の被検査体を通したときの磁界の変化から異物を検出する金属検出装置に関する。   The present invention relates to a metal detection device for detecting a foreign substance containing metal or a metal component (hereinafter, simply referred to as a metallic foreign substance) mixed in an object to be inspected, particularly when an object to be inspected such as food is passed through an alternating magnetic field. The present invention relates to a metal detection device that detects foreign matter from a change in a magnetic field.

近時、消費者保護のために流通商品の品質向上がより一層希求されており、例えばHACCP(Hazard Analysis Critical Control Point;危害分析重要管理点)に適合した食品衛生管理体制の強化等が高度に要求されている。このような中、食品や日用品等の製品製造ライン中で製品に混入した金属異物を検出する金属検出装置はより広範に使用されてきている。   Recently, there has been an increasing demand for improving the quality of distribution products to protect consumers. For example, the strengthening of food hygiene management systems conforming to HACCP (Hazard Analysis Critical Control Point) is highly advanced. It is requested. Under such circumstances, metal detectors for detecting metal foreign matters mixed in products in product production lines such as foods and daily necessities have been widely used.

従来のこの種の金属検出装置としては、例えばコンベア搬送される製品が所定周波数の交流磁界中を通過するように磁界を発生させ、その磁界中での製品移動により生じる磁界の変化の程度および状態から金属異物の有無を検出するものがある(例えば特許文献1参照)。   As a conventional metal detection device of this type, for example, a magnetic field is generated so that a product conveyed on a conveyor passes through an alternating magnetic field of a predetermined frequency, and the degree and state of change in magnetic field caused by product movement in the magnetic field. There is one that detects the presence or absence of a metallic foreign object from (see, for example, Patent Document 1).

この金属検出装置は、図6に示すように、基準信号発生器1からのパルス信号をフィルタ2によって正弦波に変換し、これを電力増幅器3で増幅して送信コイル4に励磁電流として供給し、送信コイル4に交番磁界を発生させる一方、送信コイル4に対向して、あるいは送信コイル4と同軸に配置した一対の受信コイル5a、5bに送信コイル4からの交番磁界を作用させるようにしている。受信コイル5a、5bは、それぞれ送信コイル4から発生される交番磁界の影響を等しく受けるように形成されるとともに互いに逆極性に接続(差動接続)されており、送信コイル4の発生磁界のみに対しては受信コイル5a、5bの誘起電圧出力が互いに平衡して出力がゼロになる。そして、前記交番磁界中をワークWが移動するときには、受信コイル5a、5bの平衡状態がくずれ、その不平衡出力信号が差動増幅器6により増幅されて検波回路7に取り込まれる。検波回路7は、基準信号発生器1の出力パルス信号を移相回路13にて所定量シフト(移相)させた移相基準信号に従って、そのシフトされた位相にて、前記不平衡出力信号から交番磁界の周波数に応じて変化する高周波信号成分を除き、ワークWの移動に応じて変化する信号を出力する。この検波出力は、ローパスフィルタ8による高周波ノイズ成分の除去およびA/D変換器9によるアナログ信号からディジタル信号への変換を施されて、判定回路11および波形表示記憶装置12に入力される。   As shown in FIG. 6, this metal detector converts the pulse signal from the reference signal generator 1 into a sine wave by the filter 2, amplifies it by the power amplifier 3, and supplies it to the transmission coil 4 as an excitation current. An alternating magnetic field is generated in the transmission coil 4, while an alternating magnetic field from the transmission coil 4 is applied to a pair of reception coils 5a and 5b arranged opposite to the transmission coil 4 or coaxially with the transmission coil 4. Yes. The receiving coils 5a and 5b are formed so as to be equally affected by the alternating magnetic field generated from the transmitting coil 4, and are connected to each other in opposite polarities (differential connection), and only the generated magnetic field of the transmitting coil 4 is used. On the other hand, the induced voltage outputs of the receiving coils 5a and 5b are balanced with each other and the output becomes zero. When the workpiece W moves in the alternating magnetic field, the balanced state of the receiving coils 5a and 5b is lost, and the unbalanced output signal is amplified by the differential amplifier 6 and taken into the detection circuit 7. The detection circuit 7 uses the phase shift reference signal obtained by shifting (shifting) the output pulse signal of the reference signal generator 1 by a predetermined amount in the phase shift circuit 13, from the unbalanced output signal at the shifted phase. A signal that changes according to the movement of the workpiece W is output except for a high-frequency signal component that changes according to the frequency of the alternating magnetic field. This detection output is subjected to removal of high frequency noise components by the low-pass filter 8 and conversion from an analog signal to a digital signal by the A / D converter 9, and is input to the determination circuit 11 and the waveform display storage device 12.

判定回路11では、入力された信号の信号振幅を、所定電圧値あるいは良品検査時の信号振幅に対する所定の倍率値をしきい(閾)値として閾値判定を行ない、検出信号の振幅が閾値を超えたときには金属異物が混入していると判定し、その判定結果を示す信号を出力するようになっている。   The determination circuit 11 performs threshold determination using the signal amplitude of the input signal as a threshold value for a predetermined voltage value or a predetermined magnification value with respect to the signal amplitude at the time of non-defective product inspection, and the amplitude of the detection signal exceeds the threshold value. If it is determined that a metal foreign object is mixed, a signal indicating the determination result is output.

ところで、磁界検出を行なう上述のような金属検出装置においては、新しい製品を検査対象とする場合、その検査に先立って、金属異物が入っていないサンプル品を用いて検波位相調整を行なっている。   By the way, in the above-described metal detection apparatus that performs magnetic field detection, when a new product is to be inspected, detection phase adjustment is performed using a sample product that does not contain a metal foreign object prior to the inspection.

その位相調整は、一般的に、受信コイルの不平衡出力が最小となるように、移相回路の位相シフト量を微小ステップ角ずつ変更し、サンプル品の物品影響が最小となる位相に検波位相を設定するもので、これにより、実際の検査時に、金属物又は金属成分を含む構成要素の検出信号レベルが高く、それ以外の物品影響による出力信号レベルが低くなるようにしている(例えば、特許文献2の段落[0013]〜[0014]等参照)。
特開平6−160542号公報 特開平11−258355号公報
In general, the phase adjustment is performed by changing the phase shift amount of the phase shift circuit by a small step angle so that the unbalanced output of the receiving coil is minimized, so that the detection phase becomes a phase that minimizes the influence of the sample product. Thus, during actual inspection, the detection signal level of a component including a metal object or a metal component is high, and the output signal level due to the influence of other items is low (for example, patents). (Refer to paragraphs [0013] to [0014] in Document 2).
JP-A-6-160542 JP-A-11-258355

しかしながら、上記従来の金属検出装置では、次のような問題があった。   However, the conventional metal detection device has the following problems.

金属を含まないサンプル物品に対して検出信号のレベルが最小となる磁界周波数と検波位相で、被検査体に混入している金属異物を最高感度で検出できるとは限らない。   With a magnetic field frequency and detection phase at which the level of a detection signal is minimum for a sample article that does not contain metal, it is not always possible to detect metal foreign matter mixed in the object to be inspected with the highest sensitivity.

すなわち、被検査体の検出信号が最小になるように、磁界周波数と検波位相を設定したときに、検出すべき金属異物に対する検出信号も小さくなってしまう場合があり、その結果、検出すべき金属異物の検出感度が低下してしまうという問題があった。   In other words, when the magnetic field frequency and the detection phase are set so that the detection signal of the object to be inspected is minimized, the detection signal for the metal foreign object to be detected may also become small. As a result, the metal to be detected There was a problem that the detection sensitivity of the foreign matter was lowered.

また、ユーザーが独自の検出感度の基準を設定していることもあり、一般に感度基準として使用される鋼球やステンレス球とは異なる材質、サイズ、形状等で感度基準が設定されている場合、あるいは、製造ライン特有の混入し易い金属で感度基準が規定されている場合等には、それらの基準を予め把握したりそれらの基準の変更に対応する設定を行なったりするのは容易でなかった。   In addition, the user may have set their own detection sensitivity standard, and when the sensitivity standard is set with a material, size, shape, etc. different from steel balls and stainless steel balls that are generally used as sensitivity standards, Or, when sensitivity standards are defined for metals that are easy to mix in a production line, it is not easy to grasp those standards in advance or make settings corresponding to changes in those standards .

本発明は、このような問題を解決して、より高感度な金属検出が可能な金属検出装置を提供することを目的とする。   An object of the present invention is to provide a metal detection device capable of solving such problems and capable of detecting metal with higher sensitivity.

本発明の金属検出装置は、上記目的達成のため、基準信号に対応する交流磁界を発生させる磁界発生手段と、前記交流磁界中を被検査体が通過することによる磁界の変化を検出し、この磁界の変化に対応する検出信号を出力する磁界検出手段と、該磁界検出手段が出力する検出信号を前記基準信号に対応する信号によって同期検波する検波手段と、前記検波手段の検波出力に基づいて前記被検査体中に混入している金属異物の有無を判定する判定手段とを備えた金属検出装置において、前記基準信号の複数の異なる周波数について、前記磁界検出手段の検出信号における金属異物を含まない前記被検査体の物品影響の度合いが最小となる位相をそれぞれ設定する位相設定手段と、前記複数の異なる周波数について、前記位相設定手段で設定された位相の下で、前記磁界発生手段の発生磁界中を金属異物を含まない前記被検査体が通過したときの前記磁界検出手段の検出信号と、検出すべき金属異物を含む異物サンプルが前記磁界発生手段の発生磁界中を通過したときの前記磁界検出手段の検出信号とを取得し、前記複数の異なる周波数のうち金属異物を含まない前記被検査体の検出信号に対する前記異物サンプルの検出信号比が最大となる周波数を選択して、前記基準信号の周波数を設定する周波数設定手段を設けたことを特徴とする。 In order to achieve the above object, the metal detection device of the present invention detects a change in magnetic field due to a magnetic field generating means for generating an alternating magnetic field corresponding to a reference signal and a test object passing through the alternating magnetic field. Based on magnetic field detection means for outputting a detection signal corresponding to a change in the magnetic field, detection means for synchronously detecting the detection signal output from the magnetic field detection means by a signal corresponding to the reference signal, and detection output of the detection means A metal detector including a determination unit for determining presence or absence of a metal foreign object mixed in the object to be inspected , including a metal foreign object in a detection signal of the magnetic field detection unit for a plurality of different frequencies of the reference signal. for not the phase setting means the degree of an article the influence of the test subject to set each phase with the smallest, the plurality of different frequencies, set of by the phase setting means It was under phase detection signal and the foreign matter samples wherein the magnetic field comprising a metal foreign object to be detected of the magnetic field detection means when the inspection object containing no metal foreign object through the magnetic field generated by the said magnetic field generating means has passed The detection signal of the magnetic field detection means when passing through the magnetic field generated by the generation means, and the detection signal ratio of the foreign matter sample to the detection signal of the object to be inspected that does not include metal foreign matter among the plurality of different frequencies Is provided with a frequency setting means for selecting a frequency that maximizes the frequency of the reference signal and setting the frequency of the reference signal.

この構成により、被検査体の検出信号と異物サンプルの検出信号とに基づいて、基準信号の周波数が可変設定されるとともに、通常の良品検出信号の出力レベルに対し金属異物の検出信号レベルが高水準に設定される。したがって、基準周波数の選択設定によって、複数の基準周波数に対応する複数の検出感度のモードから被検査体の異物検出に適したモードを選択することができ、ユーザー独自の判定基準が規定されているような場合であっても、好適な検出条件を容易に設定することができ、高感度な金属検出が可能となる。   With this configuration, the frequency of the reference signal is variably set based on the detection signal of the inspection object and the detection signal of the foreign material sample, and the detection signal level of the metal foreign material is higher than the output level of the normal non-defective product detection signal. Set to standard. Therefore, by selecting and setting the reference frequency, it is possible to select a mode suitable for foreign object detection of the object to be inspected from a plurality of detection sensitivity modes corresponding to a plurality of reference frequencies, and a user-specific determination criterion is defined. Even in such a case, suitable detection conditions can be easily set, and highly sensitive metal detection becomes possible.

また、本発明の金属検出装置は、前記位相設定手段で設定された位相の下で、前記磁界発生手段の発生磁界中を金属異物を含まない前記被検査体が通過したときの前記磁界検出手段の検出信号と、前記磁界発生手段の発生磁界中を前記異物サンプルが通過したときの前記磁界検出手段の検出信号とを取得し、該取得した信号情報に基づいて、前記判定手段による判定のための閾値を算定する閾値算定手段を設けたものであるのが好ましい。 Further, the metal detection device of the present invention is the magnetic field detection means when the object to be inspected that does not include a metal foreign object passes through the magnetic field generated by the magnetic field generation means under the phase set by the phase setting means. And the detection signal of the magnetic field detection means when the foreign material sample passes through the magnetic field generated by the magnetic field generation means, and for the determination by the determination means based on the acquired signal information It is preferable to provide a threshold calculation means for calculating the threshold.

この構成により、被検査体に金属異物が混入している状態と混入していない状態とでの検出信号レベルをそれぞれ把握し、両検出信号レベルの間で、要求条件により適合した閾値が設定可能となり、より高感度の金属検出が可能となる。   With this configuration, it is possible to grasp the detection signal level in the state where the metal foreign object is mixed in the object to be inspected and the state where the foreign object is not mixed, and set a threshold value suitable for the required condition between both detection signal levels Thus, metal detection with higher sensitivity becomes possible.

本発明によれば、磁界周波数を規定する基準信号の複数の異なる周波数に対応して、被検査体の検出信号レベルが最小となる検波位相における被検査物の検出信号と検出すべき金属異物を含む異物サンプルの検出信号とを取得して、それらのレベル比が最大になる磁界周波数を選択するようにしているので、好適な磁界周波数を容易に設定可能な金属検出装置を提供することができる。   According to the present invention, the detection signal of the inspection object and the metal foreign object to be detected at the detection phase at which the detection signal level of the inspection object is minimized corresponding to a plurality of different frequencies of the reference signal defining the magnetic field frequency. Since the detection signal of the foreign material sample included is acquired and the magnetic field frequency that maximizes the level ratio is selected, a metal detection device capable of easily setting a suitable magnetic field frequency can be provided. .

以下、本発明の実施の形態について、図面を用いながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図5は本発明の一の実施の形態に係る金属検出装置の概略構成を示す図である。   1-5 is a figure which shows schematic structure of the metal detection apparatus based on one embodiment of this invention.

まず、その構成について説明する。   First, the configuration will be described.

図1において、被検査体であるワークWは、コンベアBによって所定方向に搬送され、その搬送速度はワークWの製造ラインの搬送速度に応じて設定されている。ワークWの搬送方向の所定区間は、ワークW中への金属異物(金属からなる異物又は金属成分を含んだ異物)の検出を行なう検査領域となっており、この検査領域の入り口付近にはワークWの検査領域への進入を検知する例えば光学式のワーク検知センサ35が設置されている。なお、ワークWは、複数製造される任意の製品、例えば量産される食品を包装材で個々に、あるいは所定数の輸送時の個数単位で包装したものであり、箱入り製品のような定形のものでも、流動物等を封入した可撓性の袋入り製品のような不定形のものでよい。   In FIG. 1, a work W that is an object to be inspected is transported in a predetermined direction by a conveyor B, and the transport speed is set according to the transport speed of the production line of the work W. A predetermined section in the conveyance direction of the workpiece W is an inspection area for detecting metal foreign matter (a foreign matter made of metal or a foreign matter containing a metal component) in the workpiece W. For example, an optical workpiece detection sensor 35 for detecting the entry of W into the inspection area is installed. The workpiece W is an arbitrary product manufactured in plural, for example, a mass-produced food packaged individually by a packaging material or by a predetermined number of units during transportation, and is shaped like a boxed product. However, it may be an indefinite shape such as a flexible bag product enclosing a fluid or the like.

ワークWの検査領域には、ワークW中の金属異物を検出する検出部20と、検出部20の検出信号および操作入力部36からのユーザーの操作入力に基づいて所定の制御プログラムに従った演算処理を実行し、その処理結果を出力部37に出力する制御部30とが設けられている。   In the inspection area of the workpiece W, a detection unit 20 that detects a metal foreign object in the workpiece W, and a calculation according to a predetermined control program based on a detection signal of the detection unit 20 and a user operation input from the operation input unit 36 A control unit 30 that executes processing and outputs the processing result to the output unit 37 is provided.

検出部20は、送信信号発生回路21、送信コイル22、差動検出器23(磁界検出手段)、直交検波部24(検波処理手段)、バンドパスフィルタ27a、27b、増幅器28a、28bおよびA/D変換器29によって構成されている。   The detection unit 20 includes a transmission signal generation circuit 21, a transmission coil 22, a differential detector 23 (magnetic field detection unit), a quadrature detection unit 24 (detection processing unit), bandpass filters 27a and 27b, amplifiers 28a and 28b, and A / The D converter 29 is configured.

送信信号発生回路21は、基準信号発生器21aと電力増幅器21bとを有し、所定周波数の送信信号を発生して送信コイル22を電流駆動する。また、送信コイル22は、コンベアBによるワーク搬送路の近傍に配置され、送信信号発生回路21からの電流駆動により励磁されたとき、基準信号発生器21aからの基準信号の周波数に対応する交番磁界を前記検査領域内に発生させる磁界発生手段となっている。   The transmission signal generation circuit 21 includes a reference signal generator 21a and a power amplifier 21b, generates a transmission signal having a predetermined frequency, and current-drives the transmission coil 22. The transmission coil 22 is disposed in the vicinity of the work conveyance path by the conveyor B, and when excited by current drive from the transmission signal generation circuit 21, an alternating magnetic field corresponding to the frequency of the reference signal from the reference signal generator 21a. Is a magnetic field generating means for generating in the inspection area.

差動検出器23は、送信信号発生回路21および送信コイル22と協働して複数のワークW(被検査体)についてそのワークW中の金属物又は金属成分の構成要素を検出するようになっており、この差動検出器23は、受信コイル23a、23b、同調回路23cおよび増幅器23dからなる。受信コイル23a、23bは、送信コイル22からの発生磁束と鎖交するよう配置され互いに逆極性に接続された一対のコイルからなり、送信コイル22からの交番磁界のみに対してはこれら受信コイル23a、23bの誘起電圧が等しく平衡し、両者の差である差動検出器23としての出力がゼロになるように調整されている。   The differential detector 23 cooperates with the transmission signal generation circuit 21 and the transmission coil 22 to detect a metal object or a component of a metal component in the workpiece W with respect to the plurality of workpieces W (inspection object). The differential detector 23 includes receiving coils 23a and 23b, a tuning circuit 23c, and an amplifier 23d. The reception coils 23a and 23b are composed of a pair of coils arranged so as to be linked to the magnetic flux generated from the transmission coil 22 and connected to each other with opposite polarities. Only the alternating magnetic field from the transmission coil 22 is received by these reception coils 23a. , 23b are equally balanced and adjusted so that the output of the differential detector 23, which is the difference between the two, becomes zero.

磁界中を通過する磁性金属には磁束密度の大きさに比例してより多くの磁束が引き寄せられ、磁界中を通過する非磁性金属にはその移動による磁束密度の変化を打ち消すような向きでうず電流が生じ、ジュール熱が消費されるという性質がある。したがって、コンベアB上のワークWが何らかの金属異物を含んで送信コイル22の発生磁界中を通過する場合、その金属異物入りワークの移動に応じて受信コイル23a、23bの誘起電圧の大小関係が変化することになり、受信コイル23a、23b間の出力の平衡状態が大きくくずれる。また、主として非磁性体であるワークのみが送信コイル22の発生磁界中を通過する場合にも、その含有成分や水分等の影響により、金属異物を含んでいるときほど顕著ではないが受信コイル23a、23b間の出力の平衡状態がくずれる。   The magnetic metal that passes through the magnetic field attracts more magnetic flux in proportion to the magnitude of the magnetic flux density, and the nonmagnetic metal that passes through the magnetic field swirls in such a direction as to cancel the change in the magnetic flux density due to the movement. An electric current is generated and Joule heat is consumed. Therefore, when the workpiece W on the conveyor B includes some metallic foreign matter and passes through the magnetic field generated by the transmitting coil 22, the magnitude relationship of the induced voltages of the receiving coils 23a and 23b changes according to the movement of the workpiece containing the metallic foreign matter. As a result, the balanced state of the output between the receiving coils 23a and 23b is greatly lost. Further, even when only a workpiece that is mainly a non-magnetic material passes through the magnetic field generated by the transmission coil 22, the reception coil 23a is not as noticeable as when it contains metallic foreign substances due to its contained components, moisture, and the like. , 23b, the equilibrium state of the output is lost.

受信コイル23a、23bは、このようにコンベアB上のワークWの移動により両受信コイル23a、23b間の出力の平衡状態がくずれたとき、その磁界の変化に応じた差動検出信号Sd(磁界検出手段の検出信号)を出力する。この差動検出信号Sdは、送信コイル22側からの交番磁界に対応して前記送信信号の周波数を有する交流信号成分に、ワークWの磁界中移動により変化する低周波信号成分が重畳した信号形態となり、例えば図2に示すような信号波形で表すことができる。 When the output balance between the receiving coils 23a and 23b is lost due to the movement of the workpiece W on the conveyor B in this way, the receiving coils 23a and 23b detect the differential detection signal Sd (magnetic field) corresponding to the change in the magnetic field. Detection signal of the detection means) . The differential detection signal Sd has a signal form in which a low-frequency signal component that changes due to movement of the workpiece W in the magnetic field is superimposed on an AC signal component having the frequency of the transmission signal corresponding to an alternating magnetic field from the transmission coil 22 side. For example, it can be represented by a signal waveform as shown in FIG.

送信コイル22からの磁界周波数を決定する基準信号発生器21aの発生周波数は、後述する制御部30および周波数設定部33(周波数設定手段)によって複数のうちいずれかの周波数に設定可能であり、差動検出器23は異なる複数の周波数のうち選択される任意の周波数の交番磁界に対して所要の検出感度を有している。   The generation frequency of the reference signal generator 21a that determines the magnetic field frequency from the transmission coil 22 can be set to any one of a plurality of frequencies by a control unit 30 and a frequency setting unit 33 (frequency setting means) described later. The motion detector 23 has a required detection sensitivity for an alternating magnetic field having an arbitrary frequency selected from a plurality of different frequencies.

差動検出信号Sdは同調回路23cおよび増幅器23dを経て直交検波部24に取り込まれる。   The differential detection signal Sd is taken into the quadrature detection unit 24 through the tuning circuit 23c and the amplifier 23d.

直交検波部24は、各一対の同期検波器25a、25b、位相設定器26aおよび移相器26bを含んで構成されており、差動検出器23からの差動検出信号Sdが一対の同期検波器25a、25bにそれぞれ並行して入力される。同期検波器25aには位相設定器26aを介し送信信号を同期検波するために位相調整した信号(基準信号に対応する信号)が取り込まれ、同期検波器25bには位相設定器26aからの信号位相を移相器26bによって更に90°移相させた信号(基準信号に対応する信号)が取り込まれる。   The quadrature detection unit 24 includes a pair of synchronous detectors 25a and 25b, a phase setter 26a, and a phase shifter 26b. The differential detection signal Sd from the differential detector 23 is a pair of synchronous detectors. The signals are input to the devices 25a and 25b in parallel. The synchronous detector 25a receives a signal (a signal corresponding to the reference signal) whose phase is adjusted for synchronous detection of the transmission signal via the phase setter 26a, and the synchronous detector 25b receives the signal phase from the phase setter 26a. Is shifted by 90 ° by the phase shifter 26b (a signal corresponding to the reference signal).

同期検波器25aは、位相設定器26aからの交流信号に基づいて差動検出器23の差動検出信号Sdを同期検波し、送信信号相当の高周波成分を取り除いた検波出力をバンドパスフィルタ27aに供給する。同様に、同期検波器25bは、移相器26bからの交流信号に基づいて、差動検出器23の差動検出信号Sdから送信信号相当の高周波成分を取り除いた検波出力をバンドパスフィルタ27bに供給する。   The synchronous detector 25a synchronously detects the differential detection signal Sd of the differential detector 23 based on the AC signal from the phase setter 26a, and outputs the detection output from which the high-frequency component corresponding to the transmission signal has been removed to the bandpass filter 27a. Supply. Similarly, the synchronous detector 25b outputs a detection output obtained by removing a high-frequency component corresponding to a transmission signal from the differential detection signal Sd of the differential detector 23 to the band pass filter 27b based on the AC signal from the phase shifter 26b. Supply.

ここでの同期検波器25a、25bによる検波出力は、位相設定器26aの位相設定値によっても異なるが、例えば、磁束密度の変化が最大となる瞬間(位相0度)側において、磁束密度変化が大きいほどジュール熱を消費して外部磁界変化を引き起こす非磁性金属の影響が大きい検出信号と、磁束密度自体がほぼ最大となる瞬間(磁界波形の振幅が最大となる瞬間;位相90°)側において、磁束密度が大きいほどより多くの磁束を引き付けて外部磁界変化を引き起こす磁性金属の影響の大きい検出信号となる。   The detection output by the synchronous detectors 25a and 25b here also differs depending on the phase setting value of the phase setter 26a. For example, the change in the magnetic flux density occurs at the moment (phase 0 degree) where the change in the magnetic flux density is maximum. On the side of the detection signal where the influence of the non-magnetic metal that causes Joule heat to be consumed and the external magnetic field change is larger, and the magnetic flux density is almost maximum (the moment when the amplitude of the magnetic field waveform is maximum; phase 90 °) The higher the magnetic flux density is, the more the magnetic flux is attracted and a detection signal having a greater influence of the magnetic metal causing the external magnetic field change.

バンドパスフィルタ27a、27bは、同期検波器25a、25bで検波された検出信号から高周波ノイズ成分を除去するフィルタ特性を有している。バンドパスフィルタ27a、27bから出力される低周波成分の検出信号(検波出力)は、差動検出信号Sdの所定位相位置の瞬時値を結ぶ包絡線の波形、および前記所定位相位置から送信信号周期τの1/4周期分、つまり90°だけ位相がずれた瞬時値を結ぶ包絡線の波形(例えば図4に示す波形X、Y)を形成するものとなる。   The bandpass filters 27a and 27b have filter characteristics that remove high frequency noise components from the detection signals detected by the synchronous detectors 25a and 25b. The low-frequency component detection signals (detection outputs) output from the bandpass filters 27a and 27b include an envelope waveform connecting instantaneous values of a predetermined phase position of the differential detection signal Sd, and a transmission signal period from the predetermined phase position. An envelope waveform (for example, waveforms X and Y shown in FIG. 4) connecting the instantaneous values whose phases are shifted by ¼ of τ, that is, by 90 °, is formed.

両バンドパスフィルタ27a、27bの出力は、増幅器28a、28bでそれぞれ増幅された後、A/D変換器29でそれぞれアナログからディジタルの検出信号に変換され、制御部30に取り込まれる。   The outputs of both band-pass filters 27 a and 27 b are amplified by amplifiers 28 a and 28 b, respectively, converted from analog to digital detection signals by A / D converter 29, and taken into control unit 30.

制御部30は、図1に示すように、制御/演算部31および記憶装置32を有している。制御/演算部31は、CPU、RAM、ROMおよびI/Oインターフェースを含むマイクロコンピュータ構成のもので、ROM内に格納された制御プログラムをRAMとの間でデータの授受を行ないながらCPUにより実行し、I/Oインターフェースを介して取り込んだ前記検出信号等を処理する。また、記憶装置32は制御/演算部31との間でデータの授受が可能な補助記憶装置あるいは更に通信接続された外部のデータベースで構成されている。   As shown in FIG. 1, the control unit 30 includes a control / arithmetic unit 31 and a storage device 32. The control / arithmetic unit 31 has a microcomputer configuration including a CPU, a RAM, a ROM, and an I / O interface. The control program stored in the ROM is executed by the CPU while exchanging data with the RAM. The detection signal and the like captured via the I / O interface are processed. The storage device 32 includes an auxiliary storage device that can exchange data with the control / arithmetic unit 31 or an external database that is further connected by communication.

記憶装置32は、金属検出装置の設定に関連する各種のパラメータや、金属異物を含まないワークWの良品サンプル(以下、単に良品サンプルという)およびワークWに金属異物のサンプル、例えば金属異物のテストピース若しくは混入し得る別仕様の構成物品で金属物又は金属成分、すなわち検出すべき異物を含む異物サンプル(以下、単に異物サンプルという)についての検出信号データを記憶保持することができる。なお、前記異物サンプルは、被検査体中に検出すべき異物を含んだものに限らず、異物単体のサンプル形態、若しくはそれに近い被検査体の一部分のサンプル形態であってもよい。   The storage device 32 is used for various parameters relating to the setting of the metal detection device, a non-defective sample of the workpiece W (hereinafter simply referred to as a non-defective sample) that does not include metallic foreign matter, and a sample of metallic foreign matter on the workpiece W, for example, a test for metallic foreign matter. It is possible to store and hold detection signal data of a foreign object sample (hereinafter, simply referred to as a foreign object sample) containing a metal object or a metal component, that is, a foreign object to be detected, in a piece or a component of another specification that can be mixed. The foreign matter sample is not limited to the foreign matter to be detected in the object to be inspected, but may be a sample form of a single foreign substance or a sample form of a part of the subject to be inspected.

金属検出装置の設定に際しては、被検査製品に生じる可能性の高い1つ又は複数の異物混入形態に対応して1つ又は複数の異物サンプルを準備するとともに、被検査製品の良品サンプルを準備し、これらサンプルについての検査データを採取した上で、制御部30(後述する閾値算定部31d)により合否判定のための閾値設定等を行なう。このとき、サンプルの検査データやそれに関連する操作入力や計算値のデータ等が、記憶装置32に一時的に格納され記憶される。   When setting up the metal detector, prepare one or more foreign material samples corresponding to one or more foreign material contamination types that are likely to occur in the product to be inspected, and prepare non-defective samples for the product to be inspected. After collecting the inspection data for these samples, the control unit 30 (threshold calculation unit 31d described later) performs threshold setting for pass / fail determination. At this time, sample inspection data, operation inputs related thereto, calculation value data, and the like are temporarily stored and stored in the storage device 32.

制御/演算部31は、位相設定器26aと共に位相設定手段として機能する位相制御部31bを有し、上述の良品サンプルおよび異物サンプルについての検査が実行されるとき、金属異物を含まない前記良品サンプルの物品影響が最小となる位相を位相設定器26aにより設定し、ワークW中に混入する金属異物についての検出部20の検出感度を前提的に高める。ここでの前記良品サンプルの物品影響が最小となる位相とは、例えば位相設定器26aの位相(基準信号に対する検波位相の位相差)を変化させたときに同期検波器25a、25bの出力レベルが最小となるディップ点φd として設定される(図3φd〜φd参照)。なお、ディップ点φd を基準とするのは、異物サンプルが、物品影響を含まない異物単体のようなサンプル形態であっても、良品サンプルの物品影響が小さいため、良品サンプルと異物サンプルとの差異を確実にとらえることができるからである。 The control / arithmetic unit 31 includes a phase control unit 31b that functions as a phase setting unit together with the phase setter 26a. When the above-described non-defective sample and foreign matter sample are inspected, the non-defective sample that does not include a metallic foreign matter is included. The phase setting unit 26a is used to set the phase that minimizes the influence of the article, and the detection sensitivity of the detection unit 20 for the metallic foreign matter mixed in the workpiece W is preliminarily increased. Here, the phase at which the article influence of the non-defective sample is minimum is, for example, the output level of the synchronous detectors 25a and 25b when the phase of the phase setter 26a (the phase difference of the detection phase with respect to the reference signal) is changed. It is set as the minimum dip point φd (see FIG. 3 φd 1 to φd 3 ). Note that the dip point φd is based on the difference between the non-defective sample and the foreign sample because the non-defective sample has a small effect on the product even if the foreign sample is in the form of a single foreign object that does not include the effect of the product. This is because it is possible to reliably capture

制御/演算部31は、また、ワークWのサイズ(例えば長さ)と搬送速度、基準信号発生器21aの発生信号周波数、位相設定器26aの設定検波位相(基準信号に対する位相差)、バンドパスフィルタ27a、27bの濾波帯域など、金属検出装置の動作に関する各種設定パラメータを、一部は操作入力部36からの手入力で、その他を自動で設定するための設定手段の機能を有している。ワークWの長さや搬送速度は、検出信号X、Yの取り込み時間やその間隔、バンドパスフィルタ27a、27bの濾波帯域等を決定する条件となる。検出信号Xが位相設定器26aの移相量(基準信号に対する位相差)に対応する所定位相位置の瞬時値で特定されることからわかるように、検出信号X、Yの波形振幅は位相設定器26aの設定位相によって相違する。したがって、位相設定器26aの設定位相はワークWに含まれる金属物又は金属成分の検出の感度を決定するパラメータの1つとなる。   The control / arithmetic unit 31 also determines the size (for example, length) and conveyance speed of the workpiece W, the generated signal frequency of the reference signal generator 21a, the set detection phase (phase difference with respect to the reference signal) of the phase setter 26a, the band pass Various setting parameters relating to the operation of the metal detection device, such as the filter bands of the filters 27a and 27b, are partly manually input from the operation input unit 36 and have a function of setting means for automatically setting the others. . The length of the work W and the conveyance speed are conditions for determining the time for capturing the detection signals X and Y, the interval thereof, the filtering bands of the bandpass filters 27a and 27b, and the like. As can be seen from the fact that the detection signal X is specified by an instantaneous value at a predetermined phase position corresponding to the phase shift amount (phase difference with respect to the reference signal) of the phase setter 26a, the waveform amplitudes of the detection signals X and Y are phase setters. It differs depending on the set phase of 26a. Therefore, the set phase of the phase setter 26a is one of the parameters that determine the sensitivity of detection of the metal object or metal component contained in the workpiece W.

また、基準信号発生器21aの発生信号周波数は、周波数設定部33によって可変設定され、予め設定された異なる複数の周波数のうち、異物検出の対象となる金属異物の材質や大きさ等に対応して、複数の異なる周波数のうち前記良品サンプルWの検出信号に対する異物サンプルの検出信号の比α(後述する)が最大となる周波数を選択して設定される。すなわち、周波数設定部33は、前記良品サンプルWおよび異物サンプルの検出信号に基づいて、基準信号の周波数を設定するようになっており、制御/演算部31は周波数設定部33と共に周波数設定手段として機能する周波数制御部31cを有している。周波数設定部33で選択設定される基準信号周波数もまた、ワークWに含まれる金属物又は金属成分の検出の感度を決定するパラメータの1つとなる。   The generated signal frequency of the reference signal generator 21a is variably set by the frequency setting unit 33, and corresponds to the material and size of the metal foreign object to be detected for foreign objects among a plurality of different preset frequencies. Thus, the frequency at which the ratio α (described later) of the detection signal of the foreign material sample to the detection signal of the non-defective sample W is maximized is selected and set from a plurality of different frequencies. That is, the frequency setting unit 33 is configured to set the frequency of the reference signal based on the detection signals of the non-defective sample W and the foreign material sample, and the control / calculation unit 31 functions as a frequency setting unit together with the frequency setting unit 33. It has a functioning frequency control unit 31c. The reference signal frequency selected and set by the frequency setting unit 33 is also one of the parameters that determine the sensitivity of detection of the metal object or metal component included in the workpiece W.

次に、制御/演算部31での良品サンプル(被検査体)Wの検出信号に対する異物サンプルの検出信号の比αの算出処理について説明する。   Next, a calculation process of the ratio α of the detection signal of the foreign material sample to the detection signal of the non-defective sample (inspected object) W in the control / calculation unit 31 will be described.

制御/演算部31は、ワーク検知センサ35によりワークWが検知されたとき、設定された取り込み条件で一定時間の間、所定時間ごとに検出信号X、Yのデータをサンプリングし、サンプリングされた検出信号X、Yの瞬時値x、yに基づいて、ワークWの磁界通過中に、それら瞬時値x、yをX軸方向およびY軸方向の座標成分とする座標点(x、y)がX−Y平面上に描くリサージュ図形(Lissajous's figures)のデータを作成し、内部メモリにあるいは記憶装置32の所定記憶領域に記憶させる。   When the workpiece W is detected by the workpiece detection sensor 35, the control / calculation unit 31 samples the data of the detection signals X and Y every predetermined time for a certain period of time under the set capture condition, and the sampled detection Based on the instantaneous values x and y of the signals X and Y, a coordinate point (x, y) having the instantaneous values x and y as coordinate components in the X-axis direction and the Y-axis direction while the workpiece W is passing through the magnetic field is X Data of Lissajous's figures drawn on the -Y plane is created and stored in the internal memory or in a predetermined storage area of the storage device 32.

図4(a)に示すように、ここでのリサージュ図形は、原点Oに対してほぼ対称で、原点Oから最も離隔した座標を頂点とするものであり、例えば同図中のリサージュ図形Hnはその頂点Qnの座標(Xm、Ym)で特徴付けることができる。あるいは、その頂点Qnの座標データを極座標変換し、座標(r、θ)で特徴付けてもよい。ここで、rは頂点Qnの原点Oからの距離で、θは線分QOとX軸のなす角(tanθ=Ym/Xm)である。   As shown in FIG. 4A, the Lissajous figure here is substantially symmetric with respect to the origin O and has a vertex at a coordinate farthest from the origin O. For example, the Lissajous figure Hn in FIG. It can be characterized by the coordinates (Xm, Ym) of the vertex Qn. Alternatively, the coordinate data of the vertex Qn may be converted into polar coordinates and characterized by coordinates (r, θ). Here, r is the distance from the origin O of the vertex Qn, and θ is the angle (tan θ = Ym / Xm) formed by the line segment QO and the X axis.

交番磁界中にワークWの良品サンプルを入れ通過させた場合には、座標点(x、y)が描くリサージュ図形は、例えば図4(a)にHgで示すような略8の字形状となり、金属異物のテストピース等を含む異物サンプルを通過させた場合には、前記座標点(x、y)が描くリサージュ図形は、リサージュ図形Hgとは長軸方向が異なる、例えば図4(a)にHnで示すような細長い8の字形状となる。このように、検出信号X、Yに基づいて得られるリサージュ図形は、検出対象に金属物又は金属成分(以下、金属物等ともいう)が含まれているか否かでリサージュ図形の傾き(長軸方向)が大きく相違するものとなる。また、同種でサイズの異なる金属物等について得られる前記リサージュ図形は、リサージュ図形の傾きがほぼ同一で、頂点の原点からの距離がその金属物等のサイズに応じて異なる相似形状となる傾向がある。   When a non-defective sample of the workpiece W is inserted and passed in an alternating magnetic field, the Lissajous figure drawn by the coordinate point (x, y) becomes, for example, an approximately 8 character shape as indicated by Hg in FIG. When a foreign matter sample including a metallic foreign matter test piece is passed, the Lissajous figure drawn by the coordinate point (x, y) is different in the major axis direction from the Lissajous figure Hg, for example, as shown in FIG. It becomes a long and narrow figure of 8 as indicated by Hn. As described above, the Lissajous figure obtained based on the detection signals X and Y has an inclination (major axis) of the Lissajous figure depending on whether a metal object or a metal component (hereinafter also referred to as a metal object) is included in the detection target. Direction) is greatly different. Further, the Lissajous figures obtained for the same kind of metal objects having different sizes tend to have similar shapes in which the slope of the Lissajous figure is almost the same and the distance from the origin of the apex differs depending on the size of the metal objects etc. is there.

本実施形態においては、設定時に、最初に異物サンプルと良品サンプルとを用いて検査した場合のリサージュ図形Hn、Hgのデータに基づいて、複数の異なる角度θdの候補値を設定し、各候補値の角度θdについて、リサージュ図形上の各点のうち原点Oと交差する直線Aとの距離が最大となる点を特定し、その最大距離Ln、Lgの比α=Ln/Lgが最大となる候補値の角度θdを最適な設定値θiとして採用するというサンプル感度設定処理を実行する(図4(b)参照)。そして、制御/演算部31は、また、上述のような比α=Ln/Lgの算出を、異なる複数の周波数を基準信号発生器21aの発生信号周波数とした場合のそれぞれについて、算出し、比αが最大となる基準周波数を選択設定するようになっている。なお、混入する可能性の高い金属異物が複数種ある場合には、その混入態様の異なる複数の異物サンプルについての検査結果のデータを採取してこの設定処理を行なうようにしてもよい。   In the present embodiment, at the time of setting, candidate values for a plurality of different angles θd are set based on the data of the Lissajous figures Hn and Hg when first inspected using a foreign material sample and a non-defective sample. For the angle θd, the point on the Lissajous figure that has the maximum distance from the straight line A that intersects the origin O is identified, and the ratio α = Ln / Lg of the maximum distances Ln and Lg is the maximum. A sample sensitivity setting process is performed in which the angle θd of the value is adopted as the optimum set value θi (see FIG. 4B). The control / arithmetic unit 31 also calculates the ratio α = Ln / Lg as described above for each of the cases where the plurality of different frequencies are the generated signal frequencies of the reference signal generator 21a. A reference frequency that maximizes α is selected and set. In addition, when there are a plurality of types of metal foreign objects that are highly likely to be mixed, the setting process may be performed by collecting data of inspection results for a plurality of foreign samples having different mixing modes.

制御/演算部31は、また、ワークWに金属異物が含まれていなければ合格(OK)、金属異物が含まれていれば不合格(NG)と判定する判定部31a(判定手段)の機能を有しており、この機能により、検査される各ワークWについての合否、すなわち金属異物混入の有無判定を行なうようになっている。この判定のための閾値は、制御/演算部31の閾値算定部31d(閾値算定手段)としての機能により、記憶装置32に記憶された良品サンプルおよび異物サンプルについての検出信号比αの算出値を基に、異物サンプルの検出信号振幅レベルと良品サンプルの検出信号振幅レベルの間の特定のレベル値が閾値レベルとなるように算定され設定される。なお、ここでの検出信号比αと閾値は、図4(c)に示すように、図4(b)の図形を同図中のA軸をX軸とするよう最適角度θi だけ回転させ、最大距離Ln、LgをそれぞれY軸成分のピーク出力Vn、Vgとして、これらの比=Vn/Vgの形で把握される。   The control / arithmetic unit 31 also functions as a determination unit 31a (determination unit) that determines that the workpiece W does not contain a metallic foreign object, and passes (OK), and if the metallic foreign object contains a foreign object, it rejects (NG). With this function, the pass / fail of each workpiece W to be inspected, that is, the presence / absence of metal foreign matter is determined. The threshold for this determination is the calculated value of the detection signal ratio α for the non-defective sample and the foreign material sample stored in the storage device 32 by the function as the threshold calculation unit 31d (threshold calculation means) of the control / calculation unit 31. Based on this, a specific level value between the detection signal amplitude level of the foreign material sample and the detection signal amplitude level of the non-defective sample is calculated and set so as to become the threshold level. Here, the detection signal ratio α and the threshold value are rotated by the optimum angle θi so that the A axis in FIG. 4B is the X axis, as shown in FIG. The maximum distances Ln and Lg are obtained as peak outputs Vn and Vg of the Y-axis component, respectively, and these ratios are grasped in the form of Vn / Vg.

この閾値に基づいて、制御/演算部31の判定部31aは、実際の製造ラインで製造され検査領域に搬送された各ワークWの検出信号振幅レベルを閾値レベルと比較し、ワークW中に金属異物が含まれているか否か、すなわち製品としての合否を判定し、あるいは、更に混入している異物の種類を検査データから推定し、合否判定結果、あるいは更に混入した異物を示す表示信号等を出力部37に出力するようになっている。   Based on this threshold value, the determination unit 31a of the control / calculation unit 31 compares the detection signal amplitude level of each workpiece W manufactured on the actual manufacturing line and transported to the inspection area with the threshold level, and a metal is contained in the workpiece W. It is judged whether or not foreign matter is included, that is, whether or not the product is acceptable, or further, the type of foreign matter mixed in is estimated from the inspection data. The data is output to the output unit 37.

次に、動作について説明する。   Next, the operation will be described.

図5は、本実施形態の金属検出装置の設定処理の概略の手順を示すフローチャートである。
[設定モード]
金属検出装置の設定時には、ユーザが図示しないメニューキーを押すと、オート設定、検出感度(レベル)変更、統計メニューなどの選択項目を有するメニュー画面(詳細は図示していない)が表示され、ユーザーが例えばオート設定を選択し、ワークWの良品サンプルと異物サンプルの検査測定を実行することで、運転に必要な初期設定処理がなされる。
FIG. 5 is a flowchart showing a schematic procedure of the setting process of the metal detection device of the present embodiment.
[Setting mode]
When setting the metal detector, if the user presses a menu key (not shown), a menu screen (details not shown) with selection items such as auto setting, detection sensitivity (level) change, and statistics menu is displayed. However, for example, by selecting the auto setting and executing the inspection measurement of the non-defective sample and foreign material sample of the workpiece W, the initial setting process necessary for the operation is performed.

この設定処理では、まず、基準信号発生器21aでの発生信号(基準信号)に対して同期検波器25a、25bの検波位相を設定するための位相角φの基準値が記憶装置32等から読み込まれるとともに(ステップS1)、基準信号発生器21aの発生としての複数の異なる周波数f1〜fnの値(基準値)が記憶装置32等から読み込まれる(ステップS2)。   In this setting process, first, the reference value of the phase angle φ for setting the detection phase of the synchronous detectors 25a and 25b with respect to the generated signal (reference signal) from the reference signal generator 21a is read from the storage device 32 or the like. At the same time (step S1), values (reference values) of a plurality of different frequencies f1 to fn as generated by the reference signal generator 21a are read from the storage device 32 or the like (step S2).

次いで、ワークWの品種や搬送条件等の設定入力がされ、そのデータが制御/演算部31に読み込まれた後(ステップS3)、良品サンプルをワークWとして検査領域に流して検査したときの検査出力データが採取され(ステップS4)、良品サンプルの物品影響が最小となる位相(図4中のディップ点θd、ステップS5)が設定される。   Next, after setting input such as the type of workpiece W and conveyance conditions is input and the data is read into the control / calculation unit 31 (step S3), the inspection is performed when the non-defective sample is flowed to the inspection area as the workpiece W and inspected. Output data is collected (step S4), and a phase (dip point θd in FIG. 4, step S5) that minimizes the influence of the non-defective sample is set.

次いで、前記異物サンプルを検査領域に流して検査したときの検査出力データが採取され(ステップS6)、この異物サンプルを検査したときの検査出力データと先に良品サンプルを検査したときの検査出力データとを基に、これら検出信号の比α(図5中では出力比α)が求められる(ステップS7)。   Next, inspection output data when the foreign material sample is flowed to the inspection area and inspected is collected (step S6). Inspection output data when the foreign material sample is inspected and inspection output data when the non-defective sample is inspected first. Based on the above, the ratio α (output ratio α in FIG. 5) of these detection signals is obtained (step S7).

このようなサンプルの検査および検出信号比αの算出を終えると、今回の検査に用いた基準信号発生器21aの発生信号周波数が、異なる複数の周波数のうち所定の切換え順序(例えばf1、f2、f3・・・fnの順)における最後の周波数fn(例えば最も高い周波数)であるか否かがチェックされ(ステップS8)、最後の周波数fnでなければ(ステップS8でNOの場合)、ステップS4に戻って、次の基準周波数を用いて、ステップS4からステップS7までの検査および検出信号比αの算出処理を実行する。なお、ここで、周波数fは、数Hzから数MHzの間で、nが4〜6になるような任意の周波数とする。   When the inspection of the sample and the calculation of the detection signal ratio α are completed, the generated signal frequency of the reference signal generator 21a used for the current inspection is a predetermined switching order (for example, f1, f2, It is checked whether or not it is the last frequency fn (for example, the highest frequency) in the order of f3... fn (step S8). If it is not the last frequency fn (NO in step S8), step S4 is performed. Returning to step S4, the inspection from step S4 to step S7 and the calculation process of the detection signal ratio α are executed using the next reference frequency. Here, the frequency f is an arbitrary frequency such that n is 4 to 6 between several Hz and several MHz.

複数の異なる周波数のうち最後の周波数fnについての検査・測定が終了すると(ステップS8でYESの場合)、検出信号比αの算出値が最大となった周波数を基準信号発生器21aの発生信号周波数として選択設定し(ステップS9)、今回の設定処理を終了する。   When the inspection / measurement for the last frequency fn among a plurality of different frequencies is completed (YES in step S8), the frequency at which the calculated value of the detection signal ratio α is maximized is the generated signal frequency of the reference signal generator 21a. Is selected and set (step S9), and the current setting process is terminated.

[運転モード]
上述のような設定が完了し、金属検出装置が運転可能な状態になった後は、図示しない運転キーを押すと、通常運転に入り、出力部37に運転画面の表示がなされ、製品である多数のワークWの製造ライン上での検査が実行される。
[Operation mode]
After the setting as described above is completed and the metal detection device is ready for operation, when an operation key (not shown) is pressed, normal operation is started, and an operation screen is displayed on the output unit 37, indicating that the product is a product. Inspection on a production line of a large number of workpieces W is performed.

そして、金属異物の混入が検出されると、例えば出力部37に、異物混入品の発生を示すNG表示に加えて、その品種番号や品名、あるいは更に検出された金属異物の種類等が表示出力される。   When the contamination of the metal foreign matter is detected, for example, in addition to the NG display indicating the occurrence of the foreign matter contaminated product, the product number, the product name, or the type of the detected metallic foreign matter is displayed on the output unit 37, for example. Is done.

[品種切替えモード]
また、予定数のワークWの製造が終了し、他の品種への切替えがなされる際には、操作入力部36の図示しない品種切替えキーが操作される。このとき、新たな品種への切替えであれば、上述した設定処理が再度実行され、既にサンプル検査済みの品種に切り替えられる場合には、選択された品種についての記憶データを基に、各種設定パラメータ等の検査条件が自動的に新たな条件に切り替えられる。
[Product switching mode]
Further, when the production of the planned number of workpieces W is completed and switching to another type is performed, a type switching key (not shown) of the operation input unit 36 is operated. At this time, if switching to a new product type, the setting process described above is executed again, and if the product is already switched to a sample-tested product type, various setting parameters are set based on the stored data for the selected product type. Such inspection conditions are automatically switched to new conditions.

以上のように、本実施形態においては、磁界周波数を規定する基準信号発生器21aの基準信号を異なる複数の周波数に変化させ、それぞれの周波数について、ワークWが送信コイル22の発生磁界中を通過したときの差動検出器23の検出信号と、異物サンプルが送信コイル22の発生磁界中を通過したときの差動検出器23の検出信号とを取得し、それら複数の周波数のうち良品サンプルの検出信号に対する異物サンプルの検出信号の比αが最大となる周波数を選択して、基準信号の周波数を可変設定するようにしている。さらに、基準信号周波数を設定するとき、位相設定手段としての制御/演算部31および周波数設定部33が、差動検出器23の検出信号におけるワークWの物品影響の度合いが最小となる位相を設定するので、通常の良品検出信号の出力レベルに対し金属異物の検出信号レベルが高水準に設定される。その結果、複数の基準周波数に対応する複数の検出感度のモードから各品種の被検査体の物品影響が小さくて異物検出に適したモードを容易に選択することができ、異物検出感度が高感度となって安定した異物検出を行なうことができ、材質やサイズ等が異なるユーザ独自の感度基準や未知の異物に対しても、感度設定の作業を容易化し、被検査体の物品影響が小さくて好適な検出条件を設定することができ、しかも、位相設定作業等を軽減することができる。   As described above, in the present embodiment, the reference signal of the reference signal generator 21a that defines the magnetic field frequency is changed to a plurality of different frequencies, and the work W passes through the generated magnetic field of the transmission coil 22 for each frequency. And the detection signal of the differential detector 23 when the foreign material sample passes through the magnetic field generated by the transmission coil 22 and the non-defective sample of the plurality of frequencies is obtained. The frequency at which the ratio α of the detection signal of the foreign substance sample to the detection signal is maximized is selected, and the frequency of the reference signal is variably set. Further, when setting the reference signal frequency, the control / calculation unit 31 and the frequency setting unit 33 as the phase setting means set the phase that minimizes the degree of the influence of the article of the work W in the detection signal of the differential detector 23. Therefore, the metal foreign matter detection signal level is set to a higher level than the normal non-defective product detection signal output level. As a result, a mode suitable for foreign object detection can be easily selected from a plurality of detection sensitivity modes corresponding to a plurality of reference frequencies, and the influence of articles of each type of inspection object is small, and the foreign object detection sensitivity is high. This makes it possible to perform stable foreign object detection, and facilitates sensitivity setting work even for user-specific sensitivity standards and unknown foreign substances of different materials and sizes, etc. Suitable detection conditions can be set, and phase setting work and the like can be reduced.

また、判定手段としての制御/演算部31が、異物サンプルをコンベアBによって移動させたとき(異物サンプルが発生磁界中を通過したとき)の差動検出器23の検出信号と、良品サンプルをコンベアBによって移動させたとき(良品サンプルが発生磁界中を通過したとき)の差動検出器23の検出信号とを取得し、それらの取得した信号情報に基づいて、ワークWに金属異物が混入しているか否かを判定するための閾値を算定するので、ワークWに金属異物が混入している状態と混入していない状態での検出信号レベルをそれぞれ確実に把握して、両検出信号レベルの間で、要求条件により適合する閾値を設定し、高感度の金属検出を行なうことができる。例えば、両検出信号レベルの差が少ない場合には両検出信号レベルの中間に閾値を設定し、両検出信号レベルの差が多い場合には、良品の物品影響のばらつきによる誤検出をなくすために、異物サンプルの検出信号レベルに対し7割程度の信号レベルを閾値として設定してもよい。   In addition, when the control / calculation unit 31 as the determination unit moves the foreign sample by the conveyor B (when the foreign sample passes through the generated magnetic field), the detection signal of the differential detector 23 and the non-defective sample are transferred to the conveyor. The detection signal of the differential detector 23 when it is moved by B (when the non-defective sample passes through the generated magnetic field) is acquired, and based on the acquired signal information, metal foreign matter is mixed into the workpiece W. Since the threshold value for determining whether or not there is a metal foreign matter is mixed in the workpiece W, the detection signal levels in the state where the metal foreign matter is mixed and the state where the workpiece W is not mixed are reliably grasped. In the meantime, a threshold value that suits the required conditions can be set, and highly sensitive metal detection can be performed. For example, when the difference between both detection signal levels is small, a threshold is set in the middle of both detection signal levels, and when there is a large difference between both detection signal levels, in order to eliminate false detection due to variations in the influence of non-defective products. Alternatively, a signal level of about 70% of the detection signal level of the foreign material sample may be set as the threshold value.

以上説明したように、本発明は、磁界周波数を規定する基準信号の複数の異なる周波数に対応して、被検査体の検出信号レベルが最小となる検波位相における被検査体の検出信号と検出すべき金属異物を含む異物サンプルの検出信号とを取得し、それらの検出信号レベルの比αが最大になる磁界周波数を選択設定するので、好適な磁界周波数を容易・迅速に設定して高感度の金属検出を行なうことができるという効果を奏するものであり、被検査体中の金属を検出する金属検出装置、特にコンベア搬送される製品への金属異物の混入検出に好適であり、被検査体への蓋然性の高い異物混入形態に応じて検出感度を容易にかつ好条件で設定若しくは設定変更する必要のある金属検出装置又は金属検出型の検査装置に有用である。   As described above, the present invention detects the detection signal of the inspection object at the detection phase at which the detection signal level of the inspection object is minimized corresponding to a plurality of different frequencies of the reference signal that defines the magnetic field frequency. The detection signal of the foreign material sample including the metallic foreign material to be acquired is acquired, and the magnetic field frequency at which the ratio α of the detection signal levels is maximized is selected and set. It has an effect that metal detection can be performed, and is suitable for a metal detection device for detecting metal in an object to be inspected, particularly suitable for detecting contamination of metal foreign matter in a product conveyed on a conveyor. Therefore, it is useful for a metal detection device or a metal detection type inspection device in which detection sensitivity needs to be set or changed easily under favorable conditions according to the foreign substance contamination type.

本発明の一の実施の形態に係る金属検出装置の検出部および制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the detection part of the metal detection apparatus which concerns on one embodiment of this invention, and a control part. 本発明の一の実施の形態に係る金属検出装置の差動検出信号の波形を例示する波形図である。It is a wave form diagram which illustrates the waveform of the differential detection signal of the metal detection apparatus concerning one embodiment of the present invention. 本発明の一の実施の形態に係る金属検出装置の検波信号出力レベルと検波位相の関係を示すグラフで、同グラフ中の実線はワークWの良品サンプルについての検出信号の出力レベルを、破線は金属異物片をワークに入れた異物サンプルについての検出信号の出力レベルを、それぞれ示している。The graph which shows the relationship between the detection signal output level and detection phase of the metal detection apparatus which concerns on one embodiment of this invention, The solid line in the graph shows the output level of the detection signal about the good sample of the workpiece | work W, and a broken line is The output level of the detection signal about the foreign material sample which put the metal foreign material piece in the workpiece | work is each shown. 本発明の一の実施の形態に係る金属検出装置の良品サンプルおよび異物サンプルの検出信号から求めたリサージュ図形(a)と、その図形データに基づく最適ワーク位相角度θiの設定の説明図(b)と、その図形データに基づく検出感度の設定のための回転変形処理の説明図(c)である。Explanatory drawing (b) of setting of Lissajous figure (a) calculated | required from the detection signal of the good quality sample and foreign material sample of the metal detection apparatus based on one embodiment of this invention, and the optimal workpiece | work phase angle (theta) i based on the figure data And (c) of a rotational deformation process for setting detection sensitivity based on the graphic data. 本発明の一の実施の形態に係る金属検出装置の設定処理の概略手順を示すフローチャートである。It is a flowchart which shows the schematic procedure of the setting process of the metal detection apparatus which concerns on one embodiment of this invention. 従来例の金属検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the metal detection apparatus of a prior art example.

符号の説明Explanation of symbols

20 検出部
21 送信信号発生回路(磁界発生手段)
21a 基準信号発生器
21b 電力増幅器
22 送信コイル
23 差動検出器(磁界検出手段)
23a、23b 受信コイル
23c 同調回路
23d 増幅器
24 直交検波部(検波処理手段)
25a、25b 同期検波器
26a 位相設定器(位相設定手段)
26b 移相器
27a、27b バンドパスフィルタ
28a、28a 増幅器
29 A/D変換器
30 制御部
31 制御/演算部
31a 判定部(判定手段)
31b 位相制御部(位相設定手段)
31c 周波数制御部(周波数設定手段)
31d 閾値算定部(閾値算定手段)
32 記憶装置
33 周波数設定部(周波数設定手段)
35 ワーク検知センサ
36 操作入力部
37 出力部
W ワーク(被検査体)
20 detector 21 transmission signal generation circuit (magnetic field generation means)
21a Reference signal generator 21b Power amplifier 22 Transmitting coil 23 Differential detector (magnetic field detecting means)
23a, 23b Reception coil 23c Tuning circuit 23d Amplifier 24 Quadrature detection unit (detection processing means)
25a, 25b Synchronous detector 26a Phase setter (phase setting means)
26b Phase shifters 27a, 27b Bandpass filters 28a, 28a Amplifier 29 A / D converter 30 Control unit 31 Control / calculation unit 31a Determination unit (determination means)
31b Phase control unit (phase setting means)
31c Frequency control unit (frequency setting means)
31d Threshold calculation unit (threshold calculation means)
32 storage device 33 frequency setting unit (frequency setting means)
35 Work detection sensor 36 Operation input unit 37 Output unit
W Workpiece (inspected object)

Claims (2)

基準信号に対応する交流磁界を発生させる磁界発生手段(21)と、
前記交流磁界中を被検査体(W)が通過することによる磁界の変化を検出し、この磁界の変化に対応する検出信号を出力する磁界検出手段(23)と、
該磁界検出手段(23)が出力する検出信号を前記基準信号に対応する信号によって同期検波する検波手段(24)と、
前記検波手段(24)の検波出力に基づいて前記被検査体(W)中に混入している金属異物の有無を判定する判定手段(31a)とを備えた金属検出装置において、
前記基準信号の複数の異なる周波数について、前記磁界検出手段(23)の検出信号における金属異物を含まない前記被検査体(W)の物品影響の度合いが最小となる位相をそれぞれ設定する位相設定手段(26a、31b)と、
前記複数の異なる周波数について、前記位相設定手段(26a、31b)で設定された位相の下で、前記磁界発生手段(21)の発生磁界中を金属異物を含まない前記被検査体(W)が通過したときの前記磁界検出手段(23)の検出信号と、検出すべき金属異物を含む異物サンプルが前記磁界発生手段(21)の発生磁界中を通過したときの前記磁界検出手段(23)の検出信号とを取得し、前記複数の異なる周波数のうち金属異物を含まない前記被検査体(W)の検出信号に対する前記異物サンプルの検出信号比(α)が最大となる周波数を選択して、前記基準信号の周波数を設定する周波数設定手段(31c、33)を設けたことを特徴とする金属検出装置。
Magnetic field generating means (21) for generating an alternating magnetic field corresponding to the reference signal;
Magnetic field detection means (23) for detecting a change in the magnetic field due to the inspected object (W) passing through the AC magnetic field and outputting a detection signal corresponding to the change in the magnetic field;
Detection means (24) for synchronously detecting a detection signal output from the magnetic field detection means (23) with a signal corresponding to the reference signal;
In a metal detection apparatus comprising: determination means (31a) for determining the presence or absence of metal foreign matter mixed in the object to be inspected (W) based on the detection output of the detection means (24).
Phase setting means for setting, for a plurality of different frequencies of the reference signal, phases for minimizing the degree of influence of the article (W) on the inspection object (W) that does not include metal foreign matter in the detection signal of the magnetic field detection means (23). (26a, 31b),
With respect to the plurality of different frequencies, the object to be inspected (W) that does not include a metal foreign substance in the magnetic field generated by the magnetic field generating means (21) under the phase set by the phase setting means (26a, 31b). The detection signal of the magnetic field detection means (23) when passing and the foreign matter sample containing the metallic foreign matter to be detected of the magnetic field detection means (23) when passing through the magnetic field generated by the magnetic field generation means (21). Obtaining a detection signal, and selecting a frequency at which a detection signal ratio (α) of the foreign object sample to a detection signal of the object to be inspected (W) that does not include a metal foreign object is a maximum among the plurality of different frequencies, A metal detection apparatus comprising frequency setting means (31c, 33) for setting the frequency of the reference signal.
前記位相設定手段で設定された位相の下で、前記磁界発生手段(21)の発生磁界中を金属異物を含まない前記被検査体(W)が通過したときの前記磁界検出手段(23)の検出信号と、前記磁界発生手段(21)の発生磁界中を前記異物サンプルが通過したときの前記磁界検出手段(23)の検出信号とを取得し、該取得した信号情報に基づいて、前記判定手段(31a)による判定のための閾値を算定する閾値算定手段(31d)を設けたことを特徴とする請求項1に記載の金属検出装置。 Under the phase set by the phase setting means, the magnetic field detection means (23) when the object to be inspected (W) that does not include a metallic foreign object passes through the magnetic field generated by the magnetic field generation means (21). A detection signal and a detection signal of the magnetic field detection means (23) when the foreign material sample passes through the magnetic field generated by the magnetic field generation means (21) are acquired, and the determination is performed based on the acquired signal information The metal detection apparatus according to claim 1, further comprising a threshold value calculation means (31d) for calculating a threshold value for determination by the means (31a).
JP2004219016A 2004-07-27 2004-07-27 Metal detector Active JP4087362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219016A JP4087362B2 (en) 2004-07-27 2004-07-27 Metal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219016A JP4087362B2 (en) 2004-07-27 2004-07-27 Metal detector

Publications (2)

Publication Number Publication Date
JP2006038637A JP2006038637A (en) 2006-02-09
JP4087362B2 true JP4087362B2 (en) 2008-05-21

Family

ID=35903787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219016A Active JP4087362B2 (en) 2004-07-27 2004-07-27 Metal detector

Country Status (1)

Country Link
JP (1) JP4087362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562750A (en) * 2011-06-29 2014-02-05 欧宝士株式会社 Metal detection sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286322A (en) * 2009-06-10 2010-12-24 Panasonic Electric Works Co Ltd Proximity sensor
JP5780696B2 (en) * 2009-07-06 2015-09-16 協立電機株式会社 Object detection device
JP5983556B2 (en) * 2012-11-28 2016-08-31 Jfeスチール株式会社 Leakage magnetic flux type inspection apparatus and inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562750A (en) * 2011-06-29 2014-02-05 欧宝士株式会社 Metal detection sensor

Also Published As

Publication number Publication date
JP2006038637A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP4198712B2 (en) Metal detector
EP1275016B1 (en) Device and method for metal detection
JP4633830B2 (en) Metal detector
JPH0619470B2 (en) Detection method and detector for foreign matter such as metal
US5034689A (en) Detector for detecting foreign matter in an object by detecting electromagnetic parameters of the object
JP4141987B2 (en) Metal detector
JP4087362B2 (en) Metal detector
JP4087361B2 (en) Metal detector
US10996363B2 (en) Metal detection apparatus
JP4376829B2 (en) Metal detector
JP4188282B2 (en) Metal detector
CN105960601B (en) For determining the method and proximity transducer of object type
JP6412688B2 (en) Metal detector diagnostic device and metal detector
JP4863921B2 (en) Metal detector
JP3665713B2 (en) Metal detector
WO2015049766A1 (en) Metal-detection device
JP7204607B2 (en) metal detector
JP7242442B2 (en) metal detector
JP2004251712A (en) Metal detector
JP7242443B2 (en) metal detector
US11762118B2 (en) Metal detection apparatus
JP7187407B2 (en) metal detector
JP4202345B2 (en) Metal detector
JP5174507B2 (en) Metal detector
JP2003066156A (en) Metal detecting machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4087362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250