JP4077308B2 - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP4077308B2
JP4077308B2 JP2002369502A JP2002369502A JP4077308B2 JP 4077308 B2 JP4077308 B2 JP 4077308B2 JP 2002369502 A JP2002369502 A JP 2002369502A JP 2002369502 A JP2002369502 A JP 2002369502A JP 4077308 B2 JP4077308 B2 JP 4077308B2
Authority
JP
Japan
Prior art keywords
valve
valve body
coil spring
compression coil
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002369502A
Other languages
Japanese (ja)
Other versions
JP2004198064A (en
Inventor
俊治 片山
和彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2002369502A priority Critical patent/JP4077308B2/en
Priority to CNB2003101184023A priority patent/CN100432581C/en
Priority to KR1020030090441A priority patent/KR101027488B1/en
Publication of JP2004198064A publication Critical patent/JP2004198064A/en
Application granted granted Critical
Publication of JP4077308B2 publication Critical patent/JP4077308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、冷凍サイクルを構成する膨張弁に関する。
【0002】
【従来の技術】
膨張弁には各種のタイプがあるが、蒸発器に送り込まれる高圧冷媒が通る高圧冷媒通路の途中を細く絞って形成されたオリフィスに対して上流側から対向するように弁体を配置し、蒸発器から送り出される低圧冷媒の温度と圧力に対応して弁体を開閉動作させるようにした膨張弁が広く用いられている。
【0003】
この種の膨張弁として、図6(A)に示される自動車の空気調和装置等の冷凍サイクルに使用されるものがある(例えば、特許文献1参照)。すなわち、冷凍サイクル1は、エンジンにより駆動される冷媒圧縮機2と、該冷媒圧縮機2の吐出側に接続される凝縮機3と、凝縮機3に接続される受液器4と、受液器4からの液相冷媒を気液二相冷媒に断熱膨張させる膨張弁5と、膨張弁5に接続される蒸発器6とから構成され、前記膨張弁5は冷凍サイクル1内に位置している。
【0004】
膨張弁5には、弁本体5aに液相冷媒が流入する高圧側通路5bと断熱膨張された気液二相冷媒が流出する低圧側通路5cとが設けられ、高圧側通路5bと低圧側通路5cとはオリフィス7を介して連通し、更に該オリフィス7を通過する冷媒量を調整する弁体8を弁室8dに備えており、弁体8はオリフィス7に形成された弁座7aに接離し、冷媒量が調整される。
【0005】
また、膨張弁5は、弁本体5aに低圧冷媒通路5dを貫通して形成し低圧冷媒通路5d内に該通路5dの冷媒の温度を検知して感温部となるプランジャ9aが摺動可能に位置し、該プランジャ9aは弁本体5aの上部に固定された感温駆動部9により駆動される。該感温駆動部9はその内部がダイアフラム9dによって区画され、上部気密室9cと下部気密室9c’とが形成されている。プランジャ9aの上端の円盤部9eはダイアフラム9dに当接する。
【0006】
そして、感温駆動部9は、ステンレス等の金属製の薄板のダイアフラム9dの上下にステンレス等の金属製の上カバー9f及び下カバー9gとを溶接して上部気密室9cと下部気密室9c’が構成され、ダイアフラム9dと上カバー9fとの間の上部気密室9cには冷媒管9hにより所定冷媒が封入され、冷媒管9hは封着される。また、下カバー9gは、その座部が弁本体5aに螺合される。
【0007】
なお、従来の膨張弁として、上記冷媒管の代りに図6(B)に示す如く、ステンレス等を用いた金属製の栓体9iにて所定冷媒を封入するものがあり、栓体9iは上カバー9fの穴に溶接により固着される。
【0008】
さらに、弁本体5aの下部には、支持部材8cを介して弁体8を閉弁方向に押圧する圧縮コイルばね8aが弁室8d内に配置されており、弁室8dは弁本体5aと螺合する調整ねじ8bにより形成され、Oリング8eにより気密が保持される。また、プランジャ9aの摺動により弁体8を開弁方向に移動する作動棒9bがプランジャ9aの下端に当接している。
【0009】
そして、感温駆動部9内のプランジャ9aが低圧冷媒通路5d内の温度を前記上部気密室9cに伝達し、その温度に応じて上部気密室9cの圧力が変化する。例えば、温度が高い場合は上部気密室9cの圧力が上昇して前記ダイアフラム9dがプランジャ9aを押し下げると、弁体8は図7(A)に示す如く、開弁方向に移動して弁座7aと当接せずにオリフィス7の冷媒通過量が増加し、蒸発器6の温度が下げられる。
【0010】
一方、温度が低い場合には、上部気密室9cの圧力が下降し、前記ダイアフラム9dによるプランジャ9aを押し下げる力が弱まり、弁体8は図7(B)に示す如く閉弁方向に押圧する圧縮コイルばね8aにより閉弁方向に移動してオリフィス7の冷媒通過量が減少し、蒸発器6の温度が上げられる。なお、図7(A)及び図7(B)はそれぞれ図6(A)に示す従来例の要部を示す図である。
【0011】
このように、膨張弁5は、低圧冷媒通路5d内の温度変化に応じて、弁体8を移動させてオリフィス7の開口面積を変化させ、冷媒通過量を調整して蒸発器6の温度調整を図っている。そして、この種の膨張弁5においては、液相冷媒から気液二相冷媒に断熱膨張させるオリフィス7の開口面積は、弁体8を閉弁方向に押圧するばね荷重可変の圧縮コイルばね8aのばね荷重を調整ねじ8bで調整することによって設定されている。
【0012】
上記調整ねじ8bは、その上面の中央部に凹所8fが形成され、その下面の中央部に圧縮コイルばね8aの荷重を調整するため調整ねじ8bを上下に進退させる工具を挿入する挿入穴13が形成されており、上記凹所8fの底部は、圧縮コイルばね8aを支持する支持部であり、圧縮コイルばね8aの一端が当接されるばね座面8f’となる。
【0013】
ところで、膨張弁に送り込まれる高圧冷媒には、冷凍サイクル内において上流側で圧力変動が発生する場合があり、その圧力変動は、高圧冷媒液を媒体として膨張弁に伝達される。
すると、上述のような従来の膨張弁においては、弁体に上流側の冷媒圧力が圧力変動によって伝達されると、それが弁体の動作を不安定にするという問題を生じる場合があり、その場合には、膨張弁の流量制御が正確に行われない、又は、弁体の振動により騒音が発生するという不具合を生じることがあった。
【0014】
そこで従来の対応手段として、パワーエレメントと弁体との間に軸線方向に進退自在に配置されたロッドに対して、スプリング等で側方から付勢力を与えることにより弁体が高圧側冷媒の圧力変動に敏感に反応しないようにして、動作を安定させる手段がある(例えば特許文献2)
【0015】
【特許文献1】
特開2001−50617号公報(第2頁、図7)
【特許文献2】
特開平9−222268号公報(第2頁〜3頁、図1)
【0016】
【発明が解決しようとする課題】
しかし、上述のような従来の膨張弁は、高圧冷媒の圧力変動に対する動作の安定を図るという目的は達成できるものの、軸線方向に進退するロッドを側方から押すスプリングを安定した状態に配置しなければならないので、構造や組み立て作業が複雑になって高いコストを要するというおそれがあった。
そこで本発明は、簡易な構成で従来の膨張弁の構成を大幅に変更することなく高圧冷媒の圧力変動に対する動作の安定を達成することができる膨張弁を提供することを目的とする。
【0017】
【課題を解決するための手段】
かかる目的を達成するため、本発明に係る膨張弁は、冷媒が流入する高圧側通路と冷媒が流出する低圧側通路とを連通するオリフィスを備えた弁本体と、前記オリフィスを流れる冷媒の量を調節する弁体と、該弁体に当接して弁体を開弁方向に作動させる作動棒と、該作動棒を駆動する感温駆動部材と、上記弁体を閉弁方向に押圧する圧縮コイルばねと、上記圧縮コイルばねの押圧力を調整する調整ねじとを備えた膨張弁において、上記調整ねじには、上記圧縮コイルばねを支持する支持部に傾斜面が形成され、当該傾斜面により上記圧縮コイルばねを傾斜させ、上記作動棒と上記弁体との芯ずれを生じさせることを特徴とする。
【0018】
また、冷媒が流入する高圧側通路と冷媒が流出する低圧側通路とを連通するオリフィスを備えた弁本体と、前記オリフィスを流れる冷媒の量を調節する弁体と、該弁体に当接して弁体を開弁方向に作動させる作動棒と、該作動棒を駆動する感温駆動部材と、上記弁体を閉弁方向に押圧する圧縮コイルばねと、上記圧縮コイルばねの押圧力を調整する調整ねじとを備えた膨張弁において、上記圧縮コイルばねとこれを支持する上記調整ねじの支持面との間には、傾斜プレートが設けられ、当該傾斜プレートにより上記圧縮コイルばねを傾斜させ、上記作動棒と上記弁体との芯ずれを生じさせることを特徴とする。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面により説明する。
図1は、本発明の膨張弁の一実施の形態を示す縦断面図であり、冷凍サイクルの構成を省略して示しており、図6(A)に示す従来例の膨張弁と基本的構成及び動作は同一であり、従来例と同一及び均等部分には同一の符号を付している。図1においては、図6(A)に示す従来例とは、調整ねじ8bの凹所8fの底部であるばね座面8f’に傾斜プレート10を設けかつ支持部材8cに圧縮コイルばね8aの係止部8c’を設け、これらばね座面8f’と係止部8c’との間に圧縮コイルばね8aが支持されている構成が異なる。なお、図1においては、図6(B)に示す栓体9iにより冷媒を封止する場合を示している。
【0021】
図2(A)及び図2(B)は、それぞれ図1に示す例えば金属製又は樹脂製の傾斜プレート10がばね座面8f’に設けられている構成を示す図1の実施の形態の要部を示す図であり、図2(A)は開弁時の状態を示している。
【0022】
而して、傾斜プレート10はその上面が傾斜(図2(A)及び図2(B)においては図面上右上がりの傾斜)面11として形成され、その上面に反対面である下面は平面であり、ばね座面8f’に当接して配置されている。
かかる構成により、開弁時には、ばね座面8f’に設けられている傾斜プレート10によりその傾斜面11が傾斜手段となって圧縮コイルばね8aが傾き弁体8と作動棒9bの軸の芯がずれる偏芯状態が生じ、傾斜プレート10は偏芯手段として作用し、弁体8が動く時に弁座7aの片側(図2(A)では左側)に押し付けられ、弁座7aとの間に摩擦が生じ、この結果、摺動抵抗が増加することとなり、作動棒9bへの拘束力も発生し、弁体8の振動が抑制される。そして、閉弁時には、弁体8が弁座7aに沿って動き、図2(B)に示す如く弁体8は弁座7aに着座することとなる。
【0023】
また、本発明においては、図2(A)及び図2(B)に示す調整ねじのばね座面8f’に配置された傾斜プレート10の代りに、図3に示す如く調整ねじ8b’のばね座面自体を傾斜面12として形成してもよいのは勿論であり、この場合調整ねじ8b’を樹脂成形により製作することにより、傾斜したばね座面を容易に形成することができる。
【0024】
図4は、本発明の膨張弁の他の実施の形態を示す縦断面図であり、冷凍サイクルの構成を省略して示しており、図6(A)に示す従来例の膨張弁と基本的構成及び動作は同一であり、従来例と同一及び均等部分には同一の符号を付している。図4においては、図6(A)に示す従来例とは、支持部材8cに圧縮コイルばね8aの係止部8c’を設け、かつこの係止部8c’に偏芯手段を具備させ、係止部8c’とばね座面8f’との間に圧縮コイルばね8aが支持されている構成が異なる。なお、図4においては、図6(B)に示す栓体9iにより冷媒を封止する場合を示している。
【0025】
図5(A)及び図5(B)は、図4に示す膨張弁の他の実施の形態の要部を示す縦断面図であり、それぞれ図2(A)に示す開弁時の状態及び図2(B)に示す閉弁時の状態に対応しており、図2(A)及び図2(B)における偏芯手段である傾斜プレートを支持部材8cの係止部8c’として構成し、偏芯手段を圧縮コイルばね8aの一端を支持する鍔部8C”としている。即ち、図5(A)及び図5(B)において、支持部材8cの係止部8c’は傾斜した鍔部8c”として形成されており、圧縮コイルばね8aは支持部材8cの傾斜した鍔部8c”と調整ねじ8bの平坦なばね座面8f’との間に支持されている。
【0026】
かかる構成によれば、開弁時には傾斜した鍔部8c”により圧縮コイルばね8aが傾き、弁体8と作動棒9bの芯がずれる偏芯状態が発生し、鍔部8c”は偏芯手段として作用し、弁体8が動く時に弁体8が弁座7aの片側(図4(A)では左側)に押し付けられ、弁座7aとの間に摩擦が生じ、この結果、摺動抵抗が増加することとなり、作動棒9bへの拘束力も発生し、弁体8の振動が抑制される。そして、閉弁時には弁体8が弁座7aに沿って動き、図4(B)に示す如く弁体8は弁座7aに着座することとなる。
【0027】
【発明の効果】
以上の構成から理解されるように本発明は、弁体と作動棒との芯ずれを発生させる偏芯手段により膨張弁の弁体の振動を抑制するので、簡易な構成でしかも従来の膨張弁の構成を大幅に変更することなく、したがって有用性の高い膨張弁を実現できる。
【図面の簡単な説明】
【図1】本発明に係る膨張弁の一実施の形態を示す縦断面図。
【図2】図1の実施の形態の要部を示す図であり、図2(A)は開弁状態及び図2(B)は閉弁状態を示す。
【図3】本発明に係る膨張弁の一実施の形態における調節ねじの変形例を示す図。
【図4】本発明に係る膨張弁の他の実施の形態を示す縦断面図。
【図5】図4の他の実施の形態の要部を示す図であり、図5(A)は開弁状態及び図5(B)開弁状態を示す。
【図6】図6(A)は従来例の膨張弁の構成を示す断面図、図6(B)は従来例の他の例を示す図。
【図7】図6(A)従来例の要部を示す図であり、図7(A)は開弁状態及び図7(B)は閉弁状態を示す。
【符号の説明】
7 オリフィス
7a 弁座
8 弁体
8a 圧縮コイルばね
8b 調節ねじ
8c 支持部材
8c’ 係止部
8c” 鍔部
8f ばね底面
9b 作動棒
10 傾斜プレート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an expansion valve constituting a refrigeration cycle.
[0002]
[Prior art]
Although there are various types of expansion valves, the valve body is arranged so as to face the orifice formed by narrowing the middle of the high-pressure refrigerant passage through which the high-pressure refrigerant sent to the evaporator passes, and evaporates. An expansion valve that opens and closes a valve body in accordance with the temperature and pressure of a low-pressure refrigerant delivered from a container is widely used.
[0003]
As this type of expansion valve, there is one used in a refrigeration cycle such as an automobile air conditioner shown in FIG. 6A (see, for example, Patent Document 1). That is, the refrigeration cycle 1 includes a refrigerant compressor 2 driven by an engine, a condenser 3 connected to the discharge side of the refrigerant compressor 2, a liquid receiver 4 connected to the condenser 3, and a liquid receiver An expansion valve 5 for adiabatically expanding the liquid-phase refrigerant from the vessel 4 into a gas-liquid two-phase refrigerant, and an evaporator 6 connected to the expansion valve 5. The expansion valve 5 is located in the refrigeration cycle 1. Yes.
[0004]
The expansion valve 5 is provided with a high-pressure side passage 5b through which liquid-phase refrigerant flows into the valve body 5a and a low-pressure side passage 5c through which adiabatic-expanded gas-liquid two-phase refrigerant flows out. The valve body 8d is provided with a valve body 8d for adjusting the amount of refrigerant passing through the orifice 7, and the valve body 8 is in contact with a valve seat 7a formed in the orifice 7. The refrigerant amount is adjusted.
[0005]
The expansion valve 5 is formed through the low-pressure refrigerant passage 5d in the valve body 5a, and the temperature of the refrigerant in the passage 5d is detected in the low-pressure refrigerant passage 5d so that the plunger 9a serving as a temperature sensing portion can slide. Positioned, the plunger 9a is driven by a temperature sensitive drive unit 9 fixed to the upper part of the valve body 5a. The temperature sensitive drive unit 9 is partitioned by a diaphragm 9d to form an upper hermetic chamber 9c and a lower hermetic chamber 9c ′. The disk portion 9e at the upper end of the plunger 9a comes into contact with the diaphragm 9d.
[0006]
The temperature-sensitive drive unit 9 welds the upper cover 9f and the lower cover 9g made of metal such as stainless steel to the upper and lower sides of a thin plate diaphragm 9d made of metal such as stainless steel, and thereby upper and lower airtight chambers 9c and 9c ′. The predetermined refrigerant is sealed in the upper airtight chamber 9c between the diaphragm 9d and the upper cover 9f by the refrigerant pipe 9h, and the refrigerant pipe 9h is sealed. Further, the seat of the lower cover 9g is screwed to the valve body 5a.
[0007]
In addition, as a conventional expansion valve, as shown in FIG. 6 (B) instead of the above refrigerant pipe, there is a type in which a predetermined refrigerant is sealed with a metal plug body 9i using stainless steel or the like. It is fixed to the hole of the cover 9f by welding.
[0008]
Further, a compression coil spring 8a that presses the valve body 8 in the valve closing direction via a support member 8c is disposed in the valve chamber 8d at the lower portion of the valve body 5a. The valve chamber 8d is screwed with the valve body 5a. It is formed by the adjusting screw 8b to be joined, and airtightness is maintained by the O-ring 8e. An operating rod 9b that moves the valve body 8 in the valve opening direction by sliding of the plunger 9a is in contact with the lower end of the plunger 9a.
[0009]
Then, the plunger 9a in the temperature sensitive drive unit 9 transmits the temperature in the low-pressure refrigerant passage 5d to the upper airtight chamber 9c, and the pressure in the upper airtight chamber 9c changes according to the temperature. For example, when the temperature is high, when the pressure in the upper hermetic chamber 9c increases and the diaphragm 9d pushes down the plunger 9a, the valve body 8 moves in the valve opening direction as shown in FIG. The amount of refrigerant passing through the orifice 7 increases without contacting with the temperature of the evaporator 6 and the temperature of the evaporator 6 is lowered.
[0010]
On the other hand, when the temperature is low, the pressure in the upper hermetic chamber 9c is lowered, the force for pushing down the plunger 9a by the diaphragm 9d is weakened, and the valve body 8 is compressed in the valve closing direction as shown in FIG. 7B. The coil spring 8a moves in the valve closing direction to reduce the amount of refrigerant passing through the orifice 7 and raise the temperature of the evaporator 6. 7 (A) and 7 (B) are diagrams showing the main part of the conventional example shown in FIG. 6 (A).
[0011]
Thus, the expansion valve 5 moves the valve body 8 in accordance with the temperature change in the low-pressure refrigerant passage 5d to change the opening area of the orifice 7, and adjusts the refrigerant passage amount to adjust the temperature of the evaporator 6. I am trying. In this type of expansion valve 5, the opening area of the orifice 7 that adiabatically expands from the liquid-phase refrigerant to the gas-liquid two-phase refrigerant is such that the spring coil variable compression coil spring 8 a that presses the valve body 8 in the valve closing direction. The spring load is set by adjusting the adjustment screw 8b.
[0012]
The adjustment screw 8b has a recess 8f formed at the center of the upper surface thereof, and an insertion hole 13 for inserting a tool for moving the adjustment screw 8b up and down in order to adjust the load of the compression coil spring 8a at the center of the lower surface. The bottom portion of the recess 8f is a support portion that supports the compression coil spring 8a, and serves as a spring seat surface 8f ′ against which one end of the compression coil spring 8a abuts.
[0013]
By the way, in the high pressure refrigerant sent to the expansion valve, pressure fluctuation may occur upstream in the refrigeration cycle, and the pressure fluctuation is transmitted to the expansion valve using the high pressure refrigerant liquid as a medium.
Then, in the conventional expansion valve as described above, when the upstream refrigerant pressure is transmitted to the valve body by pressure fluctuation, it may cause a problem that the operation of the valve body becomes unstable. In some cases, the flow control of the expansion valve is not accurately performed, or there is a problem that noise is generated due to vibration of the valve body.
[0014]
Therefore, as a conventional countermeasure, the valve body is biased from the side by a spring or the like to the rod disposed so as to be movable back and forth in the axial direction between the power element and the valve body so that the pressure of the high pressure side refrigerant is increased. There is a means for stabilizing the operation so as not to react sensitively to fluctuations (for example, Patent Document 2).
[0015]
[Patent Document 1]
Japanese Patent Laying-Open No. 2001-50617 (second page, FIG. 7)
[Patent Document 2]
Japanese Patent Laid-Open No. 9-222268 (pages 2 to 3, FIG. 1)
[0016]
[Problems to be solved by the invention]
However, although the conventional expansion valve as described above can achieve the purpose of stabilizing the operation against the pressure fluctuation of the high-pressure refrigerant, the spring that pushes the rod that advances and retreats in the axial direction from the side must be arranged in a stable state. Therefore, there is a risk that the structure and assembly work become complicated and high cost is required.
Therefore, an object of the present invention is to provide an expansion valve that can achieve stable operation with respect to pressure fluctuations of a high-pressure refrigerant without greatly changing the configuration of a conventional expansion valve with a simple configuration.
[0017]
[Means for Solving the Problems]
In order to achieve such an object, an expansion valve according to the present invention includes a valve body including an orifice that connects a high-pressure side passage through which refrigerant flows and a low-pressure side passage through which refrigerant flows, and an amount of refrigerant flowing through the orifice. A valve body to be adjusted, an operating rod that contacts the valve body to operate the valve body in the valve opening direction, a temperature-sensitive drive member that drives the operating rod, and a compression coil that presses the valve body in the valve closing direction In the expansion valve including a spring and an adjustment screw for adjusting the pressing force of the compression coil spring , the adjustment screw has an inclined surface formed on a support portion that supports the compression coil spring, and the inclination surface allows the The compression coil spring is inclined to cause a misalignment between the operating rod and the valve element .
[0018]
And a valve body having an orifice communicating the high-pressure side passage through which the refrigerant flows in and the low-pressure side passage through which the refrigerant flows, a valve body for adjusting the amount of the refrigerant flowing through the orifice, and abutting against the valve body An operating rod that operates the valve body in the valve opening direction, a temperature-sensitive drive member that drives the operating rod, a compression coil spring that presses the valve body in the valve closing direction, and a pressing force of the compression coil spring is adjusted. In the expansion valve including the adjusting screw, an inclined plate is provided between the compression coil spring and a support surface of the adjustment screw that supports the compression coil spring, and the compression coil spring is inclined by the inclined plate. A misalignment between the operating rod and the valve body is caused .
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing an embodiment of the expansion valve of the present invention, omitting the configuration of the refrigeration cycle, and the basic configuration of the conventional expansion valve shown in FIG. 6 (A). The operation is the same, and the same reference numerals are given to the same and equivalent parts as in the conventional example. In FIG. 1, the conventional example shown in FIG. 6A differs from the conventional example in that an inclined plate 10 is provided on a spring seat surface 8 f ′ which is the bottom of a recess 8 f of an adjusting screw 8 b and a compression coil spring 8 a is engaged with a support member 8 c. The structure which the stop part 8c 'is provided and the compression coil spring 8a is supported between these spring seating surfaces 8f' and the latching | locking part 8c 'differs. FIG. 1 shows a case where the refrigerant is sealed by the plug 9i shown in FIG. 6 (B).
[0021]
2 (A) and 2 (B) are the main points of the embodiment of FIG. 1 showing a configuration in which, for example, a metal or resin inclined plate 10 shown in FIG. 1 is provided on the spring seat surface 8f ′. FIG. 2A shows a state when the valve is opened.
[0022]
Thus, the upper surface of the inclined plate 10 is formed as an inclined surface 11 (inclined to the right in the drawings in FIGS. 2A and 2B), and the lower surface opposite to the upper surface is a flat surface. Yes, and is disposed in contact with the spring seat surface 8f '.
With this configuration, when the valve is opened, the inclined plate 10 provided on the spring seating surface 8f ′ makes the inclined surface 11 as an inclined means, and the compression coil spring 8a becomes the center of the axis of the inclined valve body 8 and the operating rod 9b. An eccentric state occurs, the inclined plate 10 acts as an eccentric means, and when the valve body 8 moves, it is pressed against one side of the valve seat 7a (left side in FIG. 2 (A)), and friction between it and the valve seat 7a. As a result, the sliding resistance increases, a binding force to the operating rod 9b is also generated, and the vibration of the valve body 8 is suppressed. When the valve is closed, the valve body 8 moves along the valve seat 7a, and the valve body 8 is seated on the valve seat 7a as shown in FIG.
[0023]
In the present invention, instead of the inclined plate 10 disposed on the spring seating surface 8f ′ of the adjusting screw shown in FIGS. 2A and 2B, the spring of the adjusting screw 8b ′ as shown in FIG. Of course, the seating surface itself may be formed as the inclined surface 12, and in this case, the inclined spring seating surface can be easily formed by manufacturing the adjusting screw 8b 'by resin molding.
[0024]
FIG. 4 is a longitudinal sectional view showing another embodiment of the expansion valve of the present invention, in which the configuration of the refrigeration cycle is omitted, and is basically the same as the conventional expansion valve shown in FIG. 6 (A). The configuration and operation are the same, and the same and equivalent parts as in the conventional example are denoted by the same reference numerals. In FIG. 4, the conventional example shown in FIG. 6A is different from the conventional example in that the supporting member 8c is provided with a locking portion 8c ′ of the compression coil spring 8a, and the locking portion 8c ′ is provided with an eccentric means. The configuration in which the compression coil spring 8a is supported between the stop portion 8c ′ and the spring seat surface 8f ′ is different. FIG. 4 shows a case where the refrigerant is sealed by the plug 9i shown in FIG.
[0025]
5 (A) and 5 (B) are longitudinal cross-sectional views showing the main part of another embodiment of the expansion valve shown in FIG. 4, and the state at the time of opening shown in FIG. It corresponds to the state at the time of valve closing shown in FIG. 2 (B), and the inclined plate which is the eccentric means in FIG. 2 (A) and FIG. The eccentric means is a flange portion 8C ″ that supports one end of the compression coil spring 8a. That is, in FIGS. 5A and 5B, the locking portion 8c ′ of the support member 8c is an inclined flange portion. The compression coil spring 8a is supported between the inclined flange portion 8c "of the support member 8c and the flat spring seat surface 8f 'of the adjusting screw 8b.
[0026]
According to such a configuration, when the valve is opened, the compression coil spring 8a is inclined by the inclined flange portion 8c ", and an eccentric state occurs in which the cores of the valve body 8 and the operating rod 9b are displaced, and the flange portion 8c" serves as an eccentric means. When the valve body 8 moves and the valve body 8 moves, the valve body 8 is pressed against one side of the valve seat 7a (left side in FIG. 4A), and friction is generated between the valve seat 7a, resulting in an increase in sliding resistance. As a result, a binding force to the operating rod 9b is also generated, and the vibration of the valve body 8 is suppressed. When the valve is closed, the valve body 8 moves along the valve seat 7a, and the valve body 8 is seated on the valve seat 7a as shown in FIG.
[0027]
【The invention's effect】
As understood from the above configuration, the present invention suppresses the vibration of the valve body of the expansion valve by the eccentric means for generating the misalignment between the valve body and the actuating rod. Therefore, a highly useful expansion valve can be realized without drastically changing the configuration.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of an expansion valve according to the present invention.
2A and 2B are diagrams showing a main part of the embodiment of FIG. 1, in which FIG. 2A shows a valve open state and FIG. 2B shows a valve closed state.
FIG. 3 is a view showing a modification of the adjusting screw in the embodiment of the expansion valve according to the present invention.
FIG. 4 is a longitudinal sectional view showing another embodiment of the expansion valve according to the present invention.
5 is a diagram showing a main part of another embodiment of FIG. 4, FIG. 5 (A) shows a valve open state and FIG. 5 (B) a valve open state.
6A is a cross-sectional view illustrating a configuration of a conventional expansion valve, and FIG. 6B is a diagram illustrating another example of the conventional example.
7A is a view showing a main part of a conventional example, FIG. 7A shows a valve open state, and FIG. 7B shows a valve closed state.
[Explanation of symbols]
7 Orifice 7a Valve seat 8 Valve body 8a Compression coil spring 8b Adjustment screw 8c Support member 8c 'Locking portion 8c "Hook 8f Spring bottom surface 9b Actuating rod 10 Inclined plate

Claims (2)

冷媒が流入する高圧側通路と冷媒が流出する低圧側通路とを連通するオリフィスを備えた弁本体と、前記オリフィスを流れる冷媒の量を調節する弁体と、該弁体に当接して弁体を開弁方向に作動させる作動棒と、該作動棒を駆動する感温駆動部材と、上記弁体を閉弁方向に押圧する圧縮コイルばねと、上記圧縮コイルばねの押圧力を調整する調整ねじとを備えた膨張弁において、
上記調整ねじには、上記圧縮コイルばねを支持する支持部に傾斜面が形成され、
当該傾斜面により上記圧縮コイルばねを傾斜させ、上記作動棒と上記弁体との芯ずれを生じさせることを特徴とする膨張弁。
A valve body having an orifice communicating with a high-pressure side passage through which refrigerant flows and a low-pressure side passage through which refrigerant flows, a valve body for adjusting the amount of refrigerant flowing through the orifice, and a valve body in contact with the valve body An operating rod that operates the valve in the valve opening direction, a temperature-sensitive drive member that drives the operating rod, a compression coil spring that presses the valve body in the valve closing direction, and an adjustment screw that adjusts the pressing force of the compression coil spring In an expansion valve with
The adjustment screw has an inclined surface formed on a support portion that supports the compression coil spring,
An expansion valve characterized in that the compression coil spring is inclined by the inclined surface to cause misalignment between the operating rod and the valve body .
冷媒が流入する高圧側通路と冷媒が流出する低圧側通路とを連通するオリフィスを備えた弁本体と、前記オリフィスを流れる冷媒の量を調節する弁体と、該弁体に当接して弁体を開弁方向に作動させる作動棒と、該作動棒を駆動する感温駆動部材と、上記弁体を閉弁方向に押圧する圧縮コイルばねと、上記圧縮コイルばねの押圧力を調整する調整ねじとを備えた膨張弁において、
上記圧縮コイルばねとこれを支持する上記調整ねじの支持面との間には、傾斜プレートが設けられ、
当該傾斜プレートにより上記圧縮コイルばねを傾斜させ、上記作動棒と上記弁体との芯ずれを生じさせることを特徴とする膨張弁。
A valve body having an orifice communicating with a high-pressure side passage through which refrigerant flows and a low-pressure side passage through which refrigerant flows, a valve body for adjusting the amount of refrigerant flowing through the orifice, and a valve body in contact with the valve body An operating rod that operates the valve in the valve opening direction, a temperature-sensitive drive member that drives the operating rod, a compression coil spring that presses the valve body in the valve closing direction, and an adjustment screw that adjusts the pressing force of the compression coil spring In an expansion valve with
An inclined plate is provided between the compression coil spring and the support surface of the adjustment screw that supports the compression coil spring.
By the inclined plate is inclined the compression coil spring, it said to cause misalignment between the actuating rod and the valve body Rise expansion valve.
JP2002369502A 2002-12-20 2002-12-20 Expansion valve Expired - Fee Related JP4077308B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002369502A JP4077308B2 (en) 2002-12-20 2002-12-20 Expansion valve
CNB2003101184023A CN100432581C (en) 2002-12-20 2003-12-09 Expansion velves
KR1020030090441A KR101027488B1 (en) 2002-12-20 2003-12-12 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002369502A JP4077308B2 (en) 2002-12-20 2002-12-20 Expansion valve

Publications (2)

Publication Number Publication Date
JP2004198064A JP2004198064A (en) 2004-07-15
JP4077308B2 true JP4077308B2 (en) 2008-04-16

Family

ID=32765711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369502A Expired - Fee Related JP4077308B2 (en) 2002-12-20 2002-12-20 Expansion valve

Country Status (3)

Country Link
JP (1) JP4077308B2 (en)
KR (1) KR101027488B1 (en)
CN (1) CN100432581C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102979945B (en) * 2011-09-02 2016-08-31 浙江三花股份有限公司 A kind of heating power expansion valve
CN103075566B (en) * 2011-09-22 2018-01-19 株式会社不二工机 Valve gear
KR20200009724A (en) 2018-07-20 2020-01-30 엘지전자 주식회사 Expansion Valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3481036B2 (en) * 1996-03-25 2003-12-22 株式会社テージーケー Expansion valve
JP3372439B2 (en) * 1996-10-11 2003-02-04 株式会社不二工機 Expansion valve
JPH10238903A (en) * 1997-02-26 1998-09-11 Tgk Co Ltd Expansion valve
CA2272181A1 (en) * 1998-06-01 1999-12-01 Robert J. Torrence Right angle thermally responsive expansion valve
JP3987983B2 (en) * 1998-10-02 2007-10-10 株式会社デンソー Thermal expansion valve

Also Published As

Publication number Publication date
KR101027488B1 (en) 2011-04-06
CN1510364A (en) 2004-07-07
JP2004198064A (en) 2004-07-15
KR20040055584A (en) 2004-06-26
CN100432581C (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP4331571B2 (en) Expansion valve
JP6368895B2 (en) Control valve
JP4142290B2 (en) Expansion valve
US6315266B1 (en) Pilot-operated flow regulating valve
US20080073441A1 (en) Expansion valve
US6427243B2 (en) Thermal expansion valve
JP2008138812A (en) Differential pressure valve
US6209793B1 (en) Thermostatic expansion valve in which a valve seat is movable in a flow direction of a refrigerant
JP2002310538A (en) Temperature type expansion valve
JP4077308B2 (en) Expansion valve
JP4462807B2 (en) Expansion valve or expansion valve case
US9766001B2 (en) Control valve
JP2001012824A (en) Control valve
JP3987983B2 (en) Thermal expansion valve
JP4704451B2 (en) Vibration isolator for expansion valve
JPH10238903A (en) Expansion valve
JP3859913B2 (en) Expansion valve
JP2005249273A (en) Thermal expansion valve
JP2001116400A (en) Refrigeration cycle
JP3485748B2 (en) Expansion valve
JPH109720A (en) Thermal expansion valve
JP2001091107A (en) Expansion valve
JP2001091110A (en) Expansion valve
JP2004138292A (en) Expansion valve
JP2001248751A (en) Solenoid valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

R150 Certificate of patent or registration of utility model

Ref document number: 4077308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees