JP4075987B2 - Outer diameter measuring instrument for tensile test - Google Patents

Outer diameter measuring instrument for tensile test Download PDF

Info

Publication number
JP4075987B2
JP4075987B2 JP2002288843A JP2002288843A JP4075987B2 JP 4075987 B2 JP4075987 B2 JP 4075987B2 JP 2002288843 A JP2002288843 A JP 2002288843A JP 2002288843 A JP2002288843 A JP 2002288843A JP 4075987 B2 JP4075987 B2 JP 4075987B2
Authority
JP
Japan
Prior art keywords
test piece
measuring instrument
outer diameter
tensile
notch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002288843A
Other languages
Japanese (ja)
Other versions
JP2004125555A (en
Inventor
浩 寺西
有亮 梅谷
政孝 今村
昌浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Ube Corp
Original Assignee
Toyota Motor Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Ube Industries Ltd filed Critical Toyota Motor Corp
Priority to JP2002288843A priority Critical patent/JP4075987B2/en
Publication of JP2004125555A publication Critical patent/JP2004125555A/en
Application granted granted Critical
Publication of JP4075987B2 publication Critical patent/JP4075987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、材料の引張試験を行う引張試験方法に係り、特に高速引張りのもとでも真応力、真ひずみの自動測定を可能にする引張試験方法の実施に用いる外径測定器に関する。
【0002】
【従来の技術】
JIS Z2241(金属材料引張試験方法)、JIS K7113(プラスチックの引張試験方法)などで規定される標準的な引張試験方法においては、試験片に負荷した荷重を試験片の平行部の原断面積で徐することにより応力を求めるようにしているが、降伏以降の塑性領域では、試験片にくびれ(断面縮小)が生じるため、前記したように荷重を原断面積で除したのでは、真応力を表すことにならず、真の応力−ひずみの関係を得ることはできない。
そこで、例えば、特許文献1、2においては、引張試験機にセットした試験片の周りにレーザビーム等を利用した非接触式の外径測定器を配置し、引張試験中、この外径測定器を試験片の軸方向へ往復運動させながら試験片の外径を連続に測定することを行っており、この測定で得られる最小外径を用いることで、真応力が得られるようになる。
【0003】
ところで最近、例えば、車両製造の分野では、衝突解析に資する早い変形速度での材料特性が重要視されるようになってきており、これに応えるには、いわゆる高速引張り(10000mm/min以上)による特性把握が必要になる。しかしながら、上記した特許文献1、2に記載の引張試験は、何れも低速(500mm/min以下)で静的に引張るものであり、この方法を高速引張りに適用した場合には、平行部におけるくびれ箇所が予測できないこともあって、最小外径をリアルタイムに測定することはできず、真の応力−ひずみの相関を得ることは困難となる。なお、これら特許文献1、2に記載のものでは、ある程度くびれが生じたら、くびれ箇所を重点に外径測定器を往復運動させるようにしている(特許文献1の第2頁左下欄第18〜20行、特許文献2の段落[0010])が、高速引張りでは、このような方法も採用できない。
【0004】
一方、非特許文献1には、樹脂材料を対象に、平板状引張試験片の平行部に所定のピッチで線を描き、高速引張り試験中の線の変化をビデオテープレコーダにより観測することにより、真の応力−ひずみの相関を求めることが開示されている。
【0005】
【特許文献1】
特開平2−103442号公報
【特許文献2】
特開平7−113732号公報
【非特許文献1】
ありもと ひであき(Hideaki Arimoto)外3名、「プラスチックリブのエネルギー吸収機構に関する研究(A study on Energy-Absorbing Mechanism of Plastic Ribs)」,アイベック’98のプロシーディング(Proceeding of IBEC’98),米国,SAE イナターナショナル(international),1998.CE−4(第4〜6図)
【0006】
【発明が解決しようとする課題】
しかしながら、上記非特許文献1に記載の方法によれば、伸びや断面積変化を、ビデオ画像を1コマごとに画像処理して求める必要があるため、試験後のデータ解析となり、試験中に真応力、真ひずみを自動測定することは不可能で、材料特性の把握に時間がかかる。
また、樹脂材料の高速引張り試験においては、くびれ発生によりひずみ速度が急増するので、ほぼ一定のひずみ速度となるように引張試験機側のアクチュエータをフィードバック制御する必要があるが、この非特許文献1に記載の方法によれば、試験後のデータ解析となるため、前記したフィードバック制御は不可能で、特に樹脂材料に関しては、得られる特性値の信頼性が低いものとなる。
本発明は、上記した従来の問題点に鑑みてなされたもので、その課題とするところは、高速引張りにおいても真応力、真ひずみを高精度に自動測定できるようにし、もって試験時間の短縮と得られる特性値の信頼性の向上とに大きく寄与する引張試験用外径測定器を提供することにある。
【0007】
【課題を解決するための手段】
本発明に係る外径測定器を用いて行う引張試験方法は、平行部の一部に円弧状乃至U字状切欠を設けた棒状試験片を引張試験機にセットし、引張試験中、前記試験片の切欠底の外径を連続測定することを特徴とする。
このように行う引張試験においては、棒状試験片の切欠底に集中的にひずみが生じるので、高速引張りを行う場合でも、この切欠底に的をしぼってリアルタイムに外径を測定することができる。また、この外径測定の結果からひずみ速度も把握できるので、ひずみ速度をほぼ一定にするためのフィーバック制御も可能になる。
本試験方法において、上記切欠底の外径を測定する方法は任意であるが、試験片の切欠底に糸状体望ましくは絹糸を巻回し、該糸状体の長さ変化から前記切欠底の外径変化を測定する方法を採用することができる。この場合は、試験片の円形断面が非円形の状態に変形しても糸状体の長さ変化から高精度に断面積変化を把握することができる。
本試験方法で対象とする試験片材料は、金属材料であっても、樹脂材料であってもよいが、上記したようにひずみ速度をほぼ一定にすることができることから、ひずみ速度の影響を大きく受ける樹脂材料を対象とした場合に、特に有用となる。
【0008】
上記引張試験方法に用いる本発明に係る外径測定器は、引張試験機にセットした切欠付き棒状試験片に、前記切欠を間にして該試験片に固定される上・下クランプ手段の間に軸方向へフローティング可能に脱着される測定器本体と、前記試験片の切欠底に巻回される、絹糸または絹糸と同等の伸び特性および柔軟性を有する糸状体と、前記測定器本体に設けられ、前記試験片の切欠底に巻回された絹糸または糸状体の長さ変化を検出する変位検出手段とを備えていることを特徴とする。
このように構成した外径測定器においては、試験片の切欠底の断面縮小に応じて絹糸または糸状体の長さが延びるので、この絹糸または糸状体の延びを変位検出手段により測定することで、試験片の切欠底の平均直径すなわち断面積を正確に把握することができる。また、測定器本体が切欠を間にする上・下クランプ手段によってフローティング可能に試験片に脱着されるので、試験片に伸びが生じても外径測定位置を常に切欠底に保つことができ、試験片の切欠底の外径測定をより一層正確に行うことができる。
本外径測定装置において、上記測定器本体は、試験片の挿通孔を上・下板部に有する枠形状をなし、前記試験片に脱着可能に固定される上・下クランプ手段の間に弾性体を介して挟持される構成とすることができ、該弾性体の弾発力を利用して測定器本体を簡単にフローティングさせることができる。
また、上記変位検出手段は、測定器本体に一端が固定されかつ試験片の切欠底に巻回された絹糸または糸状体の他端を係着する可動体と、該可動体を、常時は前記絹糸または糸状体に張力を付与する方向へ付勢する付勢手段と、前記可動体の変位を測定する変位センサとからなる構成とすることができる。この場合、前記変位センサとしては、比較的小型で測定精度に優れている渦電流変位センサを用いるのが望ましい。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。
図1は、本発明に係る引張試験方法の一つの実施形態を示したものである。同図において、1は、プレス機械の固定テーブル、2は、プレス機械の可動テーブルで、両テーブル1、2には、後述の試験片10の両端部を支持するチャック3、4が配設されている。可動テーブル2は、アクチュエータ(図示略)および早送り手段(図示略)により昇降駆動されるようになっており、引張試験に際しては、アクチュエータの駆動で可動テーブル2が上昇することにより、試験片10に引張荷重が加えられ、この荷重は、固定テーブル1側のチャック3に付設した荷重測定器(ロードセンサ)5により検出されるようになっている。
【0010】
本実施の形態で用いる試験片10は、図2によく示されるように、全体が棒状をなしており、その長手方向の中間部位には、円弧状の切欠11が形成されている。この試験片10は、一例として、全長が150mm、棒状部(平行部)の直径Dが10mm、切欠11の底の径dが3mm、切欠11の底面のアールRが7mmとなるようにその寸法形状が設定されている。なお、前記切欠11は、U字状としてもよい。
【0011】
引張試験に際しては、両チャック3、4を介して引張試験機にセットした試験片10に対し、本発明に係る外径測定器20が装着される。この外径測定器20は、引張試験中、試験片10の切欠11の底(以下、これを切欠底という)の直径を連続測定するもので、引張試験機にセットした試験片10にその軸方向へフローティング可能に脱着される測定器本体21と、試験片10の切欠底に巻回される絹糸(糸状体)22とこの絹糸22の長さ変化を検出する変位検出手段23とから概略構成されている。
【0012】
測定器本体21は、四角枠状をなし、その相対向する2つの壁部24に試験片10の挿通を許容する挿通孔25を設けている。測定器本体21は、その挿通孔25に試験片10を挿通させた状態で横向きに試験片10にセットされ、試験片10に脱着可能に固定した上・下クランプ手段26と27との間に弾性体28を介して挟持されるようになっている。
より詳しくは、上・下クランプ手段26と27のそれぞれは、図3および4にも示されるように、試験片10に嵌合可能な断面半円形の嵌合部29aを有する一対のL字板29と、各一対のL字板29を一体化する一対のボルト・ナット30とからなっている。各一対のL字板29は、それぞれの嵌合部29aを試験片10に沿わせた状態で相互に合わされ、この状態で前記一対のボルト・ナット30を用いて試験片10に締付け固定される。しかして、上・下クランプ手段26と27は、切欠11を間にして、測定器本体21の対向壁部24間の外側寸法よりわずか大きな間隔で試験片10に固定されるようになっている。これにより各弾性体28は、適当に圧縮する状態で測定器本体21と上・下クランプ手段26と27との間に介装され、この結果、測定器本体21は、試験片10の軸方向へフローティング可能となる。なお、前記弾性体28は、その種類を特に問うものではないが、粘弾性を有するスポンジを用いるのが望ましく、この場合は、測定器本体21の対向壁部24の外面に接着しておくようにする。
【0013】
上記変位検出手段23は、測定器本体21に一端が固定されかつ試験片10の切欠底に巻回された絹糸22の他端を係着する可動体31と、この可動体31を、常時は絹糸22に張力を付与する方向へ付勢する皿ばね(付勢手段)32と、前記可動体31の変位を測定する渦電流変位センサ33とからなっている。渦電流変位センサ33は、ここでは、下クランプ手段27を構成する片側のL字板29と一体をなすブラケット34のフォーク状の起立片34aに、ボルト35を用いて前記可動体31に対向するように位置決め固定されている。
この渦電流変位センサ33には、信号線36を介して変位検出回路37が接続されている。変位検出回路37は、渦電流変位センサ33と可動体31との間に発生する高周波磁界の変化から両者の間隔を検出する機能を有しており、その検出信号は、演算装置38に送出されるようになっている。演算装置38は、変位検出回路37と前記荷重測定器5とからの信号に基づいて応力、ひずみを演算し、応力−ひずみの相関を求める機能を有している。
【0014】
以下、上記試験片10および外径測定器20を用いて行う引張試験方法について説明する。
引張試験に際しては、先ず、引張試験機の可動テーブル2を上昇させた状態で、固定テーブル1のチャック3に試験片10の一端部を支持させ、次に、この試験片10の、切欠11より所定距離だけ下方へ離れた部位に、下クランプ手段27を構成する一対のL字板29をボルト・ナット30を用いて締付け固定する。この時、前記一対のL字板29の一方と一体のブラケット34には、渦電流変位センサ23が取付けられており、下クランプ手段27を試験片10に固定すると同時に、前記渦電流変位センサ23が試験片10の切欠11に対向する側方位置に位置決めされる。
【0015】
その後、測定器本体21の挿通孔25に試験片10を通しながら該測定器本体21を上方から前記下クランプ手段27上に着座させ、続いて、上クランプ手段26を構成する一対のL字板29をボルト・ナット30を用いて試験片10に締付け固定する。この時、上クランプ手段26に適宜の載荷重を加えて上・下弾性体28を所定量圧縮させるようにし、これにより測定器本体21は上・下クランプ手段26と27との間にフローティング可能に挟持される。
【0016】
次に、予め測定器本体21に一端が係着されている絹糸22を試験片10の切欠11に巻回し、その他端を可動体31の一端に係着し、この係着完了により引張試験機の可動テーブル2を図示を略す早送り手段の作動により高速で下降させ、そのチャック4に試験片10の他端部を支持させる。そして、この準備完了により引張試験機のアクチュエータの作動により可動テーブル2を一定速度で上昇させる。すると、試験片10は、弾性変形した後、降伏して塑性変形を起こし、この塑性変形により切欠底が次第に断面縮小(縮径)する。すると、この切欠底の断面縮小に応じて絹糸22の長さが次第に延び、これに応じて可動体31が皿ばね32の付勢力で渦電流変位センサ33側へ接近する。渦電流変位センサ33の信号は前記したように変位検出回路37を経て演算装置38へ送出されるようになっており、演算装置38は、変位検出回路37からの信号に基づいて試験片10の切欠底の平均直径すなわち断面積を演算し、さらに前記荷重検出器5で得られた荷重データを前記断面積で除することで真応力を演算する。一方、試験片10の切欠底の外径変化から真のひずみ速度が分かるので、演算装置38は、前記ひずみ速度が、予め設定した値よりも大きくなる場合は、所定のひずみ速度が得られるように前記引張試験機のアクチュエータをフィードバック制御する。
【0017】
このようにしてほぼ一定のひずみ速度のもとで引張試験が進行し、遂には試験片10がその切欠11の底から破断する。しかして、この引張試験中、変位検出手段23および荷重検出器5からの信号により真応力、真ひずみが連続測定されているので、樹脂材料を対象に高速引張りしても、真応力−真ひずみの相関を正確に把握することができるようになる。
本実施の形態においては特に、試験片10に伸びが生じても、弾性体28を介して測定器本体21がフローティングし、試験片10の切欠11に対する中立位置を維持するので、変位検出手段23による試験片10の切欠底の外径測定を正確に行うことができる。ここで、上記したごとき切欠11を有する試験片10の伸びは、せいぜい2〜3mmであり、前記平板状の弾性体28を用いても十分にフローティング機能が維持される。また、外径測定器20を構成する絹糸22は、それ自体の伸びが小さい上、試験片10の外径変化にも追従する柔軟性を有しているので、試験片10の切欠底がだ円状に断面縮小する場合でも、該絹糸22の長さ変化から切欠底の断面積変化を正確に求めることができる。
【0019】
【発明の効果】
以上、説明したように、本発明に係る引張試験用外径測定器によれば、試験片に切欠底に巻回した絹糸または糸状体の長さ変化から該切欠底の外径を正確に測定できるので、高速引張りを行う場合でも真応力、真ひずみをリアルタイムに測定でき、ひずみ速度ほぼ一定に制御することも可能になって、試験時間の短縮と得られる特性値の信頼性の向上とに大きく寄与するものとなる。
【図面の簡単な説明】
【図1】本発明に係る引張試験方法の実施形態とこの引張試験に用いる外径測定器の構造とを示す側面図である。
【図2】本引張試験で用いる試験片の形状を示す側面図である。
【図3】本外径測定器を構成する測定器本体を試験片に取付けるためのクランプ手段の構造を示す平面図である。
【図4】本外径測定器を構成する測定器本体の構造を示す側面図である。
【符号の説明】
1 引張試験機の固定テーブル
2 引張試験機の可動テーブル
3、4 チャック
5 荷重測定器
10 試験片
11 試験片の切欠
20 外径測定器
21 測定器本体
22 絹糸(糸状体)
23 変位測定手段
26、27 クランプ手段
31 可動体
32 皿ばね(付勢手段)
33 渦電流変位センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tensile test method for performing a tensile test of the material, in particular true stress even under high-speed tensile relates to an outer diameter measuring instrument used in the practice of the tensile test method of enabling automatic measurement of the true strain.
[0002]
[Prior art]
In the standard tensile test method specified by JIS Z2241 (metal material tensile test method), JIS K7113 (plastic tensile test method), etc., the load applied to the test piece is the original cross-sectional area of the parallel part of the test piece. The stress is obtained by slowing down, but in the plastic region after yielding, the test piece is constricted (cross-sectional reduction), so if the load is divided by the original cross-sectional area as described above, the true stress is obtained. It cannot be expressed, and a true stress-strain relationship cannot be obtained.
Therefore, for example, in Patent Documents 1 and 2, a non-contact type outer diameter measuring device using a laser beam or the like is arranged around a test piece set in a tensile testing machine, and this outer diameter measuring device is used during a tensile test. The outer diameter of the test piece is continuously measured while reciprocating in the axial direction of the test piece, and the true stress can be obtained by using the minimum outer diameter obtained by this measurement.
[0003]
Recently, for example, in the field of vehicle manufacturing, material properties at high deformation speeds that contribute to collision analysis have become important. To meet this demand, so-called high-speed tension (10000 mm / min or more) is used. It is necessary to understand the characteristics. However, the tensile tests described in Patent Documents 1 and 2 are all statically pulled at a low speed (500 mm / min or less), and when this method is applied to high-speed tension, the constriction in the parallel portion is caused. Since the location cannot be predicted, the minimum outer diameter cannot be measured in real time, and it is difficult to obtain a true stress-strain relationship. In addition, in the thing of these patent documents 1 and 2, when a narrowing arises to some extent, it is made to reciprocate an outer diameter measuring device focusing on a constriction location (the 2nd page lower left column 18th page of patent document 1). Line 20, paragraph [0010] of Patent Document 2), such a method cannot be adopted by high-speed tension.
[0004]
On the other hand, in Non-Patent Document 1, by drawing a line at a predetermined pitch on a parallel portion of a flat plate tensile test piece for a resin material, and observing a change in the line during a high-speed tensile test with a video tape recorder, It is disclosed to determine a true stress-strain correlation.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2-103442 [Patent Document 2]
JP 7-113732 A Non-Patent Document 1
Hideaki Arimoto and three others, “A study on Energy-Absorbing Mechanism of Plastic Ribs”, Proceeding of IBEC '98, USA, SAE International, 1998.CE-4 (Figures 4-6)
[0006]
[Problems to be solved by the invention]
However, according to the method described in Non-Patent Document 1, since it is necessary to determine the elongation and change in cross-sectional area by processing a video image for each frame, data analysis is performed after the test, and true during the test. It is impossible to automatically measure stress and true strain, and it takes time to understand material properties.
In a high-speed tensile test of a resin material, the strain rate increases rapidly due to the occurrence of necking. Therefore, it is necessary to feedback-control the actuator on the tensile tester side so that the strain rate is almost constant. According to the method described in (1), since the data analysis after the test is performed, the feedback control described above is impossible, and the reliability of the obtained characteristic value is particularly low for the resin material.
The present invention has been made in view of the above-described conventional problems, and the problem is that the true stress and true strain can be automatically measured with high accuracy even in high-speed tension, thereby shortening the test time. An object of the present invention is to provide an outer diameter measuring instrument for a tensile test that greatly contributes to improvement in reliability of the obtained characteristic value.
[0007]
[Means for Solving the Problems]
In the tensile test method performed using the outer diameter measuring instrument according to the present invention, a bar-shaped test piece provided with an arc shape or a U-shaped notch in a part of a parallel portion is set in a tensile tester, and the test is performed during a tensile test. The outer diameter of the cutout bottom of the piece is continuously measured.
In the tensile test performed in this way, strain is intensively generated at the notch bottom of the bar-shaped test piece. Therefore, even when high-speed tension is performed, the outer diameter can be measured in real time by focusing on the notch bottom. Further, since the strain rate can be grasped from the result of the outer diameter measurement, the feedback control for making the strain rate substantially constant becomes possible.
In this test method, the method for measuring the outer diameter of the notch bottom is arbitrary, but a thread, preferably silk thread, is wound around the notch bottom of the test piece, and the outer diameter of the notch bottom is determined from the change in length of the thread. A method of measuring change can be employed. In this case, even if the circular cross section of the test piece is deformed into a non-circular state, the change in the cross sectional area can be grasped with high accuracy from the change in the length of the filamentous body.
The test specimen material used in this test method may be a metal material or a resin material, but since the strain rate can be made almost constant as described above, the influence of the strain rate is greatly increased. This is particularly useful when the target resin material is used.
[0008]
The outer diameter measuring instrument according to the present invention used in the above tensile test method is provided between the upper and lower clamp means fixed to the test piece with the notch interposed between the notched bar test piece set in the tensile tester. A measuring instrument main body that is detachable so as to be floatable in the axial direction, a silk thread wound around the notch bottom of the test piece, or a filament having an elongation characteristic and flexibility equivalent to that of the silk thread, and provided in the measuring instrument main body Displacement detecting means for detecting a change in the length of the silk thread or filament wound around the notch bottom of the test piece.
In the outer diameter measuring device configured in this way, the length of the silk thread or filamentous body extends according to the cross-sectional reduction of the notch bottom of the test piece. Therefore, the extension of the silk thread or filamentous body is measured by the displacement detection means. The average diameter, that is, the cross-sectional area of the notch bottom of the test piece can be accurately grasped. In addition, the measuring instrument body is attached to the test piece so that it can float by the upper and lower clamp means with the notch in between, so even if the test piece is stretched, the outer diameter measurement position can always be kept at the notch bottom, outer diameter measurement of the cutout bottom of the specimen Ru can be performed even more accurately.
In the outer diameter measuring apparatus, the measuring instrument body has a frame shape having test piece insertion holes in the upper and lower plate portions, and is elastic between upper and lower clamp means that are detachably fixed to the test piece. It can be set as the structure clamped through a body, and a measuring device main body can be easily floated using the elastic force of this elastic body.
Further, the displacement detection means includes a movable body having one end fixed to the measuring instrument main body and engaged with the other end of the silk thread or the thread- like body wound around the notch bottom of the test piece, and the movable body at all times. An urging means for urging the silk thread or the filamentous body in a direction to apply tension and a displacement sensor for measuring the displacement of the movable body can be used. In this case, as the displacement sensor, it is desirable to use an eddy current displacement sensor that is relatively small and excellent in measurement accuracy.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows one embodiment of a tensile test method according to the present invention. In the figure, 1 is a fixed table of the press machine, 2 is a movable table of the press machine, and both tables 1 and 2 are provided with chucks 3 and 4 for supporting both ends of a test piece 10 described later. ing. The movable table 2 is driven up and down by an actuator (not shown) and fast-forwarding means (not shown). During the tensile test, the movable table 2 is raised by driving the actuator, so that the test piece 10 A tensile load is applied, and this load is detected by a load measuring device (load sensor) 5 attached to the chuck 3 on the fixed table 1 side.
[0010]
As shown well in FIG. 2, the test piece 10 used in the present embodiment has a rod shape as a whole, and an arc-shaped notch 11 is formed at an intermediate portion in the longitudinal direction. For example, the test piece 10 has a total length of 150 mm, a diameter D of a rod-like part (parallel part) of 10 mm, a diameter d of the bottom of the notch 11 of 3 mm, and a radius R of the bottom of the notch 11 of 7 mm. The shape is set. The notch 11 may be U-shaped.
[0011]
In the tensile test, the outer diameter measuring device 20 according to the present invention is attached to the test piece 10 set in the tensile tester via both chucks 3 and 4. The outer diameter measuring device 20 continuously measures the diameter of the bottom of the notch 11 of the test piece 10 (hereinafter referred to as the notch bottom) during the tensile test. The measuring instrument main body 21 that is detachable so as to be floatable in the direction, the silk thread (filamentous body) 22 wound around the notch bottom of the test piece 10, and the displacement detection means 23 that detects a change in the length of the silk thread 22. Has been.
[0012]
The measuring device main body 21 has a rectangular frame shape, and is provided with insertion holes 25 that allow the test piece 10 to be inserted into two opposing wall portions 24. The measuring device main body 21 is set on the test piece 10 in a state where the test piece 10 is inserted through the insertion hole 25 and is fixed between the upper and lower clamp means 26 and 27 detachably fixed to the test piece 10. It is clamped via the elastic body 28.
More specifically, each of the upper and lower clamp means 26 and 27 has a pair of L-shaped plates each having a semicircular fitting portion 29a that can be fitted to the test piece 10, as shown in FIGS. 29 and a pair of bolts and nuts 30 for integrating each pair of L-shaped plates 29. The pair of L-shaped plates 29 are fitted together with the respective fitting portions 29a along the test piece 10, and in this state, the pair of L-shaped plates 29 are fastened and fixed to the test piece 10 using the pair of bolts and nuts 30. . Thus, the upper and lower clamp means 26 and 27 are fixed to the test piece 10 with a gap slightly larger than the outer dimension between the opposing wall portions 24 of the measuring device main body 21 with the notch 11 therebetween. . As a result, each elastic body 28 is interposed between the measuring device main body 21 and the upper / lower clamp means 26 and 27 in an appropriately compressed state. As a result, the measuring device main body 21 is arranged in the axial direction of the test piece 10. It becomes possible to float. The type of the elastic body 28 is not particularly limited, but it is preferable to use a sponge having viscoelasticity. In this case, the elastic body 28 is adhered to the outer surface of the opposing wall portion 24 of the measuring device main body 21. To.
[0013]
The displacement detecting means 23 includes a movable body 31 having one end fixed to the measuring instrument main body 21 and engaged with the other end of the silk thread 22 wound around the notch bottom of the test piece 10, and the movable body 31 is normally attached to the movable body 31. It comprises a disc spring (biasing means) 32 that urges the silk thread 22 in the direction of applying tension, and an eddy current displacement sensor 33 that measures the displacement of the movable body 31. Here, the eddy current displacement sensor 33 is opposed to the movable body 31 by using a bolt 35 on a fork-like upright piece 34a of a bracket 34 integrally formed with the L-shaped plate 29 on one side constituting the lower clamp means 27. So that the positioning is fixed.
A displacement detection circuit 37 is connected to the eddy current displacement sensor 33 via a signal line 36. The displacement detection circuit 37 has a function of detecting the distance between the eddy current displacement sensor 33 and the movable body 31 from the change in the high-frequency magnetic field, and the detection signal is sent to the arithmetic unit 38. It has become so. The arithmetic device 38 has a function of calculating stress and strain based on signals from the displacement detection circuit 37 and the load measuring device 5 and obtaining a stress-strain correlation.
[0014]
Hereinafter, a tensile test method performed using the test piece 10 and the outer diameter measuring device 20 will be described.
In the tensile test, first, with the movable table 2 of the tensile tester raised, the chuck 3 of the fixed table 1 supports one end of the test piece 10, and then, from the notch 11 of the test piece 10. A pair of L-shaped plates 29 constituting the lower clamp means 27 are fastened and fixed using bolts and nuts 30 to a part separated downward by a predetermined distance. At this time, an eddy current displacement sensor 23 is attached to a bracket 34 that is integral with one of the pair of L-shaped plates 29, and at the same time the lower clamp means 27 is fixed to the test piece 10, the eddy current displacement sensor 23. Is positioned at a side position facing the notch 11 of the test piece 10.
[0015]
Thereafter, the measuring instrument main body 21 is seated on the lower clamping means 27 from above while passing the test piece 10 through the insertion hole 25 of the measuring instrument main body 21, and then a pair of L-shaped plates constituting the upper clamping means 26. 29 is fastened and fixed to the test piece 10 using bolts and nuts 30. At this time, an appropriate load is applied to the upper clamp means 26 to compress the upper and lower elastic bodies 28 by a predetermined amount, so that the measuring instrument body 21 can float between the upper and lower clamp means 26 and 27. Sandwiched between.
[0016]
Next, the silk thread 22 having one end engaged with the measuring device main body 21 in advance is wound around the notch 11 of the test piece 10, and the other end is engaged with one end of the movable body 31. The movable table 2 is lowered at a high speed by the operation of a rapid feed means (not shown), and the other end portion of the test piece 10 is supported by the chuck 4. When the preparation is completed, the movable table 2 is raised at a constant speed by the operation of the actuator of the tensile tester. Then, after elastically deforming, the test piece 10 yields and undergoes plastic deformation, and the cutout bottom gradually decreases in cross section (reduced diameter) due to this plastic deformation. Then, the length of the silk thread 22 gradually increases according to the cross-sectional reduction of the notch bottom, and the movable body 31 approaches the eddy current displacement sensor 33 side by the biasing force of the disc spring 32 accordingly. As described above, the signal of the eddy current displacement sensor 33 is sent to the arithmetic unit 38 via the displacement detection circuit 37, and the arithmetic unit 38 determines whether or not the test piece 10 is based on the signal from the displacement detection circuit 37. The average diameter, that is, the cross-sectional area of the notch bottom is calculated, and the true stress is calculated by dividing the load data obtained by the load detector 5 by the cross-sectional area. On the other hand, since the true strain rate can be found from the change in the outer diameter of the notch bottom of the test piece 10, the arithmetic unit 38 seems to obtain a predetermined strain rate when the strain rate is greater than a preset value. The actuator of the tensile tester is feedback controlled.
[0017]
In this way, the tensile test proceeds under a substantially constant strain rate, and finally the test piece 10 breaks from the bottom of the notch 11. During this tensile test, the true stress and true strain are continuously measured by signals from the displacement detecting means 23 and the load detector 5, so that even if the resin material is pulled at high speed, the true stress-true strain is measured. It becomes possible to accurately grasp the correlation.
Particularly in the present embodiment, even if the test piece 10 is stretched, the measuring device main body 21 floats via the elastic body 28 and maintains the neutral position with respect to the notch 11 of the test piece 10. The outer diameter of the notch bottom of the test piece 10 can be accurately measured. Here, the elongation of the test piece 10 having the notch 11 as described above is at most 2 to 3 mm, and the floating function is sufficiently maintained even when the flat elastic body 28 is used. Further, since the silk thread 22 constituting the outer diameter measuring device 20 has a small elongation, and has flexibility to follow a change in the outer diameter of the test piece 10, the notch bottom of the test piece 10 is open. Even when the cross section is reduced in a circular shape, the change in the cross sectional area of the notch bottom can be accurately obtained from the change in the length of the silk thread 22.
[0019]
【The invention's effect】
As described above, according to the outer diameter measuring instrument for a tensile test according to the present invention, the outer diameter of the notch bottom is accurately measured from the change in the length of the silk thread or filament wound around the notch bottom of the test piece. As a result, true stress and true strain can be measured in real time even when high-speed tension is applied, and the strain rate can be controlled to be almost constant, reducing the test time and improving the reliability of the obtained characteristic values. It will greatly contribute.
[Brief description of the drawings]
FIG. 1 is a side view showing an embodiment of a tensile test method according to the present invention and the structure of an outer diameter measuring instrument used for the tensile test.
FIG. 2 is a side view showing the shape of a test piece used in the tensile test.
FIG. 3 is a plan view showing a structure of a clamping means for attaching a measuring device main body constituting the outer diameter measuring device to a test piece.
FIG. 4 is a side view showing a structure of a measuring instrument main body constituting the outer diameter measuring instrument.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fixed table of tensile tester 2 Movable table 3 of tension tester 4, 4 Chuck 5 Load measuring device 10 Test piece 11 Notch 20 of test piece Outer diameter measuring device 21 Measuring device main body 22 Silk thread (filament)
23 Displacement measuring means 26, 27 Clamping means 31 Movable body 32 Disc spring (biasing means)
33 Eddy current displacement sensor

Claims (4)

引張試験機にセットした切欠付き棒状試験片に、前記切欠を間にして該試験片に固定される上・下クランプ手段の間に軸方向へフローティング可能に脱着される測定器本体と、前記試験片の切欠底に巻回される、絹糸または絹糸と同等の伸び特性および柔軟性を有する糸状体と、前記測定器本体に設けられ、前記試験片の切欠底に巻回された絹糸または糸状体の長さ変化を検出する変位検出手段とを備えていることを特徴とする引張試験用外径測定器。A measuring instrument main body which is attached to a bar-shaped test piece with a notch set in a tensile tester and is detachable so as to be floatable in the axial direction between upper and lower clamping means fixed to the test piece with the notch interposed therebetween, and the test A silk thread or a filament having elongation characteristics and flexibility equivalent to that of a silk thread wound around the notch bottom of the piece, and a silk thread or filament wound around the notch bottom of the test piece provided in the measuring instrument body An outer diameter measuring instrument for tensile testing, comprising: a displacement detecting means for detecting a change in length of the tensile test. 測定器本体が、試験片の挿通孔を上・下板部に有する枠形状をなし、前記試験片に脱着可能に固定される上・下クランプ手段の間に弾性体を介して挟持されることを特徴とする請求項1に記載の引張試験用外径測定器。 The measuring instrument body has a frame shape having test piece insertion holes in the upper and lower plate portions, and is sandwiched between the upper and lower clamp means detachably fixed to the test piece via an elastic body. The outer diameter measuring instrument for a tensile test according to claim 1. 変位検出手段が、測定器本体に一端が固定されかつ試験片の切欠底に巻回された絹糸または糸状体の他端を係着する可動体と、該可動体を、常時は前記絹糸または糸状体に張力を付与する方向へ付勢する付勢手段と、前記可動体の変位を測定する変位センサとからなることを特徴とする請求項1または2に記載の引張試験用外径測定器。 A displacement detecting means includes a movable body having one end fixed to the measuring instrument main body and engaged with the other end of the silk thread or filament wound around the notch bottom of the test piece, and the movable body is normally connected to the silk thread or thread. The outer diameter measuring instrument for a tensile test according to claim 1 or 2 , comprising an urging means for urging the body in a direction of applying tension and a displacement sensor for measuring the displacement of the movable body . 変位センサが、渦電流変位センサであり、可動体に対向して配置されることを特徴とする請求項3に記載の引張試験用外径測定器。 The outer diameter measuring instrument for a tensile test according to claim 3 , wherein the displacement sensor is an eddy current displacement sensor and is disposed to face the movable body .
JP2002288843A 2002-10-01 2002-10-01 Outer diameter measuring instrument for tensile test Expired - Fee Related JP4075987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288843A JP4075987B2 (en) 2002-10-01 2002-10-01 Outer diameter measuring instrument for tensile test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288843A JP4075987B2 (en) 2002-10-01 2002-10-01 Outer diameter measuring instrument for tensile test

Publications (2)

Publication Number Publication Date
JP2004125555A JP2004125555A (en) 2004-04-22
JP4075987B2 true JP4075987B2 (en) 2008-04-16

Family

ID=32281223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288843A Expired - Fee Related JP4075987B2 (en) 2002-10-01 2002-10-01 Outer diameter measuring instrument for tensile test

Country Status (1)

Country Link
JP (1) JP4075987B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234741A (en) * 2013-04-15 2013-08-07 北京工业大学 Device and method for testing tangential static characteristics of single-bolt combined face
CN105954131A (en) * 2016-06-20 2016-09-21 东北大学 Testing device and method for measuring straight pipeline ratchet effect at high temperature and high pressure
CN107389331A (en) * 2017-08-21 2017-11-24 贵州航太精密制造有限公司 A kind of device for the dead bolt intensity for measuring lid lock

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685541B2 (en) * 2005-08-08 2011-05-18 株式会社青山製作所 Bolt tension test method
JP4898579B2 (en) * 2007-07-03 2012-03-14 東洋ゴム工業株式会社 Rubber specimen for life prediction
CN102393330B (en) * 2011-09-01 2013-10-16 北京工业大学 Device for testing tangential stiffness property of joint surface
CN102426140A (en) * 2011-09-23 2012-04-25 华南理工大学 Tensile test device and experimental method of PVB material under high strain rate
CN105865918A (en) * 2016-04-28 2016-08-17 芜湖美威包装品有限公司 Detection device for paperboard strength
JP7103086B2 (en) * 2018-09-05 2022-07-20 株式会社島津製作所 Material testing machine
CN109115622A (en) * 2018-09-21 2019-01-01 苏州海得威视信息技术有限公司 A kind of textile material toughness detection device with visual identity ability
CN110672418A (en) * 2019-11-08 2020-01-10 西安石油大学 Device for measuring true stress and true strain of sample
JP7472505B2 (en) 2020-01-24 2024-04-23 株式会社島津製作所 Material testing machine and method for controlling material testing machine
CN115711813B (en) * 2022-10-24 2023-06-23 杭州禾美汽车科技有限公司 New energy automobile fuse detects processing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234741A (en) * 2013-04-15 2013-08-07 北京工业大学 Device and method for testing tangential static characteristics of single-bolt combined face
CN105954131A (en) * 2016-06-20 2016-09-21 东北大学 Testing device and method for measuring straight pipeline ratchet effect at high temperature and high pressure
CN105954131B (en) * 2016-06-20 2019-02-05 东北大学 Measure the experimental rig and test method of high temperature and pressure lower straighttube road ratcheting
CN107389331A (en) * 2017-08-21 2017-11-24 贵州航太精密制造有限公司 A kind of device for the dead bolt intensity for measuring lid lock

Also Published As

Publication number Publication date
JP2004125555A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP4075987B2 (en) Outer diameter measuring instrument for tensile test
US6520024B2 (en) Crack-type fatigue detecting sensor, method for fabricating crack-type fatigue detecting sensor, and method for estimating damage using crack-type fatigue detecting sensor
KR101370297B1 (en) A jaw of a tensile test device, a jaw assembly, a tensile test machine, and an actuation apparatus for testing deposits on electronic substrates, and method of measuring the tensile force
CN100458389C (en) Method for controlling tensile stress of a bolt shank such as a screw or dowel pin and device for carrying out said method
CN210005195U (en) rigidity tester
JP5135236B2 (en) Tensile test calibration device and method
KR100416723B1 (en) Apparatus for determining residual stress, method for determining residual stress data using it, residual stress determining method using it and recording medium thereof
US11085840B2 (en) Apparatus and method for measuring axial force of bolt
US5515294A (en) Method and apparatus for testing coiled materials
BRPI0007747B1 (en) Method for detecting fracture of an electrically insulating core rod and wrinkling apparatus
JP3050416B2 (en) Tire tread force and motion measuring device
JP5395417B2 (en) Measuring method and measuring device
JPH063234A (en) Tensile testing machine
JP3874490B2 (en) Measurement method in high-speed tensile test
JP4033119B2 (en) Material testing method, material testing machine
US7131340B2 (en) Device for low-vibration force measurement in rapid dynamic tensile experiments on material samples
CN101975745A (en) Metal foil plate micro-forming friction factor testing device
CN109297814A (en) A kind of test method measuring angle steel test specimen tensile mechanical properties
US3397572A (en) Device for measuring stressstrain curve
JP2006509188A (en) Sample table for measuring lateral force and lateral displacement
JPH0284276A (en) Electrode pressure device for resistance welding machine
JPH07113732A (en) Tension testing method
JPH06129967A (en) Proof test apparatus for optical fiber
JPH0580979B2 (en)
JP2014085243A (en) True stress measuring method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees