JP4065658B2 - Method for recovering active ingredients from polyethylene terephthalate fiber waste - Google Patents

Method for recovering active ingredients from polyethylene terephthalate fiber waste Download PDF

Info

Publication number
JP4065658B2
JP4065658B2 JP2000362784A JP2000362784A JP4065658B2 JP 4065658 B2 JP4065658 B2 JP 4065658B2 JP 2000362784 A JP2000362784 A JP 2000362784A JP 2000362784 A JP2000362784 A JP 2000362784A JP 4065658 B2 JP4065658 B2 JP 4065658B2
Authority
JP
Japan
Prior art keywords
polyethylene terephthalate
reaction
crude
ethylene glycol
bhet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000362784A
Other languages
Japanese (ja)
Other versions
JP2002167341A (en
JP2002167341A5 (en
Inventor
正教 宮本
実 中島
和広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Fibers Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2000362784A priority Critical patent/JP4065658B2/en
Priority to TW90128842A priority patent/TW528773B/en
Priority to KR1020037006969A priority patent/KR100746678B1/en
Priority to US10/432,822 priority patent/US7078440B2/en
Priority to AU2408202A priority patent/AU2408202A/en
Priority to MXPA03004661A priority patent/MXPA03004661A/en
Priority to PCT/JP2001/010241 priority patent/WO2002042253A1/en
Priority to EP01997193.6A priority patent/EP1344765B1/en
Priority to CNB018212786A priority patent/CN1234676C/en
Priority to AU2002224082A priority patent/AU2002224082B2/en
Publication of JP2002167341A publication Critical patent/JP2002167341A/en
Priority to HK04104846A priority patent/HK1061840A1/en
Publication of JP2002167341A5 publication Critical patent/JP2002167341A5/ja
Application granted granted Critical
Publication of JP4065658B2 publication Critical patent/JP4065658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、不純物を含むポリエチレンテレフタレート繊維屑に判別装置による判別、粉砕、造粒等の前処理を施した後に化学的な反応処理を加え、有効成分としての高純度のビス(β−ヒドロキシエチル)テレフタレートあるいはテレフタル酸成分とエチレングリコールとを簡便かつ効率よく回収する方法に関する。
【0002】
【従来の技術】
ポリエステル、例えばポリエチレンテレフタレートはその優れた特性により繊維、フィルム、樹脂等として広く用いられているが、これらの製造工程において発生する繊維状、フィルム状、樹脂状等のポリエステル屑の有効利用はコストの面からのみならず環境問題も含め大きな問題となっており、その処理方法としてマテリアルリサイクル、サーマルリサイクル、ケミカルリサイクルによる各種の提案が成されている。
【0003】
このうちマテリアルリサイクルではペットボトル等のポリエステル樹脂屑に関しては、自治体を中心に回収され積極的な再利用が実施されているが、繊維屑に関しては該リサイクル方法を採ることが極めて困難でありその実施例は皆無である。
【0004】
また、ポリエステル廃棄物を燃料に転化するサーマルリサイクルは、ポリエステル廃棄物の燃焼熱の再利用という利点は有するが、発熱量が比較的低く多量のポリエステル廃棄物を燃焼させることに他ならないためポリエステル原料損失という問題点があり、省資源の面から好ましくない。
【0005】
これに対してケミカルリサイクルではポリエステル廃棄物を原料モノマーに再生するため、再生に伴う品質の低下が少なくクローズドループのリサイクルとして適している。該ケミカルリサイクルにおいては樹脂屑、フィルム屑を対象としたものが大部分である。ポリエステル繊維屑の再生利用法としては、例えば特開昭48−61447号公報にはポリエステル屑を過剰のエチレングリコール(以下、EGと略記することがある)により解重合した後、得られたビス−β−ヒドロキシテレフタレート(以下、BHETと略記することがある)を直接重縮合して再生ポリエステルを得る方法等が提案されているが、この方法は解重合工程においてポリエステル屑とEGを解重合反応系に一括投入して解重合しているため、投入したポリエステル屑が反応機内部で固化し、攪拌ができなくなる。
【0006】
そのため、解重合系が不均一となり解重合時間が長くなること、また使用するEGの量が多いため経済的に不利になるばかりでなく反応物にはジエチレングリコール等の不純物が副生し、その結果得られるポリエステルの物理的性質、特に軟化点を著しく低下させ、品位の低いポリエステルしか得られない等の欠点があった。このような従来の技術においてはポリエステル繊維屑を効率的に処理する技術は完成されていない。
【0007】
また、ポリエステル製造工程外の繊維を回収対象とした場合、ポリエチレン、ポリプロピレン、ナイロン、綿等のポリエステルとは異繊維類の混入が避けられない場合がある。さらに材質がポリエステルであっても染料を含むものについては解重合等の一連の反応中に分解して、回収モノマーに分散し品質を著しく悪化させる。これら不純物混入時の回収モノマーの品質にまで言及した例はこれまで皆無である。
【0008】
【発明が解決しようとする課題】
本発明の目的は、従来技術が有していた問題点を解決し、前処理工程において、後の反応工程でのハンドリング性を向上させ、反応工程では不純物を除去する設備を備えることで不純物を含む繊維屑から高純度の回収モノマーを得ることができる効率的かつ経済的な有効成分回収方法を確立することにある。
【0009】
【課題を解決するための手段】
本発明者らは鋭意検討を行った結果、前処理工程においては、適当な判別装置により有効成分のポリエチレンテレフタレート以外の繊維を排除した後に、反応を効率よく進行させるために判別試験を通過した繊維屑を適当な大きさに粉砕、次いで造粒・固形化し、前処理工程の後に不純物が分解しない反応条件を備えた反応工程を組み込むことで、高純度の回収モノマーを効率よく得る有効成分の回収方法を見出し、本発明を完成するに至った。
【0010】
すなわち、本発明の目的は、
ポリエチレンテレフタレート繊維廃棄物を判別装置により分析してポリエチレンテレフタレートとは異なる繊維と判別された場合には該繊維廃棄物を排除して次工程へ輸送せず、ポリエチレンテレフタレートと判別されたものについては該繊維廃棄物を塊状のまま粉砕機に投入して該繊維廃棄物をまず30〜150mmに粉砕した後、該粉砕物をさらに2〜50mmに粉砕し、該粉砕物を造粒機により径2〜20mm、長さ2〜60mmの円筒状固形物に固形化して嵩密度を0.10〜1.0g/cm3とした後に、該固形物を空気輸送により後述の反応工程へと輸送する前処理工程と以下の(a)〜(f)の反応工程とを組み合わせることによりポリエチレンテレフタレート繊維廃棄物から高純度の有効成分を回収する方法。
(a)前記前処理工程を経て得られた粗製ポリエチレンテレフタレートを解重合触媒を含むエチレングリコール中に投入して120〜190℃の温度で解重合を行い、ビス(β−ヒドロキシエチル)テレフタレート(BHET)を得る解重合反応工程;
(b)前記解重合反応工程の反応中又は反応後にポリエチレンテレフタレート以外のポリエチレン、ポリスチレン、ポリプロピレン、ポリ塩化ビニルの異プラスチック類を除去する異物除去工程;
(c)前記解重合反応後に未溶解の成分を濾過選別する濾過選別工程;
(d)前記濾過選別工程を経て得たBHETとエチレングリコールの混合液に蒸留・蒸発操作を施してエチレングリコールを蒸留・蒸発させて濃縮BHETを得るBHET濃縮工程;
(e)前記BHET濃縮工程で得た粗製BHETと粗製エチレングリコールの混合液中にエステル交換触媒とメタノールとを添加・投入してエステル交換を行うエステル交換反応工程;
(f)前記エステル交換反応工程で得られた粗製テレフタル酸ジメチル粗製メタノール及び粗製エチレングリコールの混合物から精製テレフタル酸ジメチル及び精製エチレングリコールとを分離回収する精製工程;
【0011】
【発明の実施の形態】
本発明の有効成分回収方法においてはポリエチレンテレフタレートと異種の繊維、例えばナイロン、ポリエチレン、ポリプロピレン、綿等は有効成分と成り得ないため、これらが多量に混入した繊維屑は受入れの段階で排除する。即ち、近赤外分光計等の判別装置により該繊維屑を分析し、これがポリエチレンテレフタレートと異なる吸収パターンを示す場合においては、次工程へ輸送せずその段階で排除する。次工程へと輸送するのは、この近赤外分析による検査を通過した繊維屑のみを対象とする。
【0012】
近赤外分析による検査を通過した繊維屑は、前処理工程後の反応工程におけるハンドリング性の面、或いは前処理工程後の空気輸送性の面から造粒・固形化することが望ましい。しかし連続した構造を有する糸屑などを直接造粒機に投入することは極めて困難であり、まず該繊維屑を適当な大きさに粉砕することが必要である。該粉砕物の大きさは2〜50mmが好ましい。該粉砕径が大きいと、次の造粒工程において、固形化が不充分となる弊害が発生する。また粉砕の実施の形態としては、粉砕機を2段式とするのが粉砕処理能力を向上させる上で好ましい。即ち第1次粉砕機によって該ポリエチレンテレフタレート繊維屑を30〜150mmに粗粉砕し、次いで第2次粉砕機で2〜50mmに粉砕する。第1次粉砕機において直接2〜50mmに該粉砕物の大きさを規定した場合、粉砕機にかかる負荷が過剰なものとなり、反って非効率的となる。
【0013】
次いで該粉砕物を造粒機に投入して、該粉砕物を円筒状固形物に固形化する。径の大きさは好ましくは2〜20mm、より好ましくは4〜6mmである。長さは2〜60mmとすることが好ましい。造粒方法は大きさを規定した孔に該粉砕物を押し込み、その際に生じるポリエチレンテレフタレート表面の摩擦熱によって表面の一部を溶融してこれをバインダーとして固形化する方式であるが、径が大きいと摩擦熱が微小となる影響で固形化物の表面が充分に固化しない。
【0014】
このように固形化が不充分であると、その後の空気輸送工程において該固形物が配管との衝突で崩壊し、輸送先の貯槽においてブリッジを組みやすい構造となり、貯槽からの排出が極めて困難となる。また、該造粒方法においてはポリエチレンテレフタレートのガラス転移点以上、融点以下の温度において操作することが必要である。即ち、造粒方法としては該繊維屑をポリエチレンテレフタレートの融点以上に加熱して完全に溶融させた後に冷却して固形化する方法もあるが、該造粒方法ではナイロン等の不純物が分解して回収モノマーの品質を悪化させてしまう。
【0015】
また、該造粒方法において固形物内部まで完全に固化してしまうと反応工程において溶剤と造粒固形物の接触効率の悪化に伴い反応速度が大きく低下するという弊害も発生する。そこで本発明では、ポリエチレンテレフタレートのガラス転移点以上、融点以下の操作温度で該繊維屑表面の一部のみを溶融させて固形化する造粒方法を採用した。該造粒方法により不純物の分解、反応速度の低下を抑制しつつハンドリング性を向上させることが可能となった。
【0016】
さらに造粒・固形化を施さない場合には該粉砕物の嵩密度は約0.10g/cm3であり、この場合後の反応工程で反応機に投入する際に非常に嵩張ると共に、溶媒のエチレングリコールを該粉砕物が吸湿して反応槽における攪拌が非常に困難となる。反応を円滑に進める上では造粒・固形化に伴い嵩比重が増大するが最終的な嵩密度は0.10〜1.0g/cm3、好ましくは0.40g/cm3以上まで増大させて、ハンドリング性を向上させることが必要である。以上の観点から粉砕後の造粒・固形化は本発明において非常に重要な役割を占める。
【0017】
造粒・固形化を行った後の該固形物は空気輸送により反応工程へと輸送される。また、一連の前処理工程は該ポリエチレンテレフタレート屑を粉砕機へと投入することも含めて省人化が図れ、自動で行うことが可能である。以下、反応工程の各工程について説明する。
【0018】
工程(a)においては、前処理工程を通過したポリエチレンテレフタレート繊維固形物を公知の解重合触媒、公知の触媒濃度で120〜190℃の温度下、過剰のエチレングリコール中で解重合反応させる。ここで、該エチレングリコールの温度が120℃未満であると、解重合時間が非常に長くなり効率的ではなくなる。一方、210℃を越えると該繊維屑に含まれる油剤等の熱分解が顕著になり、分解して発生した窒素化合物等が回収モノマーに分散して後の精製工程では分離困難となる。該温度は好ましくは、140〜190℃である。既存のケミカルリサイクル技術では高温での操作を必要とするため、油剤の混入への対応が困難であった。
【0019】
また、本発明において扱うポリエチレンテレフタレート繊維屑が染料によって着色されている場合、反応工程において該染料が分解して低分子量化し回収モノマー中に分散して品質を著しく低下させることがある。そこで、該着色繊維屑を扱う場合には工程(a)の前に染料を抜染する工程を組み込むことが効果的である。該工程では染料を含む造粒固形物を水、アルキレングリコール、ジメチルホルムアミド、パラキシレン、2−ヘプタノン等の溶剤中に投入し、場合によっては加圧しつつ100〜190℃で加熱して染料を抽出する。抜染方法としてはバッチ式でも良いし、向流多段抽出法等の連続式抽出法を採用しても良い。染料抽出後の固形化物はアルキレングリコールにより洗浄した後に、染料を含まない繊維屑と同様に工程(b)へと輸送する。
【0020】
さらに受入れの段階で排除され得なかったナイロンが混入した場合には、反応工程においてナイロンが分解し、回収モノマー中にε−カプロラクタム等の窒素化合物として混入して分離が困難となる。そこでナイロンを含む固形化物はナイロンを溶解・除去する工程を工程(a)の前に組み込むことが効果的である。該工程ではアルキレングリコール等の溶剤中にナイロンを含む固形化物を投入し、100〜190に加熱してナイロンを溶解・除去する。尚、この工程は前記の抜染工程において行っても良い。
【0021】
工程(b)では前処理工程の判別試験で排除することができなかったポリエチレン、ポリプロピレン等のポリエチレンテレフタレートとは異繊維を解重合反応層で浮遊分離する。該異繊維は解重合反応の溶媒であるエチレングリコールよりも比重が小さく、液面上に浮上してくるのでこれらを異繊維の共融混合浮遊物塊として層分離させた後、該共融混合浮遊物層を解重合から抜出し除去する。
【0022】
工程(c)では解重合反応後に、前処理工程の判別試験で排除することができなかった綿等の異繊維を濾過選別する。工程(c)で除去する異繊維の対象はエチレングリコールよりも比重が大きく、工程(b)の除去方法では分離できない成分である。工程(c)を通過した時点でポリエチレンテレフタレートはビス(β−ヒドロキシエチル)テレフタレート(以下、BHETと略記することがある)に転化し、反応液はBHETとエチレングリコールの混合液となっている。
【0023】
工程(d)においては、工程(e)のエステル交換反応を効率的に進行させるために工程(c)を通過したBHETとエチレングリコールの混合物から、エチレングリコールとポリエチレンテレフタレート繊維廃棄物との重量比率が原料仕込比基準で0.5〜2.0倍になるまでエチレングリコールを留去する。この際に留去したエチレングリコールは再度工程(a)にリサイクルする。
【0024】
工程(e)においては工程(d)でエチレングリコールを留去したBHETとエチレングリコールの混合物を、公知のエステル交換触媒、公知の濃度の存在下でメタノールとエステル交換反応反応させ、遠心分離等の固液分離手段により固液分離する。
【0025】
工程(f)においては工程(e)で得られた粗製テレフタル酸ジメチル、粗製エチレングリコールを蒸留等の精製方法により精製し、高純度の精製テレフタル酸ジメチル、精製エチレングリコールを得る。この際に反応工程をも通り抜けた不純物は塔底に捕捉されるため、回収モノマーには不純物は含まれず高純度のものが得られる。
【0026】
【実施例】
以下、実施例により本発明の内容を更に具体的に説明するが、本発明はこれにより何ら限定を受けるものではない。尚、近赤外分析計にはオプト技研社製の分光光度計(商品名;プラスキャン)を使用した。
【0027】
[実施例1]
ポリエステル製造工程から発生した染料を含まないポリエチレンテレフタレート繊維屑100kgについて近赤外分析計により吸収スペクトルを測定したところポリエチレンテレフタレート樹脂と吸収パターンが一致した。該繊維屑全量を第1次粉砕機に投入し、粉砕機のスクリーン径を75mmに設定して1次粉砕を行い、次いで該粉砕物を第2次粉砕機に投入して粉砕機のスクリーン径を20mmに設定して2次粉砕を行った。その後、該粉砕物を径4mm、長さ45mm、造粒機内部温度170℃の条件で運転する造粒機に投入し、固形化した後に空気輸送により反応工程へと輸送した。尚、反応工程へと輸送された該固形化物の嵩密度は0.40g/cm3であった。
【0028】
反応工程では該固形化物100kgを予め185℃まで加熱しておいたエチレングリコール(以下、EGと略記することがある)400kg、炭酸ナトリウム3kgの混合物に仕込み、常圧で4h反応させた。
【0029】
反応終了後、BHETとEGの混合液を蒸留塔に送液し、塔底温度140〜150℃、圧力13.3kPaの条件でEGを300kg留去した。次いでEGを留去後のBHETとEGの混合物200kgに炭酸ナトリウム3kg、メタノール200kgを添加して、常圧、75〜80℃で1h反応させた。
【0030】
反応終了後該反応液を40℃まで冷却し、遠心分離により粗テレフタル酸ジメチルを主成分とするケークとメタノール、粗EGを主成分とする濾液とに固液分離した。次いで粗テレフタル酸ジメチルを圧力6.7kPa、塔底温度180〜200℃、粗EGを圧力13.3kPa、塔底温度140〜150℃の条件でそれぞれ蒸留により精製して、最終的にテレフタル酸ジメチル、エチレングリコールを収率85%で得た。回収したテレフタル酸ジメチルは外観、酸価、溶融比色、硫酸灰分の検査項目において市販品のものと遜色なく、また回収したエチレングリコールはジエチレングリコール濃度、水分、溶融比色の検査項目において市販品と遜色なく、いずれも高純度の回収モノマーが得られた。
【0031】
[比較例1]
実施例1において、第1次粉砕機のスクリーン径を75mmに設定して1次粉砕を行い、2次粉砕を行わずに造粒機にかけたところ、固形化が不充分で、次工程の空気輸送後の貯槽においてブリッジを組んで排出されず、ラインが停止する異常が発生した。
【0032】
【発明の効果】
前処理工程において、後の反応工程でのハンドリング性を向上させ、反応工程では不純物を除去する設備を備えることで不純物を含む繊維屑から高純度の回収モノマーを得ることができる効率的かつ経済的な有効成分回収方法を確立することが可能となる。
[0001]
BACKGROUND OF THE INVENTION
In the present invention, polyethylene terephthalate fiber waste containing impurities is subjected to a pretreatment such as discrimination, pulverization, granulation, etc. by a discriminator, and then subjected to a chemical reaction treatment to produce high-purity bis (β-hydroxyethyl as an active ingredient) ) A method for easily and efficiently recovering terephthalate or terephthalic acid component and ethylene glycol.
[0002]
[Prior art]
Polyester, such as polyethylene terephthalate, is widely used as a fiber, film, resin, etc. due to its excellent properties, but effective utilization of polyester waste such as fiber, film, resin, etc. generated in these manufacturing processes is costly. It has become a major problem including environmental problems as well as from the surface, and various proposals have been made by material recycling, thermal recycling, and chemical recycling as treatment methods.
[0003]
Of these, polyester resin waste such as PET bottles is collected and actively reused mainly by local governments in material recycling, but it is extremely difficult to adopt this recycling method for fiber waste. There are no examples.
[0004]
Thermal recycling, which converts polyester waste into fuel, has the advantage of reusing the heat of combustion of polyester waste, but it has a relatively low calorific value, and is nothing but burning a large amount of polyester waste. There is a problem of loss, which is not preferable in terms of resource saving.
[0005]
On the other hand, in chemical recycling, polyester waste is regenerated as a raw material monomer, so that there is little deterioration in quality due to regeneration, and it is suitable for closed loop recycling. Most of the chemical recycling targets resin waste and film waste. As a method for recycling polyester fiber waste, for example, in JP-A-48-61447, polyester waste is depolymerized with an excess of ethylene glycol (hereinafter sometimes abbreviated as EG) and then obtained bis- A method of directly polycondensing β-hydroxyterephthalate (hereinafter sometimes abbreviated as “BHET”) to obtain a regenerated polyester has been proposed. This method is a depolymerization reaction system in which polyester waste and EG are depolymerized in a depolymerization step. Since the depolymerization is performed by batch charging into the reactor, the charged polyester waste is solidified inside the reactor and cannot be stirred.
[0006]
Therefore, the depolymerization system becomes non-uniform and the depolymerization time becomes long, and the amount of EG used is not only economically disadvantageous, but also impurities such as diethylene glycol are by-produced in the reaction product. The physical properties of the resulting polyester, particularly the softening point, are markedly lowered, and there are disadvantages such that only low-quality polyester can be obtained. In such a conventional technique, a technique for efficiently treating polyester fiber waste has not been completed.
[0007]
In addition, when fibers outside the polyester manufacturing process are targeted for collection, it may be unavoidable to mix different fibers with polyesters such as polyethylene, polypropylene, nylon, and cotton. Furthermore, even if the material is polyester, those containing a dye are decomposed during a series of reactions such as depolymerization and dispersed in the recovered monomer, and the quality is remarkably deteriorated. There has never been any example that mentions the quality of recovered monomer when these impurities are mixed.
[0008]
[Problems to be solved by the invention]
The object of the present invention is to solve the problems of the prior art, improve the handling in the subsequent reaction process in the pretreatment process, and provide the facility for removing impurities in the reaction process. The object is to establish an efficient and economical method for recovering an active ingredient capable of obtaining a high-purity recovered monomer from contained fiber waste.
[0009]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors, in the pretreatment process, after removing fibers other than the active ingredient polyethylene terephthalate by an appropriate discriminating apparatus, the fibers that passed the discrimination test in order to advance the reaction efficiently. Recover the active ingredients to efficiently obtain high-purity recovered monomer by incorporating the reaction process with the reaction conditions that do not decompose the impurities after the pretreatment process, after crushing the scraps to an appropriate size, then granulating and solidifying The method has been found and the present invention has been completed.
[0010]
That is, the object of the present invention is to
Not transported to the next step by eliminating the fiber waste when it is determined that the different fibers are polyethylene terephthalate was analyzed by discriminating device polyethylene terephthalate textile waste, said about what is determined that polyethylene terephthalate The fiber waste is put into a pulverizer in the form of a lump and the fiber waste is first pulverized to 30 to 150 mm, and then the pulverized product is further pulverized to 2 to 50 mm. Pre-treatment of solidifying into a cylindrical solid material having a length of 20 mm and a length of 2 to 60 mm to a bulk density of 0.10 to 1.0 g / cm 3, and then transporting the solid material to a reaction step described later by pneumatic transportation A method for recovering a high-purity active ingredient from polyethylene terephthalate fiber waste by combining the steps and the following reaction steps (a) to (f).
(A) Crude polyethylene terephthalate obtained through the pretreatment step was put into ethylene glycol containing a depolymerization catalyst, and depolymerized at a temperature of 120 to 190 ° C. to obtain bis (β-hydroxyethyl) terephthalate (BHET Depolymerization reaction step to obtain
(B) the depolymerization reaction step in the reaction or polyethylene other than the polyethylene terephthalate after the reaction, polystyrene, polypropylene, foreign matter removing step of removing the foreign plastics such polyvinyl chloride le;
(C) a filtration and sorting step of filtering and sorting undissolved components after the depolymerization reaction;
(D) A BHET concentration step in which concentrated BHET is obtained by subjecting a mixture of BHET and ethylene glycol obtained through the filtration and sorting step to distillation / evaporation to distill / evaporate ethylene glycol;
(E) a transesterification reaction step in which transesterification is performed by adding and introducing a transesterification catalyst and methanol into a mixed solution of crude BHET and crude ethylene glycol obtained in the BHET concentration step;
(F) a purification step of separating and recovering purified dimethyl terephthalate and purified ethylene glycol from a mixture of crude dimethyl terephthalate , crude methanol and crude ethylene glycol obtained in the transesterification step;
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the active ingredient recovery method of the present invention, fibers different from polyethylene terephthalate , such as nylon, polyethylene, polypropylene, cotton, and the like cannot be active ingredients, and therefore fiber waste mixed with a large amount thereof is eliminated at the stage of acceptance. That is, when the fiber waste is analyzed by a discriminating device such as a near-infrared spectrometer and this shows an absorption pattern different from that of polyethylene terephthalate , it is not transported to the next process and eliminated at that stage. Only the fiber waste that has passed the inspection by the near-infrared analysis is transported to the next process.
[0012]
It is desirable that the fiber waste that has passed the inspection by the near infrared analysis is granulated and solidified from the viewpoint of handling property in the reaction step after the pretreatment step or the air transportability after the pretreatment step. However, it is extremely difficult to directly feed yarn waste having a continuous structure into a granulator, and it is necessary to first grind the fiber waste to an appropriate size. The size of the pulverized product is preferably 2 to 50 mm. If the pulverized diameter is large, there is a problem that solidification is insufficient in the next granulation step. As an embodiment of pulverization, it is preferable to use a two-stage pulverizer in order to improve the pulverization capacity. That is, the polyethylene terephthalate fiber waste is roughly pulverized to 30 to 150 mm by a primary pulverizer, and then pulverized to 2 to 50 mm by a secondary pulverizer. When the size of the pulverized product is specified to be 2 to 50 mm directly in the primary pulverizer, the load applied to the pulverizer becomes excessive and warps and becomes inefficient.
[0013]
Next, the pulverized product is put into a granulator to solidify the pulverized product into a cylindrical solid. The size of the diameter is preferably 2 to 20 mm, more preferably 4 to 6 mm. The length is preferably 2 to 60 mm. The granulation method is a method in which the pulverized material is pushed into a hole having a specified size, and a part of the surface is melted by frictional heat generated on the surface of the polyethylene terephthalate and solidified as a binder. If it is large, the surface of the solidified product will not be sufficiently solidified due to the effect of the frictional heat becoming minute.
[0014]
If solidification is insufficient in this way, in the subsequent pneumatic transportation process, the solid matter will collapse due to collision with the piping, and it will be easy to build a bridge in the storage tank at the transport destination, and it will be extremely difficult to discharge from the storage tank. Become. In the granulation method, it is necessary to operate at a temperature not lower than the glass transition point and not higher than the melting point of polyethylene terephthalate . That is, as a granulation method, there is a method in which the fiber waste is heated to a melting point of polyethylene terephthalate or higher and completely melted, and then cooled and solidified. However, in the granulation method, impurities such as nylon are decomposed. The quality of the recovered monomer is deteriorated.
[0015]
In addition, if the solids are completely solidified in the granulation method, there is an adverse effect that the reaction rate is greatly reduced as the contact efficiency between the solvent and the granulated solids deteriorates in the reaction step. Therefore, the present invention employs a granulation method in which only a part of the surface of the fiber waste is melted and solidified at an operating temperature not lower than the glass transition point and not higher than the melting point of polyethylene terephthalate . With this granulation method, it became possible to improve handling while suppressing decomposition of impurities and a decrease in reaction rate.
[0016]
Further, when granulation / solidification is not performed, the pulverized product has a bulk density of about 0.10 g / cm 3 , and in this case, the bulk density becomes very bulky when charged into the reactor in the subsequent reaction step, and The pulverized product absorbs ethylene glycol so that stirring in the reaction vessel becomes very difficult. Bulk specific gravity with the granulating or solids are in terms of smoothly advancing increases but the final bulk density reaction 0.10~1.0g / cm 3, and preferably is increased to 0.40 g / cm 3 or more It is necessary to improve handling properties. From the above viewpoint, granulation and solidification after pulverization play a very important role in the present invention.
[0017]
The solid matter after granulation and solidification is transported to the reaction step by pneumatic transportation. In addition, a series of pretreatment steps can be performed automatically by saving labor, including putting the polyethylene terephthalate waste into a pulverizer. Hereinafter, each process of the reaction process will be described.
[0018]
In step (a), the polyethylene terephthalate fiber solid material that has passed through the pretreatment step is subjected to a depolymerization reaction in excess ethylene glycol at a known depolymerization catalyst, at a temperature of 120 to 190 ° C. at a known catalyst concentration. Here, when the temperature of the ethylene glycol is less than 120 ° C., the depolymerization time becomes very long and it is not efficient. On the other hand, when the temperature exceeds 210 ° C., thermal decomposition of the oil agent contained in the fiber waste becomes remarkable, and nitrogen compounds generated by decomposition are dispersed in the recovered monomer, making it difficult to separate in the subsequent purification step. The temperature is preferably 140 to 190 ° C. Existing chemical recycling technology requires high-temperature operation, making it difficult to cope with oil contamination.
[0019]
In addition, when the polyethylene terephthalate fiber waste handled in the present invention is colored with a dye, the dye may be decomposed in the reaction step to have a low molecular weight and be dispersed in the recovered monomer to significantly reduce the quality. Therefore, when handling the colored fiber waste, it is effective to incorporate a step of discharging the dye before the step (a). In this step, the granulated solid containing the dye is put into a solvent such as water, alkylene glycol, dimethylformamide, para-xylene, 2-heptanone, and heated at 100 to 190 ° C. while being pressurized, and the dye is extracted. To do. The discharging method may be a batch method or a continuous extraction method such as a countercurrent multistage extraction method. The solidified product after the dye extraction is washed with alkylene glycol and then transported to the step (b) in the same manner as the fiber waste not containing the dye.
[0020]
Further, when nylon that could not be excluded at the stage of acceptance is mixed, the nylon is decomposed in the reaction process, and it is mixed as a nitrogen compound such as ε-caprolactam in the recovered monomer, making separation difficult. Therefore, it is effective to incorporate a step of dissolving and removing nylon into the solidified product containing nylon before the step (a). In this step, a solidified material containing nylon is introduced into a solvent such as alkylene glycol and heated to 100 to 190 ° C. to dissolve and remove nylon. In addition, this process may be performed in the above-described discharging process.
[0021]
In the step (b), different fibers are float-separated in the depolymerization reaction layer from polyethylene terephthalate such as polyethylene and polypropylene which could not be excluded in the discrimination test in the pretreatment step. The different fibers have a specific gravity smaller than that of ethylene glycol, which is a solvent for the depolymerization reaction, and float on the liquid surface. Therefore, these fibers are separated into layers of eutectic mixed suspended solids of different fibers, and then the eutectic mixing is performed. The suspended layer is extracted from the depolymerization and removed.
[0022]
In the step (c), after the depolymerization reaction, different fibers such as cotton that could not be excluded by the discrimination test in the pretreatment step are filtered and selected. The target of the different fiber to be removed in the step (c) is a component having a specific gravity greater than that of ethylene glycol and cannot be separated by the removing method in the step (b). When passing through the step (c), the polyethylene terephthalate is converted to bis (β-hydroxyethyl) terephthalate (hereinafter sometimes abbreviated as BHET), and the reaction solution is a mixed solution of BHET and ethylene glycol.
[0023]
In step (d), the weight ratio of ethylene glycol and polyethylene terephthalate fiber waste from the mixture of BHET and ethylene glycol that has passed step (c) in order to efficiently proceed with the transesterification reaction in step (e) The ethylene glycol is distilled off until the raw material charge ratio becomes 0.5 to 2.0 times. The ethylene glycol distilled off at this time is recycled again to the step (a).
[0024]
In step (e), a mixture of BHET and ethylene glycol from which ethylene glycol has been distilled off in step (d) is subjected to a transesterification reaction with methanol in the presence of a known transesterification catalyst and a known concentration, and then subjected to centrifugation, etc. Solid-liquid separation is performed by solid-liquid separation means.
[0025]
In the step (f), the crude dimethyl terephthalate and crude ethylene glycol obtained in the step (e) are purified by a purification method such as distillation to obtain highly purified dimethyl terephthalate and purified ethylene glycol. At this time, since the impurities that have passed through the reaction step are captured at the bottom of the column, the recovered monomer does not contain impurities and a high purity is obtained.
[0026]
【Example】
Hereinafter, the content of the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. Note that a spectrophotometer (trade name; plastic scan) manufactured by Opto Giken Co., Ltd. was used as the near-infrared analyzer.
[0027]
[Example 1]
When the absorption spectrum was measured with a near-infrared analyzer for 100 kg of polyethylene terephthalate fiber scraps containing no dye generated from the polyester production process, the absorption pattern was consistent with that of the polyethylene terephthalate resin. The whole amount of the fiber waste is put into the primary pulverizer, the screen diameter of the pulverizer is set to 75 mm to perform primary pulverization, and then the pulverized product is charged into the secondary pulverizer to screen the diameter of the pulverizer. Was set to 20 mm and secondary pulverization was performed. Thereafter, the pulverized product was put into a granulator operating under conditions of a diameter of 4 mm, a length of 45 mm, and a granulator internal temperature of 170 ° C., solidified, and then transported to the reaction step by pneumatic transport. The bulk density of the solidified product transported to the reaction step was 0.40 g / cm 3 .
[0028]
In the reaction step, 100 kg of the solidified product was charged into a mixture of 400 kg of ethylene glycol (hereinafter sometimes abbreviated as EG) and 3 kg of sodium carbonate, which had been heated to 185 ° C., and reacted at normal pressure for 4 hours.
[0029]
After completion of the reaction, a mixed liquid of BHET and EG was sent to a distillation tower, and 300 kg of EG was distilled off under conditions of a tower bottom temperature of 140 to 150 ° C. and a pressure of 13.3 kPa. Subsequently, 3 kg of sodium carbonate and 200 kg of methanol were added to 200 kg of the mixture of BHET and EG after EG was distilled off, and the mixture was reacted at 75 to 80 ° C. for 1 h.
[0030]
After completion of the reaction, the reaction solution was cooled to 40 ° C., and was subjected to solid-liquid separation by centrifugation into a cake mainly composed of crude dimethyl terephthalate and a filtrate mainly composed of crude EG. Next, the crude dimethyl terephthalate was purified by distillation under the conditions of a pressure of 6.7 kPa and a tower bottom temperature of 180 to 200 ° C., and the crude EG at a pressure of 13.3 kPa and a tower bottom temperature of 140 to 150 ° C. Ethylene glycol was obtained with a yield of 85%. The recovered dimethyl terephthalate is no different from the commercial item in terms of appearance, acid value, melt colorimetric, and sulfated ash inspection items. The recovered monomer with high purity was obtained without any inferiority.
[0031]
[Comparative Example 1]
In Example 1, when the screen size of the primary pulverizer was set to 75 mm, primary pulverization was performed, and the pulverizer was applied without performing secondary pulverization, solidification was insufficient, and air in the next step was used. In the storage tank after transportation, a bridge was not built and discharged, causing an abnormality that the line stopped.
[0032]
【The invention's effect】
In the pretreatment process, handling efficiency in the subsequent reaction process is improved, and in the reaction process, a high-purity recovered monomer can be obtained from fiber waste containing impurities by providing equipment for removing impurities in an efficient and economical manner. It is possible to establish an effective active ingredient recovery method.

Claims (6)

ポリエチレンテレフタレート繊維廃棄物を判別装置により分析してポリエチレンテレフタレートとは異なる繊維と判別された場合には該繊維廃棄物を排除して次工程へ輸送せず、ポリエチレンテレフタレートと判別されたものについては該繊維廃棄物を塊状のまま粉砕機に投入して該繊維廃棄物をまず30〜150mmに粉砕した後、該粉砕物をさらに2〜50mmに粉砕し、該粉砕物を造粒機により径2〜20mm、長さ2〜60mmの円筒状固形物に固形化して嵩密度を0.10〜1.0g/cm3とした後に、該固形物を空気輸送により後述の反応工程へと輸送する前処理工程と以下の(a)〜(f)の反応工程とを組み合わせることによりポリエチレンテレフタレート繊維廃棄物から高純度の有効成分を回収する方法。
(a)前記前処理工程を経て得られた粗製ポリエチレンテレフタレートを解重合触媒を含むエチレングリコール中に投入して120〜190℃の温度で解重合を行い、ビス(β−ヒドロキシエチル)テレフタレート(BHET)を得る解重合反応工程;
(b)前記解重合反応工程の反応中又は反応後にポリエチレンテレフタレート以外のポリエチレン、ポリスチレン、ポリプロピレン、ポリ塩化ビニルの異プラスチック類を除去する異物除去工程;
(c)前記解重合反応後に未溶解の成分を濾過選別する濾過選別工程;
(d)前記濾過選別工程を経て得たBHETとエチレングリコールの混合液に蒸留・蒸発操作を施してエチレングリコールを蒸留・蒸発させて濃縮BHETを得るBHET濃縮工程;
(e)前記BHET濃縮工程で得た粗製BHETと粗製エチレングリコールの混合液中にエステル交換触媒とメタノールとを添加・投入してエステル交換を行うエステル交換反応工程;
(f)前記エステル交換反応工程で得られた粗製テレフタル酸ジメチル粗製メタノール及び粗製エチレングリコールの混合物から精製テレフタル酸ジメチル及び精製エチレングリコールとを分離回収する精製工程;
Not transported to the next step by eliminating the fiber waste when it is determined that the different fibers are polyethylene terephthalate was analyzed by discriminating device polyethylene terephthalate textile waste, said about what is determined that polyethylene terephthalate The fiber waste is put into a pulverizer as a lump and the fiber waste is first pulverized to 30 to 150 mm, and then the pulverized product is further pulverized to 2 to 50 mm. Pre-treatment of solidifying into a cylindrical solid material having a length of 20 mm and a length of 2 to 60 mm to a bulk density of 0.10 to 1.0 g / cm 3, and then transporting the solid material to a reaction step described later by pneumatic transportation A method for recovering a high-purity active ingredient from polyethylene terephthalate fiber waste by combining the steps and the following reaction steps (a) to (f).
(A) Crude polyethylene terephthalate obtained through the pretreatment step was put into ethylene glycol containing a depolymerization catalyst, and depolymerized at a temperature of 120 to 190 ° C. to obtain bis (β-hydroxyethyl) terephthalate (BHET Depolymerization reaction step to obtain
(B) the depolymerization reaction step in the reaction or polyethylene other than the polyethylene terephthalate after the reaction, polystyrene, polypropylene, foreign matter removing step of removing the foreign plastics such polyvinyl chloride le;
(C) a filtration and sorting step of filtering and sorting undissolved components after the depolymerization reaction;
(D) A BHET concentration step in which concentrated BHET is obtained by subjecting a mixture of BHET and ethylene glycol obtained through the filtration and sorting step to distillation / evaporation to distill / evaporate ethylene glycol;
(E) a transesterification reaction step in which transesterification is performed by adding and introducing a transesterification catalyst and methanol into a mixed solution of crude BHET and crude ethylene glycol obtained in the BHET concentration step;
(F) a purification step of separating and recovering purified dimethyl terephthalate and purified ethylene glycol from a mixture of crude dimethyl terephthalate , crude methanol and crude ethylene glycol obtained in the transesterification step;
前記判別装置に近赤外分析計を使用する請求項1記載の有効成分回収方法。  The active ingredient recovery method according to claim 1, wherein a near-infrared analyzer is used for the discrimination device. 前記前処理工程における造粒方法において、ポリエチレンテレフタレートのガラス転移点以上、融点以下の温度範囲で操作し、ポリエチレンテレフタレートの一部を溶融させる造粒方法を用いる請求項1記載の有効成分回収方法。2. The active ingredient recovery method according to claim 1, wherein the granulation method in the pretreatment step uses a granulation method in which a part of the polyethylene terephthalate is melted by operating in a temperature range from the glass transition point of polyethylene terephthalate to the melting point. 前記前処理工程において自動搬送装置を採用して省人化することを特徴とする請求項1記載の有効成分回収方法。  2. The active ingredient recovery method according to claim 1, wherein the pretreatment process employs an automatic conveyance device to save labor. 前記前処理工程で得られた粗製ポリエチレンテレフタレート固形物に染料が含有されている場合、該固形物を100〜190℃において溶剤中に投入し、染料を抽出する抜染工程を経て反応工程に進む請求項1記載の有効成分回収方法。When the crude polyethylene terephthalate solid material obtained in the pretreatment step contains a dye, the solid material is charged into a solvent at 100 to 190 ° C., followed by a discharge process for extracting the dye and proceeding to the reaction process. Item 2. The active ingredient recovery method according to Item 1. 前記前処理工程で得られた粗製ポリエチレンテレフタレート固形物にナイロンが含有されている場合、該固形物を100〜190℃において溶剤中に投入してナイロンを溶解させて除去した後に反応工程に進む請求項1記載の有効成分回収方法。When the crude polyethylene terephthalate solid obtained in the pretreatment step contains nylon, the solid is introduced into a solvent at 100 to 190 ° C. to dissolve and remove the nylon, and then proceeds to the reaction step. Item 2. The active ingredient recovery method according to Item 1.
JP2000362784A 2000-11-27 2000-11-29 Method for recovering active ingredients from polyethylene terephthalate fiber waste Expired - Lifetime JP4065658B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000362784A JP4065658B2 (en) 2000-11-29 2000-11-29 Method for recovering active ingredients from polyethylene terephthalate fiber waste
TW90128842A TW528773B (en) 2000-11-27 2001-11-21 Dimethyl terephthalate composition and process for producing the same
AU2002224082A AU2002224082B2 (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and process for producing the same
AU2408202A AU2408202A (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and process for producing the same
MXPA03004661A MXPA03004661A (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and process for producing the same.
PCT/JP2001/010241 WO2002042253A1 (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and process for producing the same
KR1020037006969A KR100746678B1 (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and process for producing the same
CNB018212786A CN1234676C (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and its producing method
US10/432,822 US7078440B2 (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and process for producing the same
EP01997193.6A EP1344765B1 (en) 2000-11-27 2001-11-22 Process for producing a dimethyl terephthalate composition
HK04104846A HK1061840A1 (en) 2000-11-27 2004-07-06 Dimethyl terephthalate composition and process forproducing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000362784A JP4065658B2 (en) 2000-11-29 2000-11-29 Method for recovering active ingredients from polyethylene terephthalate fiber waste

Publications (3)

Publication Number Publication Date
JP2002167341A JP2002167341A (en) 2002-06-11
JP2002167341A5 JP2002167341A5 (en) 2004-11-04
JP4065658B2 true JP4065658B2 (en) 2008-03-26

Family

ID=18833998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000362784A Expired - Lifetime JP4065658B2 (en) 2000-11-27 2000-11-29 Method for recovering active ingredients from polyethylene terephthalate fiber waste

Country Status (1)

Country Link
JP (1) JP4065658B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678017B2 (en) 2002-10-15 2017-06-13 Sarine Color Technologies Ltd. System for evaluating a gemstone

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537288B2 (en) * 2005-08-08 2010-09-01 帝人ファイバー株式会社 Method for recovering active ingredients from dyed polyester fiber
WO2008102896A1 (en) * 2007-02-23 2008-08-28 Teijin Fibers Limited Method for separation/removal of foreign material from polyester fiber waste
JP2010090184A (en) * 2008-10-03 2010-04-22 Teijin Fibers Ltd Method for removing dye from dyed polyalkylene terephthalate fiber
JP5134563B2 (en) * 2009-02-02 2013-01-30 帝人株式会社 Method for removing foreign materials from polyalkylene terephthalate fibers
CN115181358B (en) * 2022-06-30 2023-05-16 重庆长安汽车股份有限公司 Waste polyester cotton fabric modified reinforced polypropylene composite material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678017B2 (en) 2002-10-15 2017-06-13 Sarine Color Technologies Ltd. System for evaluating a gemstone

Also Published As

Publication number Publication date
JP2002167341A (en) 2002-06-11

Similar Documents

Publication Publication Date Title
US7959807B2 (en) Method for recovering useful components from dyed polyester fiber
JP4537288B2 (en) Method for recovering active ingredients from dyed polyester fiber
US6706843B1 (en) Method for separating and recovering dimethyl terephthalate and ethylene glycol from polyester waste
US20040054019A1 (en) Dimethyl terephthalate composition and process for producing the same
JP4212799B2 (en) Method for recovering terephthalic acid from polyester fiber waste
WO1993023465A1 (en) Improved poly ethylene terephthalate decontamination
JP4065659B2 (en) Method for recovering active ingredients from polyethylene terephthalate waste
TW202208530A (en) Method for manufacturing bis-(2-hydroxyethyl)terephthalate and method for manufacturing recycled polyethylene terephthalate
JP4065658B2 (en) Method for recovering active ingredients from polyethylene terephthalate fiber waste
CN115803377A (en) Method for producing bis- (2-hydroxyethyl) terephthalate and method for producing recycled polyethylene terephthalate
US5504121A (en) Polyethylene terephthalate decontamination
JP2004217871A (en) Method of recovering useful components from dyed polyester fiber
JP4080720B2 (en) How to recycle PET bottles
JP2007145885A (en) Dye-extraction depolymerization method of dyed polyester fiber
JP4330918B2 (en) How to recycle polyester waste
JP4108267B2 (en) Active ingredient recovery method from polyethylene terephthalate film waste
JP5178211B2 (en) Method for recovering dimethyl terephthalate with improved hue from PET bottle waste
CN115843291A (en) Process for producing high-purity bis- (2-hydroxyethyl) terephthalate, recycled polyethylene terephthalate, decolorization solvent, and process for purifying bis- (2-hydroxyethyl) terephthalate
JP2011207823A (en) Method for producing dimethyl terephthalate from polyester
JP2009120766A (en) Method for recovering dimethyl terephthalate and ethylene glycol
JP4065657B2 (en) Method for recovering active ingredients from polyethylene terephthalate resin waste
JP2002167469A (en) Recycling system for waste polyester and its method
US20230416183A1 (en) A process for recycling of polyethylene terephthalate (pet) waste
JP2002060542A (en) Method for recovering useful component from polyester waste
JP2012116912A (en) Method for producing polyester monomer from polyester

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4065658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term