JP4061840B2 - Hole transporting compound and organic thin film light emitting device for organic thin film light emitting device - Google Patents

Hole transporting compound and organic thin film light emitting device for organic thin film light emitting device Download PDF

Info

Publication number
JP4061840B2
JP4061840B2 JP2000399866A JP2000399866A JP4061840B2 JP 4061840 B2 JP4061840 B2 JP 4061840B2 JP 2000399866 A JP2000399866 A JP 2000399866A JP 2000399866 A JP2000399866 A JP 2000399866A JP 4061840 B2 JP4061840 B2 JP 4061840B2
Authority
JP
Japan
Prior art keywords
light emitting
thin film
layer
organic thin
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000399866A
Other languages
Japanese (ja)
Other versions
JP2002203685A (en
Inventor
祐一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2000399866A priority Critical patent/JP4061840B2/en
Publication of JP2002203685A publication Critical patent/JP2002203685A/en
Application granted granted Critical
Publication of JP4061840B2 publication Critical patent/JP4061840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性正孔輸送性化合物に関するもので、有機半導体薄膜の積層膜からなるダイオード特性を有する有機薄膜発光素子や電子写真感光体等に利用できる。
【0002】
【従来の技術】
有機薄膜発光素子は、イーストマン・コダック社のC.W.Tang等により記された特開昭59−194393号公報、特開昭63−264692号公報、特開昭63−295695号公報、アプライド・フィジックス・レター第51巻第12号第913頁(1987年)、およびジャーナル・オブ・アプライドフィジックス第65巻第9号第3610頁(1989年)、アプライド・フィジックス・レター第69巻第15号第2160頁(1996年)、アプライド・フィジックス・レター第70巻第2号第152頁(1997年)、アプライド・フィジックス・レター第70巻第13号第1665頁(1997年)や、大阪大学の城田等により記されたアプライド・フィジックス・レター第65巻第7号第807頁(1994年)等で述べられている。
【0003】
有機薄膜発光素子の構成例を図1で示す。まず、ガラスや樹脂フィルム等の透明絶縁性の基板(1)上に、蒸着、イオンプレーティング又はスパッタリング法等でインジウムとスズの複合酸化物(以下ITOという)の透明導電性被膜の陽極(2)が形成される。次にその上にイオン化エネルギーの小さい順に2〜3層程度積層した有機半導体薄膜層からなる有機正孔注入輸送層(3)が形成される。
【0004】
例えば、まず酸化に対して高安定な銅フタロシアニン(以下CuPcと略す、イオン化エネルギー5.2eV)を第1正孔注入輸送層(8)として真空蒸着により10nmの厚さで形成する。
【0005】
その上に、素子の短絡の原因となるピンホールを防ぐためにアモルファス性が高く、可視光の透過率が高い化学式4で示されるN,N' −ジ( 1−ナフチル) −N,N’−ジフェニル−1,1' −ビフェニル−4,4' −ジアミン(以下NPDと略す。ガラス転移温度96℃、イオン化エネルギー5.4eV)や化学式5で示されるm−MTDATA(ガラス転移温度75℃、イオン化エネルギー5.2eV)を第2正孔注入輸送層(9)として真空蒸着により40〜100nm程度の厚さで形成する。
【0006】
【化2】

Figure 0004061840
【0007】
【化3】
Figure 0004061840
【0008】
次に有機正孔注入輸送層(3)上に有機発光層(4)としてトリス(8−キノリノラート)アルミニウム(以下Alqと略す。イオン化エネルギー5.8eV)等の有機蛍光体や特開平11−3782号公報、特開平11−323323号公報、特開平11−329732号公報、特開2000−178548号公報で述べられているアントラセン系、ベンゾアントラセン系発光材料等を40〜100nm程度の厚さで蒸着法、昇華転写法等で成膜する。
【0009】
発光層中にペリレン系、クマリン系、ピラン系、ジメチルキナクリドン等の蛍光量子収率の高い蛍光色素をゲスト材料とし、1〜10重量%程度ドーピングすることにより、発光輝度を高めたり、発光色を変えることもできる。ドーピングは共蒸着、または発光層ホスト材料とゲスト材料の積層膜を加熱することによりホスト材料中にゲスト材料を熱拡散させることも可能である。
【0010】
有機発光層(4)上に電子輸送能力の優れたAlqやビス(10−ヒドロキシベンゾ[h]キノリノラート)ベリリウム錯体等の材料からなる電子輸送層(5)を形成し駆動電圧を低減したり、正孔ブロック性の優れた2、9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン等の材料を発光層界面に積層して多層の電子輸送層(5)とすることもできる。
【0011】
次に陰極(7)としてAlやAl:Li合金、希土類合金等の低仕事関数合金を共蒸着法により200〜1000nm程度蒸着する。
【0012】
陰極にAlを用いる場合は、より電子注入効率を上げるために0.5nm程度のフッ化リチウムや酸化リチウム等のアルカリ金属含有電子注入層(6)を有機発光層(4)または電子輸送層(5)と陰極(7)間に形成することも行われる。
【0013】
以上のように作られた素子は、透明電極側を陽極として3V程度以上の直流低電圧を印加することにより発光層に正孔と電子が注入され、その再結合により発光する。
【0014】
以上のように形成した発光素子では、12V程度の直流電圧印加で10000cd/m2 以上の輝度が得られる。
【0015】
有機薄膜発光素子に用いる有機材料は耐熱性が要求されている。駆動による発熱や、夏の自動車のダッシュボード上でも有機層が軟化し混合することが無いようアモルファス材料では100℃以上のガラス転移温度を有することが求められる。
【0016】
しかし、通常有機薄膜発光素子に用いられるm−MTDATAやNPDはガラス転移温度が100℃以下であるため、陰極蒸着や封止等の素子作製中の基板温度上昇や素子の駆動中の発熱や高温になる場所での使用により、素子が劣化しやすい問題があった。
【0017】
具体的には有機層が混合し素子の電流電圧特性が高電圧化したり、膜の結晶化が促進され電気的短絡やリークが発生し易くなる問題があった。
【0018】
【発明が解決しようとする課題】
本発明は、これらの問題点を解決するためになされたものであり、その課題とするところは、100℃以上の高いガラス転移温度を持つ耐熱正孔輸送性化合物の提供とそれらを用いた耐熱性の高い有機薄膜発光素子を提供することにある。
【0019】
【課題を解決するための手段】
本発明において、前記課題を解決するために耐熱正孔輸送性化合物として、一般式[1]で示した構造を有するテトラヒドロピレン環を有する正孔輸送性化合物であって化学式7で示した構造を有する正孔輸送性化合物を用いることである。
【化4】
Figure 0004061840
(ここで、置換基R 1 〜R 2 はフェニル基、トリル等、ナフチル基、ビフェニル基、 9,9- ジメチルフルオレン - - イル基、 4,5,9,10 −テトラヒドロピレン残基を含むアリール基等のアリール基から独立に選ばれる。またはR 1 とR 2 、R 3 とR 4 の一方または両方は連結可能で、カルバゾリル基、イミノジベンジリル基を1つ以上含み、連結していないR n 基(nは1と2、または3と4)はフェニル基、トリル等、ナフチル基、ビフェニル基、 9,9- ジメチルフルオレン - - イル基、 4,5,9,10 −テトラヒドロピレン残基を含むアリール基等のアリール基から独立に選ばれる。)
【0020】
本発明における一般式[1]で示す正孔輸送性化合物は図1に示す有機薄膜発光素子の正孔注入輸送層(3)、第1正孔注入輸送層(8)、第2正孔注入輸送層(9)、有機発光層(4)、電子輸送層(5)等の、有機薄膜発光素子中の対向する電極間の半導体特性を有する有機層の少なくとも一層に用いることができる。
【0021】
【発明の実施の形態】
従来用いられてきた正孔輸送材料では窒素原子間は、化学式4の化合物のようにビフェニレン基が用いられる場合が多かったが、本発明に用いる一般式[1]で示される化合物では、テトラヒドロピレン環を用い、その2本の非共役のエチレン鎖がビフェニレン基の回転の自由度を適度に抑制するため、ビフェニレン基の場合よりも分子の剛直性を高め、30〜40℃程度ガラス転移温度を高めることができる。
【0022】
また、一般式[1]で示される正孔輸送性化合物の分子量は、500〜1500であることが好ましい。500以下の場合は蒸発源の輻射熱やプロセスの影響で基板温度が100℃以上になった場合、真空蒸着時に基板に付着しにくかったり再蒸発する問題があり、分子量が1500以上の場合は蒸発温度が高くなり化合物の分解や炭化の問題が生じるからである。
【0023】
ビフェニレン基のテトラヒドロピレン化に加えて、化学式2で示す化合物のように剛直性が高く耐熱性が高いナフタレン環等のアリール基を導入することにより、さらに高いガラス転移温度を得ることができる。具体的には、化合物(化学式3)は約136℃(DSCで20℃/minの昇温速度で測定、転移領域128℃〜141℃)の高いガラス転移温度を有し、平滑で透明なアモルファス蒸着膜が得られる。
【化5】
Figure 0004061840
【0024】
また、化学式3の膜のイオン化エネルギーは5.4eVであり、正孔注入輸
送性に優れる。
【0025】
化合物(化学式2)の2つのナフチル基は、αまたはβ位で置換することができるが、α位とβ位の両方で置換した化合物(化学式6)で示す化合物はより対称性が低く、化学式3よりもさらに結晶化し難くできる。
【0026】
【化6】
Figure 0004061840
【0027】
その他の一般式[1]で示される分子量500〜1500の化合物の具体例としては、化学式7〜化学式18で示す化合物が上げられる。
【0028】
【化7】
Figure 0004061840
【0029】
【化8】
Figure 0004061840
【0030】
【化9】
Figure 0004061840
【0031】
【化10】
Figure 0004061840
【0032】
【化11】
Figure 0004061840
【0033】
【化12】
Figure 0004061840
【0034】
【化13】
Figure 0004061840
【0035】
【化14】
Figure 0004061840
【0036】
【化15】
Figure 0004061840
【0037】
【化16】
Figure 0004061840
【0038】
【化17】
Figure 0004061840
【0039】
【化18】
Figure 0004061840
【0040】
【化19】
Figure 0004061840
【0041】
化学式3の化合物の合成法は、まず、ピレンのBirch 還元により4,5,9,10−テトラヒドロピレンを得る。次に、4,5,9,10−テトラヒドロピレンを臭素と反応させて2,7-ジブロモ-4,5,9,10 −テトラヒドロピレンを得る。次に2,7-ジブロモ-4,5,9,10-テトラヒドロピレンをPd触媒/ターシャリーブチルホスフィン存在下、N- フェニル- 1- ナフチルアミンと反応させて、化学式3で示す化合物N,N'- ジフェニル-N,N'-ジ(1-ナフチル)-4,5,9,10 −テトラヒドロピレン-2,7- ジアミンを得る。
【0042】
化学式6の化合物の合成法は、4,5,9,10−テトラヒドロピレンを過酸化窒素でモノニトロ化し2-ニトロ-4,5,9,10 −テトラヒドロピレンを得た後、Sandmeyer 反応でニトロ基をブロモ化し、さらにヨウ素とヨウ素酸により7 位をヨウ素化し2-ブロモ-7- ヨ−ド-4,5,9,10 −テトラヒドロピレンを得る。
【0043】
次にullman反応によりN- フェニル- 1- ナフチルアミンとヨード基を反応させて2-ブロモ-N- フェニル-N-(1- ナフチル)-4,5,9,10 −テトラヒドロピレン-7- アミンを得る。さらにPd触媒/ターシャリーブチルホスフィン存在下、残ったブロモ基とN- フェニル- 2- ナフチルアミンと反応させて、化学式6で示す化合物N,N'- ジフェニル-N,N'-ジ(2-ナフチル)-4,5,9,10 −テトラヒドロピレン-2,7- ジアミンを得ることができる。
【0044】
化学式7、8の化合物の合成は、化学式3の合成法中のN- フェニル- 1- ナフチルアミンに代えてそれぞれイミノジベンジル、カルバゾールを用いて同様に行う。
【0045】
化学式9の化合物は、化学式6の合成法中のN- フェニル- 1- ナフチルアミンに代えてイミノジベンジルを用いて2-ブロモ-7- イミノジベンジル-4,5,9,10 −テトラヒドロピレンを得た後、カルバゾールをPd触媒/ターシャリーブチルホスフィン存在下反応させて得られる。
【0046】
化学式10〜化学式12の化合物は、化学式8の化合物の合成法中カルバゾールに代えてそれぞれ、p−トリル−1−ナフチルアミン、N-(9,9-ジメチルフルオレン- 2- イル)−アニリン、N-(9,9-ジメチルフルオレン- 2- イル)-1,1'-ビフェニル-4- アミンを反応させることにより得られる。
【0047】
化学式13〜化学式17の化合物は、2倍モル以上の2-ブロモ-7- イミノジベンジル-4,5,9,10 −テトラヒドロピレンとそれぞれアニリン、ジフェニル-p- フェニレンジアミン、ジフェニルベンジジン、ビス(4,4'- アニリノ)ジフェニルメタン、N,N'−(2-ナフチル)-p- フェニレンジアミンをPd触媒/ターシャリーブチルホスフィン存在下反応させて得られる。
【0048】
化学式18の化合物は、2-アミノ-4,5,9,10 −テトラヒドロピレンと2-ブロモ-4,5,9,10 −テトラヒドロピレンとを当モル比でPd触媒/ターシャリーブチルホスフィン存在下反応させビス(4,5,9,10−テトラヒドロピレン- 2-イル)アミンを得る。これを、2-ブロモ-7- イミノジベンジル-4,5,9,10 −テトラヒドロピレンとPd触媒/ターシャリーブチルホスフィン存在下反応させて得られる。
【0049】
化学式19の化合物は、2-アミノ-4,5,9,10 −テトラヒドロピレンを2倍モル以上の2-ブロモ-4,5,9,10 −テトラヒドロピレンとPd触媒/ターシャリーブチルホスフィン存在下反応させトリス(4,5,9,10−テトラヒドロピレン- 2-イル)アミンを得る。さらにこれをヨウ化カリウムでヨウ素化しトリス[7- ヨード- (4,5,9,10−テトラヒドロピレン- 2-イル)] アミンを得る。これに3倍モル以上のイミノジベンジルをUllman反応またはPd触媒/ターシャリーブチルホスフィン存在下反応させて得られる。
【0050】
化学式6〜化学式19の正孔輸送性化合物は、テトラピレン構造を1つ以上含み100℃以上の高いガラス転移温度を有する。
【0051】
以下、本発明における一般式[1]の化合物を用いた有機薄膜発光素子を作製する場合の方法を説明する。
【0052】
本発明における一般式[1]で示す正孔輸送性化合物は図1に示す有機薄膜発光素子の正孔注入輸送層(3)、第1正孔注入輸送層(8)、第2正孔注入輸送層(9)、有機発光層(4)、電子輸送層(5)等の、有機薄膜発光素子中の対向する電極間の半導体特性を有する有機層の少なくとも一層に用いることができる。
【0053】
有機薄膜発光素子は基板上に通常、陽極(2)、正孔注入輸送層(3)、有機発光層(4)、電子輸送層(5)、陰極(7)の順に形成された後、封止膜またはガラス板等の封止板や金属缶で封止され作られる。また、別の場合には、基板上に陰極、電子輸送層、有機発光層、正孔注入輸送層、陽極の順に形成され封止することも可能である。
【0054】
基板としてはプラスチック基板やガラス基板の他、シリコン基板等を用いることができるが、基板が不透明な場合は、光を取り出すためには少なくとも1方の対極または素子の端面が透明である必要がある。
【0055】
陽極(2)は通常ITOやインジウム亜鉛複合酸化物、酸化錫等の透明電極が用いられるが、他の場合には金やプラチナ、パラジウム、ニッケル等の仕事関数が大きい金属の10nm程度以下の膜厚の半透明膜や、カーボン膜、ポリチオフェン、ポリアニリン等の導電性高分子膜が単独または透明電極上に積層して用いられる。
【0056】
正孔注入輸送層(3)は本発明の一般式[1]の化合物を、単独で、または他の有機半導体材料と積層して用いる。成膜方法は真空蒸着法、または有機溶媒に溶かしてスピンコート法、ディップコート法、ロールコート法、インクジェット法等、材料に応じて各種の製膜方法を適用し、陽極(2)上に厚さ数nm〜1μm程度の厚さに薄膜化し、正孔注入輸送層(3)とすることができる。一般式[1]の化合物より小さいイオン化エネルギーを持つ銅フタロシアニン等を第1正孔注入輸送層とする場合、一般式[1]の化合物を第2正孔注入輸送層とする。
【0057】
一般式[1]の化合物はSe、Te等のカルコゲン系半導体や酸化インジウム、酸化インジウムスズ複合酸化物等の遷移金属酸化物半導体材料中に分散または混合して正孔注入輸送層(3)とすることもできる。
【0058】
また、本発明の一般式[1]の化合物の膜中に塩化第2鉄や、トリス(4−ブロモフェニル)アンモニウムヘキサクロルアンチモネート等のルイス酸からなるアクセプターを添加し膜の電気抵抗を小さくし1μm以上の厚膜で正孔注入輸送層(3)を形成し素子の短絡を防止することも可能である。
【0059】
有機発光層(4)は、Alq等の既知の各種有機発光材料や、化学式20〜22で示す化合物等を用いることができる。ここで、Ar基はナフチル基、ビフェニル基、9,9-ジメチルフルオレン- 2- イル基、オキサジアゾール基、トリアゾール基を含む基等から選ばれるアリール基である。
【0060】
【化20】
Figure 0004061840
【0061】
【化21】
Figure 0004061840
【0062】
【化22】
Figure 0004061840
【0063】
また、本発明の一般式[1]の化合物をホストとしアントラセン誘導体、ベンゾアントラセン誘導体、ルブレン、トリス(2−フェニルピリジン)イリジウム錯体等の有機蛍光体、リン光体を50重量%以下ドープすることにより、有機発光層(4)としても用いることができる。
【0064】
電子輸送層(5)材料の例としては、電子輸送能力の優れた2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾールや浜田らの合成したオキサジアゾール誘導体(日本化学会誌、1540頁、1991年)、特開平7−90260号公報で述べられているトリアゾール化合物等がある。その他、ゲスト発光体をドーピングし有機発光層(4)を形成した場合には、Alqやビス(10−ヒドロキシベンゾ[h]キノリノラート)ベリリウム錯体等のホスト発光材料のみを用いることも可能である。また、電子輸送層(5)の有機材料中にLiやCs等のアルカリ金属またはそれらのアルコキシドをドープしより低抵抗化し用いることも可能である。
【0065】
電子輸送層(5)は単層、または正孔ブロック性の優れた2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン等の材料を発光層界面に積層して多層とすることもできる。
【0066】
電子輸送層は真空蒸着法等の薄膜形成法で10〜1000nmの厚さで成膜される。
【0067】
陰極(5)は、有機発光層(4)または電子輸送層(5)上に形成する。
陰極は、有機発光層(4)または電子注入輸送層(6)と接する面に低仕事関数の材料を用いると電子注入効率が高まり低電圧発光が可能となる。陰極を構成する材料はMg,Al等の金属単体が用いることも可能である。より低電圧で発光させ発光効率を上げるためにはLi,Mg,Ca,Sr,La,Cs,Er,Eu等の仕事関数3.7eV以下の低仕事関数金属を1種以上を含む低仕事関数合金で陰極を形成するか、1nm厚程度以下のアルカリ金属またはLiF、Li2 O、Cs2 O等のアルカリ金属を含む化合物を含むアルカリ金属含有層(6)を有機発光層(4)または電子輸送層(5)上に形成してからAlやAg、Cu等の電気抵抗が低く難腐食性の金属で陰極(5)を形成する。
【0068】
陰極の形成方法は、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法を用いたり、合金ターゲットを用いてスパッタリング法により陰極を成膜することができる。
【0069】
単純マトリックス駆動ディスプレイを形成する場合に陰極をストライプ状に形成する必要がある場合には、スリット状に穴の開いたマスクを基板に密着させて蒸着するか、陰極形成部全面に蒸着した後、レーザーアブレーション法またはイオンビームエッチング法、リアクティブエッチング法等で陰極金属のパターンニングを行うか、または、表面エネルギーの小さいトリフルオメチル基を3個以上有する炭素数6以上のフッ素置換アルキル化合物またはアルキレート化合物をライン上に塗布すれば、その部分にのみMg等の金属が付着せず、陰極の金属ライン間を分離することができる。
【0070】
絶縁封止膜(10)は、有機層や電極の酸化を防ぐため陰極(5)形成後直ちに形成する。絶縁封止膜材料の例としては、SiO2 、SiO、GeO、MgO、Al2 3 、B2 3 、TiO2 、ZnO、SnO等の酸化物(多少化学量論比からずれていることもある)、MgF2 、LiF、AlF3 等の沸化物、またはアモルファスなシリコン窒化膜、シリコン窒化酸化膜、アルミシリコン窒化酸化膜、ダイヤモンドライクカーボン膜等のガスおよび水蒸気バリアー性、電気絶縁性の高い材料があげられるが、上記例に限定されるものではない。これらを単体または複合化、または多層化して蒸着法、反応性蒸着法、CVD法、スパッタリング法、イオンプレーティング法等により成膜する。
【0071】
ピンホール防止膜(11)としては、Al、In、Zn、Sn、Mg等の金属膜を蒸着、スパッタ法等で数100nm以上の厚さで絶縁封止膜(10)上に形成し、絶縁封止膜(10)の微細な欠陥部からの水分、酸素の浸透を防止する。
【0072】
さらに、より完全に湿気の浸入を防ぐために、低吸湿性の感光性接着剤層(12)またはオレフィン系感熱接着剤層で、カバーガラス(13)等の封止板の周囲または全面を真空中または窒素、ヘリウム、ネオン、アルゴン等の不活性ガス中で基板(1)と接着し密封する。ガラス板以外にも、金属缶、プラスチック板等を用いることもできる。接着剤層からの水分の浸透を防ぐためには、接着剤中に酸化バリウムやゼオライト等の乾燥剤を混合しておいても良いし、ピンホール防止膜(11)上やカバーガラス等の封止板の内面にシリカゲルやゼオライト、酸化バリウムやカルシア等の乾燥剤、アルカリ金属やアルカリ土類金属、希土類などからなるゲッター材の層を形成しておいても良い。
【0073】
以上のように構成した有機薄膜発光素子は、正孔注入輸送層(3)側を正として直流電圧を印加することにより発光するが、交流電圧を印加した場合にも正孔注入輸送層(3)側の電極が正に電圧印加されている間は発光する。
【0074】
本発明による有機薄膜発光素子を基板上に2次元に配列することにより文字や画像を表示可能な薄型ディスプレーとすることができる。
【0075】
赤、青、緑の3色の発光素子を2次元に配列するか、白色発光素子とカラーフィルターを用いてカラーディスプレー化も可能である。
【0076】
【実施例】
<実施例1> 化合物(化学式3)の合成
トルエン100mlに酢酸パラジウム0.184 g、トリ- t- ブチルホスフィン0.7 ml、ナトリウム-t- ブトキシド3.36gを80℃で撹拌溶解後、N-フェニル-1- ナフチルアミン14.45 gを加え30分間撹拌後、2,7-ジブロモ-4,5,9,10 −テトラヒドロピレン4.0 gを加え、100℃で18時間撹拌反応させた。
【0077】
反応後、THFで抽出し酢酸エチルで洗浄した後、シリカゲルカラムクロマトグラフィーで精製した。さらにTHF/ヘキサンで再結晶することにより(化学式3)で示すN,N'- ジフェニル-N,N'-ジ(1-ナフチル)-4,5,9,10 −テトラヒドロピレン-2,7- ジアミンが3.9 g(収率55.4%)得られた。純度99.5%(HPLC)。融点286 〜296 ℃(ホットプレート法)。
【0078】
図2に化学式3の日本分光製フーリエ変換赤外分光光度計FT/ IR−5MPでKBr法により測定した赤外線吸収スペクトルを示す。
【0079】
<実施例2>
透明絶縁性の基板(1)として、厚さ1.1mmの青板ガラス板上にスパッタリング法で成膜した170nmのITOをエッチングしパターニングした後、使用前に水洗し、イソプロピルアルコール蒸気で乾燥、アルゴンプラズマ洗浄し陽極(2)とした。
【0080】
次に、第1正孔注入輸送層(8)としてCuPcを10nm、第2正孔注入輸送層(9)として、化学式3で表す化合物を40nmそれぞれ順に真空蒸着する。
【0081】
次に、有機発光層(4)としてAlqを50nm蒸着し、その上面にアルカリ金属含有電子注入層(6)としてLiFを0.5nm蒸着し、陰極(7)としてAlを200nm蒸着する。
【0082】
次に絶縁封止膜(10)として酸化ゲルマニウムをArプラズマアシスト蒸着で1μm成膜し、さらにピンホール防止膜(11)としてAlを200nm蒸着した。
【0083】
最後に乾燥窒素下でプラズマ洗浄したカバーガラス(13)をエポキシ系感光性接着剤(12)で貼り付ける。
【0084】
この素子は陽極と陰極を直流電源につないで電圧印加すると3V以上の電圧で緑色発光し最高輝度で10000cd/m2 以上得られ、100℃に加熱した後も素子は破壊せず同様に発光する。
【0085】
<比較例>
第1正孔注入輸送層(8)までは実施例2と同様に作製した後、第2正孔注入輸送層(9)としてNPDを40nm、真空蒸着する。
【0086】
次に、有機発光層(4)としてAlqを50nm蒸着し、その上面に電子注入層(5)としてLiFを0.5nm蒸着し、陰極(7)としてAlを200nm蒸着する。
【0087】
この素子は3V以上の直流電圧で緑色発光が観察されたが、100℃に加熱すると、輝度−電圧特性が高電圧シフトし、実施例2と同電圧を印加した場合に半分以下の輝度に劣化した。
【0088】
<実施例3>
第1正孔注入輸送層(8)までは実施例2と同様に作製した後、第2正孔注入輸送層(9)として、化学式7で表す化合物を25nm蒸着する。
【0089】
次に有機発光層(4)として、化学式8で表す化合物中にトリス(2−フェニルピリジン)イリジウムを5重量%の割合でドープした膜を共蒸着法で35nm積層する。
【0090】
次に正孔ブロック性の電子輸送層(5)として2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリンを10nm蒸着する。さらに電子輸送層(5)としてAlqを25nm蒸着により積層する。
【0091】
次にアルカリ金属含有層(6)としてLiFを0.5nm蒸着し、陰極(7)としてAlを200nm蒸着する。
【0092】
次に絶縁封止膜(10)としてGeOをイオンプレーティングで1μm成膜し、さらにピンホール防止膜(11)としてAlを200nm蒸着した。
【0093】
最後に乾燥窒素下でプラズマ洗浄したカバーガラス(13)をエポキシ系感光性接着剤(12)で貼り付ける。
【0094】
この素子は陽極と陰極を直流電源につないで電圧印加すると3V以上の電圧で緑色発光し最高輝度で10000cd/m2 以上得られ、100℃に加熱した後も素子は破壊せず同様に発光する。
【0095】
【発明の効果】
以上により、本発明の一般式[1]に示す正孔輸送性化合物は、100℃以上の高いガラス転移温度を持つため、これをキャリア輸送機能または発光機能を有する層に用いることにより有機薄膜発光素子の耐熱性、信頼性を高める効果がある。
【0096】
【図面の簡単な説明】
【図1】本発明の有機薄膜発光素子の断面の構造の一例を示す説明図である。
【図2】本発明の一実施例による化学式3の赤外線吸収スペクトル図である。
【符号の説明】
1…基板
2…陽極
3…正孔注入輸送層
4…有機発光層
5…電子輸送層
6…アルカリ金属含有層
7…陰極
8…第1正孔注入輸送層
9…第2正孔注入輸送層
10…絶縁封止膜
11…ピンホール防止膜
12…感光接性着剤層
13…カバーガラス
14…陰極取り出し口ITO[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-resistant hole transporting compound, and can be used for an organic thin film light-emitting device having a diode characteristic composed of a laminated film of an organic semiconductor thin film, an electrophotographic photoreceptor, and the like.
[0002]
[Prior art]
The organic thin film light emitting device is manufactured by Eastman Kodak Company C.I. W. Tang et al. Described in JP-A-59-194393, JP-A-63-246492, JP-A-63-295695, Applied Physics Letter Vol. 51, No. 12, page 913 (1987). ), And Journal of Applied Physics, Vol. 65, No. 9, page 3610 (1989), Applied Physics Letter, Vol. 69, No. 15, page 2160 (1996), Applied Physics Letter, Vol. 70 No. 2 pp. 152 (1997), Applied Physics Letter Vol. 70, No. 13, pp. 1665 (1997), and Applied Physics Letter Vol. 65, Vol. No. 807 (1994) and the like.
[0003]
A configuration example of an organic thin film light emitting element is shown in FIG. First, on a transparent insulating substrate (1) such as glass or a resin film, an anode (2 of a transparent conductive film of a composite oxide of indium and tin (hereinafter referred to as ITO) by vapor deposition, ion plating, sputtering, or the like. ) Is formed. Next, an organic hole injecting and transporting layer (3) comprising an organic semiconductor thin film layer formed by laminating about 2 to 3 layers in order of decreasing ionization energy is formed thereon.
[0004]
For example, copper phthalocyanine (hereinafter abbreviated as CuPc, ionization energy 5.2 eV) that is highly stable against oxidation is formed as a first hole injection transport layer (8) with a thickness of 10 nm by vacuum deposition.
[0005]
In addition, N, N′-di (1-naphthyl) —N, N′—, which is highly amorphous and has high visible light transmittance in order to prevent pinholes that may cause a short circuit of the element, is represented by Formula 4. Diphenyl-1,1′-biphenyl-4,4′-diamine (hereinafter abbreviated as NPD, glass transition temperature 96 ° C., ionization energy 5.4 eV) and m-MTDATA represented by chemical formula 5 (glass transition temperature 75 ° C., ionization) An energy of 5.2 eV) is formed as a second hole injection transport layer (9) with a thickness of about 40 to 100 nm by vacuum deposition.
[0006]
[Chemical 2]
Figure 0004061840
[0007]
[Chemical 3]
Figure 0004061840
[0008]
Next, an organic phosphor such as tris (8-quinolinolato) aluminum (hereinafter abbreviated as Alq. Ionization energy 5.8 eV) as an organic light emitting layer (4) on the organic hole injecting and transporting layer (3), or Japanese Patent Application Laid-Open No. 11-3782. No. 11-323323, 11-329732, 2000-178548, anthracene-based, benzoanthracene-based luminescent materials, etc. are deposited in a thickness of about 40 to 100 nm. The film is formed by the method, the sublimation transfer method or the like.
[0009]
In the light emitting layer, a fluorescent dye having a high fluorescence quantum yield such as perylene, coumarin, pyran, dimethylquinacridone, etc. is used as a guest material, and the emission brightness is increased or the emission color is increased by doping about 1 to 10% by weight. It can also be changed. Doping can be performed by co-evaporation or by thermally diffusing the guest material in the host material by heating the laminated film of the light emitting layer host material and guest material.
[0010]
On the organic light emitting layer (4), an electron transport layer (5) made of a material such as Alq or bis (10-hydroxybenzo [h] quinolinolato) beryllium complex having excellent electron transport capability is formed to reduce the driving voltage, A multilayer electron transport layer (5) can also be formed by laminating a material such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline having excellent hole blocking properties at the light emitting layer interface.
[0011]
Next, a low work function alloy such as Al, Al: Li alloy, rare earth alloy or the like is deposited as a cathode (7) by about 200 to 1000 nm by a co-evaporation method.
[0012]
When Al is used for the cathode, in order to further increase the electron injection efficiency, an alkali metal-containing electron injection layer (6) such as lithium fluoride or lithium oxide of about 0.5 nm is used as the organic light emitting layer (4) or the electron transport layer ( 5) and the cathode (7) are also formed.
[0013]
The device fabricated as described above emits light by recombination by injecting holes and electrons into the light emitting layer by applying a DC low voltage of about 3 V or more with the transparent electrode side as an anode.
[0014]
In the light emitting element formed as described above, a luminance of 10,000 cd / m 2 or more can be obtained by applying a DC voltage of about 12V.
[0015]
The organic material used for the organic thin film light emitting element is required to have heat resistance. The amorphous material is required to have a glass transition temperature of 100 ° C. or higher so that the organic layer does not soften and mix even on heat generated by driving or on the dashboard of an automobile in summer.
[0016]
However, since m-MTDATA and NPD normally used for organic thin film light emitting devices have a glass transition temperature of 100 ° C. or lower, the substrate temperature rises during device fabrication such as cathode deposition and sealing, heat generation during device driving, and high temperatures. There is a problem that the device is likely to deteriorate due to use in a place where
[0017]
Specifically, there is a problem that the organic layer is mixed to increase the current-voltage characteristics of the element, or the crystallization of the film is promoted to easily cause an electrical short circuit or leakage.
[0018]
[Problems to be solved by the invention]
The present invention has been made in order to solve these problems, and the object of the present invention is to provide a heat-resistant hole transporting compound having a high glass transition temperature of 100 ° C. or higher and heat resistance using them. It is to provide an organic thin film light emitting device having high performance.
[0019]
[Means for Solving the Problems]
In the present invention, in order to solve the above-described problem, a hole transporting compound having a tetrahydropyrene ring having the structure represented by the general formula [1] as the heat resistant hole transporting compound and having the structure represented by the chemical formula 7 The hole transporting compound is used.
[Formula 4]
Figure 0004061840
(Wherein the substituents R 1 to R 2 is a phenyl group, tolyl, naphthyl, biphenyl, 9,9-dimethyl-fluorene - 2 - yl group, 4,5,9,10 - including tetrahydropyrene residues It is independently selected from aryl groups such as an aryl group, or one or both of R 1 and R 2 , R 3 and R 4 can be linked and includes at least one carbazolyl group and iminodibenzylyl group. no R n groups (n is 1 and 2 or 3 and 4) is a phenyl group, tolyl, naphthyl, biphenyl, 9,9-dimethyl-fluorene - 2 - yl group, 4,5,9,10 - tetrahydro It is independently selected from aryl groups such as aryl groups containing a pyrene residue.)
[0020]
The hole transporting compound represented by the general formula [1] in the present invention includes the hole injection / transport layer (3), the first hole injection / transport layer (8), and the second hole injection of the organic thin film light emitting device shown in FIG. It can be used in at least one organic layer having semiconductor characteristics between opposing electrodes in the organic thin film light emitting device, such as a transport layer (9), an organic light emitting layer (4), and an electron transport layer (5).
[0021]
DETAILED DESCRIPTION OF THE INVENTION
In a hole transport material that has been conventionally used, a biphenylene group is often used between nitrogen atoms as in the compound of Chemical Formula 4, but in the compound represented by the general formula [1] used in the present invention, tetrahydropyrene is used. Since the two non-conjugated ethylene chains use a ring to moderately suppress the degree of freedom of rotation of the biphenylene group, the rigidity of the molecule is increased compared to the case of the biphenylene group, and the glass transition temperature is about 30 to 40 ° C. Can be increased.
[0022]
The molecular weight of the hole transporting compound represented by the general formula [1] is preferably 500-1500. In the case of 500 or less, there is a problem that the substrate temperature becomes 100 ° C. or more due to the radiant heat of the evaporation source or the process, and there is a problem that it is difficult to adhere to the substrate during vacuum deposition or re-evaporation. This is because the problem of decomposition and carbonization of the compound occurs.
[0023]
In addition to tetrahydropyrenation of a biphenylene group, a higher glass transition temperature can be obtained by introducing an aryl group such as a naphthalene ring having high rigidity and high heat resistance as in the compound represented by Chemical Formula 2. Specifically, the compound (Chemical Formula 3) has a high glass transition temperature of about 136 ° C. (measured at a heating rate of 20 ° C./min by DSC, transition region 128 ° C. to 141 ° C.), and is a smooth and transparent amorphous A vapor deposition film is obtained.
[Chemical formula 5]
Figure 0004061840
[0024]
Moreover, the ionization energy of the film | membrane of Chemical formula 3 is 5.4 eV, and is excellent in hole injection transport property.
[0025]
The two naphthyl groups of the compound (Chemical Formula 2) can be substituted at the α- or β-position, but the compound represented by the compound substituted at both the α-position and the β-position (Chemical Formula 6) has lower symmetry, and the chemical formula Crystallization can be more difficult than crystallization.
[0026]
[Chemical 6]
Figure 0004061840
[0027]
Specific examples of other compounds having a molecular weight of 500 to 1500 represented by the general formula [1] include compounds represented by chemical formulas 7 to 18.
[0028]
[Chemical 7]
Figure 0004061840
[0029]
[Chemical 8]
Figure 0004061840
[0030]
[Chemical 9]
Figure 0004061840
[0031]
[Chemical Formula 10]
Figure 0004061840
[0032]
Embedded image
Figure 0004061840
[0033]
Embedded image
Figure 0004061840
[0034]
Embedded image
Figure 0004061840
[0035]
Embedded image
Figure 0004061840
[0036]
Embedded image
Figure 0004061840
[0037]
Embedded image
Figure 0004061840
[0038]
Embedded image
Figure 0004061840
[0039]
Embedded image
Figure 0004061840
[0040]
Embedded image
Figure 0004061840
[0041]
In the synthesis method of the compound of Formula 3, first, 4,5,9,10-tetrahydropyrene is obtained by Birch reduction of pyrene. Next, 4,5,9,10-tetrahydropyrene is reacted with bromine to give 2,7-dibromo-4,5,9,10-tetrahydropyrene. Next, 2,7-dibromo-4,5,9,10-tetrahydropyrene is reacted with N-phenyl-1-naphthylamine in the presence of a Pd catalyst / tertiarybutylphosphine to give a compound N, N ′ represented by Chemical Formula 3. -Diphenyl-N, N'-di (1-naphthyl) -4,5,9,10-tetrahydropyrene-2,7-diamine is obtained.
[0042]
The compound of formula 6 is synthesized by mononitrating 4,5,9,10-tetrahydropyrene with nitrogen peroxide to obtain 2-nitro-4,5,9,10-tetrahydropyrene, and then by Sandmeyer reaction. Is brominated, and the 7-position is iodinated with iodine and iodic acid to give 2-bromo-7-iodo-4,5,9,10-tetrahydropyrene.
[0043]
Next, N-phenyl-1-naphthylamine and iodo group are reacted by ullman reaction to give 2-bromo-N-phenyl-N- (1-naphthyl) -4,5,9,10-tetrahydropyrene-7-amine. obtain. Further, in the presence of a Pd catalyst / tertiary butylphosphine, the remaining bromo group is reacted with N-phenyl-2-naphthylamine to give a compound N, N′-diphenyl-N, N′-di (2-naphthyl) represented by Chemical Formula 6. ) -4,5,9,10-tetrahydropyrene-2,7-diamine can be obtained.
[0044]
The compounds of Chemical Formulas 7 and 8 are synthesized in the same manner by using iminodibenzyl and carbazole, respectively, instead of N-phenyl-1-naphthylamine in the synthetic method of Chemical Formula 3.
[0045]
The compound of formula 9 is obtained by replacing 2-bromo-7-iminodibenzyl-4,5,9,10-tetrahydropyrene with iminodibenzyl instead of N-phenyl-1-naphthylamine in the synthesis method of formula 6. After obtaining, carbazole is obtained by reacting in the presence of Pd catalyst / tertiary butylphosphine.
[0046]
In the synthesis method of the compound of Formula 8, the compounds of Formula 10 to Formula 12 are replaced with p-tolyl-1-naphthylamine, N- (9,9-dimethylfluoren-2-yl) -aniline, N- It can be obtained by reacting (9,9-dimethylfluoren-2-yl) -1,1'-biphenyl-4-amine.
[0047]
The compounds of Chemical Formula 13 to Chemical Formula 17 are two or more moles of 2-bromo-7-iminodibenzyl-4,5,9,10-tetrahydropyrene and aniline, diphenyl-p-phenylenediamine, diphenylbenzidine, bis ( It is obtained by reacting 4,4′-anilino) diphenylmethane and N, N ′-(2-naphthyl) -p-phenylenediamine in the presence of Pd catalyst / tertiary butylphosphine.
[0048]
The compound of the chemical formula 18 is 2-amino-4,5,9,10-tetrahydropyrene and 2-bromo-4,5,9,10-tetrahydropyrene at an equimolar ratio in the presence of Pd catalyst / tertiary butylphosphine. React to obtain bis (4,5,9,10-tetrahydropyren-2-yl) amine. This is obtained by reacting 2-bromo-7-iminodibenzyl-4,5,9,10-tetrahydropyrene with Pd catalyst / tertiary butylphosphine.
[0049]
The compound of Formula 19 is 2-amino-4,5,9,10-tetrahydropyrene in the presence of 2-fold moles of 2-bromo-4,5,9,10-tetrahydropyrene and Pd catalyst / tertiary butylphosphine. React to give tris (4,5,9,10-tetrahydropyren-2-yl) amine. This is further iodinated with potassium iodide to give tris [7-iodo- (4,5,9,10-tetrahydropyren-2-yl)] amine. This can be obtained by reacting 3 or more moles of iminodibenzyl in the presence of Ullman reaction or Pd catalyst / tertiary butylphosphine.
[0050]
The hole transporting compounds represented by Chemical Formulas 6 to 19 include one or more tetrapyrene structures and have a high glass transition temperature of 100 ° C. or higher.
[0051]
Hereinafter, a method for producing an organic thin film light emitting device using the compound of the general formula [1] in the present invention will be described.
[0052]
The hole transporting compound represented by the general formula [1] in the present invention includes the hole injection / transport layer (3), the first hole injection / transport layer (8), and the second hole injection of the organic thin film light emitting device shown in FIG. It can be used in at least one organic layer having semiconductor characteristics between opposing electrodes in the organic thin film light emitting device, such as a transport layer (9), an organic light emitting layer (4), and an electron transport layer (5).
[0053]
An organic thin film light emitting element is usually formed on a substrate in the order of an anode (2), a hole injection transport layer (3), an organic light emitting layer (4), an electron transport layer (5), and a cathode (7), and then sealed. It is made by sealing with a sealing plate such as a stop film or a glass plate or a metal can. In another case, a cathode, an electron transport layer, an organic light emitting layer, a hole injection transport layer, and an anode can be formed and sealed on the substrate in this order.
[0054]
As the substrate, a plastic substrate, a glass substrate, a silicon substrate, or the like can be used. However, when the substrate is opaque, at least one counter electrode or the end face of the element needs to be transparent in order to extract light. .
[0055]
The anode (2) is usually a transparent electrode such as ITO, indium zinc composite oxide, or tin oxide. In other cases, a film having a work function of about 10 nm or less, such as gold, platinum, palladium, or nickel, is used. A thick translucent film or a conductive polymer film such as a carbon film, polythiophene, or polyaniline is used alone or laminated on a transparent electrode.
[0056]
The hole injecting and transporting layer (3) uses the compound of the general formula [1] of the present invention alone or laminated with another organic semiconductor material. As a film forming method, various film forming methods such as a spin coating method, a dip coating method, a roll coating method, an ink jet method, etc., which are dissolved in an organic solvent and dissolved in an organic solvent, are applied to the anode (2). The hole injection transport layer (3) can be formed by thinning it to a thickness of about several nm to 1 μm. When copper phthalocyanine having an ionization energy smaller than that of the compound of general formula [1] is used as the first hole injection transport layer, the compound of general formula [1] is used as the second hole injection transport layer.
[0057]
The compound of the general formula [1] is dispersed or mixed in a chalcogen semiconductor such as Se or Te or a transition metal oxide semiconductor material such as indium oxide or indium tin oxide composite oxide, and the hole injecting and transporting layer (3) You can also
[0058]
Further, an acceptor made of a Lewis acid such as ferric chloride or tris (4-bromophenyl) ammonium hexachloroantimonate is added to the film of the compound of the general formula [1] of the present invention to reduce the electric resistance of the film. It is also possible to prevent the short circuit of the element by forming the hole injection transport layer (3) with a thick film of 1 μm or more.
[0059]
As the organic light emitting layer (4), various known organic light emitting materials such as Alq, compounds represented by chemical formulas 20 to 22, and the like can be used. Here, the Ar group is an aryl group selected from a group containing a naphthyl group, a biphenyl group, a 9,9-dimethylfluoren-2-yl group, an oxadiazole group, a triazole group, and the like.
[0060]
Embedded image
Figure 0004061840
[0061]
Embedded image
Figure 0004061840
[0062]
Embedded image
Figure 0004061840
[0063]
Further, an organic phosphor such as anthracene derivative, benzoanthracene derivative, rubrene, tris (2-phenylpyridine) iridium complex, or phosphor is doped with 50% by weight or less of the compound of the general formula [1] of the present invention as a host. Therefore, it can also be used as the organic light emitting layer (4).
[0064]
Examples of the material for the electron transport layer (5) include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole and oxadiazole derivatives synthesized by Hamada et al. Chemical Journal, page 1540, 1991), and triazole compounds described in JP-A-7-90260. In addition, when the guest light emitter is doped to form the organic light emitting layer (4), it is possible to use only a host light emitting material such as Alq or a bis (10-hydroxybenzo [h] quinolinolato) beryllium complex. Further, the organic material of the electron transport layer (5) can be doped with an alkali metal such as Li or Cs or an alkoxide thereof to further reduce the resistance.
[0065]
The electron transport layer (5) is a single layer or a multilayer formed by laminating materials such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline having excellent hole blocking properties on the interface of the light emitting layer. You can also.
[0066]
The electron transport layer is formed to a thickness of 10 to 1000 nm by a thin film formation method such as a vacuum evaporation method.
[0067]
The cathode (5) is formed on the organic light emitting layer (4) or the electron transport layer (5).
When the cathode is made of a material having a low work function on the surface in contact with the organic light emitting layer (4) or the electron injecting and transporting layer (6), the electron injection efficiency is increased and low voltage light emission is possible. The material constituting the cathode can be a single metal such as Mg or Al. Low work function including at least one low work function metal having a work function of 3.7 eV or less such as Li, Mg, Ca, Sr, La, Cs, Er, Eu, etc. The cathode is made of an alloy, or the alkali metal-containing layer (6) containing an alkali metal having a thickness of about 1 nm or less or an alkali metal such as LiF, Li 2 O, Cs 2 O is used as the organic light emitting layer (4) or the electron After forming on the transport layer (5), the cathode (5) is formed of a metal having low electrical resistance such as Al, Ag, Cu and the like and hardly corroded.
[0068]
Depending on the material, the cathode can be formed by a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, or an alloy target can be used to form a cathode by a sputtering method. .
[0069]
When it is necessary to form the cathode in the form of a stripe when forming a simple matrix drive display, the mask with a hole in the form of a slit is deposited in close contact with the substrate, or after vapor deposition on the entire surface of the cathode forming portion, Cathode metal patterning by laser ablation, ion beam etching, reactive etching, or the like, or a fluorine-substituted alkyl compound or alkylate having 6 or more carbon atoms having 3 or more trifluoromethyl groups having a small surface energy If the compound is applied on the line, metal such as Mg does not adhere only to that part, and the metal lines of the cathode can be separated.
[0070]
The insulating sealing film (10) is formed immediately after the cathode (5) is formed in order to prevent oxidation of the organic layer and the electrode. Examples of the insulating sealing film material include oxides such as SiO 2 , SiO, GeO, MgO, Al 2 O 3 , B 2 O 3 , TiO 2 , ZnO, and SnO (somewhat deviated from the stoichiometric ratio). Gas fluoride such as MgF 2 , LiF, AlF 3 , amorphous silicon nitride film, silicon nitride oxide film, aluminum silicon nitride oxide film, diamond-like carbon film, etc. Although a high material is mention | raise | lifted, it is not limited to the said example. These are formed into a single body, a composite, or a multi-layer by vapor deposition, reactive vapor deposition, CVD, sputtering, ion plating, or the like.
[0071]
As the pinhole prevention film (11), a metal film such as Al, In, Zn, Sn, Mg, etc. is formed on the insulating sealing film (10) with a thickness of several hundred nm or more by vapor deposition, sputtering, or the like. Infiltration of moisture and oxygen from fine defects in the sealing film (10) is prevented.
[0072]
Further, in order to prevent moisture from entering more completely, the periphery or the entire surface of the sealing plate such as the cover glass (13) is vacuumed with a low hygroscopic photosensitive adhesive layer (12) or an olefin-based heat-sensitive adhesive layer. Alternatively, the substrate (1) is adhered and sealed in an inert gas such as nitrogen, helium, neon, or argon. In addition to the glass plate, a metal can, a plastic plate, or the like can be used. In order to prevent moisture permeation from the adhesive layer, a desiccant such as barium oxide or zeolite may be mixed in the adhesive, or the pinhole prevention film (11) or a cover glass or the like is sealed. A getter material layer made of a desiccant such as silica gel, zeolite, barium oxide or calcia, an alkali metal, an alkaline earth metal, or a rare earth may be formed on the inner surface of the plate.
[0073]
The organic thin-film light-emitting element configured as described above emits light by applying a DC voltage with the hole injection / transport layer (3) side as positive, but also when an AC voltage is applied, the hole injection / transport layer (3 The electrode emits light while a positive voltage is applied to the side electrode.
[0074]
A thin display capable of displaying characters and images can be obtained by two-dimensionally arranging the organic thin-film light-emitting elements according to the present invention on a substrate.
[0075]
Color display can be realized by arranging light emitting elements of three colors of red, blue, and green in two dimensions, or using a white light emitting element and a color filter.
[0076]
【Example】
Example 1 Synthesis of Compound (Chemical Formula 3) In 100 ml of toluene, 0.184 g of palladium acetate, 0.7 ml of tri-t-butylphosphine and 3.36 g of sodium-t-butoxide were stirred and dissolved at 80 ° C., and then N-phenyl-1- After adding naphthylamine (14.45 g) and stirring for 30 minutes, 2,7-dibromo-4,5,9,10-tetrahydropyrene (4.0 g) was added and the mixture was reacted at 100 ° C. for 18 hours.
[0077]
After the reaction, the mixture was extracted with THF, washed with ethyl acetate, and purified by silica gel column chromatography. Furthermore, N, N'-diphenyl-N, N'-di (1-naphthyl) -4,5,9,10-tetrahydropyrene-2,7- represented by (Chemical formula 3) by recrystallization from THF / hexane 3.9 g (yield 55.4%) of diamine was obtained. Purity 99.5% (HPLC). Melting point: 286-296 ° C (hot plate method).
[0078]
FIG. 2 shows an infrared absorption spectrum measured by KBr method with a Fourier transform infrared spectrophotometer FT / IR-5MP manufactured by JASCO Corporation of Chemical Formula 3.
[0079]
<Example 2>
As a transparent insulating substrate (1), a 170 nm ITO film formed by sputtering on a 1.1 mm thick blue plate glass plate was etched and patterned, then washed with water before use, dried with isopropyl alcohol vapor, argon Plasma cleaning was performed to obtain an anode (2).
[0080]
Next, 10 nm of CuPc is vacuum-deposited as the first hole injecting and transporting layer (8), and the compound represented by Chemical Formula 3 is vacuum-deposited in the order of 40 nm as the second hole injecting and transporting layer (9).
[0081]
Next, 50 nm of Alq is vapor-deposited as the organic light emitting layer (4), 0.5 nm of LiF is vapor-deposited as the alkali metal-containing electron injection layer (6) on the upper surface, and 200 nm of Al is vapor-deposited as the cathode (7).
[0082]
Next, 1 μm of germanium oxide was deposited as an insulating sealing film (10) by Ar plasma-assisted deposition, and 200 nm of Al was deposited as a pinhole prevention film (11).
[0083]
Finally, a cover glass (13) plasma-cleaned under dry nitrogen is pasted with an epoxy photosensitive adhesive (12).
[0084]
This device emits green light at a voltage of 3 V or more when a voltage is applied with the anode and cathode connected to a DC power source, and a maximum luminance of 10,000 cd / m 2 or more is obtained. After heating to 100 ° C., the device does not break down and emits light in the same manner. .
[0085]
<Comparative example>
The first hole injecting and transporting layer (8) is prepared in the same manner as in Example 2, and then NPD is vacuum-deposited as a second hole injecting and transporting layer (9) at 40 nm.
[0086]
Next, 50 nm of Alq is vapor-deposited as the organic light emitting layer (4), 0.5 nm of LiF is vapor-deposited as the electron injection layer (5) on the upper surface, and 200 nm of Al is vapor-deposited as the cathode (7).
[0087]
This element was observed to emit green light at a DC voltage of 3 V or more, but when heated to 100 ° C., the luminance-voltage characteristics shifted to a high voltage, and when the same voltage as in Example 2 was applied, the luminance was reduced to less than half. did.
[0088]
<Example 3>
The first hole injecting and transporting layer (8) is prepared in the same manner as in Example 2, and then the compound represented by the chemical formula 7 is deposited by 25 nm as the second hole injecting and transporting layer (9).
[0089]
Next, as an organic light emitting layer (4), a film doped with 5% by weight of tris (2-phenylpyridine) iridium in the compound represented by Chemical Formula 8 is laminated by 35 nm by a co-evaporation method.
[0090]
Next, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline is deposited to a thickness of 10 nm as a hole-blocking electron transport layer (5). Furthermore, Alq is laminated | stacked by 25 nm vapor deposition as an electron carrying layer (5).
[0091]
Next, LiF is deposited by 0.5 nm as the alkali metal-containing layer (6), and Al is deposited by 200 nm as the cathode (7).
[0092]
Next, 1 μm of GeO was formed by ion plating as an insulating sealing film (10), and Al was deposited by 200 nm as a pinhole prevention film (11).
[0093]
Finally, a cover glass (13) plasma-cleaned under dry nitrogen is pasted with an epoxy photosensitive adhesive (12).
[0094]
This device emits green light at a voltage of 3 V or more when a voltage is applied with the anode and cathode connected to a DC power source, and a maximum luminance of 10,000 cd / m 2 or more is obtained. After heating to 100 ° C., the device does not break down and emits light in the same manner. .
[0095]
【The invention's effect】
As described above, since the hole transporting compound represented by the general formula [1] of the present invention has a high glass transition temperature of 100 ° C. or higher, it can be used for a layer having a carrier transporting function or a light emitting function to emit organic thin film. There is an effect of improving the heat resistance and reliability of the element.
[0096]
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of a cross-sectional structure of an organic thin film light emitting device of the present invention.
FIG. 2 is an infrared absorption spectrum diagram of Formula 3 according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Anode 3 ... Hole injection transport layer 4 ... Organic light emitting layer 5 ... Electron transport layer 6 ... Alkali metal containing layer 7 ... Cathode 8 ... 1st hole injection transport layer 9 ... 2nd hole injection transport layer DESCRIPTION OF SYMBOLS 10 ... Insulating sealing film 11 ... Pinhole prevention film 12 ... Photosensitive adhesive layer 13 ... Cover glass 14 ... Cathode taking out ITO

Claims (3)

化学式7で示される構造を特徴とする有機薄膜発光素子用の正孔輸送性化合物。
Figure 0004061840
A hole transporting compound for an organic thin film light emitting device characterized by a structure represented by Chemical Formula 7 .
Figure 0004061840
一対の電極間に一層以上の有機半導体薄膜層を介在して構成される有機薄膜発光素子において、化学式7で示される構造の化合物を少なくともキャリア輸送機能または発光機能を有する層に用いたことを特徴とする有機薄膜発光素子。In an organic thin film light emitting device configured by interposing one or more organic semiconductor thin film layers between a pair of electrodes, a compound having a structure represented by Chemical Formula 7 is used for at least a layer having a carrier transport function or a light emitting function. An organic thin film light emitting device. 請求項2に記載の有機薄膜発光素子であって、前記キャリア輸送機能を有する層が銅フタロシアニンの第一の層と、化学式7で示される構造の化合物の第二の層とでなることを特徴とする有機薄膜発光素子。3. The organic thin-film light-emitting device according to claim 2, wherein the layer having a carrier transport function is composed of a first layer of copper phthalocyanine and a second layer of a compound having a structure represented by Chemical Formula 7. An organic thin film light emitting device.
JP2000399866A 2000-12-28 2000-12-28 Hole transporting compound and organic thin film light emitting device for organic thin film light emitting device Expired - Fee Related JP4061840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000399866A JP4061840B2 (en) 2000-12-28 2000-12-28 Hole transporting compound and organic thin film light emitting device for organic thin film light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000399866A JP4061840B2 (en) 2000-12-28 2000-12-28 Hole transporting compound and organic thin film light emitting device for organic thin film light emitting device

Publications (2)

Publication Number Publication Date
JP2002203685A JP2002203685A (en) 2002-07-19
JP4061840B2 true JP4061840B2 (en) 2008-03-19

Family

ID=18864560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000399866A Expired - Fee Related JP4061840B2 (en) 2000-12-28 2000-12-28 Hole transporting compound and organic thin film light emitting device for organic thin film light emitting device

Country Status (1)

Country Link
JP (1) JP4061840B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824345B2 (en) 2003-12-22 2010-11-02 Boston Scientific Scimed, Inc. Medical device with push force limiter
US7841994B2 (en) 2007-11-02 2010-11-30 Boston Scientific Scimed, Inc. Medical device for crossing an occlusion in a vessel
US7850623B2 (en) 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
US7878984B2 (en) 2002-07-25 2011-02-01 Boston Scientific Scimed, Inc. Medical device for navigation through anatomy and method of making same
US7914466B2 (en) 1995-12-07 2011-03-29 Precision Vascular Systems, Inc. Medical device with collapse-resistant liner and method of making same
US7914467B2 (en) 2002-07-25 2011-03-29 Boston Scientific Scimed, Inc. Tubular member having tapered transition for use in a medical device
US8022331B2 (en) 2003-02-26 2011-09-20 Boston Scientific Scimed, Inc. Method of making elongated medical devices
US8048060B2 (en) 2003-03-27 2011-11-01 Boston Scientific Scimed, Inc. Medical device
US8105246B2 (en) 2007-08-03 2012-01-31 Boston Scientific Scimed, Inc. Elongate medical device having enhanced torque and methods thereof
US8376961B2 (en) 2008-04-07 2013-02-19 Boston Scientific Scimed, Inc. Micromachined composite guidewire structure with anisotropic bending properties
US8409114B2 (en) 2007-08-02 2013-04-02 Boston Scientific Scimed, Inc. Composite elongate medical device including distal tubular member
US8449526B2 (en) 2001-07-05 2013-05-28 Boston Scientific Scimed, Inc. Torqueable soft tip medical device and method of usage
US8551021B2 (en) 2010-03-31 2013-10-08 Boston Scientific Scimed, Inc. Guidewire with an improved flexural rigidity profile
US8551020B2 (en) 2006-09-13 2013-10-08 Boston Scientific Scimed, Inc. Crossing guidewire
US8556914B2 (en) 2006-12-15 2013-10-15 Boston Scientific Scimed, Inc. Medical device including structure for crossing an occlusion in a vessel
US8795254B2 (en) 2008-12-10 2014-08-05 Boston Scientific Scimed, Inc. Medical devices with a slotted tubular member having improved stress distribution
US8821477B2 (en) 2007-08-06 2014-09-02 Boston Scientific Scimed, Inc. Alternative micromachined structures
US9808595B2 (en) 2007-08-07 2017-11-07 Boston Scientific Scimed, Inc Microfabricated catheter with improved bonding structure
US9901706B2 (en) 2014-04-11 2018-02-27 Boston Scientific Scimed, Inc. Catheters and catheter shafts
US11351048B2 (en) 2015-11-16 2022-06-07 Boston Scientific Scimed, Inc. Stent delivery systems with a reinforced deployment sheath

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050057518A (en) * 2002-09-20 2005-06-16 이데미쓰 고산 가부시키가이샤 Organic electroluminescent element
EP1555305A4 (en) * 2002-10-21 2008-12-03 Idemitsu Kosan Co Material for organic electroluminescence element, and organic electroluminescence element using the same
US7368659B2 (en) * 2002-11-26 2008-05-06 General Electric Company Electrodes mitigating effects of defects in organic electronic devices
WO2004053019A1 (en) * 2002-12-12 2004-06-24 Idemitsu Kosan Co., Ltd. Organic electroluminescent device material and organic electroluminescent device using same
TW200535134A (en) 2004-02-09 2005-11-01 Nippon Steel Chemical Co Aminodibenzodioxin derivative and organic electroluminescent device using same
US8018152B2 (en) * 2004-05-20 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including intermediate conductive layer having a hole-injection layer with an island-like structure
KR100626005B1 (en) 2004-06-09 2006-09-20 삼성에스디아이 주식회사 Organic electroluminescence display
WO2006104221A1 (en) * 2005-03-28 2006-10-05 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, material for light emitting element, light emitting element, light emitting device, and electronic device
US20070176539A1 (en) * 2006-02-01 2007-08-02 Osram Opto Semiconductors Gmbh OLED with area defined multicolor emission within a single lighting element
JP5052464B2 (en) * 2008-09-11 2012-10-17 富士フイルム株式会社 Method for manufacturing organic electroluminescent display device
JP2014047416A (en) * 2012-09-03 2014-03-17 Tokyo Electron Ltd Vapor deposition apparatus, vapor deposition method, organic el display, and organic el lighting device
CN106098955B (en) 2016-07-01 2019-12-03 京东方科技集团股份有限公司 A kind of electroluminescent device and preparation method thereof

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914466B2 (en) 1995-12-07 2011-03-29 Precision Vascular Systems, Inc. Medical device with collapse-resistant liner and method of making same
US8449526B2 (en) 2001-07-05 2013-05-28 Boston Scientific Scimed, Inc. Torqueable soft tip medical device and method of usage
US7914467B2 (en) 2002-07-25 2011-03-29 Boston Scientific Scimed, Inc. Tubular member having tapered transition for use in a medical device
US7878984B2 (en) 2002-07-25 2011-02-01 Boston Scientific Scimed, Inc. Medical device for navigation through anatomy and method of making same
US8900163B2 (en) 2002-07-25 2014-12-02 Precision Vascular Systems, Inc. Medical device for navigation through anatomy and method of making same
US8870790B2 (en) 2002-07-25 2014-10-28 Boston Scientific Scimed, Inc. Medical device for navigation through anatomy and method of making same
US8048004B2 (en) 2002-07-25 2011-11-01 Precision Vascular Systems, Inc. Medical device for navigation through anatomy and method of making same
US8915865B2 (en) 2002-07-25 2014-12-23 Precision Vascular Systems, Inc. Medical device for navigation through anatomy and method of making same
US8932235B2 (en) 2002-07-25 2015-01-13 Precision Vascular Systems, Inc. Medical device for navigation through anatomy and method of making same
US8936558B2 (en) 2002-07-25 2015-01-20 Precision Vascular Systems, Inc. Medical device for navigation through anatomy and method of making same
US8939916B2 (en) 2002-07-25 2015-01-27 Precision Vascular Systems, Inc. Medical device for navigation through anatomy and method of making same
US8257279B2 (en) 2002-07-25 2012-09-04 Boston Scientific Scimed, Inc. Medical device for navigation through anatomy and method of making same
US8022331B2 (en) 2003-02-26 2011-09-20 Boston Scientific Scimed, Inc. Method of making elongated medical devices
US9023011B2 (en) 2003-03-27 2015-05-05 Boston Scientific Scimed, Inc. Medical device
US10207077B2 (en) 2003-03-27 2019-02-19 Boston Scientific Scimed, Inc. Medical device
US8182465B2 (en) 2003-03-27 2012-05-22 Boston Scientific Scimed, Inc. Medical device
US8636716B2 (en) 2003-03-27 2014-01-28 Boston Scientific Scimed, Inc. Medical device
US9592363B2 (en) 2003-03-27 2017-03-14 Boston Scientific Scimed, Inc. Medical device
US8048060B2 (en) 2003-03-27 2011-11-01 Boston Scientific Scimed, Inc. Medical device
US7824345B2 (en) 2003-12-22 2010-11-02 Boston Scientific Scimed, Inc. Medical device with push force limiter
US8231551B2 (en) 2005-10-27 2012-07-31 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
US7850623B2 (en) 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
US8551020B2 (en) 2006-09-13 2013-10-08 Boston Scientific Scimed, Inc. Crossing guidewire
US8556914B2 (en) 2006-12-15 2013-10-15 Boston Scientific Scimed, Inc. Medical device including structure for crossing an occlusion in a vessel
US9375234B2 (en) 2006-12-15 2016-06-28 Boston Scientific Scimed, Inc. Medical device including structure for crossing an occlusion in a vessel
US8409114B2 (en) 2007-08-02 2013-04-02 Boston Scientific Scimed, Inc. Composite elongate medical device including distal tubular member
US8105246B2 (en) 2007-08-03 2012-01-31 Boston Scientific Scimed, Inc. Elongate medical device having enhanced torque and methods thereof
US8821477B2 (en) 2007-08-06 2014-09-02 Boston Scientific Scimed, Inc. Alternative micromachined structures
US9808595B2 (en) 2007-08-07 2017-11-07 Boston Scientific Scimed, Inc Microfabricated catheter with improved bonding structure
US7841994B2 (en) 2007-11-02 2010-11-30 Boston Scientific Scimed, Inc. Medical device for crossing an occlusion in a vessel
US8376961B2 (en) 2008-04-07 2013-02-19 Boston Scientific Scimed, Inc. Micromachined composite guidewire structure with anisotropic bending properties
US8795254B2 (en) 2008-12-10 2014-08-05 Boston Scientific Scimed, Inc. Medical devices with a slotted tubular member having improved stress distribution
US8784337B2 (en) 2010-03-31 2014-07-22 Boston Scientific Scimed, Inc. Catheter with an improved flexural rigidity profile
US8551021B2 (en) 2010-03-31 2013-10-08 Boston Scientific Scimed, Inc. Guidewire with an improved flexural rigidity profile
US9901706B2 (en) 2014-04-11 2018-02-27 Boston Scientific Scimed, Inc. Catheters and catheter shafts
US11351048B2 (en) 2015-11-16 2022-06-07 Boston Scientific Scimed, Inc. Stent delivery systems with a reinforced deployment sheath

Also Published As

Publication number Publication date
JP2002203685A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
JP4061840B2 (en) Hole transporting compound and organic thin film light emitting device for organic thin film light emitting device
JP4407102B2 (en) Anthracene compound, method for producing the same, and organic electroluminescent device
JP3588978B2 (en) Organic thin film EL device
US6333521B1 (en) Oleds containing thermally stable glassy organic hole transporting materials
US6670054B1 (en) Electroluminescent devices
US6562485B2 (en) Electroluminescent (EL) devices
US6387544B1 (en) OLEDS containing thermally stable glassy organic hole transporting materials
US6562982B1 (en) Carbazole compounds
US20050175857A1 (en) Novel blue emitters for use in organic electroluminescence devices
JP2002100482A (en) Organic electroluminescence element
JP2003040873A (en) New quinoxaline derivative and organic electroluminescent element utilizing the same
JPH11162650A (en) Electroluminescent device
JP2002056985A (en) Organic electroluminescent element and manufacturing method of the same
JPH10183112A (en) Electroluminescent element
JP4066619B2 (en) Binaphthyl compound, method for producing the same, and organic electroluminescent device
JP2000150168A (en) Heat resistance and low resistance hole carrier material and organic thin film electroluminescent element
JPH11329732A (en) Organic thin film el element
JPH1088122A (en) Organic electroluminescent element
JP3743229B2 (en) Organic thin film light emitting device and phosphor
JP4590678B2 (en) Light emitting element
JP3518255B2 (en) Organic thin film EL device
JP2004292766A (en) Organic electroluminescent element material
JPH11135262A (en) Organic electroluminescent element
JP2001291590A5 (en)
JP2002050481A (en) Light emission element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees