JP4058489B1 - Permeable concrete composition - Google Patents

Permeable concrete composition Download PDF

Info

Publication number
JP4058489B1
JP4058489B1 JP2007122697A JP2007122697A JP4058489B1 JP 4058489 B1 JP4058489 B1 JP 4058489B1 JP 2007122697 A JP2007122697 A JP 2007122697A JP 2007122697 A JP2007122697 A JP 2007122697A JP 4058489 B1 JP4058489 B1 JP 4058489B1
Authority
JP
Japan
Prior art keywords
water
permeable concrete
weight
parts
concrete composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007122697A
Other languages
Japanese (ja)
Other versions
JP2008273805A (en
Inventor
耕太郎 犬塚
次良 野坂
Original Assignee
吉永 和久
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉永 和久 filed Critical 吉永 和久
Priority to JP2007122697A priority Critical patent/JP4058489B1/en
Application granted granted Critical
Publication of JP4058489B1 publication Critical patent/JP4058489B1/en
Publication of JP2008273805A publication Critical patent/JP2008273805A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00284Materials permeable to liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

【課題】溶融スラグを多量に含みながらも硬化して充分な強度を有する透水性コンクリートとなる透水性コンクリート組成物を提供する。
【解決手段】セメントと、組成物全量基準で40質量%以上の溶融スラグと、結合材と、水とを含み、残部が骨材である透水性コンクリート組成物であって、前記結合材は、石灰酸と、スルホン酸ナトリウムと、可溶性デンプンとを含み、残部が水であることを特徴とする透水性コンクリート組成物。
【選択図】なし
Provided is a water permeable concrete composition that is hardened while containing a large amount of molten slag and becomes a water permeable concrete having sufficient strength.
A permeable concrete composition comprising cement, molten slag of 40% by mass or more based on the total amount of the composition, a binder, and water, the balance being an aggregate, wherein the binder comprises: A water-permeable concrete composition comprising lime acid, sodium sulfonate, and soluble starch, the balance being water.
[Selection figure] None

Description

本発明は透水性コンクリート組成物に関する。詳しくは、一般廃棄物から生成された溶融スラグを含む透水性コンクリート組成物に係るものである。   The present invention relates to a permeable concrete composition. Specifically, the present invention relates to a permeable concrete composition containing molten slag generated from general waste.

下水汚泥や都市ゴミの処理をはじめ、建設廃材等の各種廃棄物の最終処分場の確保といった種々の問題があり、そのリサイクルを含めた再資源化に関する研究が行なわれている。
また、減容化のために、下水汚泥や都市ゴミを焼却した下水汚泥焼却灰や都市ゴミ焼却灰、更には下水汚泥や都市ゴミのいっそうの減容化のため、溶融処理したスラグ(溶融スラグ)等についても、各自治体や企業は、有効利用技術の開発を行なっている。この溶融スラグは、廃棄物の減容化及び無毒化として開発されたもので、土木資材、建築資材等として有効利用でき、また、廃棄物や焼却灰を1200℃以上の高温で加熱した後、冷却粉砕されて得られる硬いガラス状の物質であるため、ダイオキシンをはじめとする有機物系は熱分解され、重金属は溶融スラグの強力なガラス質結晶構造中に封じ込まれて溶出しなくなる。
There are various problems, such as the disposal of sewage sludge and municipal waste, as well as securing a final disposal site for various types of waste such as construction waste, and research is being conducted on recycling, including recycling.
In addition, in order to reduce the volume, sewage sludge incinerated sewage sludge and municipal waste incineration ash and municipal waste incineration ash, as well as molten slag (molten slag) for further volume reduction of sewage sludge and municipal waste. ), Etc., local governments and companies are developing effective utilization technologies. This molten slag was developed as a waste reduction and detoxification, and can be used effectively as civil engineering materials, building materials, etc., and after heating waste and incineration ash at a high temperature of 1200 ° C or higher, Since it is a hard glassy substance obtained by cooling and pulverizing, organic matter systems such as dioxins are thermally decomposed, and heavy metals are contained in the strong glassy crystal structure of molten slag and are not eluted.

このような溶融スラグの利用方法として、コンクリートの細骨材の一部として溶融スラグ粒を配合する様々な方法が提案されている。例えば特許文献1には、廃棄物及び廃棄物焼却後の灰を還元性雰囲気で溶融することにより廃棄物中の重金属を排ガス中に揮散させ、廃棄物中の不燃物を溶融したスラグ中に溶け込む重金属の含有量を低減した後、溶融状態のスラグ中に酸化性ガスを表面に吹き付けるか、または溶融スラグ内部に吹き込むことによって重金属を酸化することにより、スラグ中に溶け込んだ微量の重金属を難溶性の物質に変え、このような方法で製造されたスラグを、コンクリート二次製品の骨材や土木資材として利用する旨が記載されている。   As methods for using such molten slag, various methods have been proposed in which molten slag particles are blended as part of a concrete fine aggregate. For example, Patent Document 1 discloses that waste and incinerated ash are melted in a reducing atmosphere to volatilize heavy metals in the waste into the exhaust gas, and incombustibles in the waste are dissolved in the molten slag. After reducing the heavy metal content, the oxidizing gas is blown onto the surface of the molten slag, or the heavy metal is oxidized by blowing into the molten slag, so that the trace amount of heavy metal dissolved in the slag is hardly soluble It is described that the slag produced by such a method is used as an aggregate or a civil engineering material for a secondary concrete product.

また、特許文献2には、細骨材として、都市ゴミ、都市ゴミ焼却灰、下水汚泥焼却灰の少なくとも1種の廃棄物を溶融して製造した溶融スラグと、微粉炭の燃焼によって発生するシンダーアッシュとを用い、溶融スラグとシンダーアッシュとの混合比が30:70〜70:30であるコンクリートが記載されている。   Further, Patent Document 2 discloses, as fine aggregates, molten slag produced by melting at least one waste of municipal waste, municipal waste incineration ash, and sewage sludge incineration ash, and cinder generated by combustion of pulverized coal. Concrete using ash and having a mixing ratio of molten slag to cinder ash of 30:70 to 70:30 is described.

更に、特許文献3には、都市ゴミ焼却灰、下水汚泥焼却灰の一種以上を原料としてなる焼成物であってカルシウムクロロアルミネート、カルシウムフルオロアルミネート、カルシウムアルミネートの一種以上を10〜40重量%及びカルシウムシリケートを含む焼成物と石膏を主成分とする水硬性組成物を用い、骨材の一部または全部に廃棄物起源材料を用いたコンクリート組成物が記載されている。   Further, Patent Document 3 discloses a calcined product made from one or more of municipal waste incineration ash and sewage sludge incineration ash, and 10 to 40 weights of one or more of calcium chloroaluminate, calcium fluoroaluminate, and calcium aluminate A concrete composition is described in which a hydraulic composition mainly composed of calcined material and gypsum containing 1% and calcium silicate is used, and a waste-derived material is used for part or all of the aggregate.

特開平10−296206号公報JP-A-10-296206 特開平10−226556号公報Japanese Patent Laid-Open No. 10-226556 特開平11−246256号公報Japanese Patent Laid-Open No. 11-246256

しかしながら、溶融スラグを骨材として含むコンクリートは、砂や砂利等を含む通常のコンクリートに比べて強度が低下するという欠点があった。溶融スラグを使用したコンクリートは、溶融スラグの使用量増加により、強度の低下が生じる傾向が認められるため、溶融スラグの使用量を増加させることが困難であった。   However, concrete containing molten slag as an aggregate has a drawback that the strength is lower than that of normal concrete containing sand, gravel, or the like. In concrete using molten slag, it is difficult to increase the amount of molten slag used because a tendency to decrease strength is observed due to an increase in the amount of molten slag used.

本発明は、以上の点に鑑みて創案されたものであり、溶融スラグを多量に含みながらも硬化して充分な強度を有する透水性コンクリートとなる透水性コンクリート組成物を提供することを目的とする。   The present invention was devised in view of the above points, and an object thereof is to provide a water permeable concrete composition that becomes a water permeable concrete having sufficient strength by curing while containing a large amount of molten slag. To do.

上記の目的を達成するために、本発明の透水性コンクリート組成物は、セメントと、組成物全量基準で40質量%以上の溶融スラグと、結合材と、水とを含み、残部が骨材である透水性コンクリート組成物であって、前記結合材は、石灰酸と、スルホン酸ナトリウムと、可溶性デンプンとを含み、残部が水であることを特徴とする。   In order to achieve the above object, the permeable concrete composition of the present invention comprises cement, molten slag of 40% by mass or more based on the total amount of the composition, a binder, and water, with the balance being aggregate. A water-permeable concrete composition, wherein the binder contains lime acid, sodium sulfonate, and soluble starch, and the balance is water.

ここで、結合材が石灰酸を含むことによって、コンクリートのエフロレッセンスを抑制することができる。また、結合材がスルホン酸ナトリウムを含むことによって、セメントに対する分散作用を発揮して、セメントの流動性を改善させ、また、セメントの水和活性を高める。また、結合材が可溶性デンプンを含むことによって、材料の分離抵抗性を向上させることができる。
なお、「エフロレッセンス」とは、コンクリート中の可溶性物質やコンクリート周辺に存在する可溶性物質が、水分と共に貫通したひび割れを通ってコンクリート表面に移動し、水分の散逸や空気中の炭酸ガスとの反応によって析出したものをいう。
Here, the efflorescence of concrete can be suppressed by the binding material containing lime acid. Further, when the binder contains sodium sulfonate, it exerts a dispersing action on the cement, improves the fluidity of the cement, and increases the hydration activity of the cement. Moreover, when the binder contains soluble starch, the separation resistance of the material can be improved.
“Efflorescence” means that soluble substances in concrete and those around the concrete move to the concrete surface through cracks penetrating with moisture, dissipate moisture and react with carbon dioxide in the air. Means the one deposited by

また、本発明の透水性コンクリート組成物において、結合材が珪酸ソーダを含む場合、セメント中のカルシウム、マグネシウム、アルミニウム、バリウム等の多価金属イオンと反応して不溶性の珪酸塩金属水和物、金属水酸化物等を形成して、コンクリートの内部の空隙を充填させる。   Further, in the water-permeable concrete composition of the present invention, when the binder contains sodium silicate, it reacts with polyvalent metal ions such as calcium, magnesium, aluminum, barium, etc. in cement, insoluble silicate metal hydrate, Metal hydroxide or the like is formed to fill the voids inside the concrete.

また、本発明の透水性コンクリート組成物において、結合材が塩化カルシウムを含む場合、コンクリートの硬化速度が速くなる。   Moreover, in the water-permeable concrete composition of this invention, when a binder contains calcium chloride, the hardening rate of concrete becomes quick.

また、本発明の透水性コンクリート組成物において、結合材は、水100重量部に対して、石灰酸8〜11重量部と、スルホン酸ナトリウム8〜11重量部と、可溶性デンプン11〜17重量部とを含んでいてもよい。   In the water-permeable concrete composition of the present invention, the binder is 8 to 11 parts by weight of lime, 8 to 11 parts by weight of sodium sulfonate, and 11 to 17 parts by weight of soluble starch with respect to 100 parts by weight of water. And may be included.

また、本発明の透水性コンクリート組成物において、結合材は、水100重量部に対して、石灰酸8〜11重量部と、スルホン酸ナトリウム8〜11重量部と、可溶性デンプン11〜17重量部と、珪酸ソーダ28〜35重量部とを含んでいてもよい。   Moreover, in the water-permeable concrete composition of this invention, a binder is 8-11 weight part of limelic acid, 8-11 weight part of sodium sulfonate, and 11-17 weight part of soluble starch with respect to 100 weight part of water. And 28 to 35 parts by weight of sodium silicate may be included.

また、本発明の透水性コンクリート組成物において、結合材は、水100重量部に対して、石灰酸8〜11重量部と、スルホン酸ナトリウム8〜11重量部と、可溶性デンプン11〜17重量部と、塩化カルシウム23〜30重量部とを含んでいてもよい。   In the water-permeable concrete composition of the present invention, the binder is 8 to 11 parts by weight of lime, 8 to 11 parts by weight of sodium sulfonate, and 11 to 17 parts by weight of soluble starch with respect to 100 parts by weight of water. And 23-30 parts by weight of calcium chloride.

また、本発明の透水性コンクリート組成物において、結合材は、水100重量部に対して、石灰酸8〜11重量部と、スルホン酸ナトリウム8〜11重量部と、可溶性デンプン11〜17重量部と、珪酸ソーダ28〜35重量部と、塩化カルシウム23〜30重量部とを含んでいてもよい。   Moreover, in the water-permeable concrete composition of this invention, a binder is 8-11 weight part of limelic acid, 8-11 weight part of sodium sulfonate, and 11-17 weight part of soluble starch with respect to 100 weight part of water. And 28 to 35 parts by weight of sodium silicate and 23 to 30 parts by weight of calcium chloride may be included.

本発明に係る透水性コンクリート組成物は、溶融スラグを多量に含みながらも硬化して充分な強度を有する透水性コンクリートとなる。   The water-permeable concrete composition according to the present invention hardens while containing a large amount of molten slag, and becomes water-permeable concrete having sufficient strength.

本発明を適用した透水性コンクリート組成物は、細骨材として溶融スラグを組成物全量基準で40質量%以上含み、その他に、結合材と、セメントと、水とを含み、残部が骨材であり、具体的には例えば、組成物全量基準で、溶融スラグを40質量%以上55質量%以下、粗骨材を25質量%以上35質量%以下、結合材を0.01質量%以上0.05質量%以下、セメントを10質量%以上20質量%以下、水を3質量%以上6質量%以下含む。
また、本発明の透水性コンクリート組成物は、適宜、減水剤や、無機質粉体を含んでもよい。
The water-permeable concrete composition to which the present invention is applied contains molten slag as fine aggregates in an amount of 40% by mass or more based on the total amount of the composition, and additionally contains a binder, cement, and water, with the balance being aggregates. Specifically, for example, based on the total amount of the composition, the molten slag is 40% by mass to 55% by mass, the coarse aggregate is 25% by mass to 35% by mass, and the binder is 0.01% by mass to 0.00%. 05% by mass or less, 10% by mass to 20% by mass of cement, and 3% by mass to 6% by mass of water.
Moreover, the water-permeable concrete composition of this invention may also contain a water reducing agent and inorganic powder suitably.

ここで、骨材としては、粒径2.5〜20mmの砂利や砕石等の粒体(粗骨材)や、粒径2.5mm以下の川砂、山砂、砕砂等の粒体(細骨材)が用いられる。
また、セメントとしては、水硬性セメント例えば普通ポルトランドセメント、早強ポルトランドセメント、ホワイトセメントが用いられる。
また、減水剤としては、ナフタレンスルホン酸系、ポリカルボン酸系、メラミン系等が用いられ、液体であっても粉体であってもよい。
また、無機質粉体としては、例えばフライアッシュ、シリカフォーム、石灰石粉、硅石粉が用いられる。
Here, as aggregates, particles (crude aggregate) such as gravel and crushed stone having a particle size of 2.5 to 20 mm, and particles (fine bone) such as river sand, mountain sand, and crushed sand having a particle size of 2.5 mm or less. Material).
As the cement, hydraulic cement such as ordinary Portland cement, early-strength Portland cement, and white cement is used.
Further, as the water reducing agent, naphthalene sulfonic acid type, polycarboxylic acid type, melamine type and the like are used, which may be liquid or powder.
Further, as the inorganic powder, for example, fly ash, silica foam, limestone powder, and meteorite powder are used.

次に、本発明の透水性コンクリート組成物に用いられる結合材について説明する。図1は、本発明を適用した透水性コンクリート組成物に使用される結合材を製造する工程の一例を説明する概略図である。
先ず、第1の溶液と、第2の溶液と、第3の溶液と、第4の溶液と、第5の溶液とを混合して、結合材を製造する。
ここで、第1の溶液は、デンプン糖水溶液と、スルホン酸ナトリウムと、水とを、4:1:8の割合で混ぜ合わせて得られる溶液である。また、第2の溶液は、デンプン糖水溶液と、水とを、2:5の割合で混ぜ合わせて得られる溶液である。また、第3の溶液は、珪酸ソーダと、石灰酸と、水とを、4:1:5の割合で混ぜ合わせて得られる溶液である。また、第4の溶液は、珪酸ソーダと、スルホン酸ナトリウムと、石灰酸と、水とを、5:1:1:13の割合で混ぜ合わせて得られる溶液である。また、第5の溶液は、塩化カルシウムと、スルホン酸ナトリウムと、石灰酸と、水とを、11:2:1:6の割合で混ぜ合わせて得られる溶液である。
次に、このようにして得られた第1の溶液〜第5の溶液を混ぜ合わせて、水100重量部に対して、石灰酸が8〜11重量部と、スルホン酸ナトリウムが8〜11重量部と、可溶性デンプンが11〜17重量部と、珪酸ソーダが28〜35重量部と、塩化カルシウムが23〜30重量部となるように調整して、結合材を得る。
Next, the binder used for the water-permeable concrete composition of the present invention will be described. Drawing 1 is a schematic diagram explaining an example of a process of manufacturing a binding material used for a water-permeable concrete composition to which the present invention is applied.
First, the first solution, the second solution, the third solution, the fourth solution, and the fifth solution are mixed to produce a binder.
Here, the first solution is a solution obtained by mixing starch sugar aqueous solution, sodium sulfonate, and water in a ratio of 4: 1: 8. The second solution is a solution obtained by mixing an aqueous starch sugar solution and water in a ratio of 2: 5. The third solution is a solution obtained by mixing sodium silicate, lime acid, and water in a ratio of 4: 1: 5. The fourth solution is a solution obtained by mixing sodium silicate, sodium sulfonate, lime acid, and water in a ratio of 5: 1: 1: 13. The fifth solution is a solution obtained by mixing calcium chloride, sodium sulfonate, lime acid, and water in a ratio of 11: 2: 1: 6.
Next, the first solution to the fifth solution thus obtained were mixed, and 8 to 11 parts by weight of lime acid and 8 to 11 parts by weight of sodium sulfonate with respect to 100 parts by weight of water. Part, soluble starch is 11 to 17 parts by weight, sodium silicate is 28 to 35 parts by weight, and calcium chloride is 23 to 30 parts by weight to obtain a binder.

ここで、各溶液中の成分比率や、結合材中の各成分の重量比率が記載されているが、得られる結合材が、石灰酸と、スルホン酸ナトリウムと、可溶性デンプンとを含み、残部が水であれば、どのような比率でもよい。   Here, although the component ratio in each solution and the weight ratio of each component in the binder are described, the resulting binder contains lime, sodium sulfonate, and soluble starch, with the remainder being Any ratio may be used as long as it is water.

次に、得られた結合材を用いて、表1に示す配合材料を含む本発明の透水性コンクリート組成物を製造した。   Next, the water-permeable concrete composition of this invention containing the compounding material shown in Table 1 was manufactured using the obtained binder.

Figure 0004058489
Figure 0004058489

<透水性試験>
表1に示した組成の透水性コンクリート組成物を0スランプで混練りしたものを、縦30cm×横30cm×厚さ5.5cmに均等に敷き均して硬化させて、透水性コンクリートブロックを得た。
得られた透水性コンクリートブロックについて、「舗装の構造に関する基準に関する省令第6条」に準拠して、透水性試験を行なったところ、1000(cc/15sec)の規定を超えた。
<Water permeability test>
A permeable concrete block having a composition shown in Table 1 kneaded with 0 slump is spread evenly in a length of 30 cm, a width of 30 cm and a thickness of 5.5 cm and cured to obtain a permeable concrete block. It was.
The obtained water-permeable concrete block was subjected to a water permeability test in accordance with "Ministerial Ordinance Article 6 on Standards for Pavement Structure" and exceeded the limit of 1000 (cc / 15 sec).

また、表1の結合材と同じ結合材を用いて、表2に示す配合材料を混練りして透水性コンクリート組成物を製造した。   Moreover, using the same binder as the binder of Table 1, the compounding materials shown in Table 2 were kneaded to produce a water-permeable concrete composition.

Figure 0004058489
Figure 0004058489

ここで、表1及び表2に示した結合材は、本発明を適用した結合材であり、水100重量部に対して、石灰酸10重量部と、スルホン酸ナトリウム10重量部と、可溶性デンプン15重量部と、珪酸ソーダ30重量部と、塩化カルシウム25重量部とを含むものである。   Here, the binders shown in Table 1 and Table 2 are binders to which the present invention is applied, and 10 parts by weight of lime, 10 parts by weight of sodium sulfonate, and soluble starch with respect to 100 parts by weight of water. It contains 15 parts by weight, 30 parts by weight of sodium silicate, and 25 parts by weight of calcium chloride.

また、表1に示した組成の透水性コンクリート組成物を0スランプで混練りしたものを、縦30cm×横30cm×厚さ5.5cmに均等に敷き均して硬化させて、得られた透水性コンクリートブロックを基層部として、基層部の上に、表2に示した組成の透水性コンクリート組成物を0スランプで混練りしたものを、縦30cm×横30cm×厚さ4.5cmに均等に敷き均して硬化させて、得られた透水性コンクリートブロックを表層部として、これらを振動プレートで均一に転圧して基層部と表層部の合計厚さ7cmの二層構造からなる透水性コンクリートブロックを5個製造した(実施例)。   In addition, a water-permeable concrete composition having the composition shown in Table 1 was kneaded with 0 slump and spread evenly in a length of 30 cm × width of 30 cm × thickness of 5.5 cm and cured to obtain the water permeability A permeable concrete block is used as a base layer portion, and a water-permeable concrete composition having the composition shown in Table 2 is kneaded with 0 slump on the base layer portion so that the length is 30 cm × width 30 cm × thickness 4.5 cm. The permeable concrete block having a two-layer structure in which the base layer portion and the surface layer portion have a total thickness of 7 cm by uniformly rolling and squeezing them with a vibration plate using the obtained water permeable concrete block as a surface layer portion. 5 were manufactured (Example).

一方、結合材として、エポキシ樹脂とアクリル樹脂のみからなるものを使用した以外は、表1及び表2に示された配合材料と同じ材料及び同じ配合率で、本発明の透水性コンクリート組成物を硬化して得られた透水性コンクリートブロックを含む二層構造の透水性コンクリートブロックと同じサイズの二層構造の透水性コンクリートブロックを5個製造した(比較例)。   On the other hand, the permeable concrete composition of the present invention is the same as the blending material shown in Table 1 and Table 2 and the same blending ratio, except that the binder is composed only of an epoxy resin and an acrylic resin. Five permeable concrete blocks having the same size as the permeable concrete block having the two-layer structure including the permeable concrete block obtained by curing were manufactured (comparative example).

<曲げ強度試験>
このようにして製造された透水性コンクリートブロックそれぞれについて、曲げ強度試験を実施した。図2は、曲げ強度試験の状況の一例を説明する概略図である。即ち、図2に示すように、曲げ強度試験において、透水性コンクリートブロック1の一端を上部クランプ2と下部クランプ3とで挟み、透水性コンクリートブロック1の他端に、加圧方向4から力を加えて、透水性コンクリートブロック1が破壊される力を測定した。結果を表3に示す。
<Bending strength test>
A bending strength test was carried out for each of the water-permeable concrete blocks thus produced. FIG. 2 is a schematic diagram illustrating an example of a situation of a bending strength test. That is, as shown in FIG. 2, in the bending strength test, one end of the permeable concrete block 1 is sandwiched between the upper clamp 2 and the lower clamp 3, and a force is applied to the other end of the permeable concrete block 1 from the pressing direction 4. In addition, the force with which the water permeable concrete block 1 is broken was measured. The results are shown in Table 3.

<衝撃試験>
また、このようにして製造された透水性コンクリートブロックそれぞれについて、衝撃試験を実施した。即ち、衝撃試験機に配置された透水性コンクリートブロックの、互いに垂直に交差するA面(30×30cm)とB面(30×7cm)に向けて、これら各面から約1m上方へ離れた位置から、重さ約2kgの分銅を落下させ、各面に破壊が生じたときの強度を測定した。結果を表3に示す。なお、表中、衝撃強度の単位は「kg/cm」である。
<Impact test>
Moreover, the impact test was implemented about each of the water-permeable concrete block manufactured in this way. That is, the position of the permeable concrete block arranged in the impact testing machine about 1 m above each side toward the A side (30 × 30 cm) and B side (30 × 7 cm) perpendicularly intersecting each other Then, a weight of about 2 kg in weight was dropped, and the strength at the time when breakage occurred on each surface was measured. The results are shown in Table 3. In the table, the unit of impact strength is “kg / cm 2 ”.

Figure 0004058489
Figure 0004058489

表3から明らかなように、本発明を適用した透水性コンクリート組成物を硬化して得られた透水性コンクリートブロックは、エポキシ樹脂とアクリル樹脂のみからなる結合材を含んだ従来の透水性コンクリート組成物を硬化して得られた透水性コンクリートブロックに比べて、曲げ強度において21%も向上しており、また、衝撃強度において12%も向上しており、いずれにおいても高い値を示した。   As is apparent from Table 3, the water-permeable concrete block obtained by curing the water-permeable concrete composition to which the present invention is applied is a conventional water-permeable concrete composition containing a binder composed only of an epoxy resin and an acrylic resin. Compared to the water-permeable concrete block obtained by curing the product, the bending strength was improved by 21%, and the impact strength was improved by 12%.

ここで、結合材として、水100重量部に対して、石灰酸10重量部と、スルホン酸ナトリウム10重量部と、可溶性デンプン15重量部と、珪酸ソーダ30重量部と、塩化カルシウム25重量部とを含むものを記載しているが、結合材が石灰酸と、スルホン酸ナトリウムと、可溶性デンプンとを含み、残部が水であれば、必ずしも結合材は珪酸ソーダと塩化カルシウムを含まなくてもよい。   Here, as a binder, 10 parts by weight of lime, 10 parts by weight of sodium sulfonate, 15 parts by weight of soluble starch, 30 parts by weight of sodium silicate, and 25 parts by weight of calcium chloride with respect to 100 parts by weight of water However, if the binder contains lime acid, sodium sulfonate, and soluble starch, and the balance is water, the binder may not necessarily contain sodium silicate and calcium chloride. .

このように、本発明の透水性コンクリート組成物は、石灰酸と、スルホン酸ナトリウムと、可溶性デンプンとを含み、残部が水である結合材を含むので、コンクリートのエフロレッセンスを抑制することができ、また、セメントに対する分散作用を発揮して、セメントの流動性を改善させ、セメントの水和活性を高めることができ、また、材料の分離抵抗性を向上させることができるため、40質量%以上もの多量の溶融スラグを含んでいても、硬化して、同じく40質量%以上の溶融スラグを含んだ従来の透水性コンクリート組成物が硬化したコンクリートよりも強度の高いコンクリートとなることができる。
また、本発明の透水性コンクリート組成物は、40質量%以上もの多量の溶融スラグを含んでいても、コンクリートの強度は低下せずにむしろ向上しており、多量の溶融スラグを利用できることから、循環型社会システムに最適なものである。
As described above, the water-permeable concrete composition of the present invention contains limelic acid, sodium sulfonate, and soluble starch, and includes a binder whose balance is water, so that efflorescence of concrete can be suppressed. In addition, it exerts a dispersing action on the cement, improves the fluidity of the cement, can increase the hydration activity of the cement, and can improve the separation resistance of the material. Even if a large amount of molten slag is contained, it can be hardened and become a concrete having higher strength than the concrete obtained by hardening the conventional water-permeable concrete composition containing the molten slag of 40% by mass or more.
Moreover, even if the water-permeable concrete composition of the present invention contains a large amount of molten slag of 40% by mass or more, the strength of the concrete is rather improved without decreasing, and a large amount of molten slag can be used. It is optimal for a recycling-oriented social system.

また、本発明の透水性コンクリート組成物が硬化したコンクリートは、透水性が1000(cc/15sec)の規定を超える優れたものであり、雨天時の雨水の地下浸透性が高く自然地下水の確保にも貢献できる。   Moreover, the concrete which the water-permeable concrete composition of this invention hardened | cured is what is excellent in water permeability exceeding the regulation | regulation of 1000 (cc / 15sec), and the underground permeability of rain water at the time of rainy weather is high, and secures natural ground water. Can also contribute.

また、本発明の透水性コンクリート組成物は、結合材が珪酸ソーダを含むので、セメント中のカルシウム、マグネシウム、アルミニウム、バリウム等の多価金属イオンと反応して不溶性の珪酸塩金属水和物、金属水酸化物等を形成して、コンクリートの内部の空隙を充填させ、よって、40質量%以上もの多量の溶融スラグを含んでいても、硬化して、同じく40質量%以上の溶融スラグを含んだ従来の透水性コンクリート組成物が硬化したコンクリートよりも強度の高いコンクリートとなることができる。   Further, in the water-permeable concrete composition of the present invention, since the binder contains sodium silicate, it reacts with polyvalent metal ions such as calcium, magnesium, aluminum, barium, etc. in the cement, insoluble silicate metal hydrate, Forms metal hydroxide or the like to fill the voids in the concrete, and therefore, even if it contains a large amount of molten slag of 40% by mass or more, it hardens and also contains 40% by mass or more of molten slag. However, the conventional water-permeable concrete composition can be a higher strength concrete than the hardened concrete.

また、本発明の透水性コンクリート組成物は、結合材が塩化カルシウムを含むので、コンクリートの硬化速度が速くなり、コンクリート製品の生産率が向上する。   Moreover, since the binder contains calcium chloride in the water-permeable concrete composition of the present invention, the hardening rate of the concrete is increased and the production rate of the concrete product is improved.

本発明を適用した透水性コンクリート組成物に使用される結合材を製造する工程の一例を説明する概略図である。It is the schematic explaining an example of the process of manufacturing the binder used for the water-permeable concrete composition to which this invention is applied. 曲げ強度試験の状況の一例を説明する概略図である。It is the schematic explaining an example of the condition of a bending strength test.

符号の説明Explanation of symbols

1 透水性コンクリートブロック
2 上部クランプ
3 下部クランプ
4 加圧方向
1 Permeable concrete block 2 Upper clamp 3 Lower clamp 4 Pressure direction

Claims (3)

セメントと、組成物全量基準で40質量%以上の溶融スラグと、結合材と、水とを含み、残部が骨材である透水性コンクリート組成物であって、
前記結合材は、水100重量部に対して、
石灰酸8〜11重量部と、
スルホン酸ナトリウム8〜11重量部と、
可溶性デンプン11〜17重量部とを含む
ことを特徴とする透水性コンクリート組成物。
A permeable concrete composition comprising cement, molten slag of 40% by mass or more based on the total amount of the composition, a binder, and water, the balance being an aggregate,
The binder is 100 parts by weight of water,
8-11 parts by weight of lime acid,
8-11 parts by weight of sodium sulfonate,
11. A water-permeable concrete composition comprising 11 to 17 parts by weight of soluble starch.
前記結合材は、珪酸ソーダ28〜35重量部を含む
ことを特徴とする請求項1に記載の透水性コンクリート組成物。
The permeable concrete composition according to claim 1, wherein the binder includes 28 to 35 parts by weight of sodium silicate.
前記結合材は、塩化カルシウム23〜30重量部を含む
ことを特徴とする請求項1または請求項2に記載の透水性コンクリート組成物。
The water-permeable concrete composition according to claim 1 or 2, wherein the binder contains 23 to 30 parts by weight of calcium chloride.
JP2007122697A 2007-05-07 2007-05-07 Permeable concrete composition Expired - Fee Related JP4058489B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007122697A JP4058489B1 (en) 2007-05-07 2007-05-07 Permeable concrete composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007122697A JP4058489B1 (en) 2007-05-07 2007-05-07 Permeable concrete composition

Publications (2)

Publication Number Publication Date
JP4058489B1 true JP4058489B1 (en) 2008-03-12
JP2008273805A JP2008273805A (en) 2008-11-13

Family

ID=39243656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122697A Expired - Fee Related JP4058489B1 (en) 2007-05-07 2007-05-07 Permeable concrete composition

Country Status (1)

Country Link
JP (1) JP4058489B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10027092B2 (en) 2009-12-15 2018-07-17 Federal-Mogul Ignition Company Spark ignition device for an internal combustion engine and central electrode assembly therefore
US10574791B2 (en) 2010-03-24 2020-02-25 Fisher-Rosemount Systems, Inc. Methods and apparatus to access process data stored on a server
CN113929491A (en) * 2021-10-15 2022-01-14 重庆富普新材料有限公司 Limestone powder concrete surface reinforcing agent and preparation method and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753596B2 (en) * 1985-07-22 1995-06-07 帝国化学産業株式会社 Composition for controlling efflorescence
JP3212856B2 (en) * 1995-11-24 2001-09-25 新日本製鐵株式会社 Irregular cast refractories and their moldings
JP3735439B2 (en) * 1997-02-07 2006-01-18 太平洋セメント株式会社 concrete
JPH10296206A (en) * 1997-04-24 1998-11-10 Nippon Steel Corp Method for treating molten slag of waste
JPH11246256A (en) * 1998-03-04 1999-09-14 Taiheiyo Cement Corp Concrete composition
JP2001295210A (en) * 2000-04-11 2001-10-26 Toray Ind Inc Water permeable block and manufacturing method therefor
JP2002080261A (en) * 2000-09-06 2002-03-19 Showa Concrete Ind Co Ltd High fluid concrete and concrete secondary product
JP2002115204A (en) * 2000-10-06 2002-04-19 Masao Sato Manufacturing method for permeable concrete block using molten slag of general waste
JP2002121062A (en) * 2000-10-06 2002-04-23 Masao Sato Production process of large-sized concrete block (porous), using molten slag derived from general waste as raw material
JP2003165763A (en) * 2001-11-28 2003-06-10 Teihyu Corp Fiber reinforced acid resistant concrete
JP4116806B2 (en) * 2002-03-27 2008-07-09 黒崎播磨株式会社 Spraying method for heat insulating irregular refractories for industrial kilns

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10027092B2 (en) 2009-12-15 2018-07-17 Federal-Mogul Ignition Company Spark ignition device for an internal combustion engine and central electrode assembly therefore
US10574791B2 (en) 2010-03-24 2020-02-25 Fisher-Rosemount Systems, Inc. Methods and apparatus to access process data stored on a server
CN113929491A (en) * 2021-10-15 2022-01-14 重庆富普新材料有限公司 Limestone powder concrete surface reinforcing agent and preparation method and application thereof
CN113929491B (en) * 2021-10-15 2023-01-06 重庆富普新材料有限公司 Limestone powder concrete surface reinforcing agent and preparation method and application thereof

Also Published As

Publication number Publication date
JP2008273805A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
Kaliyavaradhan et al. Valorization of waste powders from cement-concrete life cycle: A pathway to circular future
Dhoble et al. Review on the innovative uses of steel slag for waste minimization
Omrane et al. Performance and durability of self compacting concrete using recycled concrete aggregates and natural pozzolan
Nunes et al. Recent advances in the reuse of steel slags and future perspectives as binder and aggregate for alkali-activated materials
Bhardwaj et al. Comparative study of geopolymer and alkali activated slag concrete comprising waste foundry sand
Siddique Utilization of cement kiln dust (CKD) in cement mortar and concrete—an overview
Shakir et al. Properties of bricks made using fly ash, quarry dust and billet scale
Siddique et al. Utilization of industrial by-products and natural ashes in mortar and concrete development of sustainable construction materials
Do et al. Engineering properties of controlled low strength material (CLSM) incorporating red mud
Gu et al. Road base materials prepared by multi-industrial solid wastes in China: A review
JP5800387B2 (en) Soil improvement material
CN103553493B (en) Building waste micro mist comprehensive stable soil
Girskas et al. Analysis of durability (frost resistance) of MSWI fly ash modified cement composites
CN110330245A (en) Resource utilization method containing heavy metal solid waste
Wang et al. Preparation of backfill materials by solidifying municipal solid waste incineration fly ash with slag-based cementitious materials
EP3371125B1 (en) Process for producing a building material obtained from an alkaline activation of sawing sludge of stone materials
JP4058489B1 (en) Permeable concrete composition
JP5122316B2 (en) Cement additive and cement composition
CN112960960A (en) Energy-saving heat-insulating building material prepared based on phosphogypsum and preparation method thereof
JP4058488B1 (en) Binder
CN107235619A (en) A kind of solidification processing method of bed mud in river
CN111807792A (en) Quartz glass powder plastic concrete and preparation method thereof
Wang et al. A new civil engineering material: normal temperature modified phosphogypsum embedded filler
Siddique et al. Cement kiln dust
CA3205563A1 (en) Compositions and concretes thereof and related methods and uses for capping mine waste rock piles

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees