JP4048110B2 - Planographic printing plate precursor and plate making method - Google Patents

Planographic printing plate precursor and plate making method Download PDF

Info

Publication number
JP4048110B2
JP4048110B2 JP2002380883A JP2002380883A JP4048110B2 JP 4048110 B2 JP4048110 B2 JP 4048110B2 JP 2002380883 A JP2002380883 A JP 2002380883A JP 2002380883 A JP2002380883 A JP 2002380883A JP 4048110 B2 JP4048110 B2 JP 4048110B2
Authority
JP
Japan
Prior art keywords
group
printing plate
photosensitive layer
lithographic printing
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002380883A
Other languages
Japanese (ja)
Other versions
JP2004212558A (en
Inventor
孝浩 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2002380883A priority Critical patent/JP4048110B2/en
Publication of JP2004212558A publication Critical patent/JP2004212558A/en
Application granted granted Critical
Publication of JP4048110B2 publication Critical patent/JP4048110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はネガ型の平版印刷版原版及びその製版方法に関し、特に、赤外線レーザによる高感度で書き込み可能であり、均質で画像欠陥のない画像を形成し得るネガ型の平版印刷版原版及びその製版方法に関する。
【0002】
【従来の技術】
従来、平版印刷版原版としては親水性支持体上に親油性の感光性樹脂層を設けた構成を有するPS版が広く用いられ、その製版方法として、通常は、リスフイルムを介してマスク露光(面露光)後、非画像部を溶解除去することにより所望の印刷版を得ていた。近年、画像情報をコンピューターを用いて電子的に処理、蓄積、出力する、デジタル化技術が広く普及してきている。そして、その様なデジタル化技術に対応した新しい画像出力方式が種々実用される様になってきた。その結果レーザー光のような指向性の高い光をデジタル化された画像情報に従って走査し、リスフイルムを介すこと無く、直接印刷版を製造するコンピュータートゥ プレート(CTP)技術が切望されており、これに適応した平版印刷版原版を得ることが重要な技術課題となっている。
【0003】
このような走査露光可能な平版印刷版原版としては、親水性支持体上にレーザー露光によりラジカルやブロンズテッド酸などの活性種を発生しうる感光性化合物を含有した親油性感光性樹脂層(以下、感光層ともいう)を設けた構成が提案され、既に上市されている。この平版印刷版原版をデジタル情報に基づきレーザー走査し活性種を発生せしめ、その作用によって感光層に物理的、或いは化学的な変化を起こし不溶化させ、引き続き現像処理することによってネガ型の平版印刷版を得ることができる。特に、親水性支持体上に感光スピードに優れる光重合開始剤、付加重合可能なエチレン性不飽和化合物、及びアルカリ現像液に可溶なバインダーポリマーとを含有する光重合型の感光層、及び必要に応じて酸素遮断性の保護層とを設けた平版印刷版原版は、生産性に優れ、更に現像処理が簡便であり、解像度や着肉性もよいといった利点から、望ましい印刷性能を有する刷版となりうる。
【0004】
従来、感光層を構成するバインダーポリマーとしては、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等のアルカリ現像可能な有機高分子ポリマーが用いられてきた(例えば、特許文献1〜8参照。)。しかし、従来のこうしたバインダーポリマーを含有する感光層を設けた平版印刷版原版では、硬化しているはずの画像部において硬化が不充分であり、硬化促進のために、画像露光後、現像工程に先だって加熱処理を実施することが一般的であった。
このような加熱処理は、露光工程で残存したラジカルを再反応させる効果があるが、版材の全域にわたって均一に熱を供給することが困難であり、画像ムラ、特に網点ムラを生じる問題がある。また、熱を供給する際の温度としては100℃以上で特に熱供給の均一化が困難になり、高温ほど困難度は増大する。既存のプレヒート工程は100〜150℃の温度で熱を供給しており、連続処理したとき網点ムラが生じ、耐刷性が悪化するという問題がある。
【0005】
また、硬化が不充分であると、現像工程において画像部に現像液が浸透してしまい、結果的に、感光層にダメージを与え、耐刷性を低下させていた。この問題に対して、画像部への現像液の浸透を抑制するため、現像処理工程における版材の搬送速度を上げて処理時間を短縮する方法も考えられる。しかしながら、現像処理前に前記の如き加熱処理工程を実施した版材では、加熱の不均一性に起因する画像ムラが発生し易くなり、特にこの傾向は、高い解像度を要求される網点や細線といった画像部分に顕著であった。
このため、現像処理における画像欠陥と画像ムラ、いずれの発生をも抑制され、版の全面にわたり均一で高い画質の画像を形成することができ、網点領域においても耐刷性に優れた平版印刷版原版が熱望されていた。
【0006】
【特許文献1】
特開昭59−44615号公報
【特許文献2】
特公昭54−34327号公報
【特許文献3】
特公昭58−12577号公報
【特許文献4】
特公昭54−25957号公報
【特許文献5】
特開昭54−92723号公報
【特許文献6】
特開昭59−53836号公報
【特許文献7】
特開昭59−71048号公報
【特許文献8】
特開2002−40652号公報
【0007】
【発明が解決しようとする課題】
従って本発明の目的は、赤外線レーザによる書き込みが可能であり、現像処理における画像欠陥と画像ムラ、いずれの発生をも抑制され、版の全面にわたり均一で高い画質の画像を形成することができ、特に網点画像領域の耐刷性に優れる平版印刷版原版、及び、高画質の画像形成可能な平版印刷版原版の好適な製版方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、特定のバインダーポリマーを含有し、光または熱により重合して硬化する感光層を設け、その上に適切な保護層を備えることより、また、他の手段として、保護層を設けたネガ型の平版印刷版原版を露光後、加熱処理を行なうことなく現像する方法により、上記目的が達成されることを見出し、本発明を完成した。
【0009】
すなわち、本発明の平版印刷版原版は、支持体上に、赤外線吸収剤、重合開始剤、重合性化合物、及び、下記一般式(I)で表される繰り返し単位を有するバインダーポリマーを含有し、750nm〜1400nmの波長の露光によりアルカリ現像液に対する溶解性が低下する感光層と、保護層と、を順次積層してなることを特徴とする。ここで、「順次積層する」とは、支持体上に感光層、保護層がこの順に設けられることを指し、中間層、バックコート層など、目的に応じて設けられる、これ以外の任意の層の存在を否定するものではない。
【0010】
【化3】

Figure 0004048110
【0011】
(一般式(I)中、R1は水素原子又はメチル基を表し、R2は炭素原子、水素原子、酸素原子、窒素原子、硫黄原子及びハロゲン原子から構成され、置換基を除いた原子数2〜30である鎖状構造の連結基を表す。Aは酸素原子又は−NR3−を表し、R3は水素原子又は炭素数1〜10の一価の炭化水素基を表す。nは1〜5の整数を表す。)
また、上記一般式(I)において、R2で表される連結基が、アルキレン構造を有すること、又は、アルキレン構造がエステル結合を介して連結された構造を有することがより好ましい。
【0012】
本発明の請求項に係る平版印刷版原版の製版方法は、支持体上に、赤外線吸収剤、重合開始剤、重合性化合物、及び、前記一般式(I)で表される繰り返し単位を有するバインダーポリマーを含有し、750nm〜1400nmの波長の露光によりアルカリ現像液に対する溶解性が低下する感光層と、保護層と、を順次積層してなることを特徴とする平版印刷版原版を、750nm〜1400nmの波長で露光処理した後、実質的に加熱処理を経ることなく、平版印刷版原版の搬送速度が1.25m/分以上の条件にて現像処理工程を行なうことを特徴とする。
【0013】
本発明の作用は明確ではないが以下のように推測される。
本発明の第1の態様における平版印刷版原版においては、感光層の表面に保護層が設けられて酸素による重合阻害が抑制されるとともに、感光層に含まれる一般式(I)で表される繰り返し単位を有するバインダーポリマーは、現像液に対する拡散性とアルカリ水溶液に対する可溶性に優れており、僅かな酸含量であっても現像液への溶解性に優れるため酸含量に起因する現像液浸透ダメージを抑制しうる。このため、感光層の最表面が速やかに硬化して耐現像性に優れた領域を形成し、露光後の加熱処理がなくても、画像部へのダメージが抑制された欠陥のない画像が形成されるものと考えられる。
また、本発明の平版印刷版原版の製版方法においては、画像露光後の加熱処理を行なうことなく現像処理工程を実施するため、不均一な加熱の影響により生じる感光層硬化反応の局所的なバラツキが抑制され、網点や細線などの画像であっても、現像処理速度が1.25m/分以上といった厳しい現像処理条件においても、均一で鮮鋭度の高い画像が形成され、網点や細線部分の耐刷性の低下も抑制されるものと推測される。
【0014】
【発明の実施の形態】
以下、まず、本発明の平版印刷版原版について説明する。
本発明の平版印刷版原版は、支持体上に、赤外線吸収剤、重合開始剤、重合性化合物、及び、前記一般式(I)で表される繰り返し単位を有するバインダーポリマーを含有し、750nm〜1400nmの波長の露光によりアルカリ現像液に対する溶解性が低下する感光層と、オーバーコート層と、を順次積層してなることを特徴とする。
この感光層は、pH10〜13.5のアルカリ現像液に対する未露光部の現像速度が80nm/sec以上、かつ、該アルカリ現像液の浸透速度が100nF/sec以下であることが好ましい態様である。
なお、ここで、pH10〜13.5のアルカリ現像液による現像速度とは、感光層の膜厚(m)を現像に要する時間(sec)で除した値であり、アルカリ現像液の浸透速度とは、導電性支持体上に前記感光層を製膜し、現像液に浸漬した場合の静電容量(F)の変化速度を示す値である。
【0015】
[感光層]
本発明の請求項1に係る平版印刷版原版における感光層は、必須成分として、後述する特定のバインダポリマー、赤外線吸収剤、重合開始剤、及び重合性化合物(付加重合性化合物ともいう)を含有してなる重合性ネガ型感光層である。このような重合性ネガ型感光層は、熱により重合開始剤が分解し、ラジカルを発生させ、この発生したラジカルにより重合性化合物が重合反応を起こすという機構を有する。この感光層は、750〜1,400nmの波長を有するレーザー光での直接描画での製版に特に好適であり、従来の平版印刷版原版に比べ、高い耐刷性及び画像形成性を発現する。
【0016】
以下、本発明の平版印刷版原版の感光層として好ましい各成分について順次、説明する。
(一般式(I)で表される繰り返し単位を有するバインダーポリマー)
本発明の平版印刷版原版における感光層に含まれるバインダーポリマーは、前記一般式(I)で表される繰り返し単位を有する。以下、一般式(I)で表される繰り返し単位を有するバインダーポリマーを、適宜、特定バインダーポリマーと称し、詳細に説明する。
まず、一般式(I)におけるR1は、水素原子又はメチル基を表し、特にメチル基が好ましい。
【0017】
一般式(I)におけるR2で表される鎖状構造の連結基は、水素原子、酸素原子、窒素原子、硫黄原子及びハロゲン原子から構成されるもので、その置換基を除いた原子数は2〜30である。具体的には、アルキレン、置換アルキレンなどが挙げられ、これらの2価の基がアミド結合やエステル結合で複数連結された構造を有していてもよい。
鎖状構造の連結基としては、エチレン、プロピレン等が挙げられる。また、これらのアルキレンがエステル結合を介して連結されている構造もまた好ましいものとして例示することができる。
【0020】
2で表される連結基としては、更に、原子数が5〜10のものが好ましく、構造的には、鎖状構造であって、その構造中にエステル結合を有するものが好ましい。
【0021】
2で表される連結基に導入可能な置換基としては、水素を除く1価の非金属原子団を挙げることができ、ハロゲン原子(−F、−Br、−Cl、−I)、ヒドロキシル基、アルコキシ基、アリーロキシ基、メルカプト基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、アミノ基、N−アルキルアミノ基、N,N−ジアルキルアミノ基、N−アリールアミノ基、N,N−ジアリールアミノ基、N−アルキル−N−アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、N−アルキルカルバモイルオキシ基、N−アリールカルバモイルオキシ基、N,N−ジアルキルカルバモイルオキシ基、N,N−ジアリールカルバモイルオキシ基、N−アルキル−N−アリールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N−アルキルアシルアミノ基、N−アリールアシルアミノ基、ウレイド基、N’−アルキルウレイド基、N’,N’−ジアルキルウレイド基、N’−アリールウレイド基、N’,N’−ジアリールウレイド基、N’−アルキル−N’−アリールウレイド基、N−アルキルウレイド基、N−アリールウレイド基、N’−アルキル−N−アルキルウレイド基、N’−アルキル−N−アリールウレイド基、N’,N’−ジアルキル−N−アルキルウレイド基、N’,N’−ジアルキル−N−アリールウレイド基、N’−アリール−N−アルキルウレイド基、N’−アリール−N−アリールウレイド基、N’,N’−ジアリール−N−アルキルウレイド基、N’,N’−ジアリール−N−アリールウレイド基、N’−アルキル−N’−アリール−N−アルキルウレイド基、N’−アルキル−N’−アリール−N−アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N−アルキル−N−アルコキシカルボニルアミノ基、N−アルキル−N−アリーロキシカルボニルアミノ基、N−アリール−N−アルコキシカルボニルアミノ基、N−アリール−N−アリーロキシカルボニルアミノ基、ホルミル基、アシル基、カルボキシル基及びその共役塩基基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N−アルキルカルバモイル基、N,N−ジアルキルカルバモイル基、N−アリールカルバモイル基、N,N−ジアリールカルバモイル基、N−アルキル−N−アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホ基(−SO3H)及びその共役塩基基、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N−アルキルスルフィナモイル基、N,N−ジアルキルスルフィナモイル基、N−アリールスルフィナモイル基、N,N−ジアリールスルフィナモイル基、N−アルキル−N−アリールスルフィナモイル基、スルファモイル基、N−アルキルスルファモイル基、N,N−ジアルキルスルファモイル基、N−アリールスルファモイル基、N,N−ジアリールスルファモイル基、N−アルキル−N−アリールスルファモイル基、N−アシルスルファモイル基及びその共役塩基基、N−アルキルスルホニルスルファモイル基(−SO2NHSO2(alkyl))及びその共役塩基基、N−アリールスルホニルスルファモイル基(−SO2NHSO2(aryl))及びその共役塩基基、N−アルキルスルホニルカルバモイル基(−CONHSO2(alkyl))及びその共役塩基基、N−アリールスルホニルカルバモイル基(−CONHSO2(aryl))及びその共役塩基基、アルコキシシリル基(−Si(Oalkyl)3)、アリーロキシシリル基(−Si(Oaryl)3)、ヒドロキシシリル基(−Si(OH)3)及びその共役塩基基、ホスホノ基(−PO32)及びその共役塩基基、ジアルキルホスホノ基(−PO3(alkyl)2)、ジアリールホスホノ基(−PO3(aryl)2)、アルキルアリールホスホノ基(−PO3(alkyl)(aryl))、モノアルキルホスホノ基(−PO3H(alkyl))及びその共役塩基基、モノアリールホスホノ基(−PO3H(aryl))及びその共役塩基基、ホスホノオキシ基(−OPO32)及びその共役塩基基、ジアルキルホスホノオキシ基(−OPO3(alkyl)2)、ジアリールホスホノオキシ基(−OPO3(aryl)2)、アルキルアリールホスホノオキシ基(−OPO3(alkyl)(aryl))、モノアルキルホスホノオキシ基(−OPO3H(alkyl))及びその共役塩基基、モノアリールホスホノオキシ基(−OPO3H(aryl))及びその共役塩基基、シアノ基、ニトロ基、ジアルキルボリル基(−B(alkyl)2)、ジアリールボリル基(−B(aryl)2)、アルキルアリールボリル基(−B(alkyl)(aryl))、ジヒドロキシボリル基(−B(OH)2)及びその共役塩基基、アルキルヒドロキシボリル基(−B(alkyl)(OH))及びその共役塩基基、アリールヒドロキシボリル基(−B(aryl)(OH))及びその共役塩基基、アリール基、アルケニル基、アルキニル基が挙げられる。
【0022】
感光層の設計にもよるが、水素結合可能な水素原子を有する置換基や、特に、カルボン酸よりも酸解離定数(pKa)が小さい酸性を有する置換基は、耐刷性を下げる傾向にあるので好ましくない。一方、ハロゲン原子や、炭化水素基(アルキル基、アリール基、アルケニル基、アルキニル基)、アルコキシ基、アリーロキシ基などの疎水性置換基は、耐刷を向上する傾向にあるのでより好ましく、特に、環状構造がシクロペンタンやシクロヘキサン等の6員環以下の単環脂肪族炭化水素である場合には、このような疎水性の置換基を有していることが好ましい。これら置換基は可能であるならば、置換基同士、又は置換している炭化水素基と結合して環を形成してもよく、置換基は更に置換されていてもよい。
【0023】
一般式(I)におけるAがNR3−である場合のR3は、水素原子又は炭素数1〜10の一価の炭化水素基を表す。このR3で表される炭素数1〜10までの一価の炭化水素基としては、アルキル基、アリール基、アルケニル基、アルキニル基が挙げられる。
アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、1−メチルブチル基、イソヘキシル基、2−エチルヘキシル基、2−メチルヘキシル基、シクロペンチル基、シクロヘキシル基、1−アダマンチル基、2−ノルボルニル基等の炭素数1〜10までの直鎖状、分枝状、又は環状のアルキル基が挙げられる。
アリール基の具体例としては、フェニル基、ナフチル基、インデニル基等の炭素数1〜10までのアリール基、窒素原子、酸素原子及び硫黄原子からなる群から選ばれるヘテロ原子を1個含有する炭素数1〜10までのヘテロアリール基、例えば、フリル基、チエニル基、ピロリル基、ピリジル基、キノリル基等が挙げられる。
アルケニル基の具体例としては、ビニル基、1−プロペニル基、1−ブテニル基、1−メチル−1−プロペニル基、1−シクロペンテニル基、1−シクロヘキセニル基等の炭素数1〜10までの直鎖状、分枝状、又は環状のアルケニル基が挙げられる。
アルキニル基の具体例としては、エチニル基、1−プロピニル基、1−ブチニル基、1−オクチニル基等の炭素数1〜10までのアルキニル基が挙げられる。R3が有してもよい置換基としては、R2が導入し得る置換基として挙げたものと同様である。但し、R3の炭素数は、置換基の炭素数を含めて1〜10である。一般式(I)におけるAは、合成が容易であることから、酸素原子又は−NH−であることが好ましい。
【0024】
一般式(I)におけるnは、1〜5の整数を表し、耐刷の点で好ましくは1である。
【0025】
以下に、特定バインダーポリマー一般式(I)で表される繰り返し単位の好ましい具体例(以下に示す繰り返し単位においてR 2 が鎖状構造の連結基であるもの)を示すが、本発明はこれらに限定されるものではない。
【0026】
【化4】
Figure 0004048110
【0027】
【化5】
Figure 0004048110
【0028】
【化6】
Figure 0004048110
【0029】
【化7】
Figure 0004048110
【0031】
【化8】
Figure 0004048110
【0032】
【化9】
Figure 0004048110
【0033】
【化10】
Figure 0004048110
【0034】
【化11】
Figure 0004048110
【0035】
一般式(I)で表される繰り返し単位は、バインダーポリマー中に1種類だけであってもよいし、2種類以上含有していてもよい。本発明における特定バインダーポリマーは、一般式(I)で表される繰り返し単位だけからなるポリマーであってもよいが、通常、他の共重合成分と組み合わされ、コポリマーとして使用される。コポリマーにおける一般式(I)で表される繰り返し単位の総含有量は、その構造や、感光層の設計等によって適宜決められるが、好ましくはポリマー成分の総モル量に対し、1〜99モル%、より好ましくは5〜40モル%、更に好ましくは5〜20モル%の範囲で含有される。
【0036】
コポリマーとして用いる場合の共重合成分としては、ラジカル重合可能なモノマーであれば従来公知のものを制限なく使用できる。具体的には、「高分子データハンドブック−基礎編−(高分子学会編、培風館、1986)」記載のモノマー類が挙げられる。このような共重合成分は1種類であってもよいし、2種類以上を組み合わせて使用してもよい。
【0037】
本発明における特定バインダーポリマーの分子量は、画像形成性や耐刷性の観点から適宜決定される。通常、分子量が高くなると、耐刷性は優れるが、画像形成性は劣化する傾向にある。逆に、低いと、画像形成性はよくなるが、耐刷性は低くなる。好ましい分子量としては、2,000〜1,000,000、より好ましくは5,000〜500,000、更に好ましくは10,000〜200,000の範囲である。
【0038】
また、本発明の平版印刷版原版における感光層に用いられるバインダーポリマーは、特定バインダーポリマー単独であってもよいし、他のバインダーポリマーを1種以上併用して、混合物として用いてもよい。併用されるバインダーポリマーは、バインダーポリマー成分の総重量に対し1〜60質量%、好ましくは1〜40質量%、更に好ましくは1〜20質量%の範囲で用いられる。併用できるバインダーポリマーとしては、従来公知のものを制限なく使用でき、具体的には、本業界においてよく使用されるアクリル主鎖バインダーや、ウレタンバインダー等が好ましく用いられる。
【0039】
感光層中での特定バインダーポリマー及び併用してもよいバインダーポリマーの合計量は、適宜決めることができるが、感光層中の不揮発性成分の総重量に対し、通常10〜90質量%、好ましくは20〜80質量%、更に好ましくは30〜70質量%の範囲である。
また、このようなバインダーポリマーの酸価(meg/g)としては、2.00〜3.60の範囲であることが好ましい。
【0040】
(併用可能な他のバインダーポリマー)
前記特定バインダーポリマーと併用可能なバインダーポリマーは、ラジカル重合性基を有するバインダーポリマーであることが好ましい。そのラジカル重合性基としては、ラジカルにより重合することが可能であれば特に限定されないが、α−置換メチルアクリル基[−OC(=O)−C(−CH2Z)=CH2、Z=ヘテロ原子から始まる炭化水素基]、アクリル基、メタクリル基、アリル基、スチリル基が挙げられ、この中でも、アクリル基、メタクリル基が好ましい。
バインダーポリマー中のラジカル重合性基の含有量(ヨウ素滴定によるラジカル重合可能な不飽和二重結合の含有量)は、バインダーポリマー1g当たり、好ましくは0.1〜10.0mmol、より好ましくは1.0〜7.0mmol、最も好ましくは2.0〜5.5mmolである。この含有量が、0.1mmolより少ないと硬化性が低く低感度となる場合がある。また、含有量が10.0mmolよりも大きいと、不安定化し保存性が低下する場合がある。
【0041】
また、バインダーポリマーは、更に、アルカリ可溶性基を有するものが好ましい。バインダーポリマー中のアルカリ可溶性基の含有量(中和滴定による酸価)は、バインダーポリマー1g当たり、好ましくは0.1〜3.0mmol、より好ましくは0.2〜2.0mmol、最も好ましくは0.45〜1.0mmolである。この含有量が、0.1mmolより少ないと現像時に析出し現像カスが発生する場合がある。また、含有量が3.0mmolよりも大きいと、親水性が高すぎて耐刷性が低下する場合がある。
【0042】
このようなバインダーポリマーの重量平均分子量は、好ましくは2,000〜1,000,000、より好ましくは10,000〜300,000、最も好ましくは20,000〜200,000の範囲である。この重量平均分子量が2,000より小さいと、皮膜性が低下し耐刷性が劣化する場合がある。また、重量平均分子量が1,000,000より大きいと、塗布溶剤に溶けにくく塗布性が低下する場合がある。
【0043】
また、このようなバインダーポリマーのガラス転移点(Tg)は、好ましくは70〜300℃、より好ましくは80〜250℃、最も好ましくは90〜200℃の範囲である。このガラス転移点が70℃より低いと、保存安定性が低下し耐刷性が劣化する場合がある。また、ガラス転移点が300℃より高いと、感光層中のラジカル移動度が低下し低感度となる場合がある。
バインダーポリマーのガラス転移点を高めるため手段としては、その分子中に、アミド基やイミド基を含有することが好ましく、特に、メタクリルアミドメタクリルアミド誘導体を含有することが好ましい。
【0044】
(重合性化合物)
熱重合性ネガ型感光層に使用される、少なくとも一個のエチレン性不飽和二重結合を有する付加重合性化合物は、エチレン性不飽和結合を少なくとも1個、好ましくは2個以上有する化合物から選ばれる。このような化合物群は当該産業分野において広く知られるものであり、本発明においてはこれらを特に限定無く用いることができる。これらは、例えばモノマー、プレポリマー、すなわち2量体、3量体及びオリゴマー、又はそれらの混合物ならびにそれらの共重合体などの化学的形態をもつ。モノマー及びその共重合体の例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)や、そのエステル類、アミド類が挙げられ、好ましくは、不飽和カルボン酸と脂肪族多価アルコール化合物とのエステル、不飽和カルボン酸と脂肪族多価アミン化合物とのアミド類が用いられる。また、ヒドロキシル基やアミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル或いはアミド類と単官能若しくは多官能イソシアネート類或いはエポキシ類との付加反応物、及び単官能若しくは、多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基や、エポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル或いはアミド類と単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物、更にハロゲン基や、トシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステル或いはアミド類と単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン、ビニルエーテル等に置き換えた化合物群を使用することも可能である。
【0045】
脂肪族多価アルコール化合物と不飽和カルボン酸とのエステルのモノマーの具体例としては、アクリル酸エステルとして、エチレングリコールジアクリレート、トリエチレングリコールジアクリレート、1,3−ブタンジオールジアクリレート、テトラメチレングリコールジアクリレート、プロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリメチロールエタントリアクリレート、ヘキサンジオールジアクリレート、1,4−シクロヘキサンジオールジアクリレート、テトラエチレングリコールジアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールジアクリレート、ジペンタエリスリトールヘキサアクリレート、ソルビトールトリアクリレート、ソルビトールテトラアクリレート、ソルビトールペンタアクリレート、ソルビトールヘキサアクリレート、トリ(アクリロイルオキシエチル)イソシアヌレート、ポリエステルアクリレートオリゴマー等がある。
【0046】
メタクリル酸エステルとしては、テトラメチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、エチレングリコールジメタクリレート、1,3−ブタンジオールジメタクリレート、ヘキサンジオールジメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールジメタクリレート、ジペンタエリスリトールヘキサメタクリレート、ソルビトールトリメタクリレート、ソルビトールテトラメタクリレート、ビス〔p−(3−メタクリルオキシ−2−ヒドロキシプロポキシ)フェニル〕ジメチルメタン、ビス−〔p−(メタクリルオキシエトキシ)フェニル〕ジメチルメタン等がある。
【0047】
イタコン酸エステルとしては、エチレングリコールジイタコネート、プロピレングリコールジイタコネート、1,3−ブタンジオールジイタコネート、1,4−ブタンジオールジイタコネート、テトラメチレングリコールジイタコネート、ペンタエリスリトールジイタコネート、ソルビトールテトライタコネート等がある。クロトン酸エステルとしては、エチレングリコールジクロトネート、テトラメチレングリコールジクロトネート、ペンタエリスリトールジクロトネート、ソルビトールテトラジクロトネート等がある。イソクロトン酸エステルとしては、エチレングリコールジイソクロトネート、ペンタエリスリトールジイソクロトネート、ソルビトールテトライソクロトネート等がある。マレイン酸エステルとしては、エチレングリコールジマレート、トリエチレングリコールジマレート、ペンタエリスリトールジマレート、ソルビトールテトラマレート等がある。
【0048】
その他のエステルの例として、例えば、特公昭46−27926、特公昭51−47334、特開昭57−196231記載の脂肪族アルコール系エステル類や、特開昭59−5240、特開昭59−5241、特開平2−226149記載の芳香族系骨格を有するもの、特開平1−165613記載のアミノ基を含有するもの等も好適に用いられる。更に、前述のエステルモノマーは混合物としても使用することができる。
【0049】
また、脂肪族多価アミン化合物と不飽和カルボン酸とのアミドのモノマーの具体例としては、メチレンビス−アクリルアミド、メチレンビス−メタクリルアミド、1,6−ヘキサメチレンビス−アクリルアミド、1,6−ヘキサメチレンビス−メタクリルアミド、ジエチレントリアミントリスアクリルアミド、キシリレンビスアクリルアミド、キシリレンビスメタクリルアミド等がある。その他の好ましいアミド系モノマーの例としては、特公昭54−21726記載のシクロへキシレン構造を有すものを挙げることができる。
【0050】
また、イソシアネートと水酸基の付加反応を用いて製造されるウレタン系付加重合性化合物も好適であり、そのような具体例としては、例えば、特公昭48−41708号公報中に記載されている1分子に2個以上のイソシアネート基を有するポリイソシアネート化合物に、下記一般式(1)で示される水酸基を含有するビニルモノマーを付加させた1分子中に2個以上の重合性ビニル基を含有するビニルウレタン化合物等が挙げられる。
【0051】
CH2=C(R4)COOCH2CH(R5)OH (1)
(ただし、R4及びR5は、H又はCH3を示す。)
【0052】
また、特開昭51−37193号、特公平2−32293号、特公平2−16765号に記載されているようなウレタンアクリレート類や、特公昭58−49860号、特公昭56−17654号、特公昭62−39417号、特公昭62−39418号記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。更に、特開昭63−277653号、特開昭63−260909号、特開平1−105238号に記載される、分子内にアミノ構造やスルフィド構造を有する付加重合性化合物類を用いることによっては、非常に感光スピードに優れた光重合性組成物を得ることができる。
【0053】
その他の例としては、特開昭48−64183号、特公昭49−43191号、特公昭52−30490号、各公報に記載されているようなポリエステルアクリレート類、エポキシ樹脂と(メタ)アクリル酸を反応させたエポキシアクリレート類等の多官能のアクリレートやメタクリレートを挙げることができる。また、特公昭46−43946号、特公平1−40337号、特公平1−40336号記載の特定の不飽和化合物や、特開平2−25493号記載のビニルホスホン酸系化合物等も挙げることができる。また、ある場合には、特開昭61−22048号記載のペルフルオロアルキル基を含有する構造が好適に使用される。更に日本接着協会誌vol.20、No.7、300〜308ページ(1984年)に光硬化性モノマー及びオリゴマーとして紹介されているものも使用することができる。
【0054】
これらの付加重合性化合物について、その構造、単独使用か併用か、添加量等の使用方法の詳細は、最終的な平版印刷版原版の性能設計にあわせて任意に設定できる。例えば、次のような観点から選択される。感光スピードの点では1分子あたりの不飽和基含量が多い構造が好ましく、多くの場合、2官能以上が好ましい。また、画像部すなわち硬化膜の強度を高くするためには、3官能以上のものがよく、更に、異なる官能数・異なる重合性基(例えばアクリル酸エステル、メタクリル酸エステル、スチレン系化合物、ビニルエーテル系化合物)のものを併用することで、感光性と強度の両方を調節する方法も有効である。大きな分子量の化合物や疎水性の高い化合物は、感光スピードや膜強度に優れる反面、現像スピードや現像液中での析出といった点で好ましく無い場合がある。また、感光層中の他の成分(例えばバインダーポリマー、開始剤、着色剤等)との相溶性、分散性に対しても、付加重合化合物の選択・使用法は重要な要因であり、例えば、低純度化合物の使用や、2種以上の併用により相溶性を向上させうることがある。また、基板や後述のオーバーコート層等の密着性を向上せしめる目的で特定の構造を選択することもあり得る。感光層中の付加重合性化合物の配合比に関しては、多い方が感度的に有利であるが、多すぎる場合には、好ましく無い相分離が生じたり、感光層の粘着性による製造工程上の問題(例えば、感光層成分の転写、粘着に由来する製造不良)や、現像液からの析出が生じる等の問題を生じうる。これらの観点から、付加重合性化合物は、感光層中の不揮発性成分に対して、好ましくは5〜80質量%、更に好ましくは25〜75質量%の範囲で使用される。また、これらは単独で用いても2種以上併用してもよい。そのほか、付加重合性化合物の使用法は、酸素に対する重合阻害の大小、解像度、かぶり性、屈折率変化、表面粘着性等の観点から適切な構造、配合、添加量を任意に選択でき、更に場合によっては下塗り、上塗りといった層構成・塗布方法も実施しうる。
【0055】
(赤外線吸収剤)
本発明の平版印刷版原版を、750から1,400nmの赤外線を発するレーザーを光源により画像形成する場合には、通常、赤外線吸収剤を用いることが必須である。赤外線吸収剤は、吸収した赤外線を熱に変換する機能を有している。この際発生した熱により、後述する重合開始剤(ラジカル発生剤)が熱分解し、ラジカルを発生する。本発明において使用される赤外線吸収剤は、波長750nmから1,400nmに吸収極大を有する染料又は顔料である。
【0056】
染料としては、市販の染料及び例えば「染料便覧」(有機合成化学協会編集、昭和45年刊)等の文献に記載されている公知のものが利用できる。具体的には、アゾ染料、金属錯塩アゾ染料、ピラゾロンアゾ染料、ナフトキノン染料、アントラキノン染料、フタロシアニン染料、カルボニウム染料、キノンイミン染料、メチン染料、シアニン染料、スクワリリウム色素、ピリリウム塩、金属チオレート錯体等の染料が挙げられる。
好ましい染料としては、例えば、特開昭58−125246号、特開昭59−84356号、特開昭59−202829号、特開昭60−78787号等に記載されているシアニン染料、特開昭58−173696号、特開昭58−181690号、特開昭58−194595号等に記載されているメチン染料、特開昭58−112793号、特開昭58−224793号、特開昭59−48187号、特開昭59−73996号、特開昭60−52940号、特開昭60−63744号等に記載されているナフトキノン染料、特開昭58−112792号等に記載されているスクワリリウム色素、英国特許434,875号記載のシアニン染料等を挙げることができる。
【0057】
また、米国特許第5,156,938号記載の近赤外吸収増感剤も好適に用いられ、また、米国特許第3,881,924号記載の置換されたアリールベンゾ(チオ)ピリリウム塩、特開昭57−142645号(米国特許第4,327,169号)記載のトリメチンチアピリリウム塩、特開昭58−181051号、同58−220143号、同59−41363号、同59−84248号、同59−84249号、同59−146063号、同59−146061号に記載されているピリリウム系化合物、特開昭59−216146号記載のシアニン色素、米国特許第4,283,475号に記載のペンタメチンチオピリリウム塩等や特公平5−13514号、同5−19702号に開示されているピリリウム化合物も好ましく用いられる。また、染料として好ましい別の例として米国特許第4,756,993号明細書中に式(I)、(II)として記載されている近赤外吸収染料を挙げることができる。
また、本発明の赤外線吸収色素の好ましい他の例としては、以下に例示するような特願平2001-6326、特願平2001−237840記載の特定インドレニンシアニン色素が挙げられる。
【0058】
【化12】
Figure 0004048110
【0059】
これらの染料のうち特に好ましいものとしては、シアニン色素、スクワリリウム色素、ピリリウム塩、ニッケルチオレート錯体、インドレニンシアニン色素が挙げられる。さらに、シアニン色素やインドレニンシアニン色素が好ましく、特に好ましい一つの例として下記一般式(i)で示されるシアニン色素が挙げられる。
【0060】
【化13】
Figure 0004048110
【0061】
一般式(i)中、X1は、ハロゲン原子、またはX2−L1を示す。ここで、X2は酸素原子、または、硫黄原子を示し、L1は、炭素原子数1〜12の炭化水素基を示す。R1およびR2は、それぞれ独立に、炭素原子数1〜12の炭化水素基を示す。感光層塗布液の保存安定性から、R1およびR2は、炭素原子数2個以上の炭化水素基であることが好ましく、さらに、R1とR2とは互いに結合し、5員環または6員環を形成していることが特に好ましい。
【0062】
Ar1、Ar2は、それぞれ同じでも異なっていても良く、置換基を有していても良い芳香族炭化水素基を示す。好ましい芳香族炭化水素基としては、ベンゼン環およびナフタレン環が挙げられる。また、好ましい置換基としては、炭素原子数12個以下の炭化水素基、ハロゲン原子、炭素原子数12個以下のアルコキシ基が挙げられる。Y1、Y2は、それぞれ同じでも異なっていても良く、硫黄原子または炭素原子数12個以下のジアルキルメチレン基を示す。R3、R4は、それぞれ同じでも異なっていても良く、置換基を有していても良い炭素原子数20個以下の炭化水素基を示す。好ましい置換基としては、炭素原子数12個以下のアルコキシ基、カルボキシル基、スルホ基が挙げられる。R5、R6、R7およびR8は、それぞれ同じでも異なっていても良く、水素原子または炭素原子数12個以下の炭化水素基を示す。原料の入手性から、好ましくは水素原子である。また、Z1-は、対アニオンを示す。ただし、R1からR8のいずれかにスルホ基が置換されている場合は、Z1-は必要ない。好ましいZ1-は、感光層塗布液の保存安定性から、ハロゲンイオン、過塩素酸イオン、テトラフルオロボレートイオン、ヘキサフルオロホスフェートイオン、およびスルホン酸イオンであり、特に好ましくは、過塩素酸イオン、ヘキサフルオロフォスフェートイオン、およびアリールスルホン酸イオンである。
本発明において、好適に用いることのできる一般式(i)で示されるシアニン色素の具体例としては、特開2001−133969公報の段落番号[0017]から[0019]に記載されたものを挙げることができる。
また、特に好ましい他の例としてさらに、前記した特願平2001-6326、特願平2001−237840明細書に記載の特定インドレニンシアニン色素が挙げられる。
【0063】
本発明において使用される顔料としては、市販の顔料及びカラーインデックス(C.I.)便覧、「最新顔料便覧」(日本顔料技術協会編、1977年刊)、「最新顔料応用技術」(CMC出版、1986年刊)、「印刷インキ技術」CMC出版、1984年刊)に記載されている顔料が利用できる。
【0064】
顔料の種類としては、黒色顔料、黄色顔料、オレンジ色顔料、褐色顔料、赤色顔料、紫色顔料、青色顔料、緑色顔料、蛍光顔料、金属粉顔料、その他、ポリマー結合色素が挙げられる。具体的には、不溶性アゾ顔料、アゾレーキ顔料、縮合アゾ顔料、キレートアゾ顔料、フタロシアニン系顔料、アントラキノン系顔料、ペリレン及びペリノン系顔料、チオインジゴ系顔料、キナクリドン系顔料、ジオキサジン系顔料、イソインドリノン系顔料、キノフタロン系顔料、染付けレーキ顔料、アジン顔料、ニトロソ顔料、ニトロ顔料、天然顔料、蛍光顔料、無機顔料、カーボンブラック等が使用できる。これらの顔料のうち好ましいものはカーボンブラックである。
【0065】
これら顔料は表面処理をせずに用いてもよく、表面処理を施して用いてもよい。表面処理の方法には、樹脂やワックスを表面コートする方法、界面活性剤を付着させる方法、反応性物質(例えば、シランカップリング剤、エポキシ化合物、ポリイソシアネート等)を顔料表面に結合させる方法等が考えられる。上記の表面処理方法は、「金属石鹸の性質と応用」(幸書房)、「印刷インキ技術」(CMC出版、1984年刊)及び「最新顔料応用技術」(CMC出版、1986年刊)に記載されている。
【0066】
顔料の粒径は0.01μm〜10μmの範囲にあることが好ましく、0.05μm〜1μmの範囲にあることがさらに好ましく、特に0.1μm〜1μmの範囲にあることが好ましい。顔料の粒径が0.01μm未満のときは分散物の感光層塗布液中での安定性の点で好ましくなく、また、10μmを越えると感光層の均一性の点で好ましくない。
【0067】
顔料を分散する方法としては、インク製造やトナー製造等に用いられる公知の分散技術が使用できる。分散機としては、超音波分散器、サンドミル、アトライター、パールミル、スーパーミル、ボールミル、インペラー、デスパーザー、KDミル、コロイドミル、ダイナトロン、3本ロールミル、加圧ニーダー等が挙げられる。詳細は、「最新顔料応用技術」(CMC出版、1986年刊)に記載されている。
【0068】
これらの赤外線吸収剤は、他の成分と同一の層に添加してもよいし、別の層を設けそこへ添加してもよいが、ネガ型平版印刷版原版を作成した際に、感光層の波長760nm〜1200nmの範囲における極大吸収波長での吸光度が、反射測定法で0.5〜1.2の範囲にあるように添加する。好ましくは、0.6〜1.15の範囲である。吸光度がこの範囲外の場合、画像部の強度が低下し、印刷時の印刷枚数が減少する。その原因については明確ではないが、吸光度が0.5未満の場合は、照射された赤外線を十分に吸収することができず、結果として感光層全般におけるラジカル重合が十分進行しないためと推測できる。また、吸光度が1.2より大きい場合は、感光層の最表面だけが赤外線を吸収し、支持体近傍には赤外線が届かないため、結果として支持体近傍でのラジカル重合が起こらず、支持体と感光層の接着力が不足するためと推測できる。
感光層の吸光度は、感光層に添加する赤外線吸収剤の量と感光層の厚みにより調整することができる。吸光度の測定は常法により行うことができる。測定方法としては、例えば、アルミニウム等の反射性の支持体上に、乾燥後の塗布量が平版印刷版として必要な範囲において適宜決定された厚みの感光層を形成し、反射濃度を光学濃度計で測定する方法、積分球を用いた反射法により分光光度計で測定する方法等が挙げられる。
【0069】
(重合開始剤)
前記重合性化合物におる硬化反応を開始、進行させるための重合開始剤としては、熱により分解してラジカルを発生する熱分解型のラジカル発生剤が有用である。このようなラジカル発生剤は前述する赤外線吸収剤と併用することで、赤外線レーザーを照射した際に赤外線吸収剤が発熱し、その熱によりラジカルを発生するものであり、これらの組合せによりヒートモード記録が可能となる。
ラジカル発生剤としては、オニウム塩、トリハロメチル基を有するトリアジン化合物、過酸化物、アゾ系重合開始剤、アジド化合物、キノンジアジドなどが挙げられるが、オニウム塩が高感度であり、好ましい。以下に、本発明においてラジカル重合開始剤として好適に用い得るオニウム塩について説明する。好ましいオニウム塩としては、ヨードニウム塩、ジアゾニウム塩、スルホニウム塩が挙げられる。本発明において、これらのオニウム塩は酸発生剤ではなく、ラジカル重合の開始剤として機能する。本発明において好適に用いられるオニウム塩は、下記一般式(III)〜(V)で表されるオニウム塩である。
【0070】
【化14】
Figure 0004048110
【0071】
式(III)中、Ar11とAr12は、それぞれ独立に、置換基を有していても良い炭素原子数20個以下のアリール基を示す。このアリール基が置換基を有する場合の好ましい置換基としては、ハロゲン原子、ニトロ基、炭素原子数12個以下のアルキル基、炭素原子数12個以下のアルコキシ基、又は炭素原子数12個以下のアリールオキシ基が挙げられる。Z11-はハロゲンイオン、過塩素酸イオン、テトラフルオロボレートイオン、ヘキサフルオロホスフェートイオン、カルボキシレートイオン、及びスルホン酸イオンからなる群より選択される対イオンを表し、好ましくは、過塩素酸イオン、ヘキサフルオロフォスフェートイオン、カルボキシレートイオン、及びアリールスルホン酸イオンである。
【0072】
式(IV)中、Ar21は、置換基を有していても良い炭素原子数20個以下のアリール基を示す。好ましい置換基としては、ハロゲン原子、ニトロ基、炭素原子数12個以下のアルキル基、炭素原子数12個以下のアルコキシ基、炭素原子数12個以下のアリールオキシ基、炭素原子数12個以下のアルキルアミノ基、炭素原子数12個以下のジアルキルアミノ基、炭素原子数12個以下のアリールアミノ基又は、炭素原子数12個以下のジアリールアミノ基が挙げられる。Z21-はZ11-と同義の対イオンを表す。
【0073】
式(V)中、R31、R32及びR33は、それぞれ同じでも異なっていても良く、置換基を有していても良い炭素原子数20個以下の炭化水素基を示す。好ましい置換基としては、ハロゲン原子、ニトロ基、炭素原子数12個以下のアルキル基、炭素原子数12個以下のアルコキシ基、又は炭素原子数12個以下のアリールオキシ基が挙げられる。Z31-はZ11-と同義の対イオンを表す。
【0074】
本発明において、ラジカル発生剤として好適に用いることのできるオニウム塩の具体例としては、特開2001−133696号公報に記載されたもの等を挙げることができる。以下に、本発明において、好適に用いることのできる一般式(III)で示されるオニウム塩([OI−1]〜[OI−10])、一般式(IV)で示されるオニウム塩([ON−1]〜[ON−5])、及び一般式(V)で示されるオニウム塩([OS−1]〜[OS−7])の具体例を挙げるが、これらに限定されるものではない。
【0075】
【化15】
Figure 0004048110
【0076】
【化16】
Figure 0004048110
【0077】
【化17】
Figure 0004048110
【0078】
【化18】
Figure 0004048110
【0079】
本発明において用いられるラジカル発生剤は、極大吸収波長が400nm以下であることが好ましく、さらに360nm以下であることが好ましい。このように吸収波長を紫外線領域にすることにより、平版印刷版原版の取り扱いを白灯下で実施することができる。
【0080】
また、他の好ましい重合開始剤として、特願平2000−266797号、特願平2001−177150号、特願平2000−160323号、特願平2000−184603号記載の特定の芳香族スルホニウム塩が挙げられる。
以下に、本発明に適用し得る他の好ましい重合開始剤である特願平2000−266797、特願平2001−177150に記載の代表的な化合物を例示する。
【0081】
【化19】
Figure 0004048110
【0082】
これらの重合開始剤は、感光層を構成する全固形分に対し0.1〜50質量%、好ましくは0.5〜30質量%、特に好ましくは1〜20質量%の割合で添加することができる。添加量が0.1質量%未満であると感度が低くなり、また50質量%を越えると印刷時に非画像部に汚れが発生しやすくなる傾向がある。これらの重合開始剤は、1種のみを用いても良いし、2種以上を併用しても良い。また、これらの重合開始剤は他の成分と同一の層に添加してもよいし、別の層を設けそこへ添加してもよい。
【0083】
本発明の平版印刷版原版の感光層として好ましい熱重合性ネガ型感光層には、以上の基本成分の他に、更にその用途、製造方法等に適したその他の成分、例えば、着色剤、可塑剤、重合禁止剤などの種々の添加剤等を必要に応じて適宜添加することができる。以下、好ましい添加剤を例示する。
(重合禁止剤)
また、本発明の平版印刷版原版の感光層においては、ネガ型感光性組成物の製造中或いは保存中において、重合可能なエチレン性不飽和二重結合を有する化合物の不要な熱重合を阻止するために少量の熱重合禁止剤を添加することが望ましい。適当な熱重合禁止剤としてはハイドロキノン、p−メトキシフェノール、ジ−t−ブチル−p−クレゾール、ピロガロール、t−ブチルカテコール、ベンゾキノン、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、N−ニトロソフェニルヒドロキシアミン第一セリウム塩等が挙げられる。熱重合禁止剤の添加量は、全組成物中の不揮発性成分の重量に対して約0.01質量%〜約5質量%が好ましい。また必要に応じて、酸素による重合阻害を防止するためにベヘン酸やベヘン酸アミドのような高級脂肪酸誘導体等を添加して、塗布後の乾燥の過程で感光層の表面に偏在させてもよい。高級脂肪酸誘導体の添加量は、全組成物中の不揮発性成分に対して約0.5質量%〜約10質量%が好ましい。
【0084】
(着色剤)
更に、本発明の平版印刷版原版の感光層に、その着色を目的として染料若しくは顔料を添加してもよい。これにより、印刷版としての、製版後の視認性や、画像濃度測定機適性といったいわゆる検版性を向上させることができる。着色剤としては、多くの染料は光重合系感光層の感度の低下を生じるので、着色剤としては、特に顔料の使用が好ましい。具体例としては例えばフタロシアニン系顔料、アゾ系顔料、カーボンブラック、酸化チタンなどの顔料、エチルバイオレット、クリスタルバイオレット、アゾ系染料、アントラキノン系染料、シアニン系染料などの染料がある。染料及び顔料の添加量は全組成物中の不揮発性成分に対して約0.5質量%〜約5質量%が好ましい。
【0085】
(その他の添加剤)
更に、硬化皮膜の物性を改良するために無機充填剤や、その他可塑剤、感光層表面のインク着肉性を向上させうる感脂化剤等の公知の添加剤を加えてもよい。可塑剤としては例えばジオクチルフタレート、ジドデシルフタレート、トリエチレングリコールジカプリレート、ジメチルグリコールフタレート、トリクレジルホスフェート、ジオクチルアジペート、ジブチルセバケート、トリアセチルグリセリン等があり、バインダーポリマーと付加重合性化合物との合計重量に対し一般的に10質量%以下の範囲で添加することができる。また、後述する膜強度(耐刷性)向上を目的とした、現像後の加熱・露光の効果を強化するための、UV開始剤や、熱架橋剤等の添加もできる。
【0086】
上記の感光層を塗設する際には、該感光層成分の光重合性組成物を種々の有機溶剤に溶かして、該中間層上に塗布するように供される。ここで使用する溶媒としては、アセトン、メチルエチルケトン、シクロヘキサン、酢酸エチル、エチレンジクロライド、テトラヒドロフラン、トルエン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、アセチルアセトン、シクロヘキサノン、ジアセトンアルコール、エチレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテルアセテート、3−メトキシプロパノール、メトキシメトキシエタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3−メトキシプロピルアセテート、N,N−ジメチルホルムアミド、ジメチルスルホキシド、γ−ブチロラクトン、乳酸メチル、乳酸エチルなどがある。これらの溶媒は、単独或いは混合して使用することができる。そして、塗布溶液中の固形分の濃度は、2〜50質量%が適当である。
【0087】
前記感光層の被覆量は、主に、感光層の感度、現像性、露光膜の強度・耐刷性に影響しうるもので、用途に応じ適宜選択することが望ましい。被覆量が少なすぎる場合には、耐刷性が十分でなくなる。一方多すぎる場合には、感度が下がり、露光に時間がかかる上、現像処理にもより長い時間を要するため好ましくない。本発明の主要な目的である走査露光用平版印刷版原版としては、その被覆量は乾燥後の重量で約0.1g/m2〜約10g/m2の範囲が適当である。より好ましくは0.5〜5g/m2である。
【0088】
なお、本発明に係る感光層の好ましい物性は、pH10〜13.5のアルカリ現像液に対する未露光部の現像速度が80nm/sec以上、かつ、該アルカリ現像液の浸透速度が100nF/sec以下であるが、この「アルカリ現像液に対する現像速度」及び「アルカリ現像液の浸透速度」の測定方法について説明する。
【0089】
[アルカリ現像液に対する現像速度の測定]
ここで、感光層のアルカリ現像液に対する現像速度とは、感光層の膜厚(m)を現像に要する時間(sec)で除した値である。
本発明における現像速度の測定方法としては、図1に示すように、アルミニウム支持体上に未露光の感光層を備えたものをpH10〜13.5の範囲の一定のアルカリ現像液(30℃)中に浸漬し、感光層の溶解挙動をDRM干渉波測定装置で調査した。図1に、感光層の溶解挙動を測定するためのDRM干渉波測定装置の概略図を示す。本発明においては、640nmの光を用い干渉により膜厚の変化を検出した。現像挙動が感光層表面からの非膨潤的現像の場合、膜厚は現像時間に対して徐々に薄くなり、その厚みに応じた干渉波が得られる。また、膨潤的溶解(脱膜的溶解)の場合には、膜厚は現像液の浸透により変化するため、きれいな干渉波が得られない。
【0090】
この条件において測定を続け、感光層が完全に除去され、膜厚が0となるまでの時間(現像完了時間)(s)と、感光層の膜厚(μm)より、現像速度を以下の式により求めることができる。この現像速度が大きいものほど、現像液により容易に膜が除去され、現像性が良好であると判定する。
(未露光部の)現像速度=〔感光層厚(μm)/記録完了時間(sec)〕
【0091】
[アルカリ現像液の浸透速度の測定]
また、アルカリ現像液の浸透速度とは、導電性支持体上に前記感光層を製膜し、現像液に浸漬した場合の静電容量(F)の変化速度を示す値である。
本発明における浸透性の目安となる静電容量の測定方法としては、図2に示すように、pH10〜13.5の範囲の一定のアルカリ現像液(28℃)中にアルミニウム支持体上に所定の露光量にて露光を行ない、硬化した感光層を備えたものを一方の電極として浸漬し、アルミニウム支持体に導線をつなぎ、他方に通常の電極を用いて電圧を印加する方法が挙げられる。電圧を印加後、浸漬時間の経過に従って現像液が支持体と感光層との界面に浸透し、静電容量が変化する。
【0092】
この静電容量が変化するまでにかかる時間(s)と、感光層の膜厚(μm)より以下の式により求めることができる。この浸透速度が小さいものほど、現像液の浸透性が低いと判定する。
(露光部の)現像液浸透速度=
〔感光層厚(μm)/静電容量変化が一定になるまでに要する時間(s)〕
【0093】
本発明の平版印刷版原版における感光層の好ましい物性としては、上記測定によるpH10〜13.5のアルカリ現像液による未露光部の現像速度が、好ましくは80〜400nm/secであり、同様のアルカリ現像液の感光層に対する浸透速度は90nF/sec以下であることが好ましい。また、上記測定によるpH10〜13.5のアルカリ現像液による未露光部の現像速度が、更に好ましくは90〜200nm/secであり、同様のアルカリ現像液の感光層に対する浸透速度は80nF/sec以下であることが好ましい。現像速度の上限値、或いは、浸透速度の下限値には、特に制限はないが、両者のバランスを考慮するに、未露光部の現像速度は90〜200nm/secの範囲であることがより好ましく、アルカリ現像液の感光層に対する浸透速度は80nF/sec以下であることが好ましい。
本発明に係る前記特定バインダーポリマーを使用することで、感光層の現像速度、現像液の浸透速度を容易に上記の好ましい範囲に調製することができる。
【0094】
[支持体]
本発明の平版印刷版原版の支持体としては、従来公知の、平版印刷版原版に使用される親水性支持体を限定無く使用することができる。
使用される支持体は寸度的に安定な板状物であることが好ましく、例えば、紙、プラスチック(例えば、ポリエチレン、ポリプロピレン、ポリスチレン等)がラミネートされた紙、金属板(例えば、アルミニウム、亜鉛、銅等)、プラスチックフィルム(例えば、二酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、酢酸酪酸セルロース、硝酸セルロース、ポリエチレンテレフタレート、ポリエチレン、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタール等)、上記の如き金属がラミネート若しくは蒸着された紙若しくはプラスチックフィルム等が含まれ、これらの表面に対し、必要に応じ親水性の付与や、強度向上等の目的で、適切な公知の物理的、化学的処理を施してもよい。
【0095】
特に、好ましい支持体としては、紙、ポリエステルフィルム又はアルミニウム板が挙げられ、その中でも寸法安定性がよく、比較的安価であり、必要に応じた表面処理により親水性や強度にすぐれた表面を提供できるアルミニウム板は更に好ましい。また、特公昭48−18327号に記載されているようなポリエチレンテレフタレートフィルム上にアルミニウムシートが結合された複合体シートも好ましい。
【0096】
アルミニウム板とは、寸度的に安定なアルミニウムを主成分とする金属板であり、純アルミニウム板の他、アルミニウムを主成分とし、微量の異元素を含む合金板、又はアルミニウム(合金)がラミネート若しくは蒸着されたプラスチックフィルム又は紙の中から選ばれる。以下の説明において、上記に挙げたアルミニウム又はアルミニウム合金からなる基板をアルミニウム基板と総称して用いる。前記アルミニウム合金に含まれる異元素には、ケイ素、鉄、マンガン、銅、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタンなどがあり、合金中の異元素の含有量は10質量%以下である。本発明では純アルミニウム板が好適であるが、完全に純粋なアルミニウムは精錬技術上製造が困難であるので、僅かに異元素を含有するものでもよい。このように本発明に適用されるアルミニウム板は、その組成が特定されるものではなく、従来より公知公用の素材のもの、例えばJIS A 1050、JIS A 1100、JIS A 3103、JIS A 3005などを適宜利用することができる。
また、本発明に用いられるアルミニウム基板の厚みは、およそ0.1mm〜0.6mm程度である。この厚みは印刷機の大きさ、印刷版の大きさ及びユーザーの希望により適宜変更することができる。アルミニウム基板には適宜必要に応じて後述の基板表面処理が施されてもよい。もちろん施されなくてもよい。
【0097】
(粗面化処理)
粗面化処理方法は、特開昭56−28893号に開示されているような機械的粗面化、化学的エッチング、電解グレインなどがある。更に塩酸又は硝酸電解液中で電気化学的に粗面化する電気化学的粗面化方法、及びアルミニウム表面を金属ワイヤーでひっかくワイヤーブラシグレイン法、研磨球と研磨剤でアルミニウム表面を砂目立でするポールグレイン法、ナイロンブラシと研磨剤で表面を粗面化するブラシグレイン法のような機械的粗面化法を用いることができ、上記粗面化方法を単独或いは組み合わせて用いることもできる。その中でも粗面化に有用に使用される方法は塩酸又は硝酸電解液中で化学的に粗面化する電気化学的方法であり、適する陽極時電気量は50C/dm2〜400C/dm2の範囲である。更に具体的には、0.1〜50%の塩酸又は硝酸を含む電解液中、温度20〜80℃、時間1秒〜30分、電流密度100C/dm2〜400C/dm2の条件で交流及び/又は直流電解を行うことが好ましい。
【0098】
このように粗面化処理したアルミニウム基板は、酸又はアルカリにより化学的にエッチングされてもよい。好適に用いられるエッチング剤は、苛性ソーダ、炭酸ソーダ、アルミン酸ソーダ、メタケイ酸ソーダ、リン酸ソーダ、水酸化カリウム、水酸化リチウム等であり、濃度と温度の好ましい範囲はそれぞれ1〜50%、20〜100℃である。エッチングのあと表面に残留する汚れ(スマット)を除去するために酸洗いが行われる。用いられる酸は硝酸、硫酸、リン酸、クロム酸、フッ酸、ホウフッ化水素酸等が用いられる。特に電気化学的粗面化処理後のスマット除去処理方法としては、好ましくは特開昭53−12739号公報に記載されているような50〜90℃の温度の15〜65質量%の硫酸と接触させる方法及び特公昭48−28123号公報に記載されているアルカリエッチングする方法が挙げられる。以上のように処理された後、処理面の中心線平均粗さRaが0.2〜0.5μmであれば、特に方法条件は限定しない。
【0099】
(陽極酸化処理)
以上のようにして処理され酸化物層を形成したアルミニウム基板には、その後に陽極酸化処理がなされる。
陽極酸化処理は硫酸、燐酸、シュウ酸若しくは硼酸/硼酸ナトリウムの水溶液が単独若しくは複数種類組み合わせて電解浴の主成分として用いられる。この際、電解液中に少なくともAl合金板、電極、水道水、地下水等に通常含まれる成分はもちろん含まれても構わない。更には第2、第3成分が添加されていても構わない。ここでいう第2、3成分とは、例えばNa、K、Mg、Li、Ca、Ti、Al、V、Cr、Mn、Fe、Co、Ni、Cu、Zn等の金属のイオンやアンモニウムイオン等に陽イオンや、硝酸イオン、炭酸イオン、塩素イオン、リン酸イオン、フッ素イオン、亜硫酸イオン、チタン酸イオン、ケイ酸イオン、硼酸イオン等の陰イオンが挙げられ、その濃度としては0〜10000ppm程度含まれてもよい。陽極酸化処理の条件に特に限定はないが、好ましくは30〜500g/リットル、処理液温10〜70℃で、電流密度0.1〜40A/m2の範囲で直流又は交流電解によって処理される。形成される陽極酸化皮膜の厚さは0.5〜1.5μmの範囲である。好ましくは0.5〜1.0μmの範囲である。以上の処理によって作製された支持体が、陽極酸化皮膜に存在するマイクロポアのポア径が5〜10nm、ポア密度が8×1015〜2×1016個/m2の範囲に入るように処理条件は選択されなければならない。
【0100】
前記支持体表面の親水化処理としては、広く公知の方法が適用できる。特に好ましい処理としては、シリケート又はポリビニルホスホン酸等による親水化処理が施される。皮膜はSi、又はP元素量として2〜40mg/m2、より好ましくは4〜30mg/m2で形成される。塗布量はケイ光X線分析法により測定できる。
【0101】
上記の親水化処理は、アルカリ金属ケイ酸塩、又はポリビニルホスホン酸が1〜30質量%、好ましくは2〜15質量%であり、25℃のpHが10〜13である水溶液に、陽極酸化皮膜が形成されたアルミニウム基板を、例えば15〜80℃で0.5〜120秒浸漬することにより実施される。
【0102】
前記親水化処理に用いられるアルカリ金属ケイ酸塩としては、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウムなどが使用される。アルカリ金属ケイ酸塩水溶液のpHを高くするために使用される水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどがある。なお、上記の処理液にアルカリ土類金属塩若しくは第IVB族金属塩を配合してもよい。アルカリ土類金属塩としては、硝酸カルシウム、硝酸ストロンチウム、硝酸マグネシウム、硝酸バリウムのような硝酸塩や、硫酸塩、塩酸塩、リン酸塩、酢酸塩、シュウ酸塩、ホウ酸塩などの水溶性の塩が挙げられる。第IVB族金属塩としては、四塩化チタン、三塩化チタン、フッ化チタンカリウム、シュウ酸チタンカリウム、硫酸チタン、四ヨウ化チタン、塩化酸化ジルコニウム、二酸化ジルコニウム、オキシ塩化ジルコニウム、四塩化ジルコニウムなどを挙げることができる。
【0103】
アルカリ土類金属塩若しくは、第IVB族金属塩は単独又は2種以上組み合わせて使用することができる。これらの金属塩の好ましい範囲は0.01〜10質量%であり、更に好ましい範囲は0.05〜5.0質量%である。また、米国特許第3,658,662号明細書に記載されているようなシリケート電着も有効である。特公昭46−27481号、特開昭52−58602号、特開昭52−30503号に開示されているような電解グレインを施した支持体と、上記陽極酸化処理及び親水化処理を組合せた表面処理も有用である。
【0104】
[中間層]
本発明における平版印刷版原版には、感光層と基板との間の密着性や汚れ性を改善する目的で、中間層を設けてもよい。このような中間層の具体例としては、特公昭50−7481号、特開昭54−72104号、特開昭59−101651号、特開昭60−149491号、特開昭60−232998号、特開平3−56177号、特開平4−282637号、特開平5−16558号、特開平5−246171号、特開平7−159983号、特開平7−314937号、特開平8−202025号、特開平8−320551号、特開平9−34104号、特開平9−236911号、特開平9−269593号、特開平10−69092号、特開平10−115931号、特開平10−161317号、特開平10−260536号、特開平10−282682号、特開平11−84674号、特願平8−225335号、特願平8−270098号、特願平9−195863号、特願平9−195864号、特願平9−89646号、特願平9−106068号、特願平9−183834号、特願平9−264311号、特願平9−127232号、特願平9−245419号、特願平10−127602号、特願平10−170202号、特願平11−36377号、特願平11−165861号、特願平11−284091号、特願2000−14697号等に記載のものを挙げることができる。
【0105】
[保護層]
本発明においては感光層の上に保護層を設けることが特徴である。保護層は、基本的には感光層を保護するために設けているが、感光層が本発明の如くラジカル重合性の画像形成機構を有する場合には酸素遮断層としての役割を持ち、高照度の赤外レーザで露光する場合はアブレーション防止層としての機能を果たす。また、保護層に望まれる特性としては、上記以外に、さらに、露光に用いる光の透過は実質阻害せず、感光層との密着性に優れ、かつ、露光後の現像工程で容易に除去できる事が望ましい。この様な保護層に関する工夫が従来よりなされており、米国特許第3,458,311号、特開昭55−49729号公報に詳しく記載されている。
【0106】
保護層に使用できる材料としては例えば、比較的結晶性に優れた水溶性高分子化合物を用いることが好ましく、具体的には、ポリビニルアルコール、ビニルアルコール/フタル酸ビニル共重合体、酢酸ビニル/ビニルアルコール/フタル酸ビニル共重合体、酢酸ビニル/クロトン酸共重合体、ポリビニルピロリドン、酸性セルロース類、ゼラチン、アラビアゴム、ポリアクリル酸、ポリアクリルアミドなどのような水溶性ポリマーが挙げられ、これらは単独または混合して使用できる。これらの内、ポリビニルアルコールを主成分として用いる事が、酸素遮断性、現像除去性といった基本特性的にもっとも良好な結果を与える。
【0107】
保護層に使用するポリビニルアルコールは、必要な酸素遮断性と水溶性を有するための、未置換ビニルアルコール単位を含有する限り、一部がエステル、エーテル、およびアセタールで置換されていても良い。また、同様に一部が他の共重合成分を有していても良い。
ポリビニルアルコールの具体例としては71〜100%加水分解され、重合繰り返し単位が300から2400の範囲のものをあげる事ができる。具体的には、株式会社クラレ製のPVA−105、PVA−110、PVA−117、PVA−117H、PVA−120、PVA−124、PVA−124H、PVA−CS、PVA−CST、PVA−HC、PVA−203、PVA−204、PVA−205、PVA−210、PVA−217、PVA−220、PVA−224、PVA−217EE、PVA−217E、PVA−220E、PVA−224E、PVA−405、PVA−420、PVA−613、L−8等が挙げられる。
【0108】
保護層の成分(PVAの選択、添加剤の使用)、塗布量等は、酸素遮断性・現像除去性の他、カブリ性や密着性・耐傷性を考慮して選択される。一般には使用するPVAの加水分解率が高い程(酸素遮断層中の未置換ビニルアリコール単位含率が高い程)、膜厚が厚い程、酸素遮断性が高くなり、感度の点で有利である。しかしながら、極端に酸素遮断性を高めると、製造時・生保存時に不要な重合反応が生じたり、また画像露光時に、不要なカブリ、画線の太りが生じたりという問題を生じる。
従って、25℃、1気圧下における酸素透過性Aが0.2≦A≦20(cc/m2・day)であることが好ましい。
上記ポリビニルアルコール(PVA)等の(共)重合体の分子量は、2000〜1000万の範囲のものが使用でき、好ましくは2万〜300万範囲のものが適当である。
【0109】
保護層の他の組成物として、グリセリン、ジプロピレングリコール等を(共)重合体に対して数質量%相当量添加して可撓性を付与することができ、また、アルキル硫酸ナトリウム、アルキルスルホン酸ナトリウム等のアニオン界面活性剤;アルキルアミノカルボン酸塩、アルキルアミノジカルボン酸塩等の両性界面活性剤;ポリオキシエチレンアルキルフェニルエーテル等の非イオン界面活性剤を(共)重合体に対して数質量%添加することができる。
保護層の膜厚は、0.5〜5μmが適当であり、特に0.5〜2μmが好適である。
【0110】
また、画像部との密着性や耐傷性も、版の取り扱い上極めて重要である。即ち、水溶性ポリマーからなる親水性の層を新油性の重合層に積層すると、接着力不足による膜剥離が発生しやすく、剥離部分が酸素の重合阻害により膜硬化不良などの欠陥を引き起こす。これに対し、これらの2層間の接着性を改良すべく種々の提案がなされている。例えば米国特許出願番号第292,501号、米国特許出願番号第44,563号には、主にポリビニルアルコールからなる親水性ポリマー中に、アクリル系エマルジョンまたは水不溶性ビニルピロリドン−ビニルアセテート共重合体などを20〜60質量%混合し、重合層の上に積層することにより、十分な接着性が得られることが記載されている。本発明における保護層に対しては、これらの公知の技術をいずれも適用することができる。このような保護層の塗布方法については、例えば米国特許第3,458,311号、特開昭55−49729号に詳しく記載されている。
【0111】
次に、本発明の請求項2に係る平版印刷版原版の製版方法について説明する。本発明の製版方法は、支持体上に、赤外線吸収剤、重合開始剤、重合性化合物、及び、前記一般式(I)で表される繰り返し単位を有するバインダーポリマーを含有し、750nm〜1400nmの波長の露光によりアルカリ現像液に対する溶解性が低下する感光層と、保護層と、を順次積層してなることを特徴とする平版印刷版原版を、750nm〜1400nmの波長で露光処理した後、実質的に加熱処理を経ることなく、平版印刷版原版の搬送速度が1.25m/分以上の条件にて現像処理工程を行なうことを特徴とする。
この製版方法は、赤外線吸収剤、重合開始剤、重合性化合物、及び、前記一般式(I)で表される繰り返し単位を有するバインダーポリマーを及び重合性化合物を含有し、750nm〜1400nmの波長の露光によりアルカリ現像液に対する溶解性が低下する重合性ネガ型感光層を備えた平版印刷版原版のいずれにも好適に適用できる。具体的には、本発明の平版印刷版原版の感光層の構成の欄で説明した「赤外線吸収剤、重合開始剤、重合性化合物、及び、前記一般式(I)で表される繰り返し単位を有するバインダーポリマーを」の各成分を含有する感光層であればよく、バインダーポリマーとしてはさらに公知のものを含んでいてもよいし、含まなくてもかまわない
【0112】
また、平版印刷版原版の製版方法が適用される感光層としては、前記特定のバインダーポリマーを含有する感光層と同様に、pH10〜13.5のアルカリ現像液による未露光部の現像速度が、好ましくは80〜400nm/secであり、同様のアルカリ現像液の感光層に対する浸透速度は90nF/sec以下であることが好ましい。
感光層の未露光部の現像速度や硬化後の感光層に対するアルカリ現像液の浸透速度の制御は、常法により行うことができるが、代表的なものとしては、前記特定バインダーポリマーを使用する方法の他、未露光部の現像速度の向上には、親水性の化合物の添加が有用であり、露光部への現像液浸透抑制には、疎水性の化合物の添加手段が有用である。
【0113】
平版印刷版原版は、まず、画像様に露光処理がなされる。
露光処理工程に用いられる光源としては、赤外線レーザが好適なものとして挙げられ、また、紫外線ランプやサーマルヘッドによる熱的な記録も可能である。
本発明においては、波長750nmから1400nmの赤外線を放射する固体レーザ及び半導体レーザにより画像露光されることが好ましい。レーザの出力は100mW以上が好ましく、露光時間を短縮するため、マルチビームレーザデバイスを用いることが好ましい。また、1画素あたりの露光時間は20μ秒以内であることが好ましい。記録材料に照射されるエネルギーは10〜300mJ/cm2であることが好ましい。露光のエネルギーが低すぎると画像記録層の硬化が十分に進行しない。また、露光のエネルギーが高すぎると画像記録層がレーザーアブレーションされ、画像が損傷することがある。
【0114】
本発明における露光は光源の光ビームをオーバーラップさせて露光することができる。オーバーラップとは副走査ピッチ幅がビーム径より小さいことをいう。オーバーラップは、例えばビーム径をビーム強度の半値幅(FWHM)で表わしたとき、FWHM/副走査ピッチ幅(オーバーラップ係数)で定量的に表現することができる。本発明ではこのオーバーラップ係数が0.1以上であることが好ましい。
【0115】
本発明に使用する露光装置の光源の走査方式は特に限定はなく、円筒外面走査方式、円筒内面走査方式、平面走査方式などを用いることができる。また、光源のチャンネルは単チャンネルでもマルチチャンネルでもよいが、円筒外面方式の場合にはマルチチャンネルが好ましく用いられる。
【0116】
本方法においては、画像様に露光処理された平版印刷版原版は、特段の加熱処理を行なうことなく、現像処理工程に付される。この加熱処理を行なわないことで、加熱処理に起因する画像の不均一性を抑制することができる。
現像処理工程における処理速度、即ち、現像処理工程における平版印刷版原版の搬送速度(ライン速度)は、1.25m/分以上であることが好ましく、さらに好ましくは、1.35m/分以上である。搬送速度の上限値には特に制限はないが、搬送の安定性の観点からは、3m/分以下であることが好ましい。
搬送速度が1.25m/分未満であると保護層を除去する時間が長くなり、感光層にもダメージを与え、画像欠陥が発生しやすくなるため、好ましくない。
【0117】
かかる現像処理に使用される現像液としては、pH14以下のアルカリ水溶液が特に好ましく、より好ましくはアニオン系界面活性剤を含有するpH8〜12のアルカリ水溶液が使用される。例えば、第三リン酸ナトリウム、同カリウム、同アンモニウム、第二リン酸ナトリウム、同カリウム、同アンモニウム、炭酸ナトリウム、同カリウム、同アンモニウム、炭酸水素ナトリウム、同カリウム、同アンモニウム、ホウ酸ナトリウム、同カリウム、同アンモニウム、水酸化ナトリウム、同アンモニウム、同カリウム及び同リチウムなどの無機アルカリ剤が挙げられる。また、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノイソプロピルアミン、ジイソプロピルアミン、トリイソプロピルアミン、n−ブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、エチレンイミン、エチレンジアミン、ピリジンなどの有機アルカリ剤も用いられる。これらのアルカリ剤は、単独若しくは2種以上を組み合わせて用いられる。
【0118】
また本発明の平版印刷版原版の現像処理においては、現像液中にアニオン界面活性剤1〜20質量%加えるが、より好ましくは、3〜10質量%で使用される。少なすぎると現像性が悪化し、多すぎると画像の耐摩耗性などの強度が劣化するなどの弊害が出る。アニオン界面活性剤としては、例えばラウリルアルコールサルフェートのナトリウム塩、ラウリルアルコールサルフェートのアンモニウム塩、オクチルアルコールサルフェートのナトリウム塩、例えばイソプロピルナフタレンスルホン酸のナトリウム塩、イソブチルナフタレンスルホン酸のナトリウム塩、ポリオキシエチレングリコールモノナフチルエーテル硫酸エステルのナトリウム塩、ドデシルベンゼンスルホン酸のナトリウム塩、メタニトロベンゼンスルホン酸のナトリウム塩などのようなアルキルアリールスルホン酸塩、第2ナトリウムアルキルサルフェートなどの炭素数8〜22の高級アルコール硫酸エステル類、セチルアルコールリン酸エステルのナトリウム塩などの様な脂肪族アルコールリン酸エステル塩類、たとえばC1733CON(CH3)CH2CH2SO3Naなどのようなアルキルアミドのスルホン酸塩類、例えばナトリウムスルホコハク酸ジオクチルエステル、ナトリウムスルホコハク酸ジヘキシルエステルなどの二塩基性脂肪族エステルのスルホン酸塩類などが含まれる。
【0119】
必要に応じてベンジルアルコール等の水と混合するような有機溶媒を現像液に加えてもよい。有機溶媒としては、水に対する溶解度が約10質量%以下のものが適しており、好ましくは5質量%以下のものから選ばれる。たとえば、1−フェニルエタノール、2−フェニルエタノール、3−フェニルプロパノール、1,4−フェニルブタノール、2,2−フェニルブタノール、1,2−フェノキシエタノール、2−ベンジルオキシエタノール、o−メトキシベンジルアルコール、m−メトキシベンジルアルコール、p−メトキシベンジルアルコール、ベンジルアルコール、シクロヘキサノール、2−メチルシクロヘクサノール、4−メチルシクロヘクサノール及び3−メチルシクロヘクサノール等を挙げることができる。有機溶媒の含有量は、使用時の現像液の総重量に対して1〜5質量%が好適である。その使用量は界面活性剤の使用量と密接な関係があり、有機溶媒の量が増すにつれ、アニオン界面活性剤の量は増加させることが好ましい。これはアニオン界面活性剤の量が少ない状態で、有機溶媒の量を多く用いると有機溶媒が溶解せず、従って良好な現像性の確保が期待できなくなるからである。
【0120】
また、更に必要に応じ、消泡剤及び硬水軟化剤のような添加剤を含有させることもできる。硬水軟化剤としては、例えば、Na227、Na533、Na339、Na24P(NaO3P)PO3Na2、カルゴン(ポリメタリン酸ナトリウム)などのポリリン酸塩、例えばエチレンジアミンテトラ酢酸、そのカリウム塩、そのナトリウム塩;ジエチレントリアミンペンタ酢酸、そのカリウム塩、ナトリウム塩;トリエチレンテトラミンヘキサ酢酸、そのカリウム塩、そのナトリウム塩;ヒドロキシエチルエチレンジアミントリ酢酸、そのカリウム塩、そのナトリウム塩;ニトリロトリ酢酸、そのカリウム塩、そのナトリウム塩;1,2−ジアミノシクロヘキサンテトラ酢酸、そのカリウム塩、そのナトリウム塩;1,3−ジアミノ−2−プロパノールテトラ酢酸、そのカリウム塩、そのナトリウム塩などのようなアミノポリカルボン酸類の他2−ホスホノブタントリカルボン酸−1,2,4、そのカリウム塩、そのナトリウム塩;2一ホスホノブタノントリカルボン酸−2,3,4、そのカリウム塩、そのナトリウム塩;1−ホスホノエタントリカルボン酸−1,2、2、そのカリウム塩、そのナトリウム塩;1−ヒドロキシエタン−1,1−ジホスホン酸、そのカリウム塩、そのナトリウム塩;アミノトリ(メチレンホスホン酸)、そのカリウム塩、そのナトリウム塩などのような有機ホスホン酸類を挙げることができる。このような硬水軟化剤の最適量は使用される硬水の硬度及びその使用量に応じて変化するが、一般的には、使用時の現像液中に0.01〜5質量%、より好ましくは0.01〜0.5質量%の範囲で含有させられる。
【0121】
更に、自動現像機を用いて、該平版印刷版原版を現像する場合には、処理量に応じて現像液が疲労してくるので、補充液又は新鮮な現像液を用いて処理能力を回復させてもよい。この場合米国特許第4,882,246号に記載されている方法で補充することが好ましい。また、特開昭50−26601号、同58−54341号、特公昭56−39464号、同56−42860号、同57−7427号の各公報に記載されている現像液も好ましい。
【0122】
このようにして現像処理された平版印刷版原版は、特開昭54−8002号、同55−115045号、同59−58431号等の各公報に記載されているように、水洗水、界面活性剤等を含有するリンス液、アラビアガムや澱粉誘導体等を含む不感脂化液で後処理される。本発明の平版印刷版原版の後処理にはこれらの処理を種々組み合わせて用いることができる。このような処理によって得られた平版印刷版はオフセット印刷機に掛けられ、多数枚の印刷に用いられる。
【0123】
本発明の平版印刷版原版の製版方法においては、画像強度・耐刷性の向上を目的として、現像後の画像に対し、全面後加熱もしくは、全面露光を行うことが有効である。
現像後の加熱には非常に強い条件を利用することができる。通常は加熱温度が200〜500℃の範囲で実施される。現像後の加熱温度が低いと十分な画像強化作用が得られず、高すぎる場合には支持体の劣化、画像部の熱分解といった問題を生じるおそれがある。
【0124】
以上の処理によって得られた平版印刷版はオフセット印刷機に掛けられ、多数枚の印刷に用いられる。
印刷時、版上の汚れ除去のため使用するプレートクリーナーとしては、従来より知られているPS版用プレートクリーナーが使用され、例えば、CL−1,CL−2,CP,CN−4,CN,CG−1,PC−1,SR,IC(富士写真フイルム株式会社製)等が挙げられる。
【0125】
【実施例】
以下、実施例によって本発明を説明するが、本発明はこれらに限定されるものではない。
〔実施例1〜7、比較例1〜10〕
[支持体の作成]
<アルミニウム板>
Si:0.06質量%、Fe:0.30質量%、Cu:0.001質量%、Mn:0.001質量%、Mg:0.001質量%、Zn:0.001質量%、Ti:0.03質量%を含有し、残部はAlと不可避不純物のアルミニウム合金を用いて溶湯を調製し、溶湯処理およびろ過を行った上で、厚さ500mm、幅1200mmの鋳塊をDC鋳造法で作成した。表面を平均10mmの厚さで面削機により削り取った後、550℃で、約5時間均熱保持し、温度400℃に下がったところで、熱間圧延機を用いて厚さ2.7mmの圧延板とした。更に、連続焼鈍機を用いて熱処理を500℃で行った後、冷間圧延で、厚さ0.24mmに仕上げ、JIS 1050材のアルミニウム板を得た。このアルミニウム板を幅1030mmにした後、以下に示す表面処理に供した。
【0126】
<表面処理>
表面処理は、以下の(a)〜(j)の各種処理を連続的に行うことにより行った。なお、各処理および水洗の後にはニップローラで液切りを行った。
【0127】
(a)機械的粗面化処理
図3に示したような装置を使って、比重1.12の研磨剤(パミス)と水との懸濁液を研磨スラリー液としてアルミニウム板の表面に供給しながら、回転するローラ状ナイロンブラシにより機械的粗面化処理を行った。図3において、1はアルミニウム板、2および4はローラ状ブラシ、3は研磨スラリー液、5、6、7および8は支持ローラである。研磨剤の平均粒径は30μm、最大粒径は100μmであった。ナイロンブラシの材質は6・10ナイロン、毛長は45mm、毛の直径は0.3mmであった。ナイロンブラシはφ300mmのステンレス製の筒に穴をあけて密になるように植毛した。回転ブラシは3本使用した。ブラシ下部の2本の支持ローラ(φ200mm)の距離は300mmであった。ブラシローラはブラシを回転させる駆動モータの負荷が、ブラシローラをアルミニウム板に押さえつける前の負荷に対して7kWプラスになるまで押さえつけた。ブラシの回転方向はアルミニウム板の移動方向と同じであった。ブラシの回転数は200rpmであった。
【0128】
(b)アルカリエッチング処理
上記で得られたアルミニウム板をカセイソーダ濃度2.6質量%、アルミニウムイオン濃度6.5質量%、温度70℃の水溶液を用いてスプレーによるエッチング処理を行い、アルミニウム板を10g/m2溶解した。その後、スプレーによる水洗を行った。
【0129】
(c)デスマット処理
温度30℃の硝酸濃度1質量%水溶液(アルミニウムイオンを0.5質量%含む。)で、スプレーによるデスマット処理を行い、その後、スプレーで水洗した。デスマット処理に用いた硝酸水溶液は、硝酸水溶液中で交流を用いて電気化学的粗面化処理を行う工程の廃液を用いた。
【0130】
(d)電気化学的粗面化処理
60Hzの交流電圧を用いて連続的に電気化学的な粗面化処理を行った。このときの電解液は、硝酸10.5g/L水溶液(アルミニウムイオンを5g/L、アンモニウムイオンを0.007質量%含む。)、液温50℃であった。交流電源波形は図4に示した波形であり、電流値がゼロからピークに達するまでの時間TPが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的な粗面化処理を行った。補助アノードにはフェライトを用いた。使用した電解槽は図5に示すものを使用した。
電流密度は電流のピーク値で30A/dm2、電気量はアルミニウム板が陽極時の電気量の総和で220C/dm2であった。補助陽極には電源から流れる電流の5%を分流させた。その後、スプレーによる水洗を行った。
【0131】
(e)アルカリエッチング処理
アルミニウム板に、カセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%の水溶液を用いてスプレーによるエッチング処理を32℃で行い、アルミニウム板を0.50g/m2溶解し、前段の交流を用いて電気化学的粗面化処理を行ったときに生成した水酸化アルミニウムを主体とするスマット成分を除去し、また、生成したピットのエッジ部分を溶解してエッジ部分を滑らかにした。その後、スプレーによる水洗を行った。
【0132】
(f)デスマット処理
温度30℃の硝酸濃度15質量%水溶液(アルミニウムイオンを4.5質量%含む。)で、スプレーによるデスマット処理を行い、その後、スプレーで水洗した。デスマット処理に用いた硝酸水溶液は、硝酸水溶液中で交流を用いて電気化学的粗面化処理を行う工程の廃液を用いた。
【0133】
(g)電気化学的粗面化処理
60Hzの交流電圧を用いて連続的に電気化学的な粗面化処理を行った。このときの電解液は、塩酸5.0g/L水溶液(アルミニウムイオンを5g/L含む。)、温度35℃であった。交流電源波形は図4に示した波形であり、電流値がゼロからピークに達するまでの時間TPが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的粗面化処理を行った。補助アノードにはフェライトを用いた。使用した電解槽は図5に示すものを使用した。
電流密度は電流のピーク値で25A/dm2、電気量はアルミニウム板が陽極時の電気量の総和で50C/dm2であった。その後、スプレーによる水洗を行った。
【0134】
(h)アルカリエッチング処理
アルミニウム板をカセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%の水溶液を用いてスプレーによるエッチング処理を32℃で行い、アルミニウム板を0.10g/m2溶解し、前段の交流を用いて電気化学的粗面化処理を行ったときに生成した水酸化アルミニウムを主体とするスマット成分を除去し、また、生成したピットのエッジ部分を溶解してエッジ部分を滑らかにした。その後、スプレーによる水洗を行った。
【0135】
(i)デスマット処理
温度60℃の硫酸濃度25質量%水溶液(アルミニウムイオンを0.5質量%含む。)で、スプレーによるデスマット処理を行い、その後、スプレーによる水洗を行った。
【0136】
(j)陽極酸化処理
図6に示す構造の陽極酸化装置を用いて陽極酸化処理を行い、平版印刷版用支持体を得た。第一および第二電解部に供給した電解液としては、硫酸を用いた。電解液は、いずれも、硫酸濃度170g/L(アルミニウムイオンを0.5質量%含む。)、温度38℃であった。その後、スプレーによる水洗を行った。最終的な酸化皮膜量は2.7g/m2であった。
【0137】
[下塗り]
次に、このアルミニウム支持体に下記下塗り液をワイヤーバーにて塗布し、温風式乾燥装置を用いて90℃で30秒間乾燥した。乾燥後の被覆量は10mg/m2であった。
【0138】
Figure 0004048110
【0139】
[感光層]
次に、下記感光層塗布液[P−1]を調整し、上記の下塗り済みのアルミニウム板にワイヤーバーを用いて塗布した。乾燥は、温風式乾燥装置にて125℃で27秒間行い、平版印刷版原版を得た。乾燥後の被覆量は1.2〜1.3g/m2の範囲であった。
【0140】
<感光層塗布液[P−1]>
・赤外線吸収剤(IR−1) 0.08g
・重合開始剤(OS−1) 0.1g
・重合開始剤(OS−2) 0.125g
・ジペンタエリスリトールヘキサアクリレート 1.00g
・バインダー(BT−1) 1.00g
・エチルバイオレットのクロライド塩 0.04g
・フッ素系界面活性剤(W−1) 0.03g
・ステアロイルメチルアミド 0.06g
・メチルエチルケトン 14g
・メタノール 6.5g
・1−メトキシ−2−プロパノール 14g
【0141】
上記感光層塗布液に用いた赤外線吸収剤(IR−1)、重合開始剤(OS−1)、(OS−2)、バインダー(BT−1)、及び、フッ素系界面活性剤(W−1)の構造を以下に示す。
【0142】
【化20】
Figure 0004048110
【0143】
【化21】
Figure 0004048110
【0144】
[保護層(オーバーコート層)]
上記の感光層表面に、ポリビニルアルコール(ケン化度98モル%、重合度500)の3質量%水溶液をワイヤーバーを用いて塗布し、温風式乾燥装置にて100℃90秒間乾燥させた。乾燥後の被覆量が2.0g/m2(サンプルA)、1.0g/m2(サンプルB)の2種のサンプルを作製した。サファイヤ針(R:1mm)に対する動摩擦係数はいずれのサンプルも0.35であった。
【0145】
[製版処理]
<露光工程>
得られたネガ型平版印刷版原版を、水冷式40W赤外線半導体レーザーを搭載したCreo社製Trendsetter3244VXにて、解像度175lpiの80%平網画像を、出力8W、外面ドラム回転数206rpm、版面エネルギー100mJ/cm2で露光した。
【0146】
<現像処理工程>
露光後、G&J社製自動現像機IP85HDを用い表1に示した搬送速度(ライン速度)、現像温度で現像処理した。なお、現像処理工程に先だって加熱工程を実施した場合には、その加熱温度を表中に示し、加熱工程を行なわなかったものは、「なし」と記載した。現像液は、富士フイルム(株)社製DV−2の1:4水希釈水を用い、フィニッシャーは、富士フイルム(株)社製FP−2Wの1:1水希釈液を用いた。
【0147】
[平版印刷版の評価]
(1)画質評価
前記の製版工程を経て得られた平版印刷版の画像欠陥および平網ムラを目視評価した。評価は1〜5の官能評価で行い、3が実用下限レベル、2以下は実用上不可レベルとした。
(2)印刷性能
得られた平版印刷版を、小森コーポレーション(株)製印刷機リスロンを用いて印刷し、非画像部の汚れと耐刷性能を評価した。
以上の結果を表1に示す。
【0148】
【表1】
Figure 0004048110
【0149】
表1から明らかなように、本発明の実施例1〜7の製版方法、即ち、加熱処理を経ることなく、平版印刷版原版の搬送速度が1.25m/分以上で現像処理を行なって得られた平版印刷版は、画像欠陥および画像ムラがなく、印刷時の非画像部の汚れおよび耐刷性能に優れていることがわかる。これに対し、表面保護層を有しない比較例1〜4は感光層の硬化が不充分で耐刷性が極めて低く、加熱処理を行なった比較例5〜8は網点のムラが著しく、搬送速度が遅すぎる比較例9、10は耐刷性が不充分で、画像欠陥が生じやすくなり、印刷性能に実用上問題のあることがわかった。
【0153】
【発明の効果】
本発明の平版印刷版原版は、赤外線レーザによる書き込みが可能であり、現像処理における画像欠陥と画像ムラ、いずれの発生をも抑制され、版の全面にわたり均一で高い画質の画像を形成することができ、特に網点画像領域の耐刷性に優れるという効果を奏する。また、本発明の平版印刷版原版の製版方法によれば、高画質の画像が形成でき、網点画像領域の耐刷性に優れる平版印刷版を容易に得ることができる。
【図面の簡単な説明】
【図1】 感光層の溶解挙動を測定するためのDRM干渉波測定装置の一例を示す概略構成図である。
【図2】 現像液の感光層への浸透性を評価するのに用いられる静電容量の測定方法の一例を示す概略構成図である。
【図3】 本発明に係る平版印刷版用支持体の作成における機械粗面化処理に用いられるブラシグレイニングの工程の概念を示す側面図である。
【図4】 本発明に係る平版印刷版用支持体の作成における電気化学的粗面化処理に用いられる交番波形電流波形図の一例を示すグラフである。
【図5】 本発明に係る平版印刷版用支持体の作成における交流を用いた電気化学的粗面化処理におけるラジアル型セルの一例を示す側面図である。
【図6】 本発明に係る平版印刷版用支持体の作成における陽極酸化処理に用いられる陽極酸化処理装置の概略図である。
【符号の説明】
1 アルミニウム板
2、4 ローラ状ブラシ
3 研磨スラリー液
5、6、7、8 支持ローラ
11 アルミニウム板
12 ラジアルドラムローラ
13a、13b 主極
14 電解処理液
15 電解液供給口
16 スリット
17 電解液通路
18 補助陽極
19a、19b サイリスタ
20 交流電源
40 主電解槽
50 補助陽極槽
410 陽極酸化処理装置
412 給電槽
414 電解処理槽
416 アルミニウム板
418、426 電解液
420 給電電極
422、428 ローラ
424 ニップローラ
430 電解電極
432 槽壁
434 直流電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative lithographic printing plate precursor and a plate making method thereof, and in particular, a negative lithographic printing plate precursor capable of forming a homogeneous and image-free image that can be written with high sensitivity by an infrared laser and the plate making thereof. Regarding the method.
[0002]
[Prior art]
Conventionally, PS plates having a structure in which an oleophilic photosensitive resin layer is provided on a hydrophilic support are widely used as lithographic printing plate precursors. As a plate making method, mask exposure (typically through a lithographic film) After the surface exposure), the desired printing plate was obtained by dissolving and removing the non-image area. In recent years, digitization techniques that electronically process, store, and output image information using a computer have become widespread. Various new image output methods corresponding to such digitization techniques have come into practical use. As a result, computer-to-plate (CTP) technology that scans highly directional light such as laser light according to digitized image information and directly produces a printing plate without going through a lithographic film is desired. Obtaining a lithographic printing plate precursor adapted to this is an important technical issue.
[0003]
As such a lithographic printing plate precursor capable of scanning exposure, an oleophilic photosensitive resin layer containing a photosensitive compound capable of generating active species such as radicals and bronzed acids by laser exposure on a hydrophilic support (hereinafter referred to as “lithographic printing plate precursor”) , Which is also referred to as a photosensitive layer) has been proposed and is already on the market. This lithographic printing plate precursor is laser-scanned based on digital information to generate active species, which causes physical or chemical changes in the photosensitive layer to insolubilize it, followed by development processing, thereby developing a negative lithographic printing plate Can be obtained. In particular, a photopolymerization type photosensitive layer containing a photopolymerization initiator excellent in photosensitive speed on a hydrophilic support, an ethylenically unsaturated compound capable of addition polymerization, and a binder polymer soluble in an alkali developer, and necessary A lithographic printing plate precursor provided with an oxygen-blocking protective layer in accordance with the printing plate having desirable printing performance due to advantages such as excellent productivity, simple development processing, and good resolution and inking properties. It can be.
[0004]
Conventionally, as the binder polymer constituting the photosensitive layer, methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partially esterified maleic acid copolymer Organic polymer polymers that can be developed with alkali have been used (see, for example, Patent Documents 1 to 8). However, in a conventional lithographic printing plate precursor provided with a photosensitive layer containing such a binder polymer, the image portion that should have been cured is insufficiently cured. It was common to carry out heat treatment in advance.
Such a heat treatment has the effect of re-reacting radicals remaining in the exposure process, but it is difficult to supply heat uniformly over the entire area of the plate material, and there is a problem of causing unevenness in image, particularly halftone dot. is there. Further, when the temperature when supplying heat is 100 ° C. or higher, it is particularly difficult to make the heat supply uniform, and the degree of difficulty increases as the temperature increases. In the existing preheating process, heat is supplied at a temperature of 100 to 150 ° C., and there is a problem that halftone dot unevenness occurs when continuously processed, and printing durability is deteriorated.
[0005]
Further, if the curing is insufficient, the developing solution penetrates into the image area in the development process, resulting in damage to the photosensitive layer and a decrease in printing durability. In order to suppress the penetration of the developing solution into the image portion, a method of shortening the processing time by increasing the transport speed of the plate material in the development processing step can be considered. However, in the plate material that has been subjected to the heat treatment step as described above before the development processing, image unevenness due to non-uniformity of heating tends to occur, and in particular, this tendency is particularly likely to occur in halftone dots and fine lines that require high resolution. It was remarkable in the image part.
Therefore, the occurrence of both image defects and image unevenness in the development process is suppressed, and a uniform and high-quality image can be formed over the entire surface of the plate, and lithographic printing with excellent printing durability even in the halftone area The original version was eagerly awaited.
[0006]
[Patent Document 1]
JP 59-44615
[Patent Document 2]
Japanese Patent Publication No.54-34327
[Patent Document 3]
Japanese Examined Patent Publication No. 58-12777
[Patent Document 4]
Japanese Patent Publication No.54-25957
[Patent Document 5]
JP 54-92723 A
[Patent Document 6]
JP 59-53836 A
[Patent Document 7]
JP 59-71048 A
[Patent Document 8]
Japanese Patent Laid-Open No. 2002-40652
[0007]
[Problems to be solved by the invention]
Therefore, the object of the present invention is that writing with an infrared laser is possible, image defects and image unevenness in development processing are suppressed, and a uniform and high-quality image can be formed over the entire surface of the plate. In particular, it is an object of the present invention to provide a lithographic printing plate precursor excellent in printing durability in a halftone dot image region and a suitable plate making method of a lithographic printing plate precursor capable of forming a high-quality image.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have provided a photosensitive layer containing a specific binder polymer and polymerized and cured by light or heat, and provided with an appropriate protective layer thereon. In addition, as another means, the inventors have found that the above object can be achieved by a method of developing a negative planographic printing plate precursor provided with a protective layer after exposure without performing heat treatment. completed.
[0009]
That is, the lithographic printing plate precursor of the present invention contains, on a support, an infrared absorber, a polymerization initiator, a polymerizable compound, and a binder polymer having a repeating unit represented by the following general formula (I), It is characterized in that a photosensitive layer whose solubility in an alkaline developer is lowered by exposure at a wavelength of 750 nm to 1400 nm and a protective layer are sequentially laminated. Here, “sequentially layered” means that a photosensitive layer and a protective layer are provided in this order on a support, and an intermediate layer, a backcoat layer, and other arbitrary layers provided according to the purpose. The existence of is not denied.
[0010]
[Chemical Formula 3]
Figure 0004048110
[0011]
(In the general formula (I), R1Represents a hydrogen atom or a methyl group, R2Is composed of a carbon atom, a hydrogen atom, an oxygen atom, a nitrogen atom, a sulfur atom and a halogen atom, and has 2 to 30 atoms excluding substituentsChain structureRepresents a linking group. A is an oxygen atom or -NRThree-Represents RThreeRepresents a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. n represents an integer of 1 to 5. )
  In the general formula (I), R2It is more preferable that the linking group represented by the formula (1) has an alkylene structure or a structure in which the alkylene structure is linked through an ester bond.
[0012]
  Claims of the invention3The plate making method of the lithographic printing plate precursor according to the present invention comprises an infrared absorber, a polymerization initiator on a support.HeavyCompoundAnd a binder polymer having a repeating unit represented by the general formula (I)A lithographic printing plate precursor comprising: a photosensitive layer having a solubility in an alkaline developer that is reduced by exposure at a wavelength of 750 nm to 1400 nm; and a protective layer. After the exposure processing at the wavelength, the development processing step is performed under the condition that the transport speed of the lithographic printing plate precursor is 1.25 m / min or more without substantially undergoing a heat treatment.
[0013]
Although the operation of the present invention is not clear, it is presumed as follows.
In the lithographic printing plate precursor according to the first aspect of the present invention, a protective layer is provided on the surface of the photosensitive layer to suppress polymerization inhibition due to oxygen, and the lithographic printing plate precursor is represented by the general formula (I) contained in the photosensitive layer. The binder polymer having a repeating unit is excellent in diffusibility in a developer and solubility in an aqueous alkali solution, and even in a slight acid content, it is excellent in solubility in the developer. Can be suppressed. For this reason, the outermost surface of the photosensitive layer is quickly cured to form a region having excellent development resistance, and a defect-free image in which damage to the image portion is suppressed is formed even without heat treatment after exposure. It is considered to be done.
Further, in the plate making method of the lithographic printing plate precursor according to the present invention, the development processing step is carried out without performing the heat treatment after image exposure, and therefore local variations in the photosensitive layer curing reaction caused by the influence of uneven heating. Even if the image is a halftone dot or fine line, even if the development processing speed is 1.25 m / min or more, a uniform and highly sharp image is formed. It is presumed that a decrease in printing durability is also suppressed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the planographic printing plate precursor of the present invention will be described first.
The lithographic printing plate precursor according to the invention contains, on a support, an infrared absorber, a polymerization initiator, a polymerizable compound, and a binder polymer having a repeating unit represented by the general formula (I), from 750 nm to It is characterized in that a photosensitive layer whose solubility in an alkaline developer is lowered by exposure at a wavelength of 1400 nm and an overcoat layer are sequentially laminated.
In the photosensitive layer, it is preferable that the development speed of the unexposed portion with respect to an alkaline developer having a pH of 10 to 13.5 is 80 nm / sec or more and the penetration speed of the alkaline developer is 100 nF / sec or less.
Here, the development speed with an alkaline developer having a pH of 10 to 13.5 is a value obtained by dividing the film thickness (m) of the photosensitive layer by the time (sec) required for development, Is a value indicating the rate of change in capacitance (F) when the photosensitive layer is formed on a conductive support and immersed in a developer.
[0015]
[Photosensitive layer]
The photosensitive layer in the lithographic printing plate precursor according to claim 1 of the present invention contains, as essential components, a specific binder polymer, an infrared absorber, a polymerization initiator, and a polymerizable compound (also referred to as an addition polymerizable compound) described later. A polymerizable negative photosensitive layer. Such a polymerizable negative photosensitive layer has a mechanism in which a polymerization initiator is decomposed by heat to generate radicals, and a polymerizable compound causes a polymerization reaction by the generated radicals. This photosensitive layer is particularly suitable for plate making by direct drawing with a laser beam having a wavelength of 750 to 1,400 nm, and exhibits higher printing durability and image formability than conventional lithographic printing plate precursors.
[0016]
Hereinafter, each component preferable as the photosensitive layer of the lithographic printing plate precursor according to the invention will be described in order.
(Binder polymer having a repeating unit represented by formula (I))
The binder polymer contained in the photosensitive layer in the lithographic printing plate precursor according to the invention has a repeating unit represented by the general formula (I). Hereinafter, the binder polymer having the repeating unit represented by the general formula (I) is appropriately referred to as a specific binder polymer and will be described in detail.
First, R in the general formula (I)1Represents a hydrogen atom or a methyl group, and a methyl group is particularly preferred.
[0017]
  R in general formula (I)2Represented byChain structureThe linking group is composed of a hydrogen atom, an oxygen atom, a nitrogen atom, a sulfur atom and a halogen atom, and the number of atoms excluding the substituent is 2-30. Specifically, alkylene and substituted alkyleNThe divalent group may have a structure in which a plurality of these divalent groups are linked by an amide bond or an ester bond.
  Examples of the linking group having a chain structure include ethylene and propylene. A structure in which these alkylenes are linked via an ester bond can also be exemplified as a preferable example.
[0020]
  R2As the linking group represented by the formula (1), those having 5 to 10 atoms are further preferable, and structurally a chain structure having an ester bond in the structure.Nopreferable.
[0021]
R2As examples of the substituent that can be introduced into the linking group represented by formula (1), a monovalent non-metallic atomic group other than hydrogen can be given, and a halogen atom (-F, -Br, -Cl, -I), a hydroxyl group, Alkoxy group, aryloxy group, mercapto group, alkylthio group, arylthio group, alkyldithio group, aryldithio group, amino group, N-alkylamino group, N, N-dialkylamino group, N-arylamino group, N, N- Diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, N-alkylcarbamoyloxy group, N-arylcarbamoyloxy group, N, N-dialkylcarbamoyloxy group, N, N-diarylcarbamoyl An oxy group, an N-alkyl-N-arylcarbamoyloxy group, an alkylsulfoxy group, Reelsulfoxy group, acylthio group, acylamino group, N-alkylacylamino group, N-arylacylamino group, ureido group, N′-alkylureido group, N ′, N′-dialkylureido group, N′-arylureido Group, N ′, N′-diarylureido group, N′-alkyl-N′-arylureido group, N-alkylureido group, N-arylureido group, N′-alkyl-N-alkylureido group, N′- Alkyl-N-arylureido group, N ′, N′-dialkyl-N-alkylureido group, N ′, N′-dialkyl-N-arylureido group, N′-aryl-N-alkylureido group, N′- Aryl-N-arylureido group, N ′, N′-diaryl-N-alkylureido group, N ′, N′-diaryl-N-ary Luureido group, N′-alkyl-N′-aryl-N-alkylureido group, N′-alkyl-N′-aryl-N-arylureido group, alkoxycarbonylamino group, aryloxycarbonylamino group, N-alkyl- N-alkoxycarbonylamino group, N-alkyl-N-aryloxycarbonylamino group, N-aryl-N-alkoxycarbonylamino group, N-aryl-N-aryloxycarbonylamino group, formyl group, acyl group, carboxyl group And its conjugate base group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group, N, N-dialkylcarbamoyl group, N-arylcarbamoyl group, N, N-diarylcarbamoyl group, N-alkyl- N-Arylcarbamoy Group, alkylsulfinyl group, arylsulfinyl group, alkylsulfonyl group, arylsulfonyl group, sulfo group (-SOThreeH) and its conjugate base group, alkoxysulfonyl group, aryloxysulfonyl group, sulfinamoyl group, N-alkylsulfinamoyl group, N, N-dialkylsulfinamoyl group, N-arylsulfinamoyl group, N, N- Diarylsulfinamoyl group, N-alkyl-N-arylsulfinamoyl group, sulfamoyl group, N-alkylsulfamoyl group, N, N-dialkylsulfamoyl group, N-arylsulfamoyl group, N, N -Diarylsulfamoyl group, N-alkyl-N-arylsulfamoyl group, N-acylsulfamoyl group and its conjugate base group, N-alkylsulfonylsulfamoyl group (-SO2NHSO2(Alkyl)) and its conjugate base group, N-arylsulfonylsulfamoyl group (-SO2NHSO2(Aryl)) and its conjugate base group, N-alkylsulfonylcarbamoyl group (—CONHSO2(Alkyl)) and its conjugate base group, N-arylsulfonylcarbamoyl group (—CONHSO)2(Aryl)) and its conjugate base group, alkoxysilyl group (-Si (Oalkyl))Three), Aryloxysilyl group (-Si (Oaryl))Three), Hydroxysilyl group (-Si (OH)Three) And its conjugate base group, phosphono group (—POThreeH2) And conjugated base groups thereof, dialkylphosphono groups (—POThree(Alkyl)2), Diarylphosphono group (—POThree(Aryl)2), An alkylarylphosphono group (—POThree(Alkyl) (aryl)), monoalkylphosphono group (—POThreeH (alkyl)) and its conjugate base group, monoarylphosphono group (—POThreeH (aryl)) and its conjugate base group, phosphonooxy group (-OPOThreeH2) And its conjugate base group, dialkylphosphonooxy group (-OPO)Three(Alkyl)2), Diarylphosphonooxy group (-OPOThree(Aryl)2), An alkylarylphosphonooxy group (—OPOThree(Alkyl) (aryl)), monoalkylphosphonooxy group (—OPOThreeH (alkyl)) and its conjugate base group, monoarylphosphonooxy group (—OPOThreeH (aryl)) and its conjugate base group, cyano group, nitro group, dialkylboryl group (-B (alkyl))2), Diarylboryl group (-B (aryl)2), Alkylarylboryl group (-B (alkyl) (aryl)), dihydroxyboryl group (-B (OH))2) And its conjugated base group, alkylhydroxyboryl group (-B (alkyl) (OH)) and its conjugated base group, arylhydroxyboryl group (-B (aryl) (OH)) and its conjugated base group, aryl group, Examples include alkenyl groups and alkynyl groups.
[0022]
Although depending on the design of the photosensitive layer, a substituent having a hydrogen atom capable of hydrogen bonding, particularly a substituent having an acid dissociation constant (pKa) smaller than that of carboxylic acid tends to lower the printing durability. Therefore, it is not preferable. On the other hand, hydrophobic substituents such as halogen atoms, hydrocarbon groups (alkyl groups, aryl groups, alkenyl groups, alkynyl groups), alkoxy groups, aryloxy groups and the like are more preferable because they tend to improve printing durability. When the cyclic structure is a monocyclic aliphatic hydrocarbon having 6 or less members such as cyclopentane or cyclohexane, it preferably has such a hydrophobic substituent. If possible, these substituents may be bonded to each other or with a substituted hydrocarbon group to form a ring, and the substituent may be further substituted.
[0023]
A in the general formula (I) is NRThreeR if-ThreeRepresents a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. This RThreeExamples of the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by the formula include an alkyl group, an aryl group, an alkenyl group, and an alkynyl group.
Specific examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, isopropyl group, isobutyl group, sec-butyl group, 1 carbon number such as tert-butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-norbornyl group Up to 10 linear, branched or cyclic alkyl groups.
Specific examples of the aryl group include carbon having one heteroatom selected from the group consisting of an aryl group having 1 to 10 carbon atoms such as a phenyl group, a naphthyl group, and an indenyl group, a nitrogen atom, an oxygen atom, and a sulfur atom. Examples include heteroaryl groups of 1 to 10, such as furyl, thienyl, pyrrolyl, pyridyl, and quinolyl groups.
Specific examples of the alkenyl group include those having 1 to 10 carbon atoms such as vinyl group, 1-propenyl group, 1-butenyl group, 1-methyl-1-propenyl group, 1-cyclopentenyl group, 1-cyclohexenyl group and the like. A linear, branched, or cyclic alkenyl group is mentioned.
Specific examples of the alkynyl group include alkynyl groups having 1 to 10 carbon atoms such as ethynyl group, 1-propynyl group, 1-butynyl group, and 1-octynyl group. RThreeAs the substituent that may have, R2Are the same as those listed as the substituents that can be introduced. However, RThreeThe number of carbon atoms is 1 to 10 including the carbon number of the substituent. A in the general formula (I) is preferably an oxygen atom or —NH— because synthesis is easy.
[0024]
N in the general formula (I) represents an integer of 1 to 5, and is preferably 1 in terms of printing durability.
[0025]
  Specific preferred examples of the repeating unit represented by the specific binder polymer general formula (I) are shown below.(In the repeating unit shown below, R 2 Is a linking group having a chain structure)However, the present invention is not limited to these examples.
[0026]
[Formula 4]
Figure 0004048110
[0027]
[Chemical formula 5]
Figure 0004048110
[0028]
[Chemical 6]
Figure 0004048110
[0029]
[Chemical 7]
Figure 0004048110
[0031]
[Chemical 8]
Figure 0004048110
[0032]
[Chemical 9]
Figure 0004048110
[0033]
Embedded image
Figure 0004048110
[0034]
Embedded image
Figure 0004048110
[0035]
One type of repeating unit represented by formula (I) may be contained in the binder polymer, or two or more types may be contained. The specific binder polymer in the present invention may be a polymer composed of only the repeating unit represented by the general formula (I), but is usually used as a copolymer in combination with other copolymerization components. The total content of the repeating unit represented by the general formula (I) in the copolymer is appropriately determined depending on the structure, the design of the photosensitive layer, etc., but preferably 1 to 99 mol% with respect to the total molar amount of the polymer component. More preferably, it is contained in the range of 5 to 40 mol%, more preferably 5 to 20 mol%.
[0036]
As a copolymerization component in the case of using as a copolymer, a conventionally well-known thing can be used without a restriction | limiting, if it is a monomer which can be radically polymerized. Specific examples include monomers described in “Polymer Data Handbook—Basic Edition” (Edition of Polymer Society, Bafukan, 1986). One type of such copolymerization component may be used, or two or more types may be used in combination.
[0037]
The molecular weight of the specific binder polymer in the present invention is appropriately determined from the viewpoint of image formability and printing durability. Usually, when the molecular weight increases, the printing durability is excellent, but the image formability tends to deteriorate. On the other hand, if it is low, the image forming property is improved, but the printing durability is lowered. The molecular weight is preferably in the range of 2,000 to 1,000,000, more preferably 5,000 to 500,000, and still more preferably 10,000 to 200,000.
[0038]
Moreover, the binder polymer used for the photosensitive layer in the lithographic printing plate precursor according to the invention may be a specific binder polymer alone, or may be used as a mixture by combining one or more other binder polymers. The binder polymer used in combination is used in the range of 1 to 60 mass%, preferably 1 to 40 mass%, more preferably 1 to 20 mass%, based on the total weight of the binder polymer component. As the binder polymer that can be used in combination, a conventionally known binder polymer can be used without limitation, and specifically, an acrylic main chain binder, a urethane binder, or the like often used in the industry is preferably used.
[0039]
The total amount of the specific binder polymer in the photosensitive layer and the binder polymer that may be used in combination can be determined as appropriate, but is usually 10 to 90% by mass, preferably based on the total weight of the nonvolatile components in the photosensitive layer. It is 20-80 mass%, More preferably, it is the range of 30-70 mass%.
Moreover, as an acid value (meg / g) of such a binder polymer, it is preferable that it is the range of 2.00-3.60.
[0040]
(Other binder polymers that can be used in combination)
The binder polymer that can be used in combination with the specific binder polymer is preferably a binder polymer having a radical polymerizable group. The radical polymerizable group is not particularly limited as long as it can be polymerized by radicals, but is not limited to α-substituted methylacryl group [—OC (═O) —C (—CH2Z) = CH2, Z = hydrocarbon group starting from a hetero atom], acrylic group, methacryl group, allyl group, and styryl group. Among these, acrylic group and methacryl group are preferable.
The content of radically polymerizable groups in the binder polymer (content of unsaturated double bonds capable of radical polymerization by iodine titration) is preferably 0.1 to 10.0 mmol, more preferably 1. 0 to 7.0 mmol, most preferably 2.0 to 5.5 mmol. If this content is less than 0.1 mmol, the curability may be low and the sensitivity may be low. Moreover, when content is larger than 10.0 mmol, it may become unstable and a preservability may fall.
[0041]
Further, the binder polymer preferably further has an alkali-soluble group. The content of alkali-soluble groups in the binder polymer (acid value by neutralization titration) is preferably 0.1 to 3.0 mmol, more preferably 0.2 to 2.0 mmol, most preferably 0, per 1 g of the binder polymer. .45-1.0 mmol. When this content is less than 0.1 mmol, it may be deposited during development to generate development residue. Moreover, when content is larger than 3.0 mmol, hydrophilicity may be too high and printing durability may fall.
[0042]
The weight average molecular weight of such a binder polymer is preferably in the range of 2,000 to 1,000,000, more preferably 10,000 to 300,000, and most preferably 20,000 to 200,000. When this weight average molecular weight is less than 2,000, the film property may be lowered and the printing durability may be deteriorated. On the other hand, if the weight average molecular weight is greater than 1,000,000, the coating property may be poorly dissolved in the coating solvent.
[0043]
Further, the glass transition point (Tg) of such a binder polymer is preferably in the range of 70 to 300 ° C, more preferably 80 to 250 ° C, and most preferably 90 to 200 ° C. When this glass transition point is lower than 70 ° C., the storage stability may be lowered and the printing durability may be deteriorated. On the other hand, if the glass transition point is higher than 300 ° C., the radical mobility in the photosensitive layer may be lowered and the sensitivity may be lowered.
As a means for increasing the glass transition point of the binder polymer, the molecule preferably contains an amide group or an imide group, and particularly preferably contains a methacrylamide methacrylamide derivative.
[0044]
(Polymerizable compound)
The addition polymerizable compound having at least one ethylenically unsaturated double bond used in the heat-polymerizable negative photosensitive layer is selected from compounds having at least one ethylenically unsaturated bond, preferably two or more. . Such a compound group is widely known in the industrial field, and can be used without any particular limitation in the present invention. These have chemical forms such as monomers, prepolymers, i.e. dimers, trimers and oligomers, or mixtures thereof and copolymers thereof. Examples of monomers and copolymers thereof include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), and esters and amides thereof. In this case, an ester of an unsaturated carboxylic acid and an aliphatic polyhydric alcohol compound, or an amide of an unsaturated carboxylic acid and an aliphatic polyvalent amine compound is used. In addition, an addition reaction product of an unsaturated carboxylic acid ester or amide having a nucleophilic substituent such as a hydroxyl group, amino group or mercapto group with a monofunctional or polyfunctional isocyanate or epoxy, and monofunctional or polyfunctional A dehydration condensation reaction product with a functional carboxylic acid is also preferably used. Further, an addition reaction product of an unsaturated carboxylic acid ester or amide having an electrophilic substituent such as an epoxy group or an epoxy group with a monofunctional or polyfunctional alcohol, amine or thiol, a halogen group or In addition, a substitution reaction product of an unsaturated carboxylic acid ester or amide having a leaving substituent such as a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable. As another example, it is also possible to use a group of compounds substituted with unsaturated phosphonic acid, styrene, vinyl ether or the like instead of the unsaturated carboxylic acid.
[0045]
Specific examples of the monomer of an ester of an aliphatic polyhydric alcohol compound and an unsaturated carboxylic acid include acrylic acid esters such as ethylene glycol diacrylate, triethylene glycol diacrylate, 1,3-butanediol diacrylate, and tetramethylene glycol. Diacrylate, propylene glycol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolpropane tri (acryloyloxypropyl) ether, trimethylolethane triacrylate, hexanediol diacrylate, 1,4-cyclohexanediol diacrylate , Tetraethylene glycol diacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate , Pentaerythritol tetraacrylate, dipentaerythritol diacrylate, dipentaerythritol hexaacrylate, sorbitol triacrylate, sorbitol tetraacrylate, sorbitol pentaacrylate, sorbitol hexaacrylate, tri (acryloyloxyethyl) isocyanurate, polyester acrylate oligomer.
[0046]
Methacrylic acid esters include tetramethylene glycol dimethacrylate, triethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, ethylene glycol dimethacrylate, 1,3-butanediol dimethacrylate, Hexanediol dimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol dimethacrylate, dipentaerythritol hexamethacrylate, sorbitol trimethacrylate, sorbitol tetramethacrylate, bis [p- (3-methacryloxy- 2-hydroxypro ) Phenyl] dimethyl methane, bis - [p- (methacryloxyethoxy) phenyl] dimethyl methane.
[0047]
Itaconic acid esters include ethylene glycol diitaconate, propylene glycol diitaconate, 1,3-butanediol diitaconate, 1,4-butanediol diitaconate, tetramethylene glycol diitaconate, pentaerythritol diitaconate Sorbitol tetritaconate, etc. Examples of crotonic acid esters include ethylene glycol dicrotonate, tetramethylene glycol dicrotonate, pentaerythritol dicrotonate, and sorbitol tetradicrotonate. Examples of isocrotonic acid esters include ethylene glycol diisocrotonate, pentaerythritol diisocrotonate, and sorbitol tetraisocrotonate. Examples of maleic acid esters include ethylene glycol dimaleate, triethylene glycol dimaleate, pentaerythritol dimaleate, and sorbitol tetramaleate.
[0048]
Examples of other esters include aliphatic alcohol esters described in JP-B-46-27926, JP-B-51-47334, JP-A-57-196231, JP-A-59-5240, JP-A-59-5241. Those having an aromatic skeleton described in JP-A-2-226149 and those containing an amino group described in JP-A-1-165613 are also preferably used. Furthermore, the ester monomers described above can also be used as a mixture.
[0049]
Specific examples of amide monomers of aliphatic polyvalent amine compounds and unsaturated carboxylic acids include methylene bis-acrylamide, methylene bis-methacrylamide, 1,6-hexamethylene bis-acrylamide, 1,6-hexamethylene bis. -Methacrylamide, diethylenetriamine trisacrylamide, xylylene bisacrylamide, xylylene bismethacrylamide and the like. Examples of other preferable amide monomers include those having a cyclohexylene structure described in JP-B-54-21726.
[0050]
In addition, urethane-based addition polymerizable compounds produced by using an addition reaction of isocyanate and hydroxyl group are also suitable, and specific examples thereof include, for example, one molecule described in JP-B-48-41708. A vinyl urethane containing two or more polymerizable vinyl groups in one molecule obtained by adding a vinyl monomer containing a hydroxyl group represented by the following general formula (1) to a polyisocyanate compound having two or more isocyanate groups. Compounds and the like.
[0051]
CH2= C (RFour) COOCH2CH (RFive) OH (1)
(However, RFourAnd RFiveIs H or CHThreeIndicates. )
[0052]
Also, urethane acrylates such as those described in JP-A-51-37193, JP-B-2-32293, and JP-B-2-16765, JP-B-58-49860, JP-B-56-17654, Urethane compounds having an ethylene oxide skeleton described in JP-B-62-39417 and JP-B-62-39418 are also suitable. Further, by using addition polymerizable compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238, It is possible to obtain a photopolymerizable composition excellent in the photosensitive speed.
[0053]
Other examples include polyester acrylates, epoxy resins and (meth) acrylic acid as described in JP-A-48-64183, JP-B-49-43191, JP-B-52-30490, and JP-A-52-30490. Mention may be made of polyfunctional acrylates and methacrylates such as reacted epoxy acrylates. Further, specific unsaturated compounds described in JP-B-46-43946, JP-B-1-40337 and JP-B-1-40336, vinylphosphonic acid compounds described in JP-A-2-25493, and the like can also be mentioned. . In some cases, a structure containing a perfluoroalkyl group described in JP-A-61-22048 is preferably used. Furthermore, Journal of Japan Adhesion Association vol. 20, no. 7, pages 300 to 308 (1984), which are introduced as photocurable monomers and oligomers, can also be used.
[0054]
About these addition polymerizable compounds, the details of usage, such as the structure, single use or combination, addition amount, etc. can be arbitrarily set according to the performance design of the final lithographic printing plate precursor. For example, it is selected from the following viewpoints. From the viewpoint of photosensitive speed, a structure having a high unsaturated group content per molecule is preferable, and in many cases, a bifunctional or higher functionality is preferable. Further, in order to increase the strength of the image area, that is, the cured film, those having three or more functionalities are preferable. Further, different functional numbers and different polymerizable groups (for example, acrylic acid ester, methacrylic acid ester, styrene compound, vinyl ether type). A method of adjusting both photosensitivity and intensity by using a compound) is also effective. A compound having a large molecular weight or a compound having high hydrophobicity is excellent in photosensitive speed and film strength, but is not preferable in terms of development speed and precipitation in a developer. In addition, the selection and use method of the addition polymerization compound is also an important factor for the compatibility and dispersibility with other components in the photosensitive layer (for example, binder polymer, initiator, colorant, etc.). The compatibility may be improved by using a low-purity compound or using two or more kinds in combination. In addition, a specific structure may be selected for the purpose of improving the adhesion of the substrate and an overcoat layer described later. Regarding the compounding ratio of the addition polymerizable compound in the photosensitive layer, a larger amount is more advantageous in terms of sensitivity, but if it is too much, an undesirable phase separation occurs or a problem in the production process due to the adhesiveness of the photosensitive layer. For example, problems such as transfer of photosensitive layer components and manufacturing defects due to adhesion, and precipitation from a developer may occur. From these viewpoints, the addition polymerizable compound is preferably used in the range of 5 to 80% by mass, more preferably 25 to 75% by mass with respect to the nonvolatile component in the photosensitive layer. These may be used alone or in combination of two or more. In addition, the use method of the addition polymerizable compound can be arbitrarily selected from the viewpoint of polymerization inhibition with respect to oxygen, resolution, fogging property, refractive index change, surface adhesiveness, etc. Depending on the case, a layer configuration and coating method such as undercoating and overcoating can be performed.
[0055]
(Infrared absorber)
When an image of the lithographic printing plate precursor according to the present invention is formed with a light source using a laser emitting infrared rays of 750 to 1,400 nm, it is usually essential to use an infrared absorber. The infrared absorber has a function of converting absorbed infrared rays into heat. Due to the heat generated at this time, a polymerization initiator (radical generator) described later is thermally decomposed to generate radicals. The infrared absorber used in the present invention is a dye or pigment having an absorption maximum at a wavelength of 750 nm to 1,400 nm.
[0056]
As the dye, commercially available dyes and known dyes described in documents such as “Dye Handbook” (edited by the Society for Synthetic Organic Chemistry, published in 1970) can be used. Specifically, dyes such as azo dyes, metal complex azo dyes, pyrazolone azo dyes, naphthoquinone dyes, anthraquinone dyes, phthalocyanine dyes, carbonium dyes, quinoneimine dyes, methine dyes, cyanine dyes, squarylium dyes, pyrylium salts, metal thiolate complexes, etc. Is mentioned.
Preferred dyes include, for example, cyanine dyes described in JP-A-58-125246, JP-A-59-84356, JP-A-59-202829, JP-A-60-78787, and the like. Methine dyes described in JP-A-58-173696, JP-A-58-181690, JP-A-58-194595, JP-A-58-112793, JP-A-58-224793, JP-A-59- 48187, JP-A-59-73996, JP-A-60-52940, JP-A-60-63744, etc., naphthoquinone dyes, JP-A-58-112792, etc. And cyanine dyes described in British Patent 434,875.
[0057]
Also, a near infrared absorption sensitizer described in US Pat. No. 5,156,938 is preferably used, and a substituted arylbenzo (thio) pyrylium salt described in US Pat. No. 3,881,924, Trimethine thiapyrylium salts described in JP-A-57-142645 (US Pat. No. 4,327,169), JP-A-58-181051, 58-220143, 59-41363, 59-84248 Nos. 59-84249, 59-146063, 59-146061, pyranlium compounds, cyanine dyes described in JP-A-59-216146, US Pat. No. 4,283,475 The pentamethine thiopyrylium salts described above and the pyrylium compounds disclosed in Japanese Patent Publication Nos. 5-13514 and 5-19702 are also preferably used. . Another example of a preferable dye is a near-infrared absorbing dye described in US Pat. No. 4,756,993 as formulas (I) and (II).
Other preferable examples of the infrared absorbing dye of the present invention include specific indolenine cyanine dyes described in Japanese Patent Application Nos. 2001-6326 and 2001-237840 as exemplified below.
[0058]
Embedded image
Figure 0004048110
[0059]
Particularly preferred among these dyes are cyanine dyes, squarylium dyes, pyrylium salts, nickel thiolate complexes, and indolenine cyanine dyes. Further, cyanine dyes and indolenine cyanine dyes are preferable, and one particularly preferable example is a cyanine dye represented by the following general formula (i).
[0060]
Embedded image
Figure 0004048110
[0061]
In general formula (i), X1Is a halogen atom or X2-L1Indicates. Where X2Represents an oxygen atom or a sulfur atom, and L1Represents a hydrocarbon group having 1 to 12 carbon atoms. R1And R2Each independently represents a hydrocarbon group having 1 to 12 carbon atoms. From the storage stability of the photosensitive layer coating solution, R1And R2Is preferably a hydrocarbon group having 2 or more carbon atoms, and further R1And R2Are particularly preferably bonded to each other to form a 5-membered ring or a 6-membered ring.
[0062]
Ar1, Ar2These may be the same or different and each represents an aromatic hydrocarbon group which may have a substituent. Preferred aromatic hydrocarbon groups include a benzene ring and a naphthalene ring. Moreover, as a preferable substituent, a C12 or less hydrocarbon group, a halogen atom, and a C12 or less alkoxy group are mentioned. Y1, Y2May be the same or different and each represents a sulfur atom or a dialkylmethylene group having 12 or less carbon atoms. RThree, RFourThese may be the same or different and each represents a hydrocarbon group having 20 or less carbon atoms which may have a substituent. Preferred substituents include alkoxy groups having 12 or less carbon atoms, carboxyl groups, and sulfo groups. RFive, R6, R7And R8Each may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 12 or less carbon atoms. From the availability of raw materials, a hydrogen atom is preferred. Z1-Represents a counter anion. However, R1To R8Z is substituted with a sulfo group1-Is not necessary. Preferred Z1-Is a halogen ion, a perchlorate ion, a tetrafluoroborate ion, a hexafluorophosphate ion, and a sulfonate ion, particularly preferably a perchlorate ion, a hexafluorophosphate in view of the storage stability of the photosensitive layer coating solution. An ion, and an aryl sulfonate ion.
Specific examples of cyanine dyes represented by formula (i) that can be suitably used in the present invention include those described in paragraph numbers [0017] to [0019] of JP-A No. 2001-133969. Can do.
Further, other particularly preferable examples include specific indolenine cyanine dyes described in Japanese Patent Application Nos. 2001-6326 and 2001-237840 described above.
[0063]
Examples of the pigment used in the present invention include commercially available pigments and color index (CI) manual, “Latest Pigment Handbook” (edited by Japan Pigment Technology Association, published in 1977), “Latest Pigment Application Technology” (CMC Publishing, 1986), “Printing Ink Technology”, CMC Publishing, 1984) can be used.
[0064]
Examples of the pigment include black pigments, yellow pigments, orange pigments, brown pigments, red pigments, purple pigments, blue pigments, green pigments, fluorescent pigments, metal powder pigments, and other polymer-bonded dyes. Specifically, insoluble azo pigments, azo lake pigments, condensed azo pigments, chelate azo pigments, phthalocyanine pigments, anthraquinone pigments, perylene and perinone pigments, thioindigo pigments, quinacridone pigments, dioxazine pigments, isoindolinone pigments In addition, quinophthalone pigments, dyed lake pigments, azine pigments, nitroso pigments, nitro pigments, natural pigments, fluorescent pigments, inorganic pigments, carbon black, and the like can be used. Among these pigments, carbon black is preferable.
[0065]
These pigments may be used without surface treatment, or may be used after surface treatment. The surface treatment method includes a method of surface coating with a resin or wax, a method of attaching a surfactant, a method of bonding a reactive substance (eg, silane coupling agent, epoxy compound, polyisocyanate, etc.) to the pigment surface, etc. Can be considered. The surface treatment methods described above are described in “Characteristics and Applications of Metal Soap” (Sachibo), “Printing Ink Technology” (CMC Publishing, 1984) and “Latest Pigment Application Technology” (CMC Publishing, 1986). Yes.
[0066]
The particle size of the pigment is preferably in the range of 0.01 μm to 10 μm, more preferably in the range of 0.05 μm to 1 μm, and particularly preferably in the range of 0.1 μm to 1 μm. When the particle diameter of the pigment is less than 0.01 μm, it is not preferable from the viewpoint of stability of the dispersion in the photosensitive layer coating solution, and when it exceeds 10 μm, it is not preferable from the viewpoint of uniformity of the photosensitive layer.
[0067]
As a method for dispersing the pigment, a known dispersion technique used in ink production, toner production, or the like can be used. Examples of the disperser include an ultrasonic disperser, a sand mill, an attritor, a pearl mill, a super mill, a ball mill, an impeller, a disperser, a KD mill, a colloid mill, a dynatron, a three-roll mill, and a pressure kneader. Details are described in "Latest Pigment Applied Technology" (CMC Publishing, 1986).
[0068]
These infrared absorbers may be added to the same layer as the other components, or may be added to another layer, but when the negative lithographic printing plate precursor is prepared, the photosensitive layer Is added so that the absorbance at the maximum absorption wavelength in the range of 760 nm to 1200 nm is in the range of 0.5 to 1.2 by the reflection measurement method. Preferably, it is the range of 0.6-1.15. When the absorbance is outside this range, the strength of the image portion is reduced and the number of printed sheets is reduced. The cause is not clear, but when the absorbance is less than 0.5, it can be presumed that the irradiated infrared rays cannot be sufficiently absorbed, and as a result, radical polymerization in the photosensitive layer as a whole does not proceed sufficiently. When the absorbance is greater than 1.2, only the outermost surface of the photosensitive layer absorbs infrared rays, and the infrared rays do not reach the vicinity of the support. As a result, radical polymerization does not occur in the vicinity of the support, and the support It can be assumed that the adhesive strength of the photosensitive layer is insufficient.
The absorbance of the photosensitive layer can be adjusted by the amount of infrared absorber added to the photosensitive layer and the thickness of the photosensitive layer. Absorbance can be measured by a conventional method. As a measuring method, for example, on a reflective support such as aluminum, a photosensitive layer having a thickness appropriately determined in a range where the coating amount after drying is necessary as a lithographic printing plate is formed, and the reflection density is measured by an optical densitometer. And a method of measuring with a spectrophotometer by a reflection method using an integrating sphere.
[0069]
(Polymerization initiator)
As a polymerization initiator for initiating and advancing the curing reaction in the polymerizable compound, a thermal decomposition type radical generator that decomposes by heat to generate radicals is useful. Such a radical generator is used in combination with the above-described infrared absorber, so that when the infrared laser is irradiated, the infrared absorber generates heat and generates radicals by the heat. Is possible.
Examples of the radical generator include an onium salt, a triazine compound having a trihalomethyl group, a peroxide, an azo polymerization initiator, an azide compound, and a quinonediazide, and an onium salt is preferable because it has high sensitivity. Below, the onium salt which can be used suitably as a radical polymerization initiator in this invention is demonstrated. Preferred onium salts include iodonium salts, diazonium salts, and sulfonium salts. In the present invention, these onium salts function not as acid generators but as radical polymerization initiators. The onium salt suitably used in the present invention is an onium salt represented by the following general formulas (III) to (V).
[0070]
Embedded image
Figure 0004048110
[0071]
In formula (III), Ar11And Ar12Each independently represents an aryl group having 20 or less carbon atoms, which may have a substituent. Preferred substituents when this aryl group has a substituent include a halogen atom, a nitro group, an alkyl group having 12 or less carbon atoms, an alkoxy group having 12 or less carbon atoms, or a carbon atom having 12 or less carbon atoms. An aryloxy group is mentioned. Z11-Represents a counter ion selected from the group consisting of halogen ion, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, carboxylate ion, and sulfonate ion, preferably perchlorate ion, hexafluorophosphine Fate ions, carboxylate ions, and aryl sulfonate ions.
[0072]
In formula (IV), Artwenty oneRepresents an aryl group having 20 or less carbon atoms which may have a substituent. Preferred examples of the substituent include a halogen atom, a nitro group, an alkyl group having 12 or less carbon atoms, an alkoxy group having 12 or less carbon atoms, an aryloxy group having 12 or less carbon atoms, and 12 or less carbon atoms. Examples thereof include an alkylamino group, a dialkylamino group having 12 or less carbon atoms, an arylamino group having 12 or less carbon atoms, or a diarylamino group having 12 or less carbon atoms. Ztwenty one-Is Z11-Represents a counter ion having the same meaning as.
[0073]
In formula (V), R31, R32And R33These may be the same or different and each represents a hydrocarbon group having 20 or less carbon atoms which may have a substituent. Preferable substituents include a halogen atom, a nitro group, an alkyl group having 12 or less carbon atoms, an alkoxy group having 12 or less carbon atoms, or an aryloxy group having 12 or less carbon atoms. Z31-Is Z11-Represents a counter ion having the same meaning as.
[0074]
In the present invention, specific examples of the onium salt that can be suitably used as the radical generator include those described in JP-A-2001-133696. In the present invention, onium salts represented by general formula (III) ([OI-1] to [OI-10]) and onium salts represented by general formula (IV) ([ON] which can be suitably used in the present invention are shown below. -1] to [ON-5]), and specific examples of the onium salts ([OS-1] to [OS-7]) represented by the general formula (V), are not limited thereto. .
[0075]
Embedded image
Figure 0004048110
[0076]
Embedded image
Figure 0004048110
[0077]
Embedded image
Figure 0004048110
[0078]
Embedded image
Figure 0004048110
[0079]
The radical generator used in the present invention preferably has a maximum absorption wavelength of 400 nm or less, and more preferably 360 nm or less. By making the absorption wavelength in the ultraviolet region in this way, the lithographic printing plate precursor can be handled under white light.
[0080]
Other preferred polymerization initiators include specific aromatic sulfonium salts described in Japanese Patent Application No. 2000-266797, Japanese Patent Application No. 2001-177150, Japanese Patent Application No. 2000-160323, and Japanese Patent Application No. 2000-184603. Can be mentioned.
Examples of typical compounds described in Japanese Patent Application Nos. 2000-266797 and 2001-177150, which are other preferable polymerization initiators applicable to the present invention, are shown below.
[0081]
Embedded image
Figure 0004048110
[0082]
These polymerization initiators may be added in a proportion of 0.1 to 50% by mass, preferably 0.5 to 30% by mass, particularly preferably 1 to 20% by mass, based on the total solid content constituting the photosensitive layer. it can. If the addition amount is less than 0.1% by mass, the sensitivity tends to be low, and if it exceeds 50% by mass, the non-image area tends to be smeared during printing. These polymerization initiators may be used alone or in combination of two or more. Moreover, these polymerization initiators may be added to the same layer as other components, or another layer may be provided and added thereto.
[0083]
The heat-polymerizable negative photosensitive layer preferred as the photosensitive layer of the lithographic printing plate precursor according to the invention includes, in addition to the above basic components, other components suitable for its use, production method, etc., such as colorants, plastics, etc. Various additives such as an agent and a polymerization inhibitor can be appropriately added as necessary. Hereinafter, preferred additives are exemplified.
(Polymerization inhibitor)
In the photosensitive layer of the lithographic printing plate precursor according to the invention, unnecessary thermal polymerization of a compound having a polymerizable ethylenically unsaturated double bond is prevented during the production or storage of the negative photosensitive composition. Therefore, it is desirable to add a small amount of a thermal polymerization inhibitor. Suitable thermal polymerization inhibitors include hydroquinone, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4'-thiobis (3-methyl-6-t-butylphenol ), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), N-nitrosophenylhydroxyamine primary cerium salt and the like. The addition amount of the thermal polymerization inhibitor is preferably about 0.01% by mass to about 5% by mass with respect to the weight of the nonvolatile components in the entire composition. If necessary, a higher fatty acid derivative such as behenic acid or behenic acid amide may be added to prevent polymerization inhibition due to oxygen, and it may be unevenly distributed on the surface of the photosensitive layer in the course of drying after coating. . The addition amount of the higher fatty acid derivative is preferably about 0.5% by mass to about 10% by mass with respect to the nonvolatile components in the entire composition.
[0084]
(Coloring agent)
Further, a dye or pigment may be added to the photosensitive layer of the lithographic printing plate precursor according to the invention for the purpose of coloring. Thereby, so-called plate inspection properties such as visibility after plate making and suitability for an image density measuring machine as a printing plate can be improved. As the colorant, many dyes cause a decrease in the sensitivity of the photopolymerization type photosensitive layer. Therefore, it is particularly preferable to use a pigment as the colorant. Specific examples include pigments such as phthalocyanine pigments, azo pigments, carbon black and titanium oxide, and dyes such as ethyl violet, crystal violet, azo dyes, anthraquinone dyes, and cyanine dyes. The addition amount of the dye and the pigment is preferably about 0.5% by mass to about 5% by mass with respect to the nonvolatile components in the whole composition.
[0085]
(Other additives)
Furthermore, in order to improve the physical properties of the cured film, known additives such as inorganic fillers, other plasticizers, and a sensitizer capable of improving the ink inking property on the surface of the photosensitive layer may be added. Examples of the plasticizer include dioctyl phthalate, didodecyl phthalate, triethylene glycol dicaprylate, dimethyl glycol phthalate, tricresyl phosphate, dioctyl adipate, dibutyl sebacate, triacetyl glycerin, and the like. Generally, it can be added in a range of 10% by mass or less based on the total weight of Further, for the purpose of improving the film strength (printing durability), which will be described later, a UV initiator, a thermal crosslinking agent, or the like can be added to enhance the effect of heating and exposure after development.
[0086]
When the photosensitive layer is applied, the photopolymerizable composition of the photosensitive layer component is dissolved in various organic solvents and applied to the intermediate layer. Solvents used here include acetone, methyl ethyl ketone, cyclohexane, ethyl acetate, ethylene dichloride, tetrahydrofuran, toluene, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, Acetylacetone, cyclohexanone, diacetone alcohol, ethylene glycol monomethyl ether acetate, ethylene glycol ethyl ether acetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether acetate, 3-methoxypropanol, methoxymethoxyethanol, diethylene glycol monomethyl ether, Ethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 3-methoxypropyl acetate, N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, methyl lactate, lactic acid There are ethyl and the like. These solvents can be used alone or in combination. The solid content in the coating solution is suitably 2 to 50% by mass.
[0087]
The coating amount of the photosensitive layer mainly affects the sensitivity of the photosensitive layer, the developability, the strength of the exposed film, and the printing durability, and is preferably selected as appropriate according to the application. When the coating amount is too small, the printing durability is not sufficient. On the other hand, if the amount is too large, the sensitivity is lowered, it takes time for exposure, and a longer time is required for development processing, which is not preferable. The lithographic printing plate precursor for scanning exposure, which is the main object of the present invention, has a coating amount of about 0.1 g / m in weight after drying.2~ About 10g / m2The range of is appropriate. More preferably 0.5 to 5 g / m2It is.
[0088]
The preferred physical properties of the photosensitive layer according to the present invention are that the development rate of the unexposed area with respect to an alkaline developer having a pH of 10 to 13.5 is 80 nm / sec or more and the penetration rate of the alkaline developer is 100 nF / sec or less. However, a method for measuring the “development speed with respect to the alkali developer” and the “penetration speed of the alkali developer” will be described.
[0089]
[Measurement of development speed for alkaline developer]
Here, the developing speed of the photosensitive layer with respect to the alkaline developer is a value obtained by dividing the film thickness (m) of the photosensitive layer by the time (sec) required for development.
As a method for measuring the developing speed in the present invention, as shown in FIG. 1, a constant alkali developer (30 ° C.) having an unexposed photosensitive layer on an aluminum support and having a pH in the range of 10 to 13.5. It was immersed in and the dissolution behavior of the photosensitive layer was investigated with a DRM interference wave measuring device. FIG. 1 shows a schematic diagram of a DRM interference wave measuring apparatus for measuring the dissolution behavior of a photosensitive layer. In the present invention, a change in film thickness was detected by interference using light of 640 nm. When the development behavior is non-swelling development from the surface of the photosensitive layer, the film thickness gradually decreases with respect to the development time, and an interference wave corresponding to the thickness can be obtained. Further, in the case of swelling dissolution (film removal dissolution), the film thickness changes due to the penetration of the developer, so that a clean interference wave cannot be obtained.
[0090]
The measurement is continued under these conditions, and the developing speed is expressed by the following equation from the time (s) until the photosensitive layer is completely removed and the film thickness becomes 0 (development completion time) and the film thickness (μm) of the photosensitive layer. It can ask for. It is determined that the higher the development speed, the easier the film is removed by the developer and the better the developability.
Development speed (of unexposed area) = [photosensitive layer thickness (μm) / recording completion time (sec)]
[0091]
[Measurement of penetration rate of alkaline developer]
The permeation rate of the alkaline developer is a value indicating the rate of change of the capacitance (F) when the photosensitive layer is formed on a conductive support and immersed in the developer.
As shown in FIG. 2, a method for measuring the capacitance, which is a measure of permeability in the present invention, is a predetermined method on an aluminum support in a constant alkaline developer (28 ° C.) in the range of pH 10 to 13.5. There is a method in which the exposure is carried out at the exposure amount, the one provided with the cured photosensitive layer is immersed as one electrode, a lead wire is connected to the aluminum support, and a voltage is applied to the other using a normal electrode. After the voltage is applied, the developer permeates the interface between the support and the photosensitive layer as the immersion time elapses, and the capacitance changes.
[0092]
From the time (s) required for the capacitance to change and the film thickness (μm) of the photosensitive layer, it can be obtained by the following equation. It is determined that the smaller the permeation rate, the lower the permeability of the developer.
Developer penetration rate (of exposed area) =
[Photosensitive layer thickness (μm) / Time required for capacitance change to be constant (s)]
[0093]
As a preferable physical property of the photosensitive layer in the lithographic printing plate precursor according to the present invention, the development rate of the unexposed area with an alkaline developer having a pH of 10 to 13.5 according to the above measurement is preferably 80 to 400 nm / sec. The penetration rate of the developer into the photosensitive layer is preferably 90 nF / sec or less. Further, the development rate of the unexposed area with an alkaline developer having a pH of 10 to 13.5 as measured above is more preferably 90 to 200 nm / sec, and the penetration rate of the same alkaline developer into the photosensitive layer is 80 nF / sec or less. It is preferable that The upper limit of the development speed or the lower limit of the permeation speed is not particularly limited, but considering the balance between the two, the development speed of the unexposed area is more preferably in the range of 90 to 200 nm / sec. The permeation rate of the alkali developer into the photosensitive layer is preferably 80 nF / sec or less.
By using the specific binder polymer according to the present invention, the developing speed of the photosensitive layer and the permeation speed of the developing solution can be easily adjusted to the above preferred ranges.
[0094]
[Support]
As the support for the lithographic printing plate precursor according to the invention, a conventionally known hydrophilic support for use in a lithographic printing plate precursor can be used without limitation.
The support used is preferably a dimensionally stable plate, for example, paper, paper laminated with plastic (eg, polyethylene, polypropylene, polystyrene, etc.), metal plate (eg, aluminum, zinc). , Copper, etc.), plastic films (eg, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate butyrate, cellulose nitrate, polyethylene terephthalate, polyethylene, polystyrene, polypropylene, polycarbonate, polyvinyl acetal, etc.), Paper or plastic film, etc. on which such metals are laminated or vapor-deposited are included. Appropriately known physical and chemical treatments are applied to these surfaces for the purpose of imparting hydrophilicity and improving strength as necessary. You may give it.
[0095]
In particular, preferred supports include paper, polyester film or aluminum plate, among which dimensional stability is good, relatively inexpensive, and a surface with excellent hydrophilicity and strength is provided by surface treatment as required. An aluminum plate that can be formed is more preferable. A composite sheet in which an aluminum sheet is bonded on a polyethylene terephthalate film as described in Japanese Patent Publication No. 48-18327 is also preferable.
[0096]
An aluminum plate is a metal plate mainly composed of dimensionally stable aluminum. In addition to a pure aluminum plate, an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements, or aluminum (alloy) is laminated. Or it is chosen from the vapor-deposited plastic film or paper. In the following description, the above-described substrates made of aluminum or aluminum alloy are collectively referred to as an aluminum substrate. Examples of the foreign element contained in the aluminum alloy include silicon, iron, manganese, copper, magnesium, chromium, zinc, bismuth, nickel, and titanium. The content of the foreign element in the alloy is 10% by mass or less. In the present invention, a pure aluminum plate is suitable, but since completely pure aluminum is difficult to manufacture in the refining technique, it may contain a slightly different element. Thus, the composition of the aluminum plate applied to the present invention is not specified, and conventionally known and used materials such as JIS A 1050, JIS A 1100, JIS A 3103, JIS A 3005, etc. It can be used as appropriate.
The thickness of the aluminum substrate used in the present invention is about 0.1 mm to 0.6 mm. This thickness can be changed as appropriate according to the size of the printing press, the size of the printing plate, and the desire of the user. The aluminum substrate may be subjected to a substrate surface treatment described later as necessary. Of course, it may not be applied.
[0097]
(Roughening treatment)
Examples of the roughening treatment method include mechanical roughening, chemical etching, and electrolytic grain as disclosed in JP-A-56-28893. Furthermore, the electrochemical surface roughening method in which the surface is electrochemically roughened in hydrochloric acid or nitric acid electrolyte solution, the aluminum surface is scratched with a metal wire, the wire brush grain method, the surface of the aluminum is polished with a polishing ball and an abrasive. A mechanical graining method such as a pole grain method, a brush grain method in which the surface is roughened with a nylon brush and an abrasive, can be used, and the above roughening methods can be used alone or in combination. Among them, a method usefully used for roughening is an electrochemical method in which roughening is chemically roughened in hydrochloric acid or nitric acid electrolyte, and a suitable amount of electricity during anode is 50 C / dm.2~ 400C / dm2Range. More specifically, in an electrolyte containing 0.1 to 50% hydrochloric acid or nitric acid, the temperature is 20 to 80 ° C., the time is 1 second to 30 minutes, and the current density is 100 C / dm.2~ 400C / dm2It is preferable to perform alternating current and / or direct current electrolysis under these conditions.
[0098]
The roughened aluminum substrate may be chemically etched with acid or alkali. Etching agents suitably used are caustic soda, sodium carbonate, sodium aluminate, sodium metasilicate, sodium phosphate, potassium hydroxide, lithium hydroxide, and the like. Preferred ranges of concentration and temperature are 1 to 50% and 20%, respectively. ~ 100 ° C. Pickling is performed to remove dirt (smut) remaining on the surface after etching. As the acid used, nitric acid, sulfuric acid, phosphoric acid, chromic acid, hydrofluoric acid, borohydrofluoric acid and the like are used. In particular, as a method for removing smut after the electrochemical surface roughening treatment, contact with 15 to 65 mass% sulfuric acid at a temperature of 50 to 90 ° C. as described in JP-A-53-12739 is preferable. And the alkali etching method described in Japanese Patent Publication No. 48-28123. After the treatment as described above, the method condition is not particularly limited as long as the center line average roughness Ra of the treatment surface is 0.2 to 0.5 μm.
[0099]
(Anodizing treatment)
The aluminum substrate that has been processed as described above to form an oxide layer is then anodized.
In the anodizing treatment, sulfuric acid, phosphoric acid, oxalic acid, or an aqueous solution of boric acid / sodium borate is used alone or in combination as a main component of the electrolytic bath. In this case, the electrolyte solution may of course contain at least components normally contained in at least an Al alloy plate, an electrode, tap water, groundwater and the like. Further, the second and third components may be added. The second and third components here are, for example, metal ions such as Na, K, Mg, Li, Ca, Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, ammonium ions, and the like. Examples include cations, nitrate ions, carbonate ions, chloride ions, phosphate ions, fluorine ions, sulfite ions, titanate ions, silicate ions, borate ions, and the like, and the concentration is about 0 to 10,000 ppm. May be included. There are no particular limitations on the conditions for the anodizing treatment, but preferably 30 to 500 g / liter, the treatment liquid temperature is 10 to 70 ° C., and the current density is 0.1 to 40 A / m.2In the range of DC or AC electrolysis. The thickness of the formed anodic oxide film is in the range of 0.5 to 1.5 μm. Preferably it is the range of 0.5-1.0 micrometer. The support prepared by the above treatment has a pore diameter of 5 to 10 nm and a pore density of 8 × 10 6 in the micropores present in the anodized film.15~ 2x1016Pieces / m2The processing conditions must be selected to fall within the range.
[0100]
A widely known method can be applied as the hydrophilic treatment on the surface of the support. As a particularly preferable treatment, a hydrophilic treatment with silicate or polyvinylphosphonic acid is performed. The coating is 2 to 40 mg / m in terms of Si or P element2, More preferably 4-30 mg / m2Formed with. The coating amount can be measured by fluorescent X-ray analysis.
[0101]
The hydrophilization treatment is carried out by applying an anodized film to an aqueous solution containing 1 to 30% by mass, preferably 2 to 15% by mass of alkali metal silicate or polyvinylphosphonic acid, and having a pH of 10 to 13 at 25 ° C. This is performed by immersing the aluminum substrate on which is formed, for example, at 15 to 80 ° C. for 0.5 to 120 seconds.
[0102]
As the alkali metal silicate used for the hydrophilization treatment, sodium silicate, potassium silicate, lithium silicate, or the like is used. Examples of the hydroxide used for increasing the pH of the aqueous alkali metal silicate solution include sodium hydroxide, potassium hydroxide, and lithium hydroxide. In addition, you may mix | blend alkaline-earth metal salt or Group IVB metal salt with said process liquid. Alkaline earth metal salts include nitrates such as calcium nitrate, strontium nitrate, magnesium nitrate, and barium nitrate, and water-soluble substances such as sulfate, hydrochloride, phosphate, acetate, oxalate, and borate. Salt. Group IVB metal salts include titanium tetrachloride, titanium trichloride, potassium fluoride titanium, potassium oxalate, titanium sulfate, titanium tetraiodide, zirconium chloride, zirconium dioxide, zirconium oxychloride, zirconium tetrachloride, etc. Can be mentioned.
[0103]
Alkaline earth metal salts or Group IVB metal salts can be used alone or in combination of two or more. A preferable range of these metal salts is 0.01 to 10% by mass, and a more preferable range is 0.05 to 5.0% by mass. Silicate electrodeposition as described in US Pat. No. 3,658,662 is also effective. Surface obtained by combining a support with electrolytic grains as disclosed in JP-B-46-27481, JP-A-52-58602, JP-A-52-30503, and the above anodizing treatment and hydrophilization treatment Processing is also useful.
[0104]
[Middle layer]
In the lithographic printing plate precursor according to the invention, an intermediate layer may be provided for the purpose of improving the adhesion and soiling between the photosensitive layer and the substrate. Specific examples of such an intermediate layer include JP-B-50-7481, JP-A-54-72104, JP-A-59-101651, JP-A-60-149491, JP-A-60-232998, JP-A-3-56177, JP-A-4-282737, JP-A-5-16558, JP-A-5-246171, JP-A-7-159983, JP-A-7-314937, JP-A-8-202025, Special Kaihei 8-320551, JP 9-34104, JP 9-236911, JP 9-269593, JP 10-69092, JP 10-115931, JP 10-161317, JP 10-260536, JP-A-10-282682, JP-A-11-84684, Japanese Patent Application No. 8-225335, Japanese Patent Application No. 8-270098, Japanese Patent Application No. 9-195863, Japanese Patent Application No. 9-195864, Japanese Patent Application No. 9-89646, Japanese Patent Application No. 9-106068, Japanese Patent Application No. 9-183834, Japanese Patent Application No. 9-264411, Japanese Patent Application No. 9 -127232, Japanese Patent Application No. 9-245419, Japanese Patent Application No. 10-127602, Japanese Patent Application No. 10-170202, Japanese Patent Application No. 11-36377, Japanese Patent Application No. 11-165661, Japanese Patent Application No. 11-284091 No., Japanese Patent Application No. 2000-14697, and the like.
[0105]
[Protective layer]
The present invention is characterized in that a protective layer is provided on the photosensitive layer. The protective layer is basically provided to protect the photosensitive layer. However, when the photosensitive layer has a radical polymerizable image forming mechanism as in the present invention, it has a role as an oxygen blocking layer and has a high illuminance. When exposed with an infrared laser, it functions as an ablation preventing layer. In addition to the properties desired for the protective layer, in addition to the above, the transmission of light used for exposure is not substantially inhibited, the adhesiveness with the photosensitive layer is excellent, and it can be easily removed in the development process after exposure. Things are desirable. Such a protective layer has been conventionally devised and described in detail in US Pat. No. 3,458,311 and JP-A-55-49729.
[0106]
As a material that can be used for the protective layer, for example, a water-soluble polymer compound having relatively excellent crystallinity is preferably used. Specifically, polyvinyl alcohol, vinyl alcohol / vinyl phthalate copolymer, vinyl acetate / vinyl are used. Examples include water-soluble polymers such as alcohol / vinyl phthalate copolymer, vinyl acetate / crotonic acid copolymer, polyvinyl pyrrolidone, acidic celluloses, gelatin, gum arabic, polyacrylic acid, and polyacrylamide. Or they can be mixed. Of these, the use of polyvinyl alcohol as the main component gives the best results in terms of basic properties such as oxygen barrier properties and development removability.
[0107]
The polyvinyl alcohol used for the protective layer may be partially substituted with an ester, an ether, and an acetal as long as it contains an unsubstituted vinyl alcohol unit for having necessary oxygen barrier properties and water solubility. Similarly, some of them may have other copolymer components.
Specific examples of polyvinyl alcohol include those that are hydrolyzed by 71 to 100% and have a polymerization repeating unit in the range of 300 to 2400. Specifically, Kuraray Co., Ltd. PVA-105, PVA-110, PVA-117, PVA-117H, PVA-120, PVA-124, PVA-124H, PVA-CS, PVA-CST, PVA-HC, PVA-203, PVA-204, PVA-205, PVA-210, PVA-217, PVA-220, PVA-224, PVA-217EE, PVA-217E, PVA-220E, PVA-224E, PVA-405, PVA- 420, PVA-613, L-8 and the like.
[0108]
Components of the protective layer (selection of PVA, use of additives), coating amount, and the like are selected in consideration of fogging, adhesion, and scratch resistance in addition to oxygen barrier properties and development removability. In general, the higher the hydrolysis rate of the PVA used (the higher the content of unsubstituted vinyl alcohol units in the oxygen barrier layer), the higher the film thickness, the higher the oxygen barrier property, which is advantageous in terms of sensitivity. is there. However, when the oxygen barrier property is extremely increased, there arises a problem that unnecessary polymerization reaction occurs during production and raw storage, and unnecessary fogging and image line thickening occur during image exposure.
Accordingly, the oxygen permeability A at 25 ° C. and 1 atm is 0.2 ≦ A ≦ 20 (cc / m2(Day) is preferable.
The molecular weight of the (co) polymer such as polyvinyl alcohol (PVA) can be in the range of 2000 to 10 million, preferably in the range of 20,000 to 3 million.
[0109]
As another composition of the protective layer, glycerin, dipropylene glycol and the like can be added in an amount corresponding to several mass% with respect to the (co) polymer to provide flexibility. Anionic surfactants such as sodium acid salts; amphoteric surfactants such as alkylaminocarboxylates and alkylaminodicarboxylates; nonionic surfactants such as polyoxyethylene alkylphenyl ethers to the (co) polymer Mass% can be added.
The thickness of the protective layer is suitably from 0.5 to 5 μm, particularly preferably from 0.5 to 2 μm.
[0110]
In addition, adhesion to the image area and scratch resistance are also extremely important in handling the plate. That is, when a hydrophilic layer made of a water-soluble polymer is laminated on a new oil-based polymer layer, film peeling due to insufficient adhesion tends to occur, and the peeled part causes defects such as poor film hardening due to inhibition of oxygen polymerization. On the other hand, various proposals have been made to improve the adhesion between these two layers. For example, in U.S. Patent Application No. 292,501 and U.S. Patent Application No. 44,563, an acrylic emulsion or a water-insoluble vinyl pyrrolidone-vinyl acetate copolymer is contained in a hydrophilic polymer mainly composed of polyvinyl alcohol. It is described that sufficient adhesiveness can be obtained by mixing 20 to 60% by mass and laminating on a polymerization layer. Any of these known techniques can be applied to the protective layer in the present invention. Such a coating method of the protective layer is described in detail in, for example, US Pat. No. 3,458,311 and JP-A-55-49729.
[0111]
  Next, a method for making a planographic printing plate precursor according to claim 2 of the present invention will be described. The plate making method of the present invention comprises an infrared absorber and a polymerization initiator on a support.HeavyCompoundAnd a binder polymer having a repeating unit represented by the general formula (I)A lithographic printing plate precursor comprising: a photosensitive layer having a solubility in an alkaline developer that is reduced by exposure at a wavelength of 750 nm to 1400 nm; and a protective layer. After the exposure processing at the wavelength, the development processing step is performed under the condition that the transport speed of the lithographic printing plate precursor is 1.25 m / min or more without substantially undergoing a heat treatment.
  This plate making method comprises an infrared absorber, a polymerization initiatorHeavyCompoundAnd a binder polymer having a repeating unit represented by the general formula (I)And a polymerizable compound, and can be suitably applied to any lithographic printing plate precursor provided with a polymerizable negative photosensitive layer whose solubility in an alkaline developer is reduced by exposure at a wavelength of 750 nm to 1400 nm. Specifically, the “infrared absorber, polymerization initiator” explained in the column of the constitution of the photosensitive layer of the lithographic printing plate precursor according to the invention.HeavyCompoundAnd a binder polymer having a repeating unit represented by the general formula (I)As long as it is a photosensitive layer containing each of the components,furtherIt may or may not contain a publicly known one.
[0112]
Further, as the photosensitive layer to which the plate making method of the lithographic printing plate precursor is applied, as in the photosensitive layer containing the specific binder polymer, the developing speed of the unexposed area with an alkaline developer having a pH of 10 to 13.5 is The penetration rate is preferably 80 to 400 nm / sec, and the penetration rate of the same alkaline developer into the photosensitive layer is preferably 90 nF / sec or less.
Control of the developing speed of the unexposed part of the photosensitive layer and the penetration speed of the alkali developer into the cured photosensitive layer can be performed by a conventional method, but as a typical method, a method using the specific binder polymer In addition, the addition of a hydrophilic compound is useful for improving the developing speed of the unexposed area, and the means for adding a hydrophobic compound is useful for suppressing the penetration of the developer into the exposed area.
[0113]
The planographic printing plate precursor is first subjected to an image-like exposure process.
As a light source used in the exposure processing step, an infrared laser is preferable, and thermal recording with an ultraviolet lamp or a thermal head is also possible.
In the present invention, image exposure is preferably performed by a solid-state laser and a semiconductor laser that emit infrared rays having a wavelength of 750 nm to 1400 nm. The laser output is preferably 100 mW or more, and a multi-beam laser device is preferably used in order to shorten the exposure time. The exposure time per pixel is preferably within 20 μsec. The energy applied to the recording material is 10 to 300 mJ / cm.2It is preferable that If the exposure energy is too low, the image recording layer does not sufficiently cure. If the exposure energy is too high, the image recording layer may be laser ablated and the image may be damaged.
[0114]
The exposure in the present invention can be performed by overlapping the light beams of the light sources. Overlap means that the sub-scanning pitch width is smaller than the beam diameter. The overlap can be expressed quantitatively by FWHM / sub-scanning pitch width (overlap coefficient), for example, when the beam diameter is expressed by the half width (FWHM) of the beam intensity. In the present invention, the overlap coefficient is preferably 0.1 or more.
[0115]
The scanning method of the light source of the exposure apparatus used in the present invention is not particularly limited, and a cylindrical outer surface scanning method, a cylindrical inner surface scanning method, a planar scanning method, or the like can be used. The channel of the light source may be a single channel or a multi-channel, but in the case of a cylindrical outer surface system, a multi-channel is preferably used.
[0116]
In this method, the lithographic printing plate precursor subjected to imagewise exposure processing is subjected to a development processing step without performing special heat treatment. By not performing this heat treatment, image non-uniformity due to the heat treatment can be suppressed.
The processing speed in the development processing step, that is, the transport speed (line speed) of the lithographic printing plate precursor in the development processing step is preferably 1.25 m / min or more, more preferably 1.35 m / min or more. . Although there is no restriction | limiting in particular in the upper limit of a conveyance speed, From a viewpoint of stability of conveyance, it is preferable that it is 3 m / min or less.
If the conveyance speed is less than 1.25 m / min, it takes a long time to remove the protective layer, damages the photosensitive layer, and image defects tend to occur, which is not preferable.
[0117]
As the developer used in such development processing, an alkaline aqueous solution having a pH of 14 or less is particularly preferred, and an alkaline aqueous solution having a pH of 8 to 12 containing an anionic surfactant is more preferably used. For example, tribasic sodium phosphate, potassium, ammonium, dibasic sodium phosphate, potassium, ammonium, sodium carbonate, potassium, ammonium, sodium bicarbonate, potassium, ammonium, sodium borate, Examples include inorganic alkaline agents such as potassium, ammonium, sodium hydroxide, ammonium, potassium and lithium. Moreover, monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monoisopropylamine, diisopropylamine, triisopropylamine, n-butylamine, monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, Organic alkali agents such as ethyleneimine, ethylenediamine, and pyridine are also used. These alkali agents are used alone or in combination of two or more.
[0118]
In the development processing of the lithographic printing plate precursor according to the invention, 1 to 20% by mass of an anionic surfactant is added to the developer, and more preferably 3 to 10% by mass. If the amount is too small, the developability deteriorates. If the amount is too large, the strength such as the abrasion resistance of the image deteriorates. Examples of the anionic surfactant include sodium salt of lauryl alcohol sulfate, ammonium salt of lauryl alcohol sulfate, sodium salt of octyl alcohol sulfate, such as sodium salt of isopropyl naphthalene sulfonic acid, sodium salt of isobutyl naphthalene sulfonic acid, polyoxyethylene glycol Higher alcohol sulfuric acid having 8 to 22 carbon atoms, such as sodium salt of mononaphthyl ether sulfate, sodium salt of dodecylbenzene sulfonic acid, alkylaryl sulfonate such as sodium salt of metanitrobenzene sulfonic acid, secondary sodium alkyl sulfate Esters, aliphatic alcohol phosphate salts such as sodium salt of cetyl alcohol phosphate, eg C17H33CON (CHThree) CH2CH2SOThreeExamples include sulfonic acid salts of alkylamides such as Na, and dibasic aliphatic ester sulfonic acid salts such as sodium sulfosuccinic acid dioctyl ester and sodium sulfosuccinic acid dihexyl ester.
[0119]
If necessary, an organic solvent such as benzyl alcohol mixed with water may be added to the developer. As the organic solvent, those having a solubility in water of about 10% by mass or less are suitable, and preferably selected from those having 5% by mass or less. For example, 1-phenylethanol, 2-phenylethanol, 3-phenylpropanol, 1,4-phenylbutanol, 2,2-phenylbutanol, 1,2-phenoxyethanol, 2-benzyloxyethanol, o-methoxybenzyl alcohol, m -Methoxybenzyl alcohol, p-methoxybenzyl alcohol, benzyl alcohol, cyclohexanol, 2-methylcyclohexanol, 4-methylcyclohexanol, 3-methylcyclohexanol and the like can be mentioned. The content of the organic solvent is preferably 1 to 5% by mass with respect to the total weight of the developer at the time of use. The amount used is closely related to the amount of surfactant used, and it is preferable to increase the amount of anionic surfactant as the amount of organic solvent increases. This is because when the amount of the organic solvent is large and the amount of the anionic surfactant is small, the organic solvent is not dissolved, so that it is impossible to expect good developability.
[0120]
Furthermore, additives such as an antifoaming agent and a hard water softening agent can be further contained as necessary. As the water softener, for example, Na2P2O7, NaFivePThreeOThree, NaThreePThreeO9, Na2OFourP (NaOThreeP) POThreeNa2Polyphosphates such as Calgon (sodium polymetaphosphate), such as ethylenediaminetetraacetic acid, its potassium salt, its sodium salt; diethylenetriaminepentaacetic acid, its potassium salt, sodium salt; triethylenetetraminehexaacetic acid, its potassium salt, its sodium salt Hydroxyethylethylenediaminetriacetic acid, its potassium salt, its sodium salt; nitrilotriacetic acid, its potassium salt, its sodium salt; 1,2-diaminocyclohexanetetraacetic acid, its potassium salt, its sodium salt; 1,3-diamino-2 Aminopolycarboxylic acids such as propanoltetraacetic acid, its potassium salt, its sodium salt and the like, as well as 2-phosphonobutanetricarboxylic acid-1,2,4, its potassium salt, its sodium salt; Butanone tricarboxylic acid-2,3,4, its potassium salt, its sodium salt; 1-phosphonoethanetricarboxylic acid-1,2,2, its potassium salt, its sodium salt; 1-hydroxyethane-1,1-diphosphone There may be mentioned organic phosphonic acids such as acids, potassium salts, sodium salts; aminotri (methylenephosphonic acid), potassium salts, sodium salts and the like. The optimum amount of such a hard water softener varies depending on the hardness of the hard water used and the amount used, but is generally 0.01 to 5% by weight, more preferably in the developer at the time of use. It is made to contain in 0.01-0.5 mass%.
[0121]
Furthermore, when the lithographic printing plate precursor is developed using an automatic developing machine, the developing solution becomes fatigued according to the processing amount, so that the processing ability is restored by using a replenishing solution or a fresh developing solution. May be. In this case, it is preferable to replenish by the method described in US Pat. No. 4,882,246. Developers described in JP-A-50-26601, 58-54341, JP-B-56-39464, 56-42860, and 57-7427 are also preferable.
[0122]
The lithographic printing plate precursor thus developed is subjected to washing water, surface activity as described in JP-A Nos. 54-8002, 55-11545, 59-58431, and the like. It is post-treated with a desensitizing solution containing a rinse solution containing an agent and the like, gum arabic and starch derivatives. These treatments can be used in various combinations for the post-treatment of the lithographic printing plate precursor according to the invention. The planographic printing plate obtained by such processing is loaded on an offset printing machine and used for printing a large number of sheets.
[0123]
In the plate making method of a lithographic printing plate precursor according to the present invention, it is effective to carry out full post-heating or full exposure of the developed image for the purpose of improving image strength and printing durability.
Very strong conditions can be used for heating after development. Usually, the heating temperature is 200 to 500 ° C. If the heating temperature after development is low, sufficient image strengthening action cannot be obtained, and if it is too high, problems such as deterioration of the support and thermal decomposition of the image area may occur.
[0124]
The planographic printing plate obtained by the above processing is loaded on an offset printing machine and used for printing a large number of sheets.
As plate cleaners used for removing stains on the plate during printing, conventionally known plate cleaners for PS plates are used. For example, CL-1, CL-2, CP, CN-4, CN, CG-1, PC-1, SR, IC (made by Fuji Photo Film Co., Ltd.), etc. are mentioned.
[0125]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.
[Examples 1-7, Comparative Examples 1-10]
[Create support]
<Aluminum plate>
Si: 0.06 mass%, Fe: 0.30 mass%, Cu: 0.001 mass%, Mn: 0.001 mass%, Mg: 0.001 mass%, Zn: 0.001 mass%, Ti: Containing 0.03% by mass, the balance is prepared using Al and an inevitable impurity aluminum alloy, and after performing the molten metal treatment and filtration, an ingot having a thickness of 500 mm and a width of 1200 mm is obtained by a DC casting method. Created. After the surface was shaved with a chamfering machine with an average thickness of 10 mm, it was kept soaked at 550 ° C. for about 5 hours, and when the temperature dropped to 400 ° C., rolling with a thickness of 2.7 mm using a hot rolling mill A board was used. Furthermore, after performing heat processing using a continuous annealing machine at 500 degreeC, it finished by cold rolling to 0.24 mm in thickness, and obtained the aluminum plate of JIS1050 material. After making this aluminum plate width 1030mm, it used for the surface treatment shown below.
[0126]
<Surface treatment>
The surface treatment was performed by continuously performing the following various treatments (a) to (j). In addition, after each process and water washing, the liquid was drained with the nip roller.
[0127]
(A) Mechanical roughening treatment
Using an apparatus as shown in FIG. 3, a roller-type nylon brush rotating while supplying a suspension of abrasive (pumice) having a specific gravity of 1.12 and water as a polishing slurry to the surface of the aluminum plate. Mechanical roughening treatment was performed. In FIG. 3, 1 is an aluminum plate, 2 and 4 are roller brushes, 3 is a polishing slurry, and 5, 6, 7 and 8 are support rollers. The average particle size of the abrasive was 30 μm, and the maximum particle size was 100 μm. The material of the nylon brush was 6 · 10 nylon, the hair length was 45 mm, and the hair diameter was 0.3 mm. The nylon brush was planted so as to be dense by making a hole in a stainless steel tube having a diameter of 300 mm. Three rotating brushes were used. The distance between the two support rollers (φ200 mm) at the bottom of the brush was 300 mm. The brush roller was pressed until the load of the drive motor for rotating the brush became 7 kW plus with respect to the load before the brush roller was pressed against the aluminum plate. The rotating direction of the brush was the same as the moving direction of the aluminum plate. The rotation speed of the brush was 200 rpm.
[0128]
(B) Alkali etching treatment
The aluminum plate obtained above was subjected to an etching process by spraying using an aqueous solution having a caustic soda concentration of 2.6 mass%, an aluminum ion concentration of 6.5 mass%, and a temperature of 70 ° C.2Dissolved. Then, water washing by spraying was performed.
[0129]
(C) Desmut treatment
A desmut treatment was performed by spraying with a 1% by weight aqueous solution of nitric acid at a temperature of 30 ° C. (containing 0.5% by weight of aluminum ions), and then washed with water by spraying. The nitric acid aqueous solution used for the desmut treatment was a waste liquid from a process of performing an electrochemical surface roughening treatment using alternating current in a nitric acid aqueous solution.
[0130]
(D) Electrochemical roughening treatment
An electrochemical surface roughening treatment was continuously performed using an alternating voltage of 60 Hz. The electrolytic solution at this time was a 10.5 g / L aqueous solution of nitric acid (containing 5 g / L of aluminum ions and 0.007% by mass of ammonium ions) at a liquid temperature of 50 ° C. The AC power supply waveform is the waveform shown in FIG. 4, the time TP until the current value reaches the peak from zero is 0.8 msec, the duty ratio is 1: 1, a trapezoidal rectangular wave AC is used, with the carbon electrode as the counter electrode An electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell used was the one shown in FIG.
The current density is 30 A / dm at the peak current value.2The amount of electricity is 220 C / dm in terms of the total amount of electricity when the aluminum plate is the anode.2Met. 5% of the current flowing from the power source was shunted to the auxiliary anode. Then, water washing by spraying was performed.
[0131]
(E) Alkali etching treatment
An aluminum plate is subjected to an etching process by spraying at 32 ° C. using an aqueous solution having a caustic soda concentration of 26 mass% and an aluminum ion concentration of 6.5 mass%, and the aluminum plate is 0.50 g / m.2Dissolve and remove the smut component mainly composed of aluminum hydroxide that was generated when the electrochemical roughening treatment was performed using the alternating current of the previous stage, and the edge portion of the generated pit was dissolved Made smooth. Then, water washing by spraying was performed.
[0132]
(F) Desmut treatment
The desmutting treatment was performed by spraying with a 15% by weight aqueous solution of nitric acid at a temperature of 30 ° C. (containing 4.5% by weight of aluminum ions), and then washed with water by spraying. The nitric acid aqueous solution used for the desmut treatment was a waste liquid from a process of performing an electrochemical surface roughening treatment using alternating current in a nitric acid aqueous solution.
[0133]
(G) Electrochemical roughening treatment
An electrochemical surface roughening treatment was continuously performed using an alternating voltage of 60 Hz. The electrolytic solution at this time was a hydrochloric acid 5.0 g / L aqueous solution (containing 5 g / L of aluminum ions) at a temperature of 35 ° C. The AC power supply waveform is the waveform shown in FIG. 4, the time TP until the current value reaches the peak from zero is 0.8 msec, the duty ratio is 1: 1, a trapezoidal rectangular wave AC is used with the carbon electrode as the counter electrode Electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell used was the one shown in FIG.
The current density is 25 A / dm at the peak current value.2The amount of electricity is 50 C / dm as the total amount of electricity when the aluminum plate is the anode.2Met. Then, water washing by spraying was performed.
[0134]
(H) Alkali etching treatment
The aluminum plate was etched by spraying at 32 ° C. using an aqueous solution having a caustic soda concentration of 26 mass% and an aluminum ion concentration of 6.5 mass%, and the aluminum plate was 0.10 g / m.2Dissolve and remove the smut component mainly composed of aluminum hydroxide that was generated when the electrochemical roughening treatment was performed using the alternating current of the previous stage, and the edge portion of the generated pit was dissolved Made smooth. Then, water washing by spraying was performed.
[0135]
(I) Desmut treatment
The desmutting treatment was performed by spraying with a 25% by weight aqueous solution of sulfuric acid having a temperature of 60 ° C. (containing 0.5% by weight of aluminum ions), and then washing with water by spraying.
[0136]
(J) Anodizing treatment
Anodization was performed using an anodizing apparatus having the structure shown in FIG. 6 to obtain a lithographic printing plate support. Sulfuric acid was used as the electrolytic solution supplied to the first and second electrolysis units. All electrolytes had a sulfuric acid concentration of 170 g / L (containing 0.5 mass% of aluminum ions) and a temperature of 38 ° C. Then, water washing by spraying was performed. The final oxide film amount is 2.7 g / m2Met.
[0137]
[undercoat]
Next, the following undercoat liquid was applied to this aluminum support with a wire bar, and dried at 90 ° C. for 30 seconds using a hot air drying apparatus. The coating amount after drying is 10 mg / m2Met.
[0138]
Figure 0004048110
[0139]
[Photosensitive layer]
Next, the following photosensitive layer coating solution [P-1] was prepared and applied to the above-mentioned undercoated aluminum plate using a wire bar. Drying was performed at 125 ° C. for 27 seconds with a hot air drying apparatus to obtain a lithographic printing plate precursor. The coating amount after drying is 1.2 to 1.3 g / m2Range.
[0140]
<Photosensitive layer coating solution [P-1]>
・ Infrared absorber (IR-1) 0.08g
-Polymerization initiator (OS-1) 0.1g
-Polymerization initiator (OS-2) 0.125g
・ Dipentaerythritol hexaacrylate 1.00g
・ Binder (BT-1) 1.00g
・ Ethyl violet chloride 0.04g
・ Fluorine-based surfactant (W-1) 0.03g
・ Stearoylmethylamide 0.06g
・ Methyl ethyl ketone 14g
・ Methanol 6.5g
・ 14g of 1-methoxy-2-propanol
[0141]
Infrared absorber (IR-1), polymerization initiator (OS-1), (OS-2), binder (BT-1), and fluorine-based surfactant (W-1) used in the photosensitive layer coating solution ) Is shown below.
[0142]
Embedded image
Figure 0004048110
[0143]
Embedded image
Figure 0004048110
[0144]
[Protective layer (overcoat layer)]
A 3% by mass aqueous solution of polyvinyl alcohol (saponification degree: 98 mol%, polymerization degree: 500) was applied to the surface of the photosensitive layer using a wire bar, and dried at 100 ° C. for 90 seconds with a warm air dryer. The coating amount after drying is 2.0 g / m2(Sample A), 1.0 g / m2Two types of samples (Sample B) were prepared. The coefficient of dynamic friction with respect to the sapphire needle (R: 1 mm) was 0.35 in all samples.
[0145]
[Plate making process]
<Exposure process>
The obtained negative lithographic printing plate precursor was converted into a 80% flat screen image with a resolution of 175 lpi using a Trendsetter 3244VX manufactured by Creo equipped with a water-cooled 40 W infrared semiconductor laser, an output of 8 W, an external drum rotation speed of 206 rpm, and a plate surface energy of 100 mJ / cm2And exposed.
[0146]
<Development process>
After the exposure, development processing was carried out at a conveyance speed (line speed) and a development temperature shown in Table 1 using an automatic processor IP85HD manufactured by G & J. In the case where the heating step was performed prior to the development processing step, the heating temperature was shown in the table, and those without the heating step were described as “none”. The developer used was a 1: 4 water-diluted water of DV-2 manufactured by FUJIFILM Corporation, and the 1: 1 water-diluted solution of FP-2W manufactured by FUJIFILM Corporation was used as the finisher.
[0147]
[Evaluation of planographic printing plates]
(1) Image quality evaluation
The image defects and the flat mesh unevenness of the lithographic printing plate obtained through the plate making process were visually evaluated. Evaluation was performed by sensory evaluation of 1 to 5, 3 being a practical lower limit level, and 2 or less being a practically impossible level.
(2) Printing performance
The obtained lithographic printing plate was printed using a printing machine Lithron manufactured by Komori Corporation, and the stains on the non-image area and the printing durability were evaluated.
The results are shown in Table 1.
[0148]
[Table 1]
Figure 0004048110
[0149]
As is apparent from Table 1, the plate making methods of Examples 1 to 7 of the present invention, that is, the development processing is performed at a conveying speed of the lithographic printing plate precursor of 1.25 m / min or higher without passing through a heat treatment. The obtained lithographic printing plate is free from image defects and image unevenness, and is found to be excellent in stains in the non-image area during printing and printing durability. On the other hand, Comparative Examples 1 to 4 having no surface protective layer have insufficient curing of the photosensitive layer and extremely low printing durability, and Comparative Examples 5 to 8 in which the heat treatment is performed have markedly uneven halftone dots. It was found that Comparative Examples 9 and 10, which are too slow, have insufficient printing durability, are liable to cause image defects, and have practical problems in printing performance.
[0153]
【The invention's effect】
The lithographic printing plate precursor according to the present invention can be written with an infrared laser, can suppress the occurrence of image defects and image unevenness in the development process, and can form a uniform and high-quality image over the entire surface of the plate. In particular, there is an effect that the printing durability of the halftone image area is excellent. In addition, according to the plate making method of the lithographic printing plate precursor of the present invention, a high quality image can be formed, and a lithographic printing plate excellent in printing durability in a halftone image area can be easily obtained.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a DRM interference wave measuring apparatus for measuring the dissolution behavior of a photosensitive layer.
FIG. 2 is a schematic configuration diagram showing an example of a capacitance measuring method used for evaluating the permeability of a developer into a photosensitive layer.
FIG. 3 is a side view showing the concept of a brush graining process used for mechanical surface roughening in the production of a lithographic printing plate support according to the present invention.
FIG. 4 is a graph showing an example of an alternating waveform current waveform diagram used for electrochemical roughening treatment in the production of a lithographic printing plate support according to the present invention.
FIG. 5 is a side view showing an example of a radial type cell in an electrochemical surface roughening treatment using alternating current in producing a lithographic printing plate support according to the present invention.
FIG. 6 is a schematic view of an anodizing treatment apparatus used for anodizing treatment in producing a lithographic printing plate support according to the present invention.
[Explanation of symbols]
1 Aluminum plate
2, 4 Roller brush
3 Polishing slurry
5, 6, 7, 8 Support roller
11 Aluminum plate
12 Radial drum roller
13a, 13b Main pole
14 Electrolytic treatment liquid
15 Electrolyte supply port
16 slits
17 Electrolyte passage
18 Auxiliary anode
19a, 19b Thyristor
20 AC power supply
40 Main electrolytic cell
50 Auxiliary anode tank
410 Anodizing equipment
412 Feeding tank
414 Electrolytic treatment tank
416 Aluminum plate
418, 426 electrolyte
420 Feeding electrode
422, 428 Roller
424 Nip roller
430 Electrolytic electrode
432 tank wall
434 DC power supply

Claims (4)

支持体上に、赤外線吸収剤、重合開始剤、重合性化合物、及び、下記一般式(I)で表される繰り返し単位を有するバインダーポリマーを含有し、750nm〜1400nmの波長の露光によりアルカリ現像液に対する溶解性が低下する感光層と、保護層と、を順次積層してなることを特徴とする平版印刷版原版。
Figure 0004048110
(一般式(I)中、R1は水素原子又はメチル基を表し、R2は炭素原子、水素原子、酸素原子、窒素原子、硫黄原子及びハロゲン原子から構成され、置換基を除いた原子数2〜30である鎖状構造の連結基を表す。Aは酸素原子又は−NR3−を表し、R3は水素原子又は炭素数1〜10の一価の炭化水素基を表す。nは1〜5の整数を表す。)
The support contains an infrared absorber, a polymerization initiator, a polymerizable compound, and a binder polymer having a repeating unit represented by the following general formula (I), and an alkali developer by exposure at a wavelength of 750 nm to 1400 nm. A lithographic printing plate precursor comprising a photosensitive layer and a protective layer, the solubility of which is reduced, and a protective layer.
Figure 0004048110
(In General Formula (I), R 1 represents a hydrogen atom or a methyl group, and R 2 is composed of a carbon atom, a hydrogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom, and the number of atoms excluding a substituent. Represents a linking group having a chain structure of 2 to 30. A represents an oxygen atom or —NR 3 —, R 3 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents 1. Represents an integer of ~ 5.)
前記一般式(1)中の鎖状構造の連結基RLinking group R having a chain structure in formula (1) 22 が、その構造中にエステル結合を有する請求項1に記載の平版印刷版原版。The lithographic printing plate precursor as claimed in claim 1, which has an ester bond in its structure. 支持体上に、赤外線吸収剤、重合開始剤、重合性化合物、及び、下記一般式(I)で表される繰り返し単位を有するバインダーポリマーを含有し、750nm〜1400nmの波長の露光によりアルカリ現像液に対する溶解性が低下する感光層と、保護層と、を順次積層してなることを特徴とする平版印刷版原版を、750nm〜1400nmの波長で露光処理した後、実質的に加熱処理を経ることなく、平版印刷版原版の搬送速度が1.25m/分以上の条件にて現像処理工程を行なうことを特徴とする平版印刷版原版の製版方法。
Figure 0004048110
(一般式(I)中、R1は水素原子又はメチル基を表し、R2は炭素原子、水素原子、酸素原子、窒素原子、硫黄原子及びハロゲン原子から構成され、置換基を除いた原子数2〜30である鎖状構造の連結基を表す。Aは酸素原子又は−NR3−を表し、R3は水素原子又は炭素数1〜10の一価の炭化水素基を表す。nは1〜5の整数を表す。)
On a support, an infrared absorber, a polymerization initiator, heavy polymerizable compound and a binder polymer having a repeating unit represented by the following formula (I), alkali development by exposure wavelength of 750nm~1400nm A lithographic printing plate precursor characterized by sequentially laminating a photosensitive layer whose solubility in a solution is lowered and a protective layer is subjected to an exposure treatment at a wavelength of 750 nm to 1400 nm, and then substantially subjected to a heating treatment. A development process for a lithographic printing plate precursor, wherein the development processing step is performed under the condition that the transport speed of the lithographic printing plate precursor is 1.25 m / min or more.
Figure 0004048110
(In General Formula (I), R 1 represents a hydrogen atom or a methyl group, and R 2 is composed of a carbon atom, a hydrogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom, and the number of atoms excluding a substituent. Represents a linking group having a chain structure of 2 to 30. A represents an oxygen atom or —NR 3 —, R 3 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents 1. Represents an integer of ~ 5.)
前記一般式(1)中の鎖状構造の連結基RLinking group R having a chain structure in the general formula (1) 22 が、その構造中にエステル結合を有する請求項3に記載の平版印刷版原版の製版方法。The method of making a lithographic printing plate precursor as claimed in claim 3, wherein the structure has an ester bond.
JP2002380883A 2002-12-27 2002-12-27 Planographic printing plate precursor and plate making method Expired - Fee Related JP4048110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380883A JP4048110B2 (en) 2002-12-27 2002-12-27 Planographic printing plate precursor and plate making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380883A JP4048110B2 (en) 2002-12-27 2002-12-27 Planographic printing plate precursor and plate making method

Publications (2)

Publication Number Publication Date
JP2004212558A JP2004212558A (en) 2004-07-29
JP4048110B2 true JP4048110B2 (en) 2008-02-13

Family

ID=32816977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380883A Expired - Fee Related JP4048110B2 (en) 2002-12-27 2002-12-27 Planographic printing plate precursor and plate making method

Country Status (1)

Country Link
JP (1) JP4048110B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883827B2 (en) 2002-09-30 2011-02-08 Fujifilm Corporation Polymerizable composition and planographic printing plate precursor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4437948B2 (en) * 2004-08-27 2010-03-24 富士フイルム株式会社 Planographic printing plate precursor
JP4574506B2 (en) * 2005-03-23 2010-11-04 富士フイルム株式会社 Planographic printing plate precursor and its plate making method
EP2383118B1 (en) 2010-04-30 2013-10-16 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883827B2 (en) 2002-09-30 2011-02-08 Fujifilm Corporation Polymerizable composition and planographic printing plate precursor

Also Published As

Publication number Publication date
JP2004212558A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP2004252285A (en) Photosensitive composition and lithographic printing original plate using the same
JP4139724B2 (en) Planographic printing plate precursor
JP2004252201A (en) Lithographic printing original plate
JP2005049542A (en) Picture forming method and developer
JP4048134B2 (en) Planographic printing plate precursor
JP2004126050A (en) Lithographic printing original plate
JP4048133B2 (en) Photosensitive composition and planographic printing plate precursor using the same
JP4150261B2 (en) Plate making method of lithographic printing plate precursor
JP4429116B2 (en) Planographic printing plate precursor and lithographic printing plate making method
JP4619912B2 (en) Planographic printing plate precursor and its plate making method
JP4362055B2 (en) Planographic printing plate precursor
JP4048110B2 (en) Planographic printing plate precursor and plate making method
JP4437948B2 (en) Planographic printing plate precursor
JP2005099286A (en) Planographic printing original plate
JP2005215147A (en) Polymerizable composition
JP4524235B2 (en) Planographic printing plate precursor
JP2005049466A (en) Image forming method and developer
JP4384464B2 (en) Photosensitive composition and planographic printing plate precursor using the same
JP4393331B2 (en) Planographic printing plate precursor
JP2005049465A (en) Image forming method and developer
JP2005221615A (en) Processing method for lithographic printing plate
JP2006098709A (en) Planographic original printing plate
JP2005301242A (en) Platemaking method for planographic printing master plate
JP2004252288A (en) Photosensitive composition and lithographic printing original plate using the same
JP2004302208A (en) Method for manufacturing lithographic printing original plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4048110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees