JP4032436B2 - Internal temperature calculation device for secondary battery - Google Patents

Internal temperature calculation device for secondary battery Download PDF

Info

Publication number
JP4032436B2
JP4032436B2 JP5569996A JP5569996A JP4032436B2 JP 4032436 B2 JP4032436 B2 JP 4032436B2 JP 5569996 A JP5569996 A JP 5569996A JP 5569996 A JP5569996 A JP 5569996A JP 4032436 B2 JP4032436 B2 JP 4032436B2
Authority
JP
Japan
Prior art keywords
battery
fan
temperature
secondary battery
internal temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5569996A
Other languages
Japanese (ja)
Other versions
JPH09245846A (en
Inventor
孝昭 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5569996A priority Critical patent/JP4032436B2/en
Publication of JPH09245846A publication Critical patent/JPH09245846A/en
Application granted granted Critical
Publication of JP4032436B2 publication Critical patent/JP4032436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、2次電池、すなわち、充電、放電を繰返して使用可能な電池の稼動に伴う内部温度を演算する内部温度演算装置に関するものである。
【従来の技術】
従来の2次電池の温度検出装置としては、最も温度が高くなる電池の表面にセンサを取付けることが通常考えられている。また、2次電池の内部にセンサを取付けることも考えられる。
【発明が解決しようとする課題】
しかしながら、このような従来の2次電池の温度検出装置にあっては、2次電池(以下、特に混同のおそれのない限り単に電池と略記する)表面の周囲温度を計測してしまい、電池内部にセンサを取付ける場合も、前記理由で電池の内部温度を正確に予測できないことに加えて、電池内部と電池外部のシール性や耐圧性が確保できないといった問題があった。
【0002】
そこで、表面温度TBと内部温度TB0との差が所定の値ΔT(一定値)と仮定し、TB+ΔTの値によりファンを制御する方法が考えられる。しかしながら、このような方法ではΔTが実際の温度差と異なっている場合には、電池内部が十分冷えてないにも係らず、ファンによる冷却を停止してしまったり、あるいは電池内部が低温になっているにも係らずファンによる冷却を開始してしまう結果、電池の劣化をまねいたり、電池の性能を十分に発揮できないおそれがあった。この発明は、従来技術の問題点に着目して2次電池の充電、または放電制御を行なう2次電池の内部温度演算装置を提供することを目的としている。
【0003】
【課題を解決するための手段】
上記の課題は、電池の表面の温度とファン出力から電池内部温度を演算し、その値を用いてファンの送風制御、電池の充放電制御を行なうことによって達成される。風洞形のファンケース内部に設置されて稼動している2次電池に対する冷却効果は、ファンによる送風空気量(ファン出力)と送風空気の温度によって変動する。すなわち、後記図1と同じ電池1、ケース8及びファン6を用いた実験装置に基づいた実験を行ない、図13〜図15に示したように、ファン6の出力Pから冷却空気量Qを求め、次いで冷却空気量Qから熱伝達率hを求め、さらに熱伝達率hからファン6による内外温度差比率αを求める。これにより、ファン6の出力Pが0のときの内外温度差比率α1、出力Pが最大値のときの内外温度差比率α2を算出して電池1の表面温度から内部温度を演算するものである。要するに、この発明は、前記の手順によって、ケース8内に設置された電池1の表面温度を計測し、表面温度から電池1の内部温度を演算し、これにより適正なファン6の送風制御と、電池1の放電または充電制御を実行するものである。
【0004】
すなわち本発明は、特許請求の範囲に記載されているように、2次電池の電池表面温度を計測する手段と、前記電池に送風するファンの送風量を計測する手段と、前記ファンによる送風空気温度を計測する手段と、前記電池の表面温度の計測手段、前記送風量の計測手段、及び前記送風空気温度の計測手段による計測値から前記電池の内部温度を演算する演算手段を備えたことを特徴とする2次電池の内部温度演算装置である。
【0005】
【発明の効果】
本発明は、電池の表面の温度とファン出力から電池内部温度を演算し、その値を用いてファンの送風制御、電池の充電及び放電制御を行なう構成により、ファンの効率の向上が図られ、2次電池の充電量または放電量の増加をもたらすという効果が得られる。
【0006】
【発明の実施の形態】
以下、この発明の実施の形態に基づいて詳細に説明する。
【0007】
〈実施の形態1〉
この発明の実施の形態1を図1〜図8により説明する。まず本実施の形態の構成を説明すると、図1において1は電池でジャンクションボックス2を介して充電器3と放電器4に接続されている。充電時は電池1と充電器3が接続され、放電時は電池1と放電器4が接続されるようジャンクションボックス2の中で切り換えが行なわれる。電池1は周囲ケース8に覆われており、空気送風用のファン6によって電池1の温度管理を行うことができる。電池1自体の表面温度と電池1周辺の雰囲気の温度は、電池温度センサ7a、空気温度センサ7bによって常時計測されている。電池温度センサ7a、空気温度センサ7bの計測信号はコントローラ5ヘ入力され、コントローラ5の演算により充電器3、放電器4及びファン6ヘ信号を送り制御を行なうことができる。
【0008】
次に作用を説明する。図2はファンの制御作用を示す図であり、この実施の形態では電池を冷却する場合に、電池温度がある設定値 F2 以上に上昇した時はオン、ある設定値 F1 以下に下降した時はオフにする制御作用を示す。図3は、図1の構成の下で図2のファンの制御を行なう場合の制御フローを示す図である。図3において、ステップS11では充電または放電が開始され、ステップS12では電池1の表面温度TBと空気温度T∞が計測される。ステップS13では、ステップS12により求めた表面温度TBに基づいて仮設定した初期値TBOが、使用限界温度Tmax(概ね70℃)を超えるか、充電または放電が終了と判断されるまで電池1の稼動を継続しステップS14以下のフローが繰返される。
【0009】
ステップS14でファン6が作動しているか否かの判断をする。まず、ファン6が作動していない場合について説明する。ステップS15でファンOFF時の内外温度差比率α1を用いて、推定される電池内部温度TBOを演算する。
【0010】
ステップS151で演算された電池内部温度TBOと設定値TF1(概ね40℃)とが比較され、TBO<TF1であればステップS12に戻り充電または放電を続ける。TBO>TF1であればファンをONにし、所定時間tだけON待機した後、ステップS12に戻る。次に、ファン8が作動している場合について説明する。
【0011】
ステップS16でファンON時の内外温度差比率α2を用いて、推定される電池内部温度TBOを演算する。ステップS161で演算された電池内部温度TBOと設定値TF2(概ね60℃)とが比較され、TBO>TF2であればステップS12に戻り充電または放電を続ける。TBO<TF2であればファンをOFFにし、所定時間tだけOFF待機の後、ステップS12に戻る。
【0012】
図4は、実施の形態1における電池内外各部の温度分布を示す図、図5は実施の形態1におけるファン出力と内外温度差比率αの関係を示す図である。図4、図5を用いて内外温度差比率α1、α2について説明する。ファン6からの送風によって電池1は表面から熱を奪われ、電池1の内外各部の温度は図4のような温度分布曲線によって変化する。ここで内外温度差の比率をαとすると
α=(TB−T∞)/(TBO−T∞)
このαは、図5に示すように電池の表面から冷却空気へ熱伝導率つまりファンの出力によって0から1の間を変動する。そこで、ファンの出力がOFFのときをα1、ONのときをα2とし、図1と同じ電池1、ケース8及びファン6を用いた実験に基づいてこのα1とα2を求める。すなわち、図13は、これによりファン出力Pと冷却空気流量Qとの関係を求めた図である。図14は、同じく実験によって求めた流量Qと熱伝達係数hとの関係を求めた図である。次に、電池1内部の熱伝導方程式を解くことにより、図13により熱伝導係数hと内外温度差比率α1、α2の関係を求める。
【0013】
図6、図7は、実施の形態1におけるファンOFFからON、またはONからOFFによる遅れ時間を示す図である。すなわち、図6では時間の経過と共に内外温度差比率はα1からα2に漸減し、図7では時間の経過と共に内外温度差比率はα2からα1に漸増する。これにより、ステップS153、S163に示したように、ファンのON、OFFから所定時間は、電池1の温度が安定しないので、その間に演算された電池1の内部温度TBOは、実際の内部温度とは相違が生ずる。そこで、t時間ONまたはt時間OFFの間は、α1またはα2の値を補正せずにフローの停止を行なわない。t時間ON、または、t時間OFFの値は電池1の熱物性値と形状によるが、厚さ24mmのリチウムイオン電池の場合で10sec程度で、電池1の温度上昇は、最大で1℃/min程度であることから上記による電池1への影響は殆ど生じない。
【0014】
以上のように計測した電池表面温度とファン6の出力により電池1の内部温度をより正確に求めることができる。図8に示すように、電池1の表面温度TBから電池内部温度TBOを予測しようとして安全性を考慮すると、TBO=TB+ΔTmaxとしてΔTは最大値を見込まざるを得ない。ΔTmaxはファン6の出力Pと電池表面温度と空気温度との温度差TB−T∞に比例するため、ファン6の出力はPmax、温度差は電池1の耐熱性を考えなければならない最低の空気温度T∞の場合で、図8中の×印の点となってしまう。つまり、電池1の内部温度を高く見積り過ぎて耐熱限度に達していないのにファン6を駆動するようになる。しかし、本実施の形態によれば、ファン6の出力と温度差によって変化するが、ΔTmax以下の適正値となり、充電または放電時間ををより長く継続することができる。このときのファン6の出力Pは空気流量Qにより代用することができる。
【0015】
〈実施の形態2〉
図9、図10を用いてこの発明の実施の形態2を説明する。本実施の形態は、図9に示すようなファン6制御を行なう場合である。図5に示すファン出力Pと内外温度差比率αの関係からステップS21でファン6の出力に応じたαを求め、ステップS22で電池1の内部温度TBOを演算する。ステップS23で内部温度TBOに対するファン6の出力に変更しステップS12へ戻る。ステップS13で充放電停止を判断する温度値は、ステップS22で求めた内部温度TBOを用いる。
【0016】
本実施の形態では、実施の形態1のようにファン出力のステップ変化がないため、フローチャートの中にステップS153、S163のような遅れ時間を設ける必要がなくなる。
【0017】
〈実施の形態3〉
図11、図12を用いて実施の形態3を説明する。図11において、線L1は電池の耐熱保証をするときの温度上昇線であり線L1の上の領域A1にある場合は電池の冷却が必要で、線L1の下の領域A2にある場合は電池が耐熱温度Tmaxに達しないと予測されるため冷却が必要ないと考えられる。本実施の形態では電池の内部温度TBOと電池の容量からステップS31で電池の状態が図11の領域A1とA2のどちらにあるか判定し、領域A1ならばファン6をON、領域A2ならばファン6をOFFとする制御を行なう。このような制御を行なう理由は、電池1の残容量によって温度上昇する値に限界が出てくるので、耐熱温度に達しないと予測される場合はファン6を停止してエネルギーの節約をはかるためである。
【0018】
以上説明してきたように、この発明によれば、その構成を電池の表面の温度とファンの出力による電池の内外温度差比率から電池内部温度を演算し、その値を用いてファン制御、充電または放電制御を行なう構成としたため、従来のようにファンによる電池の冷却効果が現れていないにも拘らず、ファンの駆動を停止させるといった不具合を生ずることなく電池を稼動することができ、充電量または放電量を増加する効果が得られる。
【図面の簡単な説明】
【図1】 本発明の2次電池の内部温度演算装置の実施の形態1のブロック図である。
【図2】 実施の形態1のファン制御を示す図である。
【図3】 実施の形態1のフローチャートである。
【図4】 実施の形態1における電池内外の温度分布を示す図である。
【図5】 実施の形態1におけるファン出力と内外温度差比率の関係を示す図である。
【図6】 実施の形態1におけるファンOFFからONによる遅れ時間を示す図である。
【図7】 実施の形態1におけるファンONからOFFによる遅れ時間を示す図である。
【図8】 本発明のファン出力と電池−空気の温度差の関係特性を示す図である。
【図9】 実施の形態2のファン制御を示す図である。
【図10】 実施の形態2のフローチャートを示す図である。
【図11】 実施の形態3の電池容量と電池内部温度の特性を示す図である。
【図12】 実施の形態3のフローチャートである。
【図13】 本発明の予備実験によるファン出力と空気流量の関係を求めた図である。
【図14】 本発明の予備実験による空気流量と熱伝達率の関係を求めた図である。
【図15】 本発明の予備実験による熱伝達率と電池の内外お温度差比率の関係を求めた図である。
【符号の説明】
1…電池 2…ジャンクションボックス
…充電器 4…放電器
5…コントローラ 6…ファン
7a…電池温度センサ 7b…空気温度センサ
8…ケース
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal temperature calculation device that calculates an internal temperature associated with operation of a secondary battery, that is, a battery that can be used by repeatedly charging and discharging.
[Prior art]
As a conventional secondary battery temperature detection device, it is usually considered to attach a sensor to the surface of the battery where the temperature is highest. It is also conceivable to install a sensor inside the secondary battery.
[Problems to be solved by the invention]
However, in such a conventional temperature detecting device for a secondary battery, the ambient temperature of the surface of the secondary battery (hereinafter simply abbreviated as a battery unless otherwise confused) is measured, and the inside of the battery is measured. When the sensor is attached to the battery, there is a problem that the internal temperature of the battery and the outside of the battery cannot be ensured in addition to the fact that the internal temperature of the battery cannot be accurately predicted for the reason described above.
[0002]
Therefore, a method of controlling the fan based on the value of TB + ΔT is considered, assuming that the difference between the surface temperature TB and the internal temperature TB0 is a predetermined value ΔT (a constant value). However, in such a method, when ΔT is different from the actual temperature difference, the cooling by the fan is stopped or the temperature inside the battery becomes low even though the inside of the battery is not sufficiently cooled. However, as a result of starting the cooling by the fan, there is a possibility that the battery is deteriorated or the battery performance cannot be sufficiently exhibited. An object of the present invention is to provide an internal temperature calculation device for a secondary battery that performs charge or discharge control of the secondary battery by paying attention to the problems of the prior art.
[0003]
[Means for Solving the Problems]
The above-described problem is achieved by calculating the battery internal temperature from the battery surface temperature and the fan output, and performing fan air blowing control and battery charge / discharge control using the calculated values. The cooling effect on the secondary battery installed and operating inside the wind tunnel fan case varies depending on the amount of air blown by the fan (fan output) and the temperature of the blown air. That is, the same battery 1 as described later Fig. 1, carried out an experiment based on experimental apparatus using the casing 8 and the fan 6, as shown in FIGS. 13 to 15, the cooling air flow amount Q from the output P of the fan 6 determined, then determine the heat transfer coefficient h from the cooling air flow quantity Q, further obtains the inside and outside temperature difference ratio α by the fan 6 from the heat transfer coefficient h. Thus, the internal / external temperature difference ratio α1 when the output P of the fan 6 is 0 and the internal / external temperature difference ratio α2 when the output P is the maximum value are calculated, and the internal temperature is calculated from the surface temperature of the battery 1. . In short, the present invention measures the surface temperature of the battery 1 installed in the case 8 according to the above-described procedure, calculates the internal temperature of the battery 1 from the surface temperature, and thereby controls the air flow of the fan 6 appropriately. The discharging or charging control of the battery 1 is executed.
[0004]
That is, according to the present invention, as described in the claims, the means for measuring the battery surface temperature of the secondary battery, the means for measuring the amount of air blown to the battery, and the air blown by the fan A means for measuring the temperature; a means for measuring the surface temperature of the battery; a means for measuring the amount of blown air; and a means for calculating the internal temperature of the battery from measurement values obtained by the means for measuring the blown air temperature. It is the internal temperature calculating apparatus of the secondary battery characterized.
[0005]
【The invention's effect】
The present invention calculates the internal temperature of the battery from the temperature of the battery surface and the fan output, and uses the value to control the fan air blowing, the battery charging and discharging, the fan efficiency is improved, The effect of increasing the charge amount or discharge amount of the secondary battery is obtained.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a detailed description will be given based on the embodiment of the present invention.
[0007]
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS. First, the configuration of the present embodiment will be described. In FIG. 1, reference numeral 1 denotes a battery, which is connected to a charger 3 and a discharger 4 via a junction box 2. Switching is performed in the junction box 2 so that the battery 1 and the charger 3 are connected during charging, and the battery 1 and the discharger 4 are connected during discharging. Battery 1 around is covered in case 8, it is possible to manage the temperature of the battery 1 by the fan 6 for air blowing. The surface temperature of the battery 1 itself and the temperature of the atmosphere around the battery 1 are constantly measured by the battery temperature sensor 7a and the air temperature sensor 7b. The measurement signals of the battery temperature sensor 7a and the air temperature sensor 7b are input to the controller 5, and signals can be sent to the charger 3, the discharger 4 and the fan 6 by the calculation of the controller 5 for control.
[0008]
Next, the operation will be described. FIG. 2 is a diagram showing the control action of the fan. In this embodiment, when the battery is cooled, it is turned on when the battery temperature rises above a certain set value T F2 , and falls below a certain set value T F1 . It shows the control action to turn off. FIG. 3 is a diagram showing a control flow when the fan of FIG. 2 is controlled under the configuration of FIG. In FIG. 3, charging or discharging is started in step S11, and the surface temperature TB and air temperature T∞ of the battery 1 are measured in step S12. In step S13, the operation of the battery 1 is continued until the initial value TBO temporarily set based on the surface temperature TB obtained in step S12 exceeds the use limit temperature Tmax (approximately 70 ° C.) or it is determined that charging or discharging is finished. And the flow after step S14 is repeated.
[0009]
In step S14, it is determined whether or not the fan 6 is operating. First, the case where the fan 6 is not operating will be described. In step S15, the estimated battery internal temperature TBO is calculated using the internal / external temperature difference ratio α1 when the fan is OFF.
[0010]
The battery internal temperature TBO calculated in step S151 is compared with a set value TF1 (approximately 40 ° C.), and if TBO <TF1, the process returns to step S12 to continue charging or discharging. If TBO> TF1, the fan is turned on, waits for ON for a predetermined time t, and then returns to step S12. Next, the case where the fan 8 is operating will be described.
[0011]
In step S16, the estimated battery internal temperature TBO is calculated using the internal / external temperature difference ratio α2 when the fan is ON. The battery internal temperature TBO calculated in step S161 is compared with the set value TF2 (approximately 60 ° C.). If TBO> TF2, the process returns to step S12 to continue charging or discharging. If TBO <TF2, the fan is turned off, and after waiting for OFF for a predetermined time t, the process returns to step S12.
[0012]
FIG. 4 is a diagram showing the temperature distribution of each part inside and outside the battery in the first embodiment, and FIG. 5 is a diagram showing the relationship between the fan output and the internal / external temperature difference ratio α in the first embodiment. The internal and external temperature difference ratios α1 and α2 will be described with reference to FIGS. The battery 1 is deprived of heat from the surface by the air blown from the fan 6, and the temperature of each part inside and outside the battery 1 changes according to a temperature distribution curve as shown in FIG. If the ratio of the temperature difference between inside and outside is α,
α = (TB−T∞) / (TBO−T∞)
As shown in FIG. 5, α varies between 0 and 1 depending on the thermal conductivity from the battery surface to the cooling air, that is, the fan output. Therefore, α1 when the fan output is OFF and α2 when the fan output is ON, and α1 and α2 are obtained based on the experiment using the same battery 1, case 8, and fan 6 as in FIG. That is, FIG. 13 is a diagram in which the relationship between the fan output P and the cooling air flow rate Q is obtained. FIG. 14 is a diagram in which the relationship between the flow rate Q and the heat transfer coefficient h obtained by the same experiment is obtained. Next, by solving the heat conduction equation inside the battery 1, the relationship between the heat conduction coefficient h and the internal / external temperature difference ratios α1 and α2 is obtained from FIG.
[0013]
FIG. 6 and FIG. 7 are diagrams showing delay times due to fan OFF to ON or ON to OFF in the first embodiment. That is, in FIG. 6, the internal / external temperature difference ratio gradually decreases from α1 to α2 as time passes, and in FIG. 7, the internal / external temperature difference ratio gradually increases from α2 to α1 as time passes. As a result, as shown in steps S153 and S163, the temperature of the battery 1 is not stable for a predetermined time after the fan is turned on and off. Therefore, the internal temperature TBO of the battery 1 calculated during that time is equal to the actual internal temperature. Makes a difference. Therefore, during the t time ON or the t time OFF, the flow is not stopped without correcting the value of α1 or α2. The value of t time ON or t time OFF depends on the thermophysical property value and shape of the battery 1, but in the case of a lithium ion battery having a thickness of 24 mm, the temperature rise of the battery 1 is 1 ° C./min at the maximum. Therefore, the battery 1 is hardly affected by the above.
[0014]
The internal temperature of the battery 1 can be obtained more accurately from the battery surface temperature measured as described above and the output of the fan 6. As shown in FIG. 8, in consideration of safety in order to predict the battery internal temperature TBO from the surface temperature TB of the battery 1, ΔT must be expected to have a maximum value as TBO = TB + ΔTmax. Since ΔTmax is proportional to the temperature difference TB−T∞ between the output P of the fan 6, the battery surface temperature, and the air temperature, the output of the fan 6 is Pmax, and the temperature difference is the lowest air that must consider the heat resistance of the battery 1. In the case of the temperature T∞, it becomes a point marked with x in FIG. That is, the fan 6 is driven even though the internal temperature of the battery 1 is overestimated and does not reach the heat resistance limit. However, according to the present embodiment, although it varies depending on the output of the fan 6 and the temperature difference, it becomes an appropriate value equal to or less than ΔTmax, and the charging or discharging time can be continued longer. The output P of the fan 6 at this time can be substituted by the air flow rate Q.
[0015]
<Embodiment 2>
A second embodiment of the present invention will be described with reference to FIGS. In this embodiment, the fan 6 is controlled as shown in FIG. In step S21, α corresponding to the output of the fan 6 is obtained from the relationship between the fan output P and the internal / external temperature difference ratio α shown in FIG. 5, and the internal temperature TBO of the battery 1 is calculated in step S22. In step S23, the output of the fan 6 is changed to the internal temperature TBO, and the process returns to step S12. The internal temperature TBO obtained in step S22 is used as the temperature value for determining whether to stop charging / discharging in step S13.
[0016]
In the present embodiment, there is no step change in the fan output as in the first embodiment, so that it is not necessary to provide a delay time such as steps S153 and S163 in the flowchart.
[0017]
<Embodiment 3>
The third embodiment will be described with reference to FIGS. In FIG. 11, a line L1 is a temperature rise line for guaranteeing the heat resistance of the battery. When it is in the area A1 above the line L1, the battery needs to be cooled, and when it is in the area A2 below the line L1. Since it is predicted that the battery does not reach the heat resistant temperature Tmax, it is considered that cooling is not necessary. In the present embodiment, it is determined in step S31 from the internal temperature TBO of the battery and the capacity of the battery whether the battery state is in the area A1 or A2 in FIG. Control to turn off the fan 6 is performed. The reason why such control is performed is that the temperature rises depending on the remaining capacity of the battery 1, and therefore, if it is predicted that the heat resistant temperature will not be reached, the fan 6 is stopped to save energy. It is.
[0018]
As described above, according to the present invention, the battery internal temperature is calculated from the battery surface temperature and the battery internal / external temperature difference ratio based on the fan output, and the fan control, charging or Since it is configured to perform discharge control, the battery can be operated without causing a problem such as stopping the driving of the fan despite the fact that the cooling effect of the battery by the fan does not appear as in the conventional case. The effect of increasing the discharge amount is obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram of Embodiment 1 of an internal temperature calculation device for a secondary battery of the present invention.
FIG. 2 is a diagram illustrating fan control according to the first embodiment.
FIG. 3 is a flowchart according to the first embodiment.
4 is a diagram showing a temperature distribution inside and outside the battery according to Embodiment 1. FIG.
5 is a diagram showing a relationship between fan output and internal / external temperature difference ratio in Embodiment 1. FIG.
FIG. 6 is a diagram showing a delay time due to turning off the fan in the first embodiment.
FIG. 7 is a diagram illustrating a delay time due to fan ON to OFF according to the first embodiment.
FIG. 8 is a graph showing the relationship between the fan output of the present invention and the battery-air temperature difference.
FIG. 9 is a diagram illustrating fan control according to the second embodiment.
FIG. 10 is a diagram showing a flowchart of the second embodiment.
11 is a graph showing characteristics of battery capacity and battery internal temperature according to Embodiment 3. FIG.
FIG. 12 is a flowchart of the third embodiment.
FIG. 13 is a diagram showing the relationship between fan output and air flow rate in a preliminary experiment of the present invention.
FIG. 14 is a diagram showing the relationship between the air flow rate and the heat transfer coefficient according to the preliminary experiment of the present invention.
FIG. 15 is a graph showing a relationship between a heat transfer coefficient and a temperature difference ratio between the inside and outside of a battery according to a preliminary experiment of the present invention.
[Explanation of symbols]
1 ... Battery 2 ... Junction box
DESCRIPTION OF SYMBOLS 3 ... Charger 4 ... Discharger 5 ... Controller 6 ... Fan 7a ... Battery temperature sensor 7b ... Air temperature sensor 8 ... Case

Claims (5)

2次電池の表面温度と、
前記2次電池に対するファンの送風量及び送風温度と、
前記ファンの送風による前記2次電池の内外温度差比率と
から前記2次電池の内部温度を演算することを特徴とする2次電池の内部温度演算装置
The surface temperature of the secondary battery;
The blowing amount and blowing temperature of the fan for the secondary battery;
Internal temperature calculating unit of the secondary battery, characterized by calculating the internal temperature of the secondary battery from the inner and outer temperature difference ratio of the secondary battery by the air supply of the fan.
2次電池の表面温度を計測する手段と、
前記2次電池に送風するファンの送風量を計測する手段と、
前記ファンによる送風空気温度を計測する手段と、
前記2次電池の表面温度の計測手段、前記送風量の計測手段、及び前記送風空気温度の計測手段による計測値から前記2次電池の内部温度を演算すべき演算手段
を備えたことを特徴とする請求項1記載の2次電池の内部温度演算装置
Means for measuring the surface temperature of the secondary battery ;
Means for measuring the amount of air blown by the fan that blows air to the secondary battery;
Means for measuring the temperature of air blown by the fan;
Measuring means of the surface temperature of the secondary battery, the air volume of the measuring means, and includes a <br/> arithmetic should do arithmetic means the internal temperature of the secondary battery from the measured value by the blowing air temperature measuring means The internal temperature calculation device of the secondary battery according to claim 1, wherein
前記ファンに対するオンオフ制御手段を有することを特徴とする請求項1記載の2次電池の内部温度演算装置2. The secondary battery internal temperature calculation device according to claim 1, further comprising an on / off control means for the fan. 前記2次電池の表面温度の計測値に対して前記ファンの送風出力を1次変化させる制御手段を有することを特徴とする請求項1記載の2次電池の内部温度演算装置2. The internal temperature calculation device for a secondary battery according to claim 1, further comprising a control unit that primarily changes the blower output of the fan with respect to the measured value of the surface temperature of the secondary battery. 前記2次電池の容量に応じて前記ファンの送風出力の制御を行なう制御手段を有することを特徴とする請求項1記載の2次電池の内部温度演算装置2. The internal temperature calculation device for a secondary battery according to claim 1, further comprising control means for controlling the blower output of the fan according to the capacity of the secondary battery.
JP5569996A 1996-03-13 1996-03-13 Internal temperature calculation device for secondary battery Expired - Fee Related JP4032436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5569996A JP4032436B2 (en) 1996-03-13 1996-03-13 Internal temperature calculation device for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5569996A JP4032436B2 (en) 1996-03-13 1996-03-13 Internal temperature calculation device for secondary battery

Publications (2)

Publication Number Publication Date
JPH09245846A JPH09245846A (en) 1997-09-19
JP4032436B2 true JP4032436B2 (en) 2008-01-16

Family

ID=13006154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5569996A Expired - Fee Related JP4032436B2 (en) 1996-03-13 1996-03-13 Internal temperature calculation device for secondary battery

Country Status (1)

Country Link
JP (1) JP4032436B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045853A1 (en) * 2009-10-14 2011-04-21 株式会社 日立製作所 Battery control device and motor drive system
JP6760119B2 (en) * 2017-02-06 2020-09-23 住友電気工業株式会社 Battery temperature estimation device, battery temperature estimation method and computer program
JP7167116B2 (en) * 2020-12-01 2022-11-08 プライムプラネットエナジー&ソリューションズ株式会社 Estimation system, estimation device, power supply, and estimation method
CN113791655B (en) * 2021-08-23 2022-12-02 深圳市科陆电子科技股份有限公司 Temperature difference control method, device and equipment for energy storage system and storage medium

Also Published As

Publication number Publication date
JPH09245846A (en) 1997-09-19

Similar Documents

Publication Publication Date Title
CN109755987B (en) Battery charging method, battery charger and charging combination
US7154068B2 (en) Method and system for a vehicle battery temperature control
JP4872143B2 (en) Cooling device for secondary battery
US8741456B2 (en) Battery temperature control apparatus and battery temperature control method
US7514904B2 (en) System and method for determining battery temperature
GB2413224A (en) Battery charge management
JP2011152840A (en) Vehicle battery temperature adjusting device and temperature adjusting method of vehicle battery
JP3733602B2 (en) Battery cooling system
JP2014051264A (en) Battery cooling-heating control system and control method
JP4269871B2 (en) Battery charger
KR20120112194A (en) System and method for controlling heat transfer timing
JPH0919074A (en) Charging control system
JP4383596B2 (en) Battery internal temperature detection device
JP4032436B2 (en) Internal temperature calculation device for secondary battery
JPH10174297A (en) Discharge control method for storage battery, and its device
JPH1012287A (en) The lowest temperature detecting device of secondary battery
JPH09161853A (en) Temperature controller of secondary battery
JPH1175327A (en) Charging of battery unit and device therefor
JPH0992347A (en) Battery cooling device
JPH08154304A (en) Regenerative brake for electric vehicle
JPH10201124A (en) Charging system of power storing means
JP2001257010A (en) Method of condition determination of secondary battery and device
JP2000154931A (en) Unit for computing set value of supply air temperature for air conditioner
JPS62134439A (en) System for controlling sets of heat source devices
KR19980019836A (en) Method and apparatus for removing water / dust by a cooling fan of an electric vehicle battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees