JP4031867B2 - Hydrostatic air bearing device - Google Patents

Hydrostatic air bearing device Download PDF

Info

Publication number
JP4031867B2
JP4031867B2 JP16878198A JP16878198A JP4031867B2 JP 4031867 B2 JP4031867 B2 JP 4031867B2 JP 16878198 A JP16878198 A JP 16878198A JP 16878198 A JP16878198 A JP 16878198A JP 4031867 B2 JP4031867 B2 JP 4031867B2
Authority
JP
Japan
Prior art keywords
bearing
pressure
air
gap
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16878198A
Other languages
Japanese (ja)
Other versions
JP2000002243A (en
Inventor
芳夫 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP16878198A priority Critical patent/JP4031867B2/en
Publication of JP2000002243A publication Critical patent/JP2000002243A/en
Application granted granted Critical
Publication of JP4031867B2 publication Critical patent/JP4031867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、静圧空気軸受装置に関するものであり、より具体的に説明すると、例えば、半導体ウエハー研削用高速スピンドル装置のような精密加工機や精密検査機に組み込んで使用する静圧空気軸受装置の改良に関するものである。
【0002】
【従来の技術】
静圧空気軸受は、可動部と固定部の間に微小な軸受隙間を設け、絞り弁などの圧力調整手段を介して圧縮空気を上記軸受隙間に導入し、軸受隙間内に導入された高圧空気の圧力によって、可動部を固定部に対して非接触状態に支持している。静圧空気軸受は、在来のオイル潤滑方式の軸受と比較したとき、摩擦抵抗が極めて少なく、また、所謂、平均化効果によって、軸受面の形状精度より高い案内精度が得られるため、精密加工機や精密検査機のスピンドルや直進案内装置などの軸受装置として使用され、その有用性が評価されている。
【0003】
静圧空気軸受に組み込まれる圧力調整手段としては、軸受面に微細な穴を開口させた自成絞り、および、オリフイス絞り、狭い隙間の流路抵抗を利用するスロット絞り、多孔質材料の連通孔を利用する多孔質絞り、軸受面に給気源に連通する浅溝を設け、流れ方向の流路抵抗に変化を持たせる表面絞りなどが実用化されている。
【0004】
【発明が解決しようとする課題】
静圧空気軸受は、低粘性で圧縮性のある気体、例えば、空気を潤滑媒体としてして使用しているため、上記の利点が評価される反面、オイル潤滑方式の軸受に比較して支持剛性や振動の減衰性能が低く、使用可能な産業分野が制約されるという問題点が指摘されている。このため、近年、加工または検査対象物に一層の精度向上が要求されるのに従って、静圧空気軸受においても、支持剛性や振動減衰性能の向上が強く要望されつつある。
【0005】
このような要望に答えるため、静圧空気軸受の支持剛性を高める手段として、自成絞りやオリフイス絞りと浅溝を組み合わせた複合絞りが提案されているが、浅溝の容積を大きくすると、振動の減衰性能が低下し、浅溝の容積が一定の限界を越えると、自励振動が発生するという問題が指摘されている。一方、軸受給気圧を上げる方式も検討されているが、この方式を採用した場合、支持剛性が比例的に高まる反面、振動減衰性能の低下が避け難いという問題が付随する。別法として、軸受隙間を狭めることによって、支持剛性と減衰係数の両方を改善する方式も提案されているが、軸受隙間を狭めた場合、温度上昇に伴う軸受構成部材の熱変形などの影響が大きくなり、安定した軸受性能が得られなくなる。また、軸受隙間を狭目に設定した場合、軸受構成部材の寸法精度や形状精度を厳密に管理する必要があり、静圧空気軸受の製作コストが高騰してしまう。
【0006】
本発明は、支持剛性と振動の減衰性能を共に向上させた、高精度の静圧空気軸受の提供を主要な目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、軸受隙間と隣接状態で、圧縮空気の貯留空間(以下、加圧空間と称する。)を設け、この加圧空間内に供給された圧縮空気の圧力を、周囲の雰囲気圧より高圧に保持することによって、軸受隙間全体の圧力を上げ、これによって静圧空気軸受装置の支持剛性と振動減衰性能を向上させるものである。
具体的には、請求項1に記載のとおり、固定部と可動部に互いに対向する軸受面を設け、上記2つの軸受面の間に形成された軸受隙間に給気絞りを介して圧縮空気を供給し、上記固定部に対して可動部を非接触状態に保持した静圧空気軸受において、上記軸受隙間の軸方向両側に、上記軸受隙間と連通し、かつ、その内部に導入される圧縮空気の圧力を周囲の雰囲気圧力よりも高圧に設定し得る加圧空間を形成し、上記固定部側に上記加圧空間と連通する給気管路を設け、この給気管路を圧力調整手段を介して圧縮空気源に接続したことを特徴とする。
【0008】
本発明は、また、自成絞り、オリフィス絞り、多孔質絞りなどの給気圧力調整手段を軸受面に配置した両面対型の静圧空気スラスト軸受において、一方のスラスト板の内周側または外周側に設けられた軸受隙間出口部と隣接状態で、軸受部材の固定部と可動部との間に、軸受隙間および非接触シール部を介して軸受装置の外部と隔離された加圧空間を形成し、この加圧空間内に供給された圧縮空気の圧力を、周囲の雰囲気圧より高圧に保持することによって、軸受隙間全体の圧力を上げ、これによって静圧空気スラスト軸受の支持剛性と振動減衰性能を向上させるものである。
具体的には、請求項2に記載のとおり、両面対向型のスラスト板を具えた静圧空気スラスト軸受装置において、上記スラスト板の内周側または外周側に設けられた軸受隙間出口部と隣接状態で、軸受部材の固定部と主軸部材の可動部との間に、軸受隙間および非接触シール部を介して当該軸受装置の外部と隔離された加圧空間を形成し、かつ、上記軸受隙間の入口部に、圧縮空気源から上記加圧空間内に圧縮空気を導入するための給気管路を接続し、この給気管路に、上記加圧空間に流入する圧縮空気圧力の調整手段を設けたことを特徴とする。
【0009】
軸受隙間と隣接状態で、加圧空間を設け、この加圧空間に供給される圧縮空気の圧力を周囲の雰囲気圧力よりも高圧に保持することによって、軸受隙間全体の圧力を上げ、これによって静圧空気軸受装置の支持剛性と振動減衰性能を向上させる。本発明は静圧空気ラジアル軸受装置と静圧空気スラスト軸受装置の両方に適用して上記の効果を達成することができる。
【0010】
【発明の実施の形態】
以下、明細書に添付した図1〜図14を参照しながら本発明の実施の形態を説明する。
【0011】
まず、図1は本発明をラジアル軸受に適用した場合であって、図1(A)に示すように、軸(1)の外径面と軸受部(2)の内径面は、微小な軸受隙間(3)を介して対向し、軸受面に連通する複数個の給気絞り(4)に圧縮空気源(図示せず)から圧縮空気を供給することによって、静圧空気ラジアル軸受を構成している。軸受部(2)の軸方向両端には、円周溝状の加圧空間(5)(5') が設けられ、加圧空間(5)(5')は、非接触シール部(6)(6')によって軸受外部の空間と仕切られている。非接触部のシール隙間(7)(7')は、軸受隙間(3)と同程度の微小隙間であり、軸受隙間(3)から流出する軸受排気は、シール隙間(7)(7')で絞られることによって、加圧空間(5)(5')の内部圧力を軸の外部の雰囲気圧よりも高圧に保持している。
【0012】
このような加圧空間を設けることによって、図1(B)に斜線で示すように、本発明の静圧空気軸受では、従来型の静圧空気軸受に比較して、軸受隙間全体の圧力が高くなり、振動の減衰性能が改善される。図1(B)中、圧力分布を示す折れ線のうち、実線は加圧空間(5)(5')を設けた場合、点線は加圧空間を設けない場合の圧力分布をそれぞれ示している。シール隙間(7)(7')から流出する空気は、ハウジング(8)に設けた排気管路(9)(9')から系外に排出される。したがって、シール隙間(7)(7')出口の空気圧は、雰囲気圧と等しくなる。
【0013】
加圧空間(5)(5')の圧力が円周方向に沿って一定でないと、不安定振動が発生するおそれがあるので、加圧空間(5)(5')の寸法は、円周方向に沿う流路抵抗が軸受隙間に比べて無視し得る程度に大きくなるように選定する必要がある。給気絞り(4)は、図1においては自成絞りとして例示したが、静圧空気軸受で一般に使用されるオリフイス絞り、多孔質絞り、表面絞り、スロット絞り、給気孔絞り(自成絞り、または、オリフイス絞り)と浅溝からなる複合絞りなど、他の絞り方式も利用可能である。
【0014】
図1に示す構成では、軸受の寸法諸元と非接触シール部(6)(6')の隙間寸法が決まれば、加圧空間(5)(5')の内部の空気圧力は一定値に維持される。一方、軸受面に設ける給気絞り(4)の給気側と軸受隙間(3)側の圧力の比が、ある最適値を取る時に、静圧空気軸受の静剛性は最大になる。このため、加圧空間(5)(5')に圧力調整弁(図示せず)を介して圧縮空気を供給することによって、加圧空間(5)(5')内の空気圧を調整すれば、軸受面の給気絞り(4)の圧力比を最適値に近づけることが可能になり、支持剛性の高い静圧空気軸受が得られる。
【0015】
また、使用中に加圧空間(5)(5')内の空気圧を調整することによって、軸受特性を調整することも可能になる。ただし、軸受面の給気絞り(4)を正常に作動させて静圧空気軸受の静剛性を高めるためには、加圧空間(5)(5')内に圧縮空気を導入する時、加圧空間(5)(5')内の空気圧は、軸受面の給気絞り(4)出口部での圧力が、静圧空気軸受への供給圧力よりも低くなる範囲に制御する必要がある。また、軸受隙間(3)の変化に対応して、加圧空間(5)(5')の内部圧力が変化すると、加圧空間(5)(5')における圧力変化の遅れが逆に振動の減衰性能を低下させ、自励振動の原因にもなる。圧力調整手段、例えば、給気絞り(4)の作動によって加圧空間(5)(5')の内部圧力の変化を抑えれば、自励振動の発生を防止し、振動の減衰性能を向上させることができる。なお、加圧空間(5)(5')への給気管路は、断面積を十分に大きくして、絞り作用を発生させないようにする必要がある。
【0016】
図2は、加圧空間(5)(5')に圧力調節弁(11)を介して圧縮空気源につながる給気管路(10)を接続し、加圧空間(5)(5')の内部圧力を調整可能にした静圧空気ラジアル軸受を示す。給気絞りとして、この実施例では、軸(1)の軸線と直交方向に延びる狭少隙間(12) の絞り作用を利用するスロット絞りが設けられている。
【0017】
また、図3は、加圧空間(5)(5')に、絞り弁(13)を介して静圧空気軸受外に延びる排気管路(14)を接続し、加圧空間(5)(5')から軸受の外部空間に向かって流出する排気を絞ることによって、加圧空間(5)(5')の内部圧力を調整可能にした比較例を示す。給気絞りとしては、通気性のある多孔質材料(15)を利用した多孔質絞りが使用されている。
【0018】
図1に示す実施例では、加圧空間(5)(5')を静圧空気軸受の軸方向に沿う両端に設けたが、用途によっては、片側のみに設けるだけで十分な振動減衰効果が得られる場合がある。また、給気孔絞りや複合絞り、スロット絞りなど、軸受面の限られた範囲で、圧縮空気が流入するタイプの絞りを採用した静圧空気軸受で、片側に加圧空間を設ける場合には、加圧空間と反対側の、圧力が周囲の雰囲気圧と等しい方の軸受隙間出口の近傍に給気絞りを設けることによって、加圧空間の形成によって軸受隙間(3)の圧力が上がった場合でも、給気絞りの給気側と軸受隙間側の圧力比を最適値に近付けることができる。
【0019】
図4は、静圧空気ラジアル軸受の一方の軸受端に非接触シール部(17)および加圧空間(16)を設け、給気絞り(18)および浅い円周溝(19)からなる複合絞りを他方の軸受端寄りに設けた比較例を示す。
【0020】
図5は、静圧空気スラスト軸受(24)の外形側に加圧空間(21)および非接触シール部(20)を設け、給気絞り(23)を内径側寄りに設けた比較例を示す。空気管路(22)を介して、加圧空間(21)と圧力調整手段(図示せず)とを接続し、加圧空間(21)内の圧力を一定に維持することが望ましい。
【0021】
次に、複数個の静圧空気軸受を隣接配置して使用する場合について説明する。この場合には、それぞれの軸受隙間が、非接触シール部としての作用を持つため、特別に非接触シール部を設ける必要性は認められない。
【0022】
図6は、隣接配置された2個の静圧空気ラジアル軸受(28)(29)の間の円周溝状の空間(27)を加圧空間に構成した実施例を示す。
【0023】
図7は、両面対向型静圧空気スラスト軸受(30)(31)の外形側に加圧空間(32)を設けた場合を示す。両面対向型の静圧空気スラスト軸受では、軸の変位に伴う圧力の変化は、逆向き(一方の圧力が上がると、他方の圧力は下がる)になるので、両面の加圧空間(32)を共通化し、加圧空間(32)の圧力変化を抑えることによって、自励振動の発生を抑制する。図7に点線で示すように、この比較例では、加圧空間(32)用の圧力調整手段を設けることも可能である。
【0024】
図8は、隣接するスラスト軸受(38)とラジアル軸受(37)の間に加圧空間(39)を設け、さらに、加圧空間(39)と圧力調整手段とを連通する給気管路(40)(41)(42)を設けた実施例を示す。
【0025】
図9および図10は、本発明を、静圧空気軸受方式の直動案内装置に適用した実施例を示す。図10は図9のX−X線から見た図である。直動案内装置の場合、固定ガイド部材の一つの面に対向して、移動テーブル側に溝で区切られた複数個の軸受(43)(49)を設ける場合が多い。これらの軸受部に、軸受給気管路(44)から圧縮空気が供給される。これらの軸受を囲む形で、非接触シール部(45)(48)を設けることによって、加圧空間を構成することができる。さらに、各面の加圧空間を空気管路(47)を介して圧力調整手段(図示せず)に接続し、各加圧空間の圧力を一定の値に維持する。
【0026】
本発明によれば、溝などによらずに、軸受隙間の平均圧力を高めることができるため、従来の静圧空気軸受に比較して振動の減衰性能が良好で、外乱に強い、高精度の静圧空気軸受装置が提供される。
【0027】
図11は、本発明を適用した静圧空気スラスト軸受を示す。また、図12は、その部分拡大縦断面図を示す。ラジアル軸受(52)(53)およびスラスト軸受(54)(55)には、軸受隙間に開口する微細な絞り孔(56)(57)(58)(59)と連通する浅い円周溝(60)(61)(62)(63)が設けられており、軸受給気管路(64)(65)(66)などを経由して圧縮空気を供給すると、主軸(51)が軸受に対して非接触状態で支持される。各軸受隙間から流出する圧縮空気は、排気孔(67)(68)などを経由して静圧空気軸受外に排出される。ラジアル軸受側のスラスト軸受(54)の軸受隙間出口部に設けられた加圧空間(69)には、一定の圧力に調整された圧縮空気が、軸受給気管とは別に設けられた給気管路(70)(71)を通って供給される。給気管路(71)は、加圧空間(69)の内部圧力を圧縮空気の供給圧力と等しく保つのに十分な流路面積を確保するため、円周方向に沿い複数個所に設ける。このため、加圧空間(69)の内部圧力が周囲の雰囲気圧よりも高くなり、これに伴って軸受隙間の圧力が上昇するので、スラスト軸受(54)の軸受反力が大きくなる。この結果、主軸のスラスト板(72)は、スラスト軸受(55)側に移動し、両面のスラスト軸受(54)(55)の軸受反力が釣り合う位置に静止する。したがって、スラスト軸受(55)の軸受隙間は、従来よりもかなり狭く設定することが可能になり、絞りの種類や寸法諸元を、この狭い軸受隙間に対応して選択すれば、軸受の支持剛性および振動の減衰性能を飛躍的に向上させることができる。また、スラスト軸受(54)は、軸受隙間が広くなるが、軸受隙間の平均圧力が高くなっているため、振動の減衰係数はあまり低下せず、絞り弁の寸法諸元の最適化によって、支持剛性、減衰係数の低下を最低限度に抑制することが可能になる。したがって、本発明は、2個のスラスト軸受(54)(55)を合わせた支持剛性、振動減衰係数の改善に大きく寄与し、高精度の静圧空気軸受装置を実現することができる。軸受隙間の出口圧力を上昇させた側のスラスト軸受(54)は、給気圧力を上げた場合でも、軸受隙間の出口側の圧力を比例的に上昇させることによって、振動の減衰係数を従来と略同一のレべルに維持することが可能となるから、軸受給気圧を上げて高性能化を図る場合には、特に顕著な効果が認められる。
【0028】
図11では、加圧空間(69)に一定圧力の圧縮空気を供給する実施例を説明したが、軸受排気を制限することによっても、加圧空間(69)の内部圧力を周囲の雰囲気圧力よりも高圧に維持することができる。この場合は、給気管路(70)に適切な絞り弁を介在させ、この絞り弁を介して軸受排気を静圧空気軸受装置の外部に排出する。
【0029】
軸受の絞り型式については、図11では、加圧空間(69)の圧力調整手段として、絞り孔と軸受面に設けた浅溝からなる複合絞りを使用した実施例が説明されているが、この他、静圧空気軸受装置に一般的に用いられている自成絞り、オリフイス絞り、スロット絞り、多孔質絞りなどを使用することができる。
【0030】
図13は、ラジアル軸受と反対側のスラスト軸受(81)の内周側の加圧空間(82)の内部圧力を上げ、ラジアル軸受側のスラスト軸受(84)の軸受隙間を狭くした実施例を示す。加圧空間(82)は、給気管路(83)を介して圧力調整手段(図示せず)に接続されている。圧力調整手段としては、一定圧力に調整した圧縮空気源、または、加圧空間(82)からの軸受排気を制限する絞り弁のいずれかが使用可能である。
【0031】
図14は、2枚のスラスト板(91)(92)で、ハウジング(93)を挟み込む型式の両面対向型静圧空気スラスト軸受を示し、一方のスラスト軸受(94)の外周部に微小な隙間による非接触部(95)を利用して加圧空間(96)を構成し、これによって、他方のスラスト軸受(97)の軸受隙間を小さくしている。
【0032】
【発明の効果】
本発明によれば、溝などによらずに、軸受隙間の平均圧力を上げることができるので、従来の静圧空気軸受装置よりも振動の減衰性能が良好で、外乱に強い高精度の静圧空気軸受装置が取得される。
【0033】
また、両面対向型静圧空気スラスト軸受装置に本発明を適用した場合には、当該スラスト軸受の一方の軸受隙間を小さくし、他方の軸受隙間圧力を高めることによって、支持剛性と振動減衰係数の大きな高精度の静圧空気スラスト軸受装置が取得される。また、両方のスラスト軸受隙間の合計値は、従来の軸受装置と同程度に維持されているので、軸受構成部材の寸法管理も容易である。さらに、熱変形によって軸受隙間に関連する寸法が変化したような場合でも、隙間が小さい方の軸受が高い剛性を保持しているため、寸法の変化の殆どすべてが隙間の大きい方の軸受で吸収される。この結果、軸受とスラスト板との接触が回避され、性能の安定した信頼性の高い両面対向型静圧空気スラスト軸受装置が提供される。
【0034】
また、加圧空間の内部圧力を調整することによって、軸受特性を変化させることができるから、運転条件の変化に対応して最適な軸受特性を設定することが可能となる。
【図面の簡単な説明】
【図1】 (A)は本発明の実施の形態を示す静圧空気軸受装置の部分縦断面図、(B)は圧力分布図である。
【図2】 別の実施の形態を示す部分縦断面図である。
【図3】 比較例を示す部分縦断面図である。
【図4】 比較例を示す部分縦断面図である。
【図5】 比較例を示す部分縦断面図である。
【図6】 別の実施の形態を示す部分縦断面図である。
【図7】 比較例を示す部分縦断面図である。
【図8】 別の実施の形態を示す部分縦断面図である。
【図9】 別の実施の形態を示す縦断面図である。
【図10】 図9のX−X線から見た図である。
【図11】 別の実施の形態を示す縦断面図である。
【図12】 図11の部分拡大図である。
【図13】 別の実施の形態を示す縦断面図である。
【図14】 別の実施の形態を示す縦断面図である。
【符号の説明】
3 軸受隙間
5,5',16,21,27,32,39 加圧空間
6,6',17,20,45,48 非接触シール部
[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static pressure air bearing device, and more specifically, for example, a static pressure air bearing device used in a precision processing machine or precision inspection machine such as a high-speed spindle device for semiconductor wafer grinding. It is about improvement.
[0002]
[Prior art]
The hydrostatic air bearing has a small bearing gap between the movable part and the fixed part, introduces compressed air into the bearing gap via a pressure adjusting means such as a throttle valve, and the high pressure air introduced into the bearing gap. The movable part is supported in a non-contact state with respect to the fixed part by the pressure of. Hydrostatic air bearings have extremely low frictional resistance when compared with conventional oil lubricated bearings, and because of the so-called averaging effect, guide accuracy higher than the shape accuracy of the bearing surface can be obtained. It is used as a bearing device such as a spindle of a machine or a precision inspection machine or a linear guide device, and its usefulness is evaluated.
[0003]
The pressure adjustment means incorporated in the hydrostatic air bearing includes a self-contained throttle with a fine hole in the bearing surface, an orifice throttle, a slot throttle that uses a flow resistance in a narrow gap, and a porous material communication hole. A porous diaphragm that uses the surface, a shallow diaphragm that communicates with the air supply source on the bearing surface, and a surface diaphragm that changes the flow resistance in the flow direction have been put into practical use.
[0004]
[Problems to be solved by the invention]
Static pressure air bearings use low-viscosity and compressible gas, such as air, as a lubricating medium, so the above advantages are evaluated, but support rigidity compared to oil-lubricated bearings. In addition, it has been pointed out that the damping performance of vibration and vibration is low, and the usable industrial field is restricted. For this reason, in recent years, there has been a strong demand for improvement in support rigidity and vibration damping performance even in hydrostatic air bearings, as a further improvement in accuracy is required for an object to be processed or inspected.
[0005]
In order to meet these demands, a composite throttle combining a self-made throttle or an orifice diaphragm and a shallow groove has been proposed as a means to increase the support rigidity of a hydrostatic air bearing. It has been pointed out that the self-excited vibration occurs when the damping performance of the groove decreases and the volume of the shallow groove exceeds a certain limit. On the other hand, a method of increasing the bearing supply air pressure has been studied. However, when this method is adopted, the support rigidity is proportionally increased, but there is a problem in that it is difficult to avoid a decrease in vibration damping performance. As another method, a method of improving both the support rigidity and the damping coefficient by narrowing the bearing gap has been proposed. However, when the bearing gap is narrowed, the influence of the thermal deformation of the bearing component due to the temperature rise is caused. It becomes large and stable bearing performance cannot be obtained. In addition, when the bearing gap is set to be narrow, it is necessary to strictly manage the dimensional accuracy and shape accuracy of the bearing constituent members, which increases the manufacturing cost of the hydrostatic air bearing.
[0006]
The main object of the present invention is to provide a high-precision hydrostatic air bearing with improved support rigidity and vibration damping performance.
[0007]
[Means for Solving the Problems]
In the present invention, a compressed air storage space (hereinafter referred to as a pressurized space) is provided adjacent to the bearing gap, and the pressure of the compressed air supplied into the pressurized space is higher than the ambient atmospheric pressure. The pressure in the entire bearing gap is increased by this, thereby improving the support rigidity and vibration damping performance of the hydrostatic air bearing device.
Specifically, as described in claim 1, bearing surfaces facing each other are provided on the fixed portion and the movable portion, and compressed air is supplied to the bearing gap formed between the two bearing surfaces via an air supply throttle. Compressed air that is supplied and communicated with the bearing gap on both sides in the axial direction of the bearing gap and introduced into the bearing in the hydrostatic air bearing in which the movable part is held in a non-contact state with respect to the fixed part. A pressure space that can be set to a pressure higher than the ambient atmospheric pressure, and an air supply line that communicates with the pressure space is provided on the fixed portion side, and the air supply line is connected via a pressure adjusting means. It is connected to a compressed air source.
[0008]
The present invention also Zinal aperture, restrictive orifice, the double-sided versus countercurrent type aerostatic thrust bearing with a supply air pressure adjustment means is arranged on the bearing surface such as a porous diaphragm, or the inner circumferential side of one of the thrust plate In a state adjacent to the bearing gap outlet provided on the outer peripheral side, a pressurized space isolated from the outside of the bearing device is interposed between the fixed part and the movable part of the bearing member via the bearing gap and the non-contact seal part. By forming and maintaining the pressure of the compressed air supplied in this pressurized space higher than the ambient atmospheric pressure, the pressure of the entire bearing gap is increased, thereby supporting rigidity and vibration of the hydrostatic air thrust bearing Attenuation performance is improved.
Specifically, as described in claim 2, in the hydrostatic air thrust bearing device including the double-sided opposed thrust plate, adjacent to the bearing clearance outlet provided on the inner peripheral side or the outer peripheral side of the thrust plate. A pressure space isolated from the outside of the bearing device is formed between the fixed portion of the bearing member and the movable portion of the main shaft member via the bearing gap and the non-contact seal portion, and the bearing gap An air supply conduit for introducing compressed air from the compressed air source into the pressurized space is connected to the inlet of the compressor, and a means for adjusting the compressed air pressure flowing into the pressurized space is provided in the air supply conduit. It is characterized by that.
[0009]
A pressure space is provided adjacent to the bearing gap, and the pressure of the compressed air supplied to the pressure space is maintained at a pressure higher than the ambient atmospheric pressure, thereby increasing the pressure of the entire bearing gap, thereby reducing static pressure. Improve support rigidity and vibration damping performance of compressed air bearing device. The present invention can be applied to both a hydrostatic air radial bearing device and a hydrostatic air thrust bearing device to achieve the above-described effects.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 14 attached to the specification.
[0011]
First, FIG. 1 shows a case where the present invention is applied to a radial bearing. As shown in FIG. 1A, the outer diameter surface of the shaft (1) and the inner diameter surface of the bearing portion (2) are minute bearings. A hydrostatic air radial bearing is constructed by supplying compressed air from a compressed air source (not shown) to a plurality of air supply throttles (4) facing each other through the gap (3) and communicating with the bearing surface. ing. Circumferential groove-shaped pressurizing spaces (5) and (5 ') are provided at both ends in the axial direction of the bearing portion (2), and the pressurizing spaces (5) and (5') are non-contact seal portions (6). It is partitioned from the space outside the bearing by (6 '). The seal gap (7) (7 ') in the non-contact portion is a minute gap similar to the bearing gap (3), and the bearing exhaust flowing out from the bearing gap (3) is removed from the seal gap (7) (7'). The internal pressure of the pressurizing space (5) (5 ') is kept higher than the atmospheric pressure outside the shaft.
[0012]
By providing such a pressurized space, as shown by the oblique lines in FIG. 1 (B), the hydrostatic air bearing of the present invention can reduce the pressure of the entire bearing gap as compared with the conventional hydrostatic air bearing. The vibration damping performance is improved. In FIG. 1B, among the broken lines indicating the pressure distribution, the solid line indicates the pressure distribution when the pressurizing space (5) (5 ′) is provided, and the dotted line indicates the pressure distribution when the pressurizing space is not provided. The air flowing out from the seal gap (7) (7 ') is discharged out of the system through the exhaust pipes (9) (9') provided in the housing (8). Therefore, the air pressure at the outlet of the seal gap (7) (7 ′) becomes equal to the atmospheric pressure.
[0013]
If the pressure in the pressurized space (5) (5 ') is not constant along the circumferential direction, unstable vibration may occur. Therefore, the dimensions of the pressurized space (5) (5') are It is necessary to select the flow resistance along the direction so that it can be ignored as compared with the bearing clearance. The supply throttle (4) is illustrated as a self-contained throttle in FIG. 1, but an orifice diaphragm, a porous throttle, a surface throttle, a slot throttle, a supply hole throttle (self-made throttle, Alternatively, other aperture methods such as a composite aperture comprising an orifice aperture) and a shallow groove can be used.
[0014]
In the configuration shown in FIG. 1, if the dimensions of the bearing and the clearance between the non-contact seal portions (6) and (6 ') are determined, the air pressure inside the pressurized space (5) and (5') will be a constant value. Maintained. On the other hand, the static stiffness of the hydrostatic air bearing is maximized when the ratio of the pressure on the supply side of the supply throttle (4) provided on the bearing surface and the bearing gap (3) side takes a certain optimum value. Therefore, 'the Rukoto teapot subjected compressed air via a pressure regulating valve (not shown), the pressurizing space (5) (5 pressurized space (5) (5)' adjusting the air pressure in) By doing so, it becomes possible to bring the pressure ratio of the air supply throttle (4) on the bearing surface close to the optimum value, and a hydrostatic air bearing with high support rigidity can be obtained.
[0015]
It is also possible to adjust the bearing characteristics by adjusting the air pressure in the pressurizing space (5) (5 ′) during use. However, in order to increase the static rigidity of the hydrostatic air bearing by operating the air supply restrictor (4) on the bearing surface normally, when the compressed air is introduced into the pressurized space (5) (5 '), The air pressure in the pressure space (5) (5 ′) needs to be controlled in a range where the pressure at the outlet of the air supply throttle (4) on the bearing surface is lower than the supply pressure to the hydrostatic air bearing. Also, if the internal pressure in the pressurizing space (5) (5 ') changes in response to the change in the bearing clearance (3), the delay in pressure change in the pressurizing space (5) (5') This reduces the damping performance and causes self-excited vibration. If the change of the internal pressure of the pressurized space (5) (5 ') is suppressed by the operation of the pressure adjustment means, for example, the air supply throttle (4), the self-excited vibration is prevented and the vibration damping performance is improved. Can be made. Note that the air supply conduits to the pressurizing spaces (5) and (5 ′) need to have a sufficiently large cross-sectional area so as not to cause a throttling action.
[0016]
FIG. 2 shows a connection of a supply air line (10) connected to a compressed air source via a pressure control valve (11) to the pressurized space (5) (5 ′). Fig. 3 shows a hydrostatic air radial bearing whose internal pressure is adjustable. In this embodiment, a slot throttle that uses a throttle action of a narrow gap (12) extending in a direction orthogonal to the axis of the shaft (1) is provided as the supply throttle.
[0017]
Further, FIG. 3 shows that the exhaust pipe (14) extending outside the hydrostatic air bearing is connected to the pressurizing space (5) (5 ′) via the throttle valve (13). A comparative example is shown in which the internal pressure of the pressurized space (5) (5 ') can be adjusted by restricting the exhaust gas flowing out from 5') toward the outer space of the bearing. As the air supply throttle, a porous throttle using an air-permeable porous material (15) is used.
[0018]
In the embodiment shown in FIG. 1, the pressurizing spaces (5) and (5 ') are provided at both ends along the axial direction of the hydrostatic air bearing. May be obtained. In addition, when providing a pressurized space on one side with a static pressure air bearing that employs a type of throttle that allows compressed air to flow in a limited range of the bearing surface, such as an air supply aperture throttle, a composite aperture, or a slot aperture, Even when the pressure in the bearing gap (3) increases due to the formation of the pressurized space by providing an air supply throttle in the vicinity of the bearing gap outlet on the opposite side of the pressurized space, where the pressure is equal to the ambient atmospheric pressure. The pressure ratio between the supply side and the bearing clearance side of the supply throttle can be brought close to the optimum value.
[0019]
FIG. 4 shows a composite throttle comprising an air supply throttle (18) and a shallow circumferential groove (19) provided with a non-contact seal portion (17) and a pressurized space (16) at one bearing end of a hydrostatic air radial bearing. Shows a comparative example in which is provided near the other bearing end.
[0020]
FIG. 5 shows a comparative example in which a pressurized space (21) and a non-contact seal portion (20) are provided on the outer side of the hydrostatic thrust bearing (24), and an air supply throttle (23) is provided closer to the inner diameter side. . It is desirable to connect the pressurizing space (21) and the pressure adjusting means (not shown) via the air pipe (22) so that the pressure in the pressurizing space (21) is kept constant.
[0021]
Next, a case where a plurality of hydrostatic air bearings are arranged adjacent to each other will be described. In this case, since each bearing gap has an effect as a non-contact seal portion, it is not recognized that a special non-contact seal portion is required.
[0022]
FIG. 6 shows an embodiment in which a circumferential groove-shaped space (27) between two adjacent hydrostatic air radial bearings (28) and (29) is formed as a pressurized space.
[0023]
FIG. 7 shows a case where a pressurized space (32) is provided on the outer side of the double-sided opposed static pressure air thrust bearings (30), (31). In a double-sided hydrostatic thrust bearing, the change in pressure due to shaft displacement is reversed (when one pressure increases, the other decreases), the pressure space (32) on both sides is reduced. The generation of self-excited vibration is suppressed by sharing the pressure and suppressing the pressure change in the pressurizing space (32). As indicated by a dotted line in FIG. 7, in this comparative example, it is also possible to provide a pressure adjusting means for the pressurizing space (32).
[0024]
In FIG. 8, a pressurizing space (39) is provided between adjacent thrust bearings (38) and radial bearings (37), and an air supply line (40) communicating the pressurizing space (39) and the pressure adjusting means. ) (41) (42) is shown.
[0025]
9 and 10 show an embodiment in which the present invention is applied to a static pressure air bearing type linear motion guide device. FIG. 10 is a view taken along line XX in FIG. In the case of a linear guide device, a plurality of bearings (43) (49) divided by grooves are often provided on the moving table side so as to face one surface of the fixed guide member. Compressed air is supplied to these bearing portions from the bearing air supply pipe (44). By providing the non-contact seal portions (45) and (48) so as to surround these bearings, a pressurized space can be configured. Further, the pressurizing spaces on each surface are connected to a pressure adjusting means (not shown) via the air pipe (47), and the pressure in each pressurizing space is maintained at a constant value.
[0026]
According to the present invention, since the average pressure of the bearing gap can be increased without using a groove or the like, vibration damping performance is better than that of a conventional hydrostatic air bearing, and it is highly resistant to disturbances. A hydrostatic air bearing device is provided.
[0027]
FIG. 11 shows a hydrostatic air thrust bearing to which the present invention is applied. FIG. 12 shows a partially enlarged longitudinal sectional view thereof. Radial bearings (52) (53) and thrust bearings (54) (55) have shallow circumferential grooves (60) that communicate with fine throttle holes (56) (57) (58) (59) that open in the bearing gap. ) (61) (62) (63) are provided, and when compressed air is supplied via the bearing air supply lines (64) (65) (66), etc., the main shaft (51) Supported in contact. Compressed air flowing out from each bearing gap is discharged out of the hydrostatic air bearing via the exhaust holes (67) and (68). In the pressurized space (69) provided at the bearing clearance outlet of the thrust bearing (54) on the radial bearing side, the compressed air adjusted to a constant pressure is supplied to the air supply line separately from the bearing air supply pipe. Supplied through (70) (71). The air supply pipe (71) is provided at a plurality of locations along the circumferential direction in order to ensure a sufficient flow path area to keep the internal pressure of the pressurized space (69) equal to the supply pressure of the compressed air. For this reason, the internal pressure of the pressurizing space (69) becomes higher than the ambient atmospheric pressure, and the pressure in the bearing gap increases accordingly, so that the bearing reaction force of the thrust bearing (54) increases. As a result, the thrust plate (72) of the main shaft moves to the thrust bearing (55) side and stops at a position where the bearing reaction forces of the thrust bearings (54) and (55) on both sides are balanced. Therefore, the bearing clearance of the thrust bearing (55) can be set much narrower than before, and if the type and dimensions of the throttle are selected corresponding to this narrow bearing clearance, the bearing support rigidity In addition, vibration damping performance can be dramatically improved. In addition, the thrust bearing (54) has a wider bearing clearance, but the average pressure in the bearing clearance is higher, so the vibration damping coefficient does not decrease much, and it is supported by optimizing the dimensions of the throttle valve. It is possible to suppress the decrease in rigidity and damping coefficient to the minimum. Therefore, the present invention greatly contributes to the improvement of the support rigidity and vibration damping coefficient of the two thrust bearings (54) and (55), and can realize a highly accurate hydrostatic air bearing device. The thrust bearing (54) on the side where the outlet pressure of the bearing gap is increased, even when the supply air pressure is increased, the pressure on the outlet side of the bearing gap is increased proportionally, so that the vibration damping coefficient is the same as the conventional one. Since substantially the same level can be maintained, a particularly remarkable effect is recognized when the bearing supply air pressure is increased to improve performance.
[0028]
FIG. 11 illustrates an embodiment in which compressed air having a constant pressure is supplied to the pressurized space (69). However, the internal pressure of the pressurized space (69) can be set higher than the ambient atmospheric pressure by restricting bearing exhaust. Can also be maintained at high pressure. In this case, an appropriate throttle valve is interposed in the air supply line (70), and the bearing exhaust is discharged to the outside of the hydrostatic air bearing device via the throttle valve.
[0029]
As for the throttle type of the bearing, FIG. 11 illustrates an embodiment in which a composite throttle comprising a throttle hole and a shallow groove provided on the bearing surface is used as the pressure adjusting means of the pressurizing space (69). In addition, a self-contained diaphragm, an orifice diaphragm, a slot diaphragm, a porous diaphragm, etc., which are generally used in a hydrostatic air bearing device can be used.
[0030]
FIG. 13 shows an embodiment in which the internal pressure of the pressurizing space (82) on the inner peripheral side of the thrust bearing (81) opposite to the radial bearing is increased to narrow the bearing clearance of the thrust bearing (84) on the radial bearing side. Show. The pressurizing space (82) is connected to a pressure adjusting means (not shown) via an air supply line (83). As the pressure adjusting means, either a compressed air source adjusted to a constant pressure or a throttle valve for restricting bearing exhaust from the pressurized space (82) can be used.
[0031]
FIG. 14 shows a double-sided opposed static pressure air thrust bearing of the type in which the housing (93) is sandwiched between two thrust plates (91) and (92), and a small gap is formed on the outer periphery of one thrust bearing (94). The pressurizing space (96) is configured using the non-contact portion (95) due to the above, thereby reducing the bearing gap of the other thrust bearing (97).
[0032]
【The invention's effect】
According to the present invention, since the average pressure of the bearing gap can be increased without using a groove or the like, the vibration damping performance is better than that of the conventional hydrostatic air bearing device, and high-accuracy static pressure is strong against disturbance. An air bearing device is obtained.
[0033]
Further, when the present invention is applied to a double-sided opposed static air thrust bearing device, the bearing rigidity and vibration damping coefficient of the thrust bearing can be reduced by reducing one bearing gap of the thrust bearing and increasing the other bearing gap pressure. A large high precision hydrostatic thrust bearing device is obtained. In addition, since the total value of both thrust bearing gaps is maintained at the same level as that of the conventional bearing device, it is easy to manage the dimensions of the bearing constituent members. Furthermore, even when the dimensions related to the bearing gap change due to thermal deformation, the bearing with the smaller gap retains high rigidity, so almost all of the change in dimensions is absorbed by the bearing with the larger gap. Is done. As a result, contact between the bearing and the thrust plate is avoided, and a highly reliable double-sided opposed static air thrust bearing device with stable performance is provided.
[0034]
Further, since the bearing characteristics can be changed by adjusting the internal pressure of the pressurizing space, it is possible to set the optimum bearing characteristics corresponding to the change in operating conditions.
[Brief description of the drawings]
FIG. 1A is a partial longitudinal sectional view of a hydrostatic air bearing device showing an embodiment of the present invention, and FIG. 1B is a pressure distribution diagram.
FIG. 2 is a partial longitudinal sectional view showing another embodiment.
FIG. 3 is a partial longitudinal sectional view showing a comparative example .
FIG. 4 is a partial longitudinal sectional view showing a comparative example .
FIG. 5 is a partial longitudinal sectional view showing a comparative example .
FIG. 6 is a partial longitudinal sectional view showing another embodiment.
FIG. 7 is a partial longitudinal sectional view showing a comparative example .
FIG. 8 is a partial longitudinal sectional view showing another embodiment.
FIG. 9 is a longitudinal sectional view showing another embodiment.
10 is a view as seen from the line XX in FIG. 9. FIG.
FIG. 11 is a longitudinal sectional view showing another embodiment.
FIG. 12 is a partially enlarged view of FIG.
FIG. 13 is a longitudinal sectional view showing another embodiment.
FIG. 14 is a longitudinal sectional view showing another embodiment.
[Explanation of symbols]
3 Bearing clearance 5, 5 ', 16, 21, 27, 32, 39 Pressurizing space 6, 6', 17, 20, 45, 48 Non-contact seal

Claims (2)

固定部と可動部に互いに対向する軸受面を設け、上記2つの軸受面の間に形成された軸受隙間に給気絞りを介して圧縮空気を供給し、上記固定部に対して可動部を非接触状態に保持した静圧空気軸受において、上記軸受隙間の軸方向両側に、上記軸受隙間と連通し、かつ、その内部に導入される圧縮空気の圧力を周囲の雰囲気圧力よりも高圧に設定し得る加圧空間を形成し、上記固定部側に上記加圧空間と連通する給気管路を設け、この給気管路を圧力調整手段を介して圧縮空気源に接続した静圧空気軸受装置。  Bearing surfaces facing each other are provided on the fixed portion and the movable portion, and compressed air is supplied to the bearing gap formed between the two bearing surfaces via an air supply throttle so that the movable portion is not in contact with the fixed portion. In a hydrostatic air bearing held in contact, the pressure of the compressed air introduced into the bearing gap and on the both sides in the axial direction of the bearing gap is set higher than the ambient atmospheric pressure. A static pressure air bearing device in which a pressurized space is formed, an air supply line communicating with the pressure space is provided on the fixed portion side, and the air supply line is connected to a compressed air source via a pressure adjusting means. 両面対向型のスラスト板を具えた静圧空気スラスト軸受装置において、上記スラスト板の内周側または外周側に設けられた軸受隙間出口部と隣接状態で、軸受部材の固定部と主軸部材の可動部との間に、軸受隙間および非接触シール部を介して当該軸受装置の外部と隔離された加圧空間を形成し、かつ、上記軸受隙間の入口部に、圧縮空気源から上記加圧空間内に圧縮空気を導入するための給気管路を接続し、この給気管路に、上記加圧空間に流入する圧縮空気圧力の調整手段を設けた静圧空気軸受装置。  In a hydrostatic thrust bearing device having a double-sided opposed thrust plate, the fixed portion of the bearing member and the movable main shaft member are movable adjacent to the bearing clearance outlet provided on the inner or outer peripheral side of the thrust plate. A pressurized space that is isolated from the outside of the bearing device through a bearing gap and a non-contact seal portion, and the pressurized space from the compressed air source to the inlet portion of the bearing gap. A static pressure air bearing device in which an air supply line for introducing compressed air is connected to the air supply line, and a means for adjusting the compressed air pressure flowing into the pressurized space is provided in the air supply line.
JP16878198A 1998-06-16 1998-06-16 Hydrostatic air bearing device Expired - Lifetime JP4031867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16878198A JP4031867B2 (en) 1998-06-16 1998-06-16 Hydrostatic air bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16878198A JP4031867B2 (en) 1998-06-16 1998-06-16 Hydrostatic air bearing device

Publications (2)

Publication Number Publication Date
JP2000002243A JP2000002243A (en) 2000-01-07
JP4031867B2 true JP4031867B2 (en) 2008-01-09

Family

ID=15874362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16878198A Expired - Lifetime JP4031867B2 (en) 1998-06-16 1998-06-16 Hydrostatic air bearing device

Country Status (1)

Country Link
JP (1) JP4031867B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4134541B2 (en) * 2000-09-25 2008-08-20 株式会社ジェイテクト Fluid bearing
DE112021003833T5 (en) * 2020-07-17 2023-05-04 Fanuc Corporation pressurized fluid supply system
CN114857174B (en) * 2022-06-16 2023-07-04 中国工程物理研究院机械制造工艺研究所 Anti-disturbance restrictor for hydrostatic bearing and hydrostatic guideway

Also Published As

Publication number Publication date
JP2000002243A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
US20210254663A1 (en) Air bearing for use as seal
US7290931B2 (en) Vacuum pre-loaded pneumatic bearing with onboard vacuum generator
US8333512B2 (en) Self-compensating hydrostatic planar bearing device and method thereof
EP1104504B1 (en) Hydrodynamic/hydrostatic journal bearing
JP6401176B2 (en) Air bearing for use as a seal
US8646979B2 (en) Hybrid hydro (air) static multi-recess journal bearing
US5772334A (en) Fluid film bearings
US4448460A (en) Hydrostatic bearing
JP2000055036A (en) Radial bearing
US7682082B2 (en) Compact surface self-compensated hydrostatic bearings
Cheng et al. Behavior of hydrostatic and hydrodynamic noncontacting face seals
JPH0953640A (en) Static pressure bearing device
JP4031867B2 (en) Hydrostatic air bearing device
JPH02215984A (en) Screw compressor
JP3100916B2 (en) Rotary type hydrostatic bearing device
JP3089271B2 (en) Hydrostatic gas bearing
JPH11210747A (en) Journal bearing
JP4325254B2 (en) Spindle unit
JP2001140882A (en) Static pressure gas bearing device
JP4508585B2 (en) Air bearing device
JPH0510330A (en) Static pressure bearing device
JP4273743B2 (en) Positioning device
JP2644247B2 (en) Hydrostatic gas bearing
JP2004019760A (en) Hydrostatic bearing
CN111365259A (en) Centrifugal compressor with diffuser air supply flow channel and refrigerant circulating system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term