JP4026279B2 - Split type composite fiber and fiber molded body using the same - Google Patents

Split type composite fiber and fiber molded body using the same Download PDF

Info

Publication number
JP4026279B2
JP4026279B2 JP16485199A JP16485199A JP4026279B2 JP 4026279 B2 JP4026279 B2 JP 4026279B2 JP 16485199 A JP16485199 A JP 16485199A JP 16485199 A JP16485199 A JP 16485199A JP 4026279 B2 JP4026279 B2 JP 4026279B2
Authority
JP
Japan
Prior art keywords
fiber
split
molded body
composite fiber
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16485199A
Other languages
Japanese (ja)
Other versions
JP2000328348A (en
Inventor
聡彦 筒井
和之 坂本
正康 鈴木
満 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP16485199A priority Critical patent/JP4026279B2/en
Priority to PCT/JP2000/001180 priority patent/WO2000053831A1/en
Priority to DE10080786.0T priority patent/DE10080786B3/en
Priority to US09/674,384 priority patent/US6410139B1/en
Publication of JP2000328348A publication Critical patent/JP2000328348A/en
Priority to US10/153,133 priority patent/US6617023B2/en
Application granted granted Critical
Publication of JP4026279B2 publication Critical patent/JP4026279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、分割性に優れた分割型複合繊維に関する。さらに詳しくはバッテリセパレ−タ−、ワイパ−、フィルタ−などの産業資材分野、おむつ、ナプキンなどの衛生材料分野、また衣料分野にも好適に用いることのできる分割性に優れた分割型複合繊維、これを用いた繊維成形体及び積層繊維成形体に関する。
【0002】
【従来の技術】
従来、極細繊維を得る方法として、海島型や分割型の複合繊維が知られている。海島型複合繊維を用いる方法は、複数成分を組合せて紡糸して海島型複合繊維とし、得られた該複合繊維の1成分を溶解除去することにより、極細繊維を得るものである。この方法は、非常に細い繊維を得ることができる反面、1成分を溶解除去するために非経済的である。一方、分割型複合繊維を用いる方法は、複数成分の樹脂を組合せて紡糸して複合繊維とし、得られた該複合繊維を物理的応力や樹脂の化学薬品に対する収縮差などを利用して、該分割型複合繊維を多数の繊維に分割して極細繊維を得るものである。
【0003】
例えば、ポリエステル樹脂とポリオレフィン樹脂の組み合せ、ポリエステル樹脂とポリアミド樹脂の組み合せ、ポリアミド樹脂とポリオレフィン樹脂の組み合わせに代表される分割型複合繊維を極細細繊化し、不織布等に加工する際、高圧液体流処理等の分割細繊化工程が不織布化工程の律速段階となる。また分割細繊化に要するエネルギ−コストも大きいといった問題があった。
【0004】
一方、ポリオレフィン系樹脂同士、ポリエステル系樹脂同士、ポリアミド系樹脂同士などの同系樹脂の組合せでは、前記異種ポリマーに比べて比較的樹脂の相溶性が良いため、前記のような問題がさらに大きくなり、分割細繊化させるためには、物理的衝撃をさらに大きくする必要がある。このため、得られた不織布は、分割された部分と分割されない部分が存在したり、繊維が物理的衝撃で動き、目付の厚い部分と薄い部分ができるなど、いわゆるむらが生じて地合が悪くなったり、また高圧液体流処理の加工速度を大幅に下げる必要があるなどの問題点があった。
【0005】
この問題点を改善するために特開平4−28922号公報では、オルガノシロキサン及びこれらの変成体を樹脂に添加することにより、同種ポリマー同士の組合せの分割型複合繊維であっても容易に分割することができることが開示されている。しかしながら、分割性は多少向上するものの、分割された繊維を用いて得られた不織布は強力が低下したり、2次加工での加工性不良などの問題点があった。
【0006】
【発明が解決しようとする課題】
本発明者らは、従来技術の有する問題点を解決するべく、鋭意検討を重ねた。その結果、少なくとも2成分の熱可塑性樹脂から構成され、繊維横断面において、各成分は長軸方向に交互に隣接され、かつ該断面が屈曲、湾曲あるいは扁平形状の複合繊維であって、該断面の長軸Lと短軸Wの比(L/W)が3〜20を満足した分割型複合繊維とすることにより、分割し易い分割型複合繊維となり、かつ、該分割型複合繊維を用いると緻密で地合の良い繊維成形体及び積層繊維成形体が得られることを見出し、この知見に基づいて本発明を完成した。
以上の記述から明らかなように、本発明の目的は分割性を向上させるための添加剤を一切添加せずに、同系樹脂同士の組み合わせであっても、分割性に優れた分割型複合繊維を提供すると共に緻密で地合の良い繊維成形体および該成形体を用いた製品を提供することである。
【0007】
【課題を解決するための手段】
本発明は以下から構成される。
(1)少なくとも2成分の熱可塑性樹脂から構成され、繊維断面において、各成分は長軸方向に交互に隣接され、かつ該断面は屈曲、湾曲、または、扁平形状としては、U型、馬蹄形型、もしくは、該U型または馬蹄形型の湾曲部が圧縮されて扁平になった断面形状の複合繊維であって、該複合繊維の複合比は、10/90〜90/10重量%の範囲であり、分割型複合繊維の繊維断面において、屈曲もしくは湾曲により囲まれた面積S1と該分割型複合繊維の断面積S2の比(S1/S2)が0.2〜1.0であり、該断面の長軸Lと短軸Wの比(L/W)が3〜20であることを特徴とする、物理的応力による分割細繊化処理用の分割型複合繊維。
【0008】
(2)分割型複合繊維の繊維断面において、繊維を構成する1成分の繊維外周面長aと隣接成分との接触長bの比(a/b)が0.1〜2.5である前記第1項記載の分割型複合繊維。
【0010】
)繊維成形後の該繊維を構成する少なくとも2成分の熱可塑性樹脂のメルトフローレートがいずれも10〜100g/10分であり、かつ該熱可塑性樹脂のうち、融点の最も高い樹脂成分(以下、A成分という)のメルトフローレート(MFR−A)と融点が最も低い樹脂成分(以下、B成分という)のメルトフローレート(MFR−B)の比(MFR−A/MFR−B)が0.1〜5である前記第1項または第2項記載の分割型複合繊維。
【0011】
)少なくとも2成分の熱可塑性樹脂の組合せが、ポリプロピレン樹脂とポリエチレン樹脂である前記第1項〜第項のいずれか1項記載の分割型複合繊維。
【0012】
)該複合繊維の分割前の単糸繊度が0.5〜10デシテックス、分割後の単糸繊度が0.5デシテックス以下である前記第1項〜第項のいずれか1項記載の分割型複合繊維。
【0013】
)前記第1項〜第5項のいずれか1項記載の分割型複合繊維を少なくとも30重量%以上含み、かつ該分割型複合繊維の50%以上が分割している繊維成形体。
【0014】
)繊維成形体が繊維集合体である前記第項記載の繊維成形体。
【0015】
)繊維成形体がスパンボンド法により得られる繊維集合体である前記第6項または前記第7項記載の繊維成形体。
【0016】
)前記第6項〜第8項のいずれか1項記載の繊維成形体の片面または両面にシートを積層してなる積層繊維成形体。
【0017】
10)前記第6項〜第8項のいずれか1項記載の繊維成形体をシートの両面に積層してなる積層繊維成形体。
【0018】
11)シートが不織布、フィルム、編物、織物の少なくとも1種から選ばれたシ−トである前記第9項または第10項記載の積層繊維成形体。
【0019】
12)前記第6項〜第8項のいずれか1項記載の繊維成形体もしくは前記第9項〜第11項のいずれか1項記載の積層繊維成形体を用いた吸収性物品。
【0020】
13)前記第6項〜第8項のいずれか1項記載の繊維成形体もしくは前記第9項〜第11項のいずれか1項記載の積層繊維成形体を用いたワイパー。
【0021】
14)前記第6項〜第8項のいずれか1項記載の繊維成形体もしくは前記第9項〜第11項のいずれか1項記載の積層繊維成形体を用いたバッテリーセパレーター。
(15)前記第1項記載の分割型複合繊維に物理的応力による分割細繊化を施すことを特徴とする極細繊維の製造方法。
(16)物理的応力による分割細繊化が、ニードルパンチ法、高圧液体流処理、または、加圧されたカレンダーロールによって行われることを特徴とする前記第15項記載の極細繊維の製造方法。
【0022】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の分割型複合繊維に用いる熱可塑性樹脂は、溶融紡糸工程で繊維成形性を有するものであれば特に限定されないが、例えばポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂等を好適に使用される樹脂として挙げることができる。
【0023】
ポリエステル系樹脂としては、酸成分としてテレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸もしくはアジピン酸、セバシン酸などの脂肪族ジカルボン酸またはこれらのエステル類と、アルコール成分としてエチレングリコール、ジエチレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール等のジオール化合物とから合成された単独重合体ポリエステルもしくは共重合体ポリエステルであり、上記ポリエステルにパラオキシ安息香酸、5−ナトリウムスルフォイソフタール酸、ポリアルキレングリコール、ペンタエリスリトール等が添加もしくは共重合されているものも含まれる。
【0024】
ポリアミド系重合体としては、6,6−ナイロン、6,10−ナイロン、6−ナイロン、1,1−ナイロン、1,2−ナイロン、4−ナイロン、4,6−ナイロン及びこれらを主体とする共重合体等を例示することができる。
【0025】
一方、ポリオレフィン系樹脂としては、炭素数が2〜8個の脂肪族αーオレフィン、例えばエチレン、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、1−オクテン等の単独重合体もしくはこれらのα−オレフィンの2種以上の共重合体、前記α−オレフィンと他のオレフィン及び/または少量の他のエチレン系不飽和モノマー、例えばブタジエン、イソプレン、ペンタジエン−1、スチレン、α−メチルスチレン等の不飽和モノマーとの共重合体及びこれらの2種以上の混合物を挙げることができる。
【0026】
代表的には、ポリプロピレン系樹脂及びポリエチレン系樹脂を挙げることができ、該ポリプロピレン系樹脂としては、例えばプロピレン単独重合体、プロピレンを70重量%以上含有するプロピレンとプロピレン以外の上記α−オレフィンの1種以上との共重合体、例えばエチレン−プロピレン共重合体、エチレン−プロピレン−ブテン共重合体等を挙げることができる。
【0027】
また、ポリエチレン系樹脂としては、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(L−LDPE)等を挙げることができる。
【0028】
該ポリプロピレン系樹脂のメルトフローレート(230℃、2.18N、以下MFRという)及び該ポリエチレン系樹脂のMFR(190℃、2.18N)は、紡糸可能な範囲であれば特に限定されることはないが、いずれの樹脂の場合も1〜100g/10分が好ましく、より好ましくは、5〜70g/10分である。
【0029】
前記以外の熱可塑性樹脂としては、例えばビニル系重合体が用いられ、具体的には、ポリビニルアルコール、ポリ酢酸ビニル、ポリアクリル酸エステル、エチレン酢酸ビニル共重合体、シンジオタクチックポリスチレンもしくはこれらの共重合体を使用することもできる。
【0030】
本発明の分割型複合繊維は、前記の中、少なくとも2成分の熱可塑性樹脂を任意に組み合せることが可能であるが、衣料用途など染色が必要な分野では、例えば、ポリエステル系樹脂、ポリアミド系樹脂を主とした組み合わせが好適である。また耐薬品性、軽量性及び低コストが要求される産業資材分野及び衛生材料分野等では、耐薬品性が高く、コスト的に有利なポリオレフィン系樹脂を主体とした組み合わせを例示でき、中でも耐薬品性が要求される分野には、ポリプロピレン系樹脂及びポリエチレン系樹脂の組み合わせが好適である。
【0031】
ここで前記熱可塑性樹脂は任意の組み合わせが可能であるが、例えば、ポリエチレンテレフタレート樹脂とポリエチレンテレフタレート樹脂の組み合わせ、ポリプロピレン樹脂とポリプロピレン樹脂の組み合わせのような全く同一樹脂の組合せ及び同一構成比を有する混合物の組み合せは本発明の範疇から除外される。
【0032】
本発明の分割型複合繊維に好適に使用されるポリプロピレン系樹脂とポリエチレン系樹脂の2成分の組み合せにあっては、該ポリプロピレン系樹脂が高融点樹脂(A成分)となる。かかるポリプロピレン系樹脂は具体的には、チーグラーナッタ触媒、メタロセン触媒等で重合されたシンジオタクチックポリプロピレン、アイソタクチックポリプロピレンを例示できる。高融点樹脂である該ポリプロピレン系樹脂のMFR−Aは、溶融紡糸可能な範囲であれば良く、紡糸条件等の変更で、繊維成形後のMFR−Aが10〜100g/10分の範囲内であれば特に問題はない。繊維成形後のMFR−Aは、より好ましくは、10〜70g/10分である。繊維成形後のMFR−Aが10g/10分未満、もしくは100g/10分を超える場合は、可紡性良く、細い繊維に紡糸することが困難となる。
【0033】
ポリエチレン系樹脂は、前記ポリプロピレン系樹脂の融点よりも低い低融点樹脂(B成分)であって、具体的には、高密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレンを例示することができる。また、これらのポリエチレンの2種以上の混合物であっても良い。原料としてのポリエチレン系樹脂のMFR−Bは溶融紡糸可能な範囲であれば良く、紡糸条件等の変更で、繊維成形後のMFR−Bが10〜100g/10分の範囲内であれば特に問題はない。繊維成形後のMFR−Bは、より好ましくは、10〜60g/10分である。MFR−Bが1g/10分未満もしくは100g/10分を超える場合は、可紡性良く、細い繊維に紡糸することが困難となる。
【0034】
本発明の分割型複合繊維を構成する少なくとも2成分の熱可塑性樹脂のうち、最も融点の高い樹脂をA成分としたときの該A成分のMFRをMFR−Aとし、最も融点の低い樹脂をB成分としたときの該B成分のMFRをMFR−Bとしたとき、該MFRの比(MFR−A/MFR−B)は、0.1〜5であることが好ましく、さらに好ましくは、0.5〜3である。この値が0.1未満であったり、5を超える場合には、溶融紡糸時のこれら成分の口金内の流れ性、屈曲、湾曲、もしくは扁平形状に吐出された後の溶融張力差、冷却時の粘度上昇の差が大きくなるなどの要因上、曳糸性を維持することが困難となる。
【0035】
本発明に使用する熱可塑性樹脂には、本発明の効果を妨げない範囲内でさらに、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、エポキシ安定剤、滑剤、抗菌剤、難燃剤、帯電防止材、顔料、可塑剤、親水剤などの添加剤を適宜必要に応じて添加しても良い。
【0036】
次に本発明の分割型複合繊維の繊維断面について説明する。
本発明の分割型複合繊維は、例えば図1に例示したような少なくとも2成分の熱可塑性樹脂から構成され、繊維横断面において、各成分は長軸方向に交互に隣接され、かつ、該断面が屈曲、湾曲もしくは扁平形状の複合繊維であって、該断面の長軸Lと短軸Wの比(L/W)が3〜20の分割型複合繊維である。ここで長軸Lとは、各成分が交互に隣接される方向で、かつ、断面形状の最も長い部分の長さを表す(図1参照)。短軸Wとは、各成分の接触面方向、即ち断面形状の厚みを表す(図1参照)。L/Wの比が3以上であると、通常の円断面分割型複合繊維、例えば放射状、積層状分割型複合繊維と比べて、分割セグメント数および繊度が同じである場合、表面積が大きく、また、隣接成分同士の接触面積は小さくなるため、高圧液体流を効果的に該複合繊維に受けることができ、同じ水圧であっても分割し易くなる。また、20を超えると効果的に高圧液体流を複合繊維が受けることができるが、曳糸性の維持、口金の単位面積当たりの孔数が少なくなり、生産性が悪くなるなどの問題が発生する。
【0037】
さらに、断面形状が屈曲、湾曲もしくは扁平形状をしていることでさらに分割性が向上する。繊維断面形状が直線であるもの(図9参照)と比べて、製糸工程中、例えば紡糸工程で得られた未延伸糸を延伸工程で延伸する場合、速度差のあるロール間で集束された繊維は強い応力で延伸されるが、この時繊維同士は高い圧力で圧迫されることとなる。また短繊維とする場合には、カット工程で延伸工程と同等以上の強い圧力で繊維同士が圧迫されることとなる。このため、屈曲もしくは湾曲した繊維断面を有する本発明の分割型複合繊維は、直線状の断面形状と比べて、非常に潰され易く、即ち分割が部分的に進行することとなる。また分割しなくても該複合繊維の各成分の接触界面には歪みが加わり、より分割しやすい状態になっており、本発明の分割型複合繊維は非常に分割し易くなる。
【0038】
このように製糸工程中で、すでに部分的に分割が進行しいる場合は、抄紙法が好適に使用できる。抄紙法の場合、すでに部分的に分割が進行している方が抄紙の段階で緻密な地合の良いウェブとなり好ましい。また製糸工程中での分割の進行を極力抑えたい場合は、延伸倍率を低く設定することが有効である。具体的には、延伸糸伸度が未延伸糸伸度の20%以上を有することが好ましい。ここで屈曲もしくは湾曲した断面形状は、特に限定されるものではなく、例えば、C型(図1〜5参照)、S字型(図7参照)、M字型、N字型、L字型、V字型、W型(図8参照)、波型などを挙げることができるが、本発明はあってはこれらの断面形状に限定されるものではない。また、種々の断面形状の混合物であっても良い。
さらに、偏平形状としては、例えばU型、馬蹄形型や該U型、馬蹄形型の湾曲部が圧縮されて偏平になった断面形状を挙げることができるが、本発明はこれらの断面形状に限定されるものではない。
【0039】
前記のように本発明の分割型複合繊維の繊維断面形状は、長軸方向に屈曲、湾曲もしくは偏平形状をしているため、延伸、カット工程と同様な効果をカレンダーロール同士の加圧によっても行うことができる。従って、例えばスパンボンド法のような未延伸糸状態の長繊維をそのままコンベアーに集積した場合であっても、加圧されたカレンダーロール間を通過させることにより、分割、細繊化された繊維集合体とすることができる。また従来のスパンボンド法で採用されている分割型複合繊維の繊維断面に比べ、本発明の分割型複合繊維は、各セグメントがほぼ同繊度のため、より均一な繊度を有する極細繊維から構成された繊維成形体とすることができる。
【0040】
さらに本発明の分割型複合繊維を構成する樹脂の1成分の繊維外周弧の長さaと隣接成分との接触長さbとの比(a/b)は、0.1〜2.5を満足することが好ましい。該(a/b)比が0.1未満であると、隣接成分との接触面積が繊維外周面に比べて大きくなり、薄片が積層した構造となり高分割率を達成するには、高エネルギーが必要となる。また、2.5を超えると分割数が少なくなるか、もしくは偏平形状の厚みが薄くなりすぎるため、可紡性良く生産することが非常に難しくなる。
【0041】
また、本発明の分割型複合繊維の繊維断面において、屈曲や湾曲により囲まれた面積S1と該分割型複合繊維の断面積S2(図6参照)の比(S1/S2)が0.2〜1.0を満足することが好ましい。ここでS1は、本発明の分割型複合繊維の繊維断面において、長軸の両端を結んだ直線と屈曲あるいは湾曲により囲まれた部分を表し、屈曲もしくは湾曲の度合いを表す。即ちS1が大きくなれば長軸が大きく屈曲もしくは湾曲することとなり、S1/S2は、0.2以上を満足することが好ましい。0.2未満であると、屈曲や湾曲が小さく、前記、屈曲や湾曲による効果が小さくなる。また1.0を越えると該複合繊維の長軸が長くなりすぎるか、または厚みが極端に薄くなるなどの問題から生産性を維持することが難しくなる。
【0042】
本発明の分割型複合繊維は、前記のような繊維断面形状を取ることにより、従来の分割型複合繊維では、非常に分割しにくく、分割させるために高エネルギーが必要であった同系樹脂の組み合わせ、特にポリオレフィン系樹脂同士の組み合わせであっても、分割性に優れ、容易に分割させることができる。さらに、抄紙法で用いる短繊維で構成されたウェブであっても、地合良く高分割率で分割させることができる。以上のことから、本発明の分割型複合繊維はこれまで分割し難いとされていた樹脂同士の組み合わせに好ましく用いることができる。ここで本発明の分割型複合繊維の繊維断面を得るために用いる紡糸用口金は、該分割複合繊維が得られるものであれば特に限定されることはないが、例えば、細孔がC型、S字型、M字型、N字型、L字型、V型、W型、波型、U型、馬蹄形型等に配置された口金を用いることができる。
【0043】
本発明の分割型複合繊維において、少なくとも2成分の熱可塑性樹脂から構成される該複合繊維の複合比は、10/90〜90/10重量%の範囲でその用いた成分樹脂の合計が100重量%であれば良く、より好ましくは30/70〜70/30重量%であり、最も好ましくは、40/60〜60/40である。かかる範囲の複合比とすることにより、少なくとも2種類の熱可塑性樹脂が均一に配置された断面形状となり、より均一な繊維成形体とすることができる。
【0044】
本発明で得られる分割型複合繊維を高圧液体流処理等で分割する場合、分割後の極細繊維の平均繊度は0.5デシテックス以下で、特に0.3デシテックス以下となることが好ましい。従って分割型複合繊維の分割セグメント数は、極細繊維の平均繊度が0.5デシテックス以下となるように決めれば良く、分割セグメント数が多ければ分割後の繊度が小さくなる利点があるが、実際には繊維製造上の容易さから4〜32セグメント数とすることが好ましい。
【0045】
分割前の単糸繊度は、特に限定されることはないが、0.5〜10.0デシテックスであることが好ましく、より好ましくは、1.0〜6.0デシテックスである。また個々のセグメントの繊度は同一である必要はなく、分割型複合繊維が完全に分割していない場合には、未分割の分割繊維と完全に分割した極細繊維との中間に複数の異なった繊度の繊維が混在していても良い。
【0046】
以下、本発明の分割型複合繊維の1例として、ポリプロピレン樹脂と高密度ポリエチレン樹脂の2成分を組み合わせた分割複合繊維の製造方法を例示する。
通常の溶融紡糸機を用いて前記樹脂からなる長繊維を紡出する。紡糸に際し、紡糸温度は200〜330℃の範囲で紡糸することが好ましく、引き取り速度は40m/分〜1500m/分程度とするのが良い。延伸は必要に応じて行っても良く、延伸を行う場合、延伸倍率は通常3〜9倍程度とするのが良い。さらに得られたトウは所定長に切断して短繊維とする。以上は短繊維の製造工程を開示したが、トウを切断せず、長繊維トウを分繊ガイドなどによりウェブとすることもできる。その後は必要に応じて高次加工工程を経て、種々、用途に応じて繊維成形体に形成される。また、紡糸延伸後、フィラメント糸等として巻き取り、これを編成または織成して編織物とした繊維成形体もしくは前記短繊維を紡績糸とした後、これを編成または織成して編織物とした繊維成形体に形成しても良い。
【0047】
つまり、ここで繊維成形体とは、布状の形態であればいかなるものでも良く、例えば織物、編物、不織布もしくは不織繊維集合体などが挙げられる。また、混綿、混紡、混繊、交撚、交編、交繊等の方法で布状の形態にしたものも含まれる。さらに不織繊維集合体とは、例えばカード法、エアレイド法もしくは抄紙法などの方法で均一にしたウェブ状物などをいう。
【0048】
かかる工程において、繊維を紡出後、繊維の静電気防止、繊維成形体への加工性向上のための平滑性付与などを目的として界面活性剤を繊維表面に付着させることができる。界面活性剤の種類、濃度は用途に合わせて適宜調整する。付着の方法は、ローラ法、浸漬法、パットドライ法などを用いることができる。付着は、紡糸工程、延伸工程、捲縮工程のいずれで付着させても差し支えない。さらに短繊維、長繊維に問わず、紡糸工程、延伸工程、捲縮工程以外の、例えば繊維成形体に成形後、界面活性剤を付着させることもできる。
【0049】
本発明の分割型複合繊維の繊維長は、特に限定されるものではないが、カード機を用いてウェブを作成する場合は、一般に20〜76mmのものを用い、抄紙法やエアレイド法では、一般に繊維長が2mm〜20mmのものが好ましく用いられる。繊維長が2mm未満の場合には、物理的衝撃で繊維が動いてしまい、分割に必要なエネルギーを繊維自体が受けにくくなってしまう。また、繊維長が76mmを大幅に超える場合はカード機等でのウェブ形成が均一にできず、均一な地合のウェブとするのが難しくなる。
【0050】
本発明の分割型複合繊維からなる繊維成形体の製造方法の一例として、不織布の製造方法を例示する。例えば前記分割型複合繊維製造方法で製造された短繊維を用いて、カード法、エアレイド法、あるいは抄紙法を用いて必要な目付のウェブを作製する。またメルトブローン法、スパンボンド法などで直接ウェブを作製しても良い。前記の方法で作製したウェブを、ニードルパンチ法、高圧液体流処理、加圧されたカレンダーロール等の公知の方法で分割細繊化して繊維成形体を得ることができる。さらに繊維成形体を熱風あるいは熱ロール等の公知の加工方法で処理することもできる。抄紙法などの非常に短い繊維で構成されたウェブをニードルパンチ法、高圧液体流処理等の公知の方法で分割細繊化する場合に、その物理的応力で繊維が分割すると同時に繊維が動いて地合不良となる場合があるため、予め本発明の分割型複合繊維を構成する樹脂の融点よりも低融点で熱融着する繊維を5〜30%重量%混綿しておき、この低融点繊維が融着する温度で熱処理を行い、熱融着された不織布を作成しておくことで地合不良を抑えることができる。
【0051】
本発明の繊維成形体の目付は、特に限定されるものではないが、10〜200g/m2のものが好ましい。目付が10g/m2未満では、該不織布を製造するために、分割型複合繊維を高圧液体流処理などの物理的応力で分割、細繊化すると、地合不良な不織布となる場合がある。また目付が200g/m2を超えると、目付が高く、高圧水流が必要となり、地合良く、均一な分割を行うことが困難となる場合がある。
【0052】
本発明の繊維成形体は、本発明の妨げにならない範囲で、必要に応じて本発明の分割型複合繊維に他の繊維を混合して用いることができる。かかる他の繊維としては、ポリアミド、ポリエステル、ポリオレフィン、アクリルなどの合成繊維、綿、羊毛、麻などの天然繊維、レーヨン、キュプラ、アセテートなどの再生繊維、半合成繊維などが挙げられる。
【0053】
次に、高圧液体流処理について説明する。高圧液体流処理に用いる高圧液体流装置としては、例えば、孔径が0.05〜1.5mm、特に0.1〜0.5mmの噴射孔を孔間隔0.1〜1.5mmで一列あるいは複数列に多数配列した装置を用いる。噴射孔から高水圧で噴射させて得られる高圧液体流を多孔性支持部材上に置いた前記ウェブに衝突させる。これにより本発明の未分割の分割型複合繊維は高圧液体流により、交絡されると同時に細繊化される。噴射孔の配列は前記ウェブの進行方向と直交する方向に列状に配列する。高圧液体流としては、常温あるいは温水を用いても良し、任意に他の液体を用いても良い。
【0054】
噴射孔とウェブとの間の距離は、10〜150mmとするのが良い。この距離が10mm未満であるとこの処理により得られる繊維成形体の地合が乱れ、一方、この距離が150mmを超えると液体流がウェブに与える物理的衝撃が弱くなり、交絡及び分割細繊化が十分に施されない場合がる。この高圧液体流の処理圧力は、製造方法及び繊維成形体の要求性能によって、制御されるが、一般的には、20kg/cm2〜200kg/cm2の高圧液体流を噴射するのが良い。なお処理する目付等にも左右されるが、前記処理圧力の範囲内において、高圧液体流は順次、低水圧から高水圧へ圧力を上げて処理すると、ウェブの地合が乱れることなく、交絡及び分割細繊化が可能となる。高圧液体流を施す際にウェブを載せる多孔性支持部材としては、例えば50〜200メッシュの金網製あるいは合成樹脂製のメッシュスクリーンや有孔板など高圧液体流が上記ウェブを貫通するものであれば特に限定されない。
【0055】
尚、ウェブの片面より高圧液体流処理を施した後、引き続き交絡処理されたウェブを反転させて、高圧液体流処理を施すことによって、表裏共に緻密で地合の良い繊維成形体を得ることができる。さらに高圧液体流処理を施した後、処理後の繊維成形体から水分を除去する。この水分を除去するに際しては、公知の方法を採用することができる。例えば,マングロール等の絞り装置を用いて、水分をある程度除去した後、熱風循環式乾燥機等の乾燥装置を用いて完全に水分を除去して本発明の繊維成形体を得ることができる。
【0056】
前記の方法で本発明の分割型複合繊維を含むウェブに高圧液体流処理を施して分割細繊化し、緻密な繊維成形体を得るに際し、従来の繊維断面を有する分割型複合繊維(図9、図10)に比べ、易分割し易く、高圧液体流による物理的衝撃が少なくて済む。このため、不織布加工工程の律速段階である高圧液体流処理の高速化及び高圧液体流の低圧化による地合の改善、例えば高圧液体流の圧力を低くできるため、繊維成形体の地合が乱れたり、貫通孔が開くなどの問題を改善することができる。
【0057】
以上のように最も分割し難いとされていた同系樹脂から構成された分割型複合繊維であっても、容易に分割させることができ、緻密で地合の良い繊維成形体を得ることができ、これら繊維成形体を用いて、バッテリセパレーターやワイパー等の産業資材分野をはじめ、衛生材料分野、衣料分野にも好適に使用することができる。
【0058】
さらに、本発明の繊維成形体の片面もしくは両面に不織布、フィルム、編物、織物等から選ばれた少なくとも1種からなるシートを積層した、積層繊維成形体(以下Aタイプ)や、さらには該繊維成形体を逆に前記シートの両面に積層した積層繊維成形体(以下Bタイプ)とすることもできる。
Aタイプの場合は分割処理した繊維成形体をシートの片面もしくは両面に積層する方が分割効率が良く、好ましい。Bタイプの場合は積層前後、どちらでも繊維成形体は分割されるが、特に積層後の分割処理はシートと繊維成形体との絡合作用が得られ好ましい。これらの積層繊維成形体(A)、(B)のいずれもおむつ、ナプキン等の吸収性物品で代表される衛生材料分野、ワイパー、バッテリセパレーター等の産業資材分野にも好適に使用することができる。
【0059】
【実施例】
以下、本発明を実施例及び比較例によって詳細に説明するが、本発明はこれにより限定されるものではない。なお実施例、比較例における用語と物性の測定方法は以下の通りである。
【0060】
(1)メルトフローレート:JIS K7210に準拠して測定した。
原料ポリプロピレン樹脂:条件14
原料ポリエチレン樹脂 :条件4
繊維成形後のポリオレフィン系樹脂:条件14
【0061】
(2)L/W測定法
任意に選んだ未分割繊維10本の断面写真から、以下の値を計算し、その平均値からL/Wを算出した。
L:各成分が交互に隣接される方向で、かつ、繊維断面形状のもっとも長い部分を表す(図1参照)
W:各成分の接触面方向、即ち断面形状の厚みを表す(図1参照)
【0062】
(3)a/b測定法
任意に選んだ未分割繊維10本の断面写真から、以下の値を計算し、その平均値からa/bを算出した。
a:1成分の繊維外周面の長さの平均値(図1参照)
b:1成分の接触長さの平均値(図1参照)
【0063】
(4)S1/S2測定法
任意に選んだ未分割繊維10本の繊維断面写真から、S1、S2の面積を計算し、その平均値からS1/S2を算出した。(図6参照)
S1:長軸の両端を結んだ直線と屈曲もしくは湾曲により囲まれた部分の面積
S2:本発明の分割型複合繊維の断面積
【0064】
(5)曳糸性
溶融紡糸時の曳糸性を糸切れ回数の発生率により、次の3段階で評価した。
○:糸切れが全く発生せず、操作性が良好である。
△:糸切れが1時間当たり1〜2回
×:糸切れが1時間当たり4回以上発生し、操作上問題がある。
【0065】
(6)延伸倍率
以下の式により算出した。
延伸倍率=引取ロール速度(m/分)/供給ロール(m/分)
【0066】
(7)繊維引張強伸度
JIS−L1013法に準じ、島津製作所(株)製オートグラフ AGS500Dを用い、糸長100mm、引張速度100mm/分で測定した。
【0067】
(8)不織布の引張強伸度
5cm幅の不織布を島津製作所(株)製オートグラフ AGS500Dを用い、MD方向の不織布破断強度を測定した。試長100mm、引張速度200mm/分で測定し、測定温度は室温とした。
【0068】
(9)分割率の測定
分割後の不織布をワックスにて包含し、ミクロトームで繊維軸に対して、直角にスライスして資料片を作成する。これを顕微鏡で観察し、繊維の断面像を画像処理して、セグメントの70%以上が分割された繊維の総断面積(A)と未分割繊維の総断面積(B)を測定し、以下の式で算出した。
分割率(%)={A/(A+B)}×100
【0069】
(10)分割後の単糸繊度
分割前の繊度と分割可能なセグメント数から、分割細繊化後の単糸繊度を以下の式より算出した。
分割後繊度(dtex/f)=分割前繊度(dtex/f)/分割可能セグメント数(個)
【0070】
(11)地合
10人のパネラーが分割細繊化加工後の不織布(1m角)の繊維の分布斑を目視した結果により次のように評価した。
○:7人以上が斑が少なく、また貫通孔もないと感じた。
△:4〜6人が斑が少なく、貫通孔もないと感じた。
×:斑が少ないと感じたのは3人以下であった。
【0071】
(12)高圧液体流処理
ローラカード機、エアレイド機、抄紙機等で作成したウェブを80メッシュの平織りからなるコンベアーベルト上に載せ、コンベアーベルト速度20m/分の速度で、ノズル径0.1mm、ノズルピッチ1mmのノズル直下を通過させ、高圧液体流を噴射した。まず、2MPaで予め予備処理(2段)した後、水圧5MPaの高圧液体流で4段処理した。ウェブを反転させ、さらに水圧5MPaの高圧液体流で4段処理することにより、分割細繊化した不織布を得た。ここで段とは、ノズル直下を通過した回数のことである。
【0072】
(13)加圧(分割)ロール
誘導発熱油圧式2本ロールクリアランス機(由里ロール(株)社製)
処理温度:雰囲気温度
処理線圧:40kg/cm
処理速度:10m/min
【0073】
(14)耐水圧
JIS L1092に準拠して測定した。
【0074】
実施例1〜3
高融点樹脂(A成分)にポリプロピレン樹脂(プロピレン単独重合体)、低融点樹脂(B成分)として高密度ポリエチレン樹脂を用い、分割型複合繊維用口金を用いて、A成分及びB成分の両樹脂の容積比率を50/50とし、単糸デニール7.5dtexの図1に示した繊維断面形状を有する分割型複合繊維を紡糸した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を90℃、4.1倍で延伸し、抄紙用仕上げ剤を付着させた後10mmに切断し、水分率20重量%の短繊維を得た。
この短繊維にポリプロピレン(芯)/低密度ポリエチレン(鞘)の鞘芯複合繊維(EAC繊維、チッソ(株))を20重量%添加し、角型シートマシン(25cm×25cm)を用い、抄紙法でウェブとした。熊谷理器工業社製ヤンキードライヤーを用い、105℃で3分間乾燥、予備接着を行いウェブを得た。このウェブに前記高圧液体流処理を行った後、さらに80℃のドライヤーで乾燥させて繊維成形体を得た。
【0075】
実施例4
高融点樹脂(A成分)としてポリプロピレン樹脂(プロピレン単独重合体)、低融点樹脂(B成分)として高密度ポリエチレン樹脂を用い、分割型複合繊維用口金を用いて、A成分及びB成分の両樹脂の容積比率を50/50とし、単糸デニール7.5dtexの図2に示した繊維断面形状を有する分割型複合繊維を紡糸した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を90℃、1.5倍で延伸し、捲縮を付与し、51mmに切断した。
得られた短繊維をローラカード機にてウェブとし、該ウェブに前記高圧液体流処理を行った後、さらに80℃のドライヤーで乾燥させて繊維成形体を得た。該繊維成形体を大人用オムツの表面材として使用したところ、肌触り(ソフト感)、不織布強力等に優れ、吸収性物品として非常に良好なものであった。
【0076】
実施例5
図3に示した繊維横断面を得るための分割型複合繊維用口金を用いた以外は、実施例1に準拠して、分割型複合繊維の紡糸、繊維成形体の作製を行った。
【0077】
実施例6
高密度ポリエチレンの替わりに直鎖状低密度ポリエチレンを用いた以外は、実施例1に準拠して、分割型複合繊維の紡糸、繊維成形体の作製を行った。
【0078】
実施例7
高密度ポリエチレンの替わりに低密度ポリエチレンを用いた以外は、実施例1に準拠して、分割型複合繊維の紡糸、繊維成形体の作製を行った。
【0079】
実施例8
高融点樹脂(A成分)としてポリプロピレン樹脂(プロピレン単独重合体)、低融点樹脂(B成分)として高密度ポリエチレン樹脂を用い、分割型複合繊維用口金を用いて、A成分及びB成分の両樹脂の容積比率を50/50とし、単糸デニール20.0dtexの図1に示した繊維断面形状を有する分割型複合繊維を紡糸した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を90℃、4.1倍で延伸し、抄紙用仕上げ剤を付着させた後、10mmに切断し、水分率20重量%の短繊維を得た。この短繊維にポリプロピレン(芯)/低密度ポリエチレン(鞘)の鞘芯複合繊維(EAC繊維、チッソ(株))を20重量%添加し、角型シートマシン(25cm×25cm)を用い、抄紙法でウェブとした。熊谷理器工業社製ヤンキードライヤーを用い、105℃で3分間乾燥、予備接着を行いウェブを得た。該ウェブに前記高圧液体流処理を行った後、さらに80℃のドライヤーで乾燥させ繊維成形体を得た。
【0080】
実施例9
図2に示した繊維横断面を得るための分割型複合繊維用口金をを用いた以外は、実施例8に準拠して、分割型複合繊維の紡糸、繊維成形体の作製を行った。
【0081】
実施例1〜9の紡糸・延伸条件、繊維物性、形状、不織布物性、分割率等を後述の表1に示した。
【0082】
実施例10
相対粘度(フェノールと四塩化エタンとの等量混合物を溶媒とし、20℃で測定した)0.60のPET(鐘紡(株)製、K101)を高融点樹脂(A成分)とし、低融点樹脂(B成分)としてポリプロピレン樹脂(MFR:16g/10分のプロピレン単独重合体)を用い、分割型複合繊維用口金を用いて、A成分及びB成分の両樹脂の容積比率を50/50とし、単糸デニール15.0dtexの図1に示した繊維断面形状を有する分割型複合繊維を紡糸した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を90℃、3.3倍で延伸し、抄紙用仕上げ剤を付着させた後10mmに切断し、水分率20重量%の短繊維を得た。この短繊維にポリプロピレン(芯)/低密度ポリエチレン(鞘)の鞘芯複合繊維(EAC繊維、チッソ(株))を20重量%添加し、角型シートマシン(25cm×25cm)を用い、抄紙法でウェブとした。熊谷理器工業社製ヤンキードライヤーを用い、105℃で3分間乾燥、予備接着を行いウェブを得た。前記高圧液体流処理を行った後、さらに80℃のドライヤーで乾燥させ繊維成形体を得た。
【0083】
実施例11
図4に示した繊維断面を得るための分割型複合繊維用口金を用いた以外は、実施例1に準拠して分割型複合繊維の紡糸、繊維成形体の作製を行った。
【0084】
実施例12
高融点樹脂(A成分)としてポリプロピレン樹脂(プロピレン単独重合体)、低融点樹脂(B成分)として高密度ポリエチレン樹脂を用い、分割型複合繊維用口金を用いて、A成分及びB成分の両樹脂の容積比率を50/50とし、単糸デニール7.5dtexの図1に示した繊維断面形状を有する分割型複合繊維を紡糸した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を90℃、4.1倍で延伸し、抄紙用仕上げ剤を付着させた後10mmに切断し、水分率20重量%の短繊維を得た。この短繊維にポリプロピレン(芯)/低密度ポリエチレン(鞘)の鞘芯複合繊維(EAC繊維、チッソ(株))を20重量%添加し、角型シートマシン(25cm×25cm)を用い、抄紙法でウェブとした。該Webを熊谷理器工業社製ヤンキードライヤーを用い、105℃で3分間乾燥、予備接着を行いウェブを得た。該ウェブに前記高圧液体流処理を行った後、さらに80℃のドライヤーで乾燥させて繊維成形体を得た。
【0085】
実施例13
高融点樹脂(A成分)にポリプロピレン樹脂(プロピレン単独重合体)、低融点樹脂(B成分)として高密度ポリエチレン樹脂を用い、分割型複合繊維用口金を用いて、A成分及びB成分の両樹脂の容積比率を50/50とし、図1に示した繊維断面形状を有する分割型複合繊維をスパンボンド法にて紡糸した。紡糸口金より吐出した複合繊維群をエアーサッカーに導入して牽引延伸し、単糸デニール2.0dtexの複合長繊維を得、続いて、エアーサッカーより排出された前記長繊維群を、帯電装置により同電荷を付与せしめ帯電させた後、反射板に衝突させて開繊し、開繊した長繊維群を裏面に吸引装置を設けた無端ネット状コンベヤー上に、長繊維ウェブとして捕集する。該長繊維ウェブを加圧ロールで分割処理した後、120℃に加熱した面積率15%のエンボスロール機にて処理し、繊維成形体を得た。
【0086】
実施例10〜13の紡糸・延伸条件、繊維物性、形状、不織布物性、分割率等を後述の表2示した。
【0087】
比較例1、2
高融点樹脂(A成分)としてポリプロピレン樹脂(プロピレン単独重合体)、低融点樹脂(B成分)として高密度ポリエチレン樹脂を用い、分割型複合繊維用口金を用いて、A成分及びB成分の両樹脂の容積比率を50/50とし、単糸デニール7.5dtexの図1に示した繊維断面形状を有する分割型複合繊維を紡糸した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を90℃、4.1倍で延伸し、抄紙用仕上げ剤を付着させた後10mmに切断し、水分率20重量%の短繊維を得た。この短繊維にポリプロピレン(芯)/低密度ポリエチレン(鞘)の鞘芯複合繊維(EAC繊維、チッソ(株))を20重量%添加し、角型シートマシン(25cm×25cm)を用い、抄紙法でウェブとした。これを、熊谷理器工業社製ヤンキードライヤーを用い、105℃で3分間乾燥、予備接着を行いウェブを得た。該ウェブに前記高圧液体流処理を行った後、さらに80℃のドライヤーで乾燥させ繊維成形体を得た。紡糸・延伸条件、繊維物性、形状、不織布物性、分割率等を後述の表2に示した。
【0088】
比較例3
図9に示した繊維断面を得るための分割型複合繊維用口金を用いた以外は、実施例1に準拠して、分割型複合繊維の紡糸、繊維成形体の作製を行った。紡糸・延伸条件、繊維物性、形状、不織布物性、分割率等を後述の表2に示した。
【0089】
比較例4
図10に示した繊維断面を得るための分割型複合繊維用口金を用いた以外は、実施例1に準拠して、分割型複合繊維の紡糸、繊維成形体の作製を行った。紡糸・延伸条件、繊維物性、形状、不織布物性、分割率等を後述の表2に示した。
【0090】
比較例5
図10に示した繊維断面を得るための分割型複合繊維用口金を用いた以外は、実施例13に準拠して、分割型複合繊維の紡糸、繊維成形体の作製を行った。紡糸・延伸条件、繊維物性、形状、不織布物性、分割率等を後述の表2に示した。
【0091】
実施例14、15
実施例1に準拠して繊維成形体を得る前工程(高圧液体流処理前)の目付10g/m2のウェブ(Aと略す)を得た。次に高密度ポリエチレン(鞘)/ポリプロピレン(芯)の鞘芯型複合繊維(ESC繊維、チッソ(株))2.2dtex×51mmの短繊維を用い、目付10g/m2のカードウェブ(Bと略す)を得た。Aを上層、Bを下層に積層したもの(実施例14)及びAを上下層、Bを中層に積層したもの(実施例15)を各々、前記高圧液体流処理を行った後、80℃のドライヤーで乾燥させて積層繊維成形体を得た。さらに、この積層繊維成形体を拭き取り用ワイパーに使用したところ、実施例14および15ともに非常に優れた拭き取り性を示した。
【0092】
実施例16
高融点樹脂(A成分)としてポリプロピレン樹脂(プロピレン単独重合体)、低融点樹脂(B成分)として高密度ポリエチレン樹脂を用い、分割型複合繊維用口金を用いて、A成分及びB成分の両樹脂の容積比率を50/50とし、単糸デニール2.0dtexの図1に示した繊維断面形状を有する分割型複合繊維をスパンボンド法で紡糸して、中層用の目付10g/m2のウェブを得た。次に、該樹脂の組み合わせにおいて、鞘芯型複合繊維用口金を用いて、A成分を芯側、B成分を鞘側として、A及びBの両樹脂の容積比率を50/50とし、単糸デニール2.0dtexの複合繊維をスパンボンド法で紡糸して、目付5.0g/m2のウェブを上下層として上記中層用のウェブに積層し、加圧ロールで分割処理した後、120℃に加熱した面積率15%のエンボス機にて処理し、積層繊維成形体を得た。さらに、該繊維成形体を大人用オムツの表面材として使用したところ、耐水圧、不織布強力等に優れ、吸収性物品として非常に良好なものであった。
【0093】
【表1】

Figure 0004026279
【0094】
【表2】
Figure 0004026279
【0095】
表1、表2から明らかなように、本発明の実施例各例で得られた繊維成形体および積層繊維成形体は、比較各例に比べて同条件でも高分割率で分割している。即ち、従来のような高水圧の高圧液体流処理を行わなくても、分割、細繊化が容易に進行するため、比較的低目付の不織布でも地合が乱れることなく製造することができ、さらに高圧液体流処理のコストも大幅に削減することができる。
【0096】
【発明の効果】
本発明の分割型複合繊維は、非常に分割し易いため、特別に易分割させるための添加剤を一切添加せずに、物理衝撃を大きくしなくても極細繊維化が容易に行える。このため、本発明の分割複合繊維を用いると緻密で地合いの良い繊維成形体および積層繊維成形体が得られる。
【図面の簡単な説明】
【図1】本発明に用いられる分割型複合繊維の繊維断面の1模式図
【図2】本発明に用いられる分割型複合繊維の繊維断面の1模式図
【図3】本発明に用いられる分割型複合繊維の繊維横断面の1模式図
【図4】本発明に用いられる分割型複合繊維の繊維横断面の1模式図
【図5】本発明に用いられる分割型複合繊維の繊維横断面の1模式図
【図6】屈曲もしくは湾曲により囲まれた面積(S1)と分割型複合繊維の断面積(S2)を示した模式図
【図7】本発明に用いられる分割型複合繊維の繊維横断面の1模式図
【図8】本発明に用いられる分割型複合繊維の繊維横断面の1模式図
【図9】比較例に用いられる分割型複合繊維の繊維横断面の1模式図
【図10】比較例に用いられる分割型複合繊維の繊維横断面の1模式図
【符号の説明】
L:複合繊維の各成分が交互に隣接される方向で、かつ、断面形状の最も長い部分の長さを表す。
W:複合繊維の各成分の接触面方向で断面形状の厚みを表す。
a:複合繊維を構成する1成分の繊維外周面の長さを表す。
b:複合繊維を構成する1成分の隣接成分との接触長さを表す。
S1:長軸の両端を結んだ直線と屈曲あるいは湾曲により囲まれた部分の面積を表す。
S2:複合繊維の繊維横断面積を表す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a split type composite fiber excellent in splitting property. More specifically, a split type composite fiber excellent in splitting properties that can be suitably used in the field of industrial materials such as battery separators, wipers, filters, sanitary materials such as diapers and napkins, and clothing. The present invention relates to a fiber molded body and a laminated fiber molded body using the same.
[0002]
[Prior art]
Conventionally, sea-island type and split type composite fibers are known as methods for obtaining ultrafine fibers. In the method using sea-island type composite fibers, a plurality of components are spun together to form sea-island type composite fibers, and one component of the obtained composite fibers is dissolved and removed to obtain ultrafine fibers. Although this method can obtain very fine fibers, it is uneconomical for dissolving and removing one component. On the other hand, the method using a split-type composite fiber is a composite fiber obtained by spinning a combination of a plurality of component resins, and the obtained composite fiber is utilized, for example, by utilizing a physical stress or a difference in shrinkage of the resin with respect to chemicals. A split type composite fiber is divided into a large number of fibers to obtain ultrafine fibers.
[0003]
For example, when split fiber composites represented by a combination of polyester resin and polyolefin resin, a combination of polyester resin and polyamide resin, and a combination of polyamide resin and polyolefin resin are processed into a non-woven fabric, etc., high pressure liquid flow treatment The division finening process such as the above becomes the rate-limiting step of the non-woven fabric process. In addition, there is a problem in that the energy cost required for splitting and finening is large.
[0004]
On the other hand, in a combination of similar resins such as polyolefin resins, polyester resins, polyamide resins, etc., since the compatibility of the resin is relatively good compared to the heterogeneous polymer, the problem as described above is further increased. It is necessary to further increase the physical impact in order to divide into fine pieces. For this reason, the obtained nonwoven fabric has a divided portion and a portion that is not divided, or the fibers move due to physical impact, so that a thick portion and a thin portion are formed. And there is a problem that it is necessary to significantly reduce the processing speed of the high-pressure liquid flow treatment.
[0005]
In order to remedy this problem, Japanese Patent Laid-Open No. 4-28922 discloses that by adding organosiloxane and a modified product thereof to a resin, even a split type composite fiber of a combination of the same kind of polymers can be easily split. It is disclosed that it is possible. However, although the splitting property is somewhat improved, the nonwoven fabric obtained using the split fibers has problems such as reduced strength and poor workability in secondary processing.
[0006]
[Problems to be solved by the invention]
The inventors of the present invention have made extensive studies in order to solve the problems of the prior art. As a result, it is composed of at least two component thermoplastic resins, and in the fiber cross section, each component is alternately adjacent in the long axis direction, and the cross section is a composite fiber having a bent, curved or flat shape, When the split type composite fiber satisfying the ratio of the major axis L to the short axis W (L / W) of 3 to 20 is obtained, the split type composite fiber can be easily split, and the split type composite fiber is used. It was found that a dense and well-formed fiber molded body and a laminated fiber molded body were obtained, and the present invention was completed based on this finding.
As is clear from the above description, the purpose of the present invention is to add a split type composite fiber having excellent splitting ability even if it is a combination of similar resins without adding any additive for improving splitting ability. It is to provide a dense and well-formed fiber molded body and a product using the molded body.
[0007]
[Means for Solving the Problems]
  The present invention comprises the following.
(1) It is composed of at least two component thermoplastic resins, and in the fiber cross section, each component is alternately adjacent in the long axis direction, and the cross section is bent and curved.Or, as the flat shape, U-shaped, horseshoe-shaped, or a cross-sectional shape in which the curved portion of the U-shaped or horseshoe-shaped is compressed and flattenedA composite fiber ofThe composite ratio of the composite fiber is in the range of 10/90 to 90/10% by weight, and in the fiber cross section of the split composite fiber, the area S1 surrounded by bending or bending and the cross sectional area S2 of the split composite fiber Ratio (S1 / S2) is 0.2 to 1.0,The ratio of the major axis L to the minor axis W (L / W) of the cross section is 3 to 20For splitting and finening processing by physical stressSplit composite fiber.
[0008]
(2) In the fiber cross section of the split type composite fiber, the ratio (a / b) of the contact length b between the fiber outer peripheral surface length a of one component and the adjacent component constituting the fiber is 0.1 to 2.5 2. The split type composite fiber according to item 1.
[0010]
(3) The melt flow rate of at least two components of the thermoplastic resin constituting the fiber after fiber molding is 10 to 100 g / 10 min, and among the thermoplastic resins, the resin component having the highest melting point (hereinafter, The ratio (MFR-A / MFR-B) of the melt flow rate (MFR-A) of the component A) and the melt flow rate (MFR-B) of the resin component having the lowest melting point (hereinafter referred to as component B) is 0. 1 to 5 above.Or the second termThe split type composite fiber as described.
[0011]
(4The combination of at least two components of the thermoplastic resin is a polypropylene resin and a polyethylene resin.3The split type composite fiber according to any one of the items.
[0012]
(5) The first to second items, wherein the single yarn fineness before splitting of the composite fiber is 0.5 to 10 dtex, and the single yarn fineness after splitting is 0.5 dtex or less.4The split type composite fiber according to any one of the items.
[0013]
(61) to 1)Item 5A fiber molded body comprising at least 30% by weight or more of the split composite fiber according to any one of the above, and 50% or more of the split composite fiber being split.
[0014]
(7) The above-mentioned fiber molded body is a fiber assembly6The fiber molded body according to Item.
[0015]
(8) The fiber molded body is a fiber assembly obtained by the spunbond methodItem 6 or Item 7The fiber molded body described.
[0016]
(9)Item 6-8A laminated fiber molded body obtained by laminating sheets on one or both sides of the fiber molded body according to any one of the above.
[0017]
(10)Item 6-8A laminated fiber molded body obtained by laminating the fiber molded body according to any one of the above on both surfaces of a sheet.
[0018]
(11) The sheet is a sheet selected from at least one of a nonwoven fabric, a film, a knitted fabric, and a woven fabric.Item 9 or 10The laminated fiber molded body described.
[0019]
(12)Item 6-8The fiber molded body according to any one of the above or the aboveItems 9 to 11An absorbent article using any one of the laminated fiber molded articles.
[0020]
(13)Item 6-8The fiber molded body according to any one of the above or the aboveItem 9 to Item 11A wiper using the laminated fiber molded article according to any one of the above.
[0021]
(14)Item 6-8The fiber molded body according to any one of the above or the aboveItem 9 to Item 11A battery separator using the laminated fiber molded article according to any one of the above.
(15) A method for producing an ultrafine fiber, comprising subjecting the split type composite fiber according to the above item 1 to splitting and finening by physical stress.
(16) The method for producing ultrafine fibers according to the above item 15, wherein the division finening by physical stress is performed by a needle punch method, a high-pressure liquid flow treatment, or a pressurized calender roll.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The thermoplastic resin used for the split composite fiber of the present invention is not particularly limited as long as it has fiber formability in the melt spinning process. For example, polyester resins, polyamide resins, polyolefin resins and the like are preferably used. It can be mentioned as a resin.
[0023]
Examples of the polyester resin include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid or aliphatic dicarboxylic acids such as adipic acid and sebacic acid as esters, and esters thereof. It is a homopolymer polyester or copolymer polyester synthesized from a diol compound such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, 1,4-cyclohexanedimethanol as an alcohol component. Those having added or copolymerized paraoxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol, pentaerythritol and the like are also included.
[0024]
As the polyamide-based polymer, 6,6-nylon, 6,10-nylon, 6-nylon, 1,1-nylon, 1,2-nylon, 4-nylon, 4,6-nylon, and these are mainly used. A copolymer etc. can be illustrated.
[0025]
On the other hand, as the polyolefin resin, an aliphatic α-olefin having 2 to 8 carbon atoms such as ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 3-methyl-1-butene, Homopolymers such as 1-hexene and 1-octene or copolymers of two or more of these α-olefins, the α-olefin and other olefins and / or a small amount of other ethylenically unsaturated monomers such as butadiene , Copolymers with unsaturated monomers such as isoprene, pentadiene-1, styrene, α-methylstyrene, and mixtures of two or more thereof.
[0026]
Typical examples include polypropylene resins and polyethylene resins. Examples of the polypropylene resins include propylene homopolymer, propylene containing 70% by weight or more, and 1 of the above α-olefin other than propylene. Copolymers with more than one species, such as ethylene-propylene copolymer and ethylene-propylene-butene copolymer, can be mentioned.
[0027]
Examples of the polyethylene resin include high density polyethylene (HDPE), low density polyethylene (LDPE), and linear low density polyethylene (L-LDPE).
[0028]
The melt flow rate (230 ° C., 2.18N, hereinafter referred to as MFR) of the polypropylene resin and the MFR (190 ° C., 2.18N) of the polyethylene resin are not particularly limited as long as they can be spun. However, in the case of any resin, 1 to 100 g / 10 min is preferable, and more preferably 5 to 70 g / 10 min.
[0029]
As the thermoplastic resin other than the above, for example, a vinyl polymer is used, and specifically, polyvinyl alcohol, polyvinyl acetate, polyacrylate ester, ethylene vinyl acetate copolymer, syndiotactic polystyrene or a copolymer thereof. Polymers can also be used.
[0030]
The split-type conjugate fiber of the present invention can be arbitrarily combined with at least two thermoplastic resins among the above, but in fields requiring dyeing such as garments, for example, polyester resins and polyamide resins Combinations based on resins are preferred. In the industrial material field and sanitary material field where chemical resistance, light weight, and low cost are required, a combination mainly composed of polyolefin resin having high chemical resistance and advantageous in cost can be exemplified. A combination of a polypropylene-based resin and a polyethylene-based resin is suitable for a field where properties are required.
[0031]
Here, the thermoplastic resin can be arbitrarily combined. For example, a combination of polyethylene terephthalate resin and polyethylene terephthalate resin, a combination of polypropylene resin and polypropylene resin, and a mixture having the same composition ratio. Is excluded from the scope of the present invention.
[0032]
In the combination of two components of a polypropylene resin and a polyethylene resin that are preferably used in the split composite fiber of the present invention, the polypropylene resin becomes a high melting point resin (component A). Specific examples of such polypropylene resins include syndiotactic polypropylene and isotactic polypropylene polymerized with a Ziegler-Natta catalyst, a metallocene catalyst, or the like. The MFR-A of the polypropylene resin, which is a high melting point resin, only needs to be in a range that can be melt-spun, and the MFR-A after fiber molding is within a range of 10 to 100 g / 10 minutes by changing the spinning conditions and the like. If there is no particular problem. The MFR-A after fiber molding is more preferably 10 to 70 g / 10 minutes. When MFR-A after fiber molding is less than 10 g / 10 minutes or more than 100 g / 10 minutes, it becomes difficult to spin into fine fibers with good spinnability.
[0033]
The polyethylene resin is a low melting point resin (component B) lower than the melting point of the polypropylene resin, and specific examples include high density polyethylene, linear low density polyethylene, and low density polyethylene. . Moreover, the mixture of 2 or more types of these polyethylene may be sufficient. The MFR-B of the polyethylene-based resin as a raw material may be in a range that can be melt-spun, and if the MFR-B after fiber molding is within a range of 10 to 100 g / 10 minutes due to changes in spinning conditions and the like, there is a particular problem. There is no. The MFR-B after fiber molding is more preferably 10 to 60 g / 10 minutes. When MFR-B is less than 1 g / 10 minutes or more than 100 g / 10 minutes, it becomes difficult to spin into fine fibers with good spinnability.
[0034]
Of the at least two thermoplastic resins constituting the split-type conjugate fiber of the present invention, when the resin having the highest melting point is the A component, the MFR of the A component is MFR-A, and the resin having the lowest melting point is B. When the MFR of the B component when used as a component is MFR-B, the ratio of the MFR (MFR-A / MFR-B) is preferably 0.1 to 5, more preferably 0. 5-3. If this value is less than 0.1 or exceeds 5, the flowability of these components during melt spinning, the difference in melt tension after being discharged into a bent, curved, or flat shape, during cooling It becomes difficult to maintain the spinnability due to factors such as a large difference in viscosity increase.
[0035]
The thermoplastic resin used in the present invention further includes an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizer, a nucleating agent, an epoxy stabilizer, a lubricant, an antibacterial agent within the range not impeding the effects of the present invention. Additives such as additives, flame retardants, antistatic materials, pigments, plasticizers and hydrophilic agents may be added as necessary.
[0036]
Next, the fiber cross section of the split type composite fiber of the present invention will be described.
The split composite fiber of the present invention is composed of, for example, a thermoplastic resin having at least two components as illustrated in FIG. 1, and in the fiber cross section, each component is alternately adjacent in the major axis direction, and the cross section is A bicomponent fiber having a bent, curved, or flat shape, and having a ratio (L / W) of a major axis L to a minor axis W of the cross section of 3-20. Here, the long axis L is the direction in which the components are alternately adjacent to each other and represents the length of the longest portion of the cross-sectional shape (see FIG. 1). The minor axis W represents the contact surface direction of each component, that is, the thickness of the cross-sectional shape (see FIG. 1). When the L / W ratio is 3 or more, the surface area is large when the number of divided segments and the fineness are the same as those of ordinary circular cross-section split conjugate fibers, for example, radial and laminated split conjugate fibers, Since the contact area between adjacent components becomes small, a high-pressure liquid flow can be effectively received by the composite fiber, and it becomes easy to divide even at the same water pressure. In addition, if the composite fiber exceeds 20, the composite fiber can effectively receive a high-pressure liquid flow, but problems such as maintaining the spinnability, reducing the number of holes per unit area of the die, and reducing productivity are generated. To do.
[0037]
Furthermore, the splitting property is further improved because the cross-sectional shape is bent, curved or flat. Compared to the case where the fiber cross-sectional shape is a straight line (see FIG. 9), when the undrawn yarn obtained in the spinning step is drawn in the drawing step, for example, when the undrawn yarn is drawn in the drawing step, the fibers are concentrated between the rolls having a speed difference Is stretched with a strong stress, but at this time, the fibers are pressed with a high pressure. Moreover, when setting it as a short fiber, fibers will be pressed in the cutting process with the strong pressure equivalent to or more than a drawing process. For this reason, the split-type conjugate fiber of the present invention having a bent or curved fiber cross section is very easily crushed as compared with a straight cross-sectional shape, that is, splitting partially proceeds. Moreover, even if it is not divided, the contact interface of each component of the composite fiber is distorted and is more easily divided, and the split type composite fiber of the present invention is very easy to be divided.
[0038]
In this way, when the division has already partially progressed during the yarn making process, the papermaking method can be suitably used. In the case of the papermaking method, it is preferable that the division has already progressed partially because a dense and good web is formed at the papermaking stage. Further, when it is desired to suppress the progress of division during the yarn making process as much as possible, it is effective to set the draw ratio low. Specifically, the drawn yarn elongation preferably has 20% or more of the undrawn yarn elongation. Here, the bent or curved cross-sectional shape is not particularly limited, and is, for example, C-shaped (see FIGS. 1 to 5), S-shaped (see FIG. 7), M-shaped, N-shaped, L-shaped. , V-shaped, W-shaped (see FIG. 8), corrugated, and the like, but the present invention is not limited to these cross-sectional shapes. Moreover, the mixture of various cross-sectional shapes may be sufficient.
Further, examples of the flat shape include U-shaped, horseshoe-shaped, and U-shaped and horseshoe-shaped curved portions that are compressed and flattened, but the present invention is limited to these cross-sectional shapes. It is not something.
[0039]
As mentioned above, since the fiber cross-sectional shape of the split composite fiber of the present invention is bent, curved or flat in the long axis direction, the same effect as the stretching and cutting process can be obtained by pressing between calender rolls. It can be carried out. Therefore, for example, even when long fibers in an unstretched yarn state such as the spunbond method are directly accumulated on a conveyor, they are divided and refined by passing between pressurized calender rolls. It can be a body. Compared to the fiber cross section of the split type composite fiber used in the conventional spunbond method, the split type composite fiber of the present invention is composed of ultrafine fibers having a more uniform fineness because each segment has almost the same fineness. A fiber molded body can be obtained.
[0040]
Further, the ratio (a / b) between the length a of the fiber outer peripheral arc of one component of the resin constituting the split-type conjugate fiber of the present invention and the contact length b of the adjacent component is 0.1 to 2.5. It is preferable to satisfy. When the (a / b) ratio is less than 0.1, the contact area with the adjacent component is larger than that of the outer peripheral surface of the fiber. Necessary. On the other hand, if it exceeds 2.5, the number of divisions is reduced or the thickness of the flat shape becomes too thin, so that it is very difficult to produce with good spinnability.
[0041]
Moreover, in the fiber cross section of the split-type conjugate fiber of the present invention, the ratio (S1 / S2) of the area S1 surrounded by bending and bending to the cross-sectional area S2 (see FIG. 6) of the split-type conjugate fiber is 0.2 to It is preferable to satisfy 1.0. Here, S1 represents a portion surrounded by a straight line connecting both ends of the major axis and a bend or curve in the fiber cross section of the split-type conjugate fiber of the present invention, and represents a degree of the bend or the curve. That is, if S1 is increased, the major axis is greatly bent or curved, and S1 / S2 preferably satisfies 0.2 or more. If it is less than 0.2, the bending and bending are small, and the effect of the bending and bending becomes small. On the other hand, if it exceeds 1.0, it becomes difficult to maintain productivity due to problems such as the long axis of the composite fiber becoming too long or the thickness becoming extremely thin.
[0042]
The split type composite fiber according to the present invention has a fiber cross-sectional shape as described above, so that the conventional split type composite fiber is very difficult to split and a combination of similar resins that required high energy to split. In particular, even a combination of polyolefin resins is excellent in splitting property and can be easily split. Furthermore, even a web composed of short fibers used in the papermaking method can be divided with a high division ratio with good texture. From the above, the split-type conjugate fiber of the present invention can be preferably used for a combination of resins that have been considered difficult to split. Here, the spinneret used for obtaining the fiber cross section of the split composite fiber of the present invention is not particularly limited as long as the split composite fiber can be obtained. A base disposed in an S shape, an M shape, an N shape, an L shape, a V shape, a W shape, a wave shape, a U shape, a horseshoe shape, or the like can be used.
[0043]
In the split type composite fiber of the present invention, the composite ratio of the composite fiber composed of at least two component thermoplastic resins is in the range of 10/90 to 90/10% by weight, and the total amount of the component resins used is 100%. %, More preferably 30/70 to 70/30% by weight, and most preferably 40/60 to 60/40. By setting it as the composite ratio of this range, it becomes a cross-sectional shape in which at least two types of thermoplastic resins are uniformly arranged, and a more uniform fiber molded body can be obtained.
[0044]
When the split type composite fiber obtained in the present invention is split by high-pressure liquid flow treatment or the like, the average fineness of the split ultrafine fiber is preferably 0.5 dtex or less, and particularly preferably 0.3 dtex or less. Therefore, the number of divided segments of the split type composite fiber may be determined so that the average fineness of the ultrafine fiber is 0.5 dtex or less, and if the number of divided segments is large, there is an advantage that the fineness after splitting is reduced. Is preferably 4 to 32 segments for ease of fiber production.
[0045]
Although the single yarn fineness before a division | segmentation is not specifically limited, It is preferable that it is 0.5-10.0 decitex, More preferably, it is 1.0-6.0 decitex. In addition, the fineness of each segment does not need to be the same, and if the split type composite fiber is not completely divided, a plurality of different finenesses are placed between the undivided split fiber and the completely split ultrafine fiber. Of fibers may be mixed.
[0046]
Hereinafter, as an example of the split type composite fiber of the present invention, a method for producing a split composite fiber in which two components of a polypropylene resin and a high density polyethylene resin are combined will be exemplified.
A long fiber made of the resin is spun using an ordinary melt spinning machine. At the time of spinning, it is preferable to spin at a spinning temperature of 200 to 330 ° C., and the take-up speed is preferably about 40 m / min to 1500 m / min. Stretching may be performed as necessary. When stretching is performed, the stretching ratio is usually about 3 to 9 times. Further, the obtained tow is cut into a predetermined length to make a short fiber. Although the manufacturing process of the short fiber has been disclosed above, the long fiber tow can be made into a web by a fiber separation guide or the like without cutting the tow. After that, it is formed into a fiber molded body according to various uses through high-order processing steps as required. Also, a fiber molded body that is wound up as a filament yarn after spinning and drawing, and knitted or woven into a knitted fabric, or a fiber molded body that is knitted or woven into a knitted fabric after the short fibers are spun into a spun yarn. You may form in.
[0047]
That is, here, the fiber molded body may be in any form as long as it is in the form of a cloth, and examples thereof include woven fabrics, knitted fabrics, nonwoven fabrics, and nonwoven fiber assemblies. Moreover, what was made into the form of cloth by methods, such as blended cotton, blended yarn, blended fiber, twisted twist, knit, and mixed fiber, is also included. Further, the non-woven fiber aggregate refers to a web-like material made uniform by a method such as a card method, an airlaid method or a papermaking method.
[0048]
In this step, after spinning the fiber, a surfactant can be attached to the fiber surface for the purpose of preventing the static electricity of the fiber and imparting smoothness for improving the processability of the fiber molded body. The type and concentration of the surfactant are appropriately adjusted according to the application. As a method of adhesion, a roller method, a dipping method, a pad dry method, or the like can be used. The attachment may be performed in any of a spinning process, a drawing process, and a crimping process. Furthermore, it is also possible to attach the surfactant after molding to, for example, a fiber molded body other than the spinning process, the stretching process, and the crimping process, regardless of whether the fibers are short fibers or long fibers.
[0049]
The fiber length of the split-type composite fiber of the present invention is not particularly limited. However, when a web is produced using a card machine, generally 20 to 76 mm is used. In the papermaking method and airlaid method, Those having a fiber length of 2 mm to 20 mm are preferably used. When the fiber length is less than 2 mm, the fiber moves due to physical impact, and the fiber itself is less likely to receive energy necessary for division. Further, when the fiber length greatly exceeds 76 mm, it is difficult to form a web with a card machine or the like, and it is difficult to obtain a uniform web.
[0050]
As an example of a method for producing a fiber molded body made of the split conjugate fiber of the present invention, a method for producing a nonwoven fabric is illustrated. For example, by using the short fiber manufactured by the split type composite fiber manufacturing method, a necessary basis weight web is prepared by a card method, an airlaid method, or a papermaking method. Further, the web may be directly produced by a melt blown method, a spun bond method or the like. The web produced by the above method can be divided and finely divided by a known method such as a needle punch method, a high-pressure liquid flow treatment, a pressurized calender roll, etc. to obtain a fiber molded body. Furthermore, the fiber molded body can be treated by a known processing method such as hot air or hot roll. When a web composed of very short fibers such as papermaking is divided and finely divided by a known method such as needle punching or high-pressure liquid flow treatment, the fibers are moved simultaneously with the physical stress. Since the formation may be poor, 5 to 30% by weight of a fiber that is heat-sealed at a melting point lower than the melting point of the resin constituting the split-type conjugate fiber of the present invention is previously blended, and this low-melting fiber By performing heat treatment at a temperature at which the material is fused and preparing a heat-bonded nonwoven fabric, formation defects can be suppressed.
[0051]
The basis weight of the fiber molded body of the present invention is not particularly limited, but is 10 to 200 g / m.2Are preferred. The basis weight is 10g / m2If the ratio is less than 1, the split composite fiber may be divided and refined by physical stress such as high-pressure liquid flow treatment to produce the nonwoven fabric, which may result in a poorly formed nonwoven fabric. The basis weight is 200 g / m2If it exceeds 1, the basis weight is high, a high-pressure water flow is required, and it may be difficult to perform uniform division with good texture.
[0052]
The fiber molded body of the present invention can be used by mixing other fibers with the split-type composite fiber of the present invention as needed, as long as it does not interfere with the present invention. Examples of such other fibers include synthetic fibers such as polyamide, polyester, polyolefin, and acrylic, natural fibers such as cotton, wool, and hemp, regenerated fibers such as rayon, cupra, and acetate, and semi-synthetic fibers.
[0053]
Next, the high-pressure liquid flow process will be described. As a high-pressure liquid flow apparatus used for high-pressure liquid flow treatment, for example, one or more injection holes having a hole diameter of 0.05 to 1.5 mm, particularly 0.1 to 0.5 mm, with a hole interval of 0.1 to 1.5 mm. A device arranged in multiple rows is used. A high-pressure liquid flow obtained by jetting from the jet holes at high water pressure is made to collide with the web placed on the porous support member. As a result, the undivided split composite fiber of the present invention is entangled and simultaneously refined by the high-pressure liquid flow. The injection holes are arranged in a row in a direction perpendicular to the traveling direction of the web. As the high-pressure liquid flow, normal temperature or warm water may be used, and other liquid may be arbitrarily used.
[0054]
The distance between the injection hole and the web is preferably 10 to 150 mm. If this distance is less than 10 mm, the formation of the fiber molded body obtained by this treatment is disturbed. On the other hand, if this distance exceeds 150 mm, the physical impact of the liquid flow on the web is weakened, resulting in entanglement and fine division. May not be adequately applied. The processing pressure of this high-pressure liquid stream is controlled by the production method and the required performance of the fiber molded body, but in general, it is 20 kg / cm.2~ 200kg / cm2It is better to inject a high pressure liquid stream. Although it depends on the basis weight to be treated, etc., within the range of the treatment pressure, if the high-pressure liquid flow is processed by increasing the pressure from the low water pressure to the high water pressure sequentially, the entanglement and the web formation are not disturbed. Splitting and finening are possible. As the porous support member on which the web is placed when the high-pressure liquid flow is applied, for example, as long as the high-pressure liquid flow penetrates the web, such as a mesh screen or a perforated plate made of 50-200 mesh metal mesh or synthetic resin There is no particular limitation.
[0055]
In addition, after performing the high-pressure liquid flow treatment from one side of the web, by subsequently inverting the entangled web and performing the high-pressure liquid flow treatment, it is possible to obtain a dense and well-formed fiber molded body on both sides. it can. Furthermore, after performing a high-pressure liquid flow process, a water | moisture content is removed from the fiber molded object after a process. In removing this moisture, a known method can be employed. For example, after removing moisture to some extent using a squeezing device such as Mangroll, moisture can be completely removed using a drying device such as a hot air circulation dryer to obtain the fiber molded body of the present invention.
[0056]
When a web containing the split-type conjugate fiber of the present invention is subjected to a high-pressure liquid flow treatment in the above-described manner to obtain a dense fiber molded body, a split-type conjugate fiber having a conventional fiber cross section (FIG. 9, Compared to FIG. 10), it is easier to divide and less physical impact is caused by the high-pressure liquid flow. For this reason, since the formation of high-pressure liquid flow, which is the rate-limiting step of the nonwoven fabric processing process, is improved by reducing the pressure of the high-pressure liquid flow, for example, the pressure of the high-pressure liquid flow can be lowered. Or problems such as opening of through holes can be improved.
[0057]
As described above, even split-type composite fibers composed of similar resins that were considered to be most difficult to split, can be easily split, and a dense and well-formed fiber molded body can be obtained. Using these fiber molded bodies, it can be suitably used not only in the field of industrial materials such as battery separators and wipers, but also in the field of sanitary materials and clothing.
[0058]
Furthermore, a laminated fiber molded body (hereinafter referred to as A type) in which at least one sheet selected from a nonwoven fabric, a film, a knitted fabric, a woven fabric and the like is laminated on one side or both sides of the fiber molded body of the present invention, and further the fiber On the contrary, a laminated fiber molded body (hereinafter referred to as B type) in which the molded body is laminated on both surfaces of the sheet can also be used.
In the case of the A type, it is preferable to laminate the divided fiber molded product on one side or both sides of the sheet because the division efficiency is good. In the case of the B type, the fiber molded body is divided before and after the lamination, but the division treatment after the lamination is particularly preferable because an entanglement effect between the sheet and the fiber molded body is obtained. Any of these laminated fiber molded products (A) and (B) can be suitably used in the field of sanitary materials represented by absorbent articles such as diapers and napkins, and in the field of industrial materials such as wipers and battery separators. .
[0059]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited by this. The terms and methods for measuring physical properties in Examples and Comparative Examples are as follows.
[0060]
(1) Melt flow rate: measured in accordance with JIS K7210.
Raw material polypropylene resin: Condition 14
Raw material polyethylene resin: Condition 4
Polyolefin resin after fiber molding: Condition 14
[0061]
(2) L / W measurement method
The following values were calculated from cross-sectional photographs of 10 undivided fibers selected arbitrarily, and L / W was calculated from the average value.
L: represents the longest part of the fiber cross-sectional shape in the direction in which the components are alternately adjacent to each other (see FIG. 1)
W: represents the contact surface direction of each component, that is, the thickness of the cross-sectional shape (see FIG. 1).
[0062]
(3) a / b measurement method
The following values were calculated from cross-sectional photographs of 10 undivided fibers selected arbitrarily, and a / b was calculated from the average value.
a: Average length of the outer peripheral surface of the component 1 fiber (see FIG. 1)
b: Average value of contact length of 1 component (see FIG. 1)
[0063]
(4) S1 / S2 measurement method
The area of S1 and S2 was calculated from a fiber cross-sectional photograph of 10 undivided fibers selected arbitrarily, and S1 / S2 was calculated from the average value. (See Figure 6)
S1: Area of a portion surrounded by a straight line connecting both ends of the long axis and bending or bending
S2: Cross-sectional area of the split composite fiber of the present invention
[0064]
(5) Spinnability
The spinnability at the time of melt spinning was evaluated in the following three stages according to the occurrence rate of yarn breakage.
○: No thread breakage occurs and operability is good.
Δ: Thread breakage once or twice per hour
X: Yarn breakage occurs 4 times or more per hour, and there is a problem in operation.
[0065]
(6) Stretch ratio
The following formula was used for calculation.
Stretch ratio = take-up roll speed (m / min) / feed roll (m / min)
[0066]
(7) Fiber tensile strength and elongation
According to JIS-L1013 method, it was measured at a yarn length of 100 mm and a tensile speed of 100 mm / min using an autograph AGS500D manufactured by Shimadzu Corporation.
[0067]
(8) Tensile strength and elongation of nonwoven fabric
The nonwoven fabric breaking strength of MD direction was measured for the nonwoven fabric of 5 cm width using Shimadzu Corporation autograph AGS500D. Measurement was performed at a test length of 100 mm and a tensile speed of 200 mm / min, and the measurement temperature was room temperature.
[0068]
(9) Measurement of split ratio
The non-woven fabric after the division is included with wax, and is sliced at right angles to the fiber axis with a microtome to create a sample piece. This is observed with a microscope, the cross-sectional image of the fiber is image-processed, and the total cross-sectional area (A) of the fibers in which 70% or more of the segments are divided and the total cross-sectional area (B) of the undivided fibers are measured. It was calculated by the following formula.
Division rate (%) = {A / (A + B)} × 100
[0069]
(10) Single yarn fineness after division
From the fineness before division and the number of segments that can be divided, the single yarn fineness after division fineness was calculated from the following equation.
Fineness after division (dtex / f) = fineness before division (dtex / f) / number of segments that can be divided (pieces)
[0070]
(11) Formation
Ten panelists evaluated as follows by the result of visually observing the fiber unevenness of the non-woven fabric (1 m square) after the split fine processing.
○: Seven or more people felt that there were few spots and no through holes.
Δ: 4 to 6 people felt that there were few spots and no through holes.
X: 3 or less felt that there were few spots.
[0071]
(12) High pressure liquid flow treatment
A web created by a roller card machine, an airlaid machine, a paper machine, etc. is placed on a conveyor belt made of 80 mesh plain weave. The conveyor belt speed is 20 m / min, and the nozzle diameter is 0.1 mm and the nozzle pitch is 1 mm. Passed and jetted high pressure liquid stream. First, after preliminary treatment (2 stages) at 2 MPa, 4 stages treatment was performed with a high-pressure liquid flow having a water pressure of 5 MPa. The web was inverted, and further processed in four stages with a high-pressure liquid flow having a water pressure of 5 MPa, to obtain a non-woven fabric that had been divided and refined. Here, the step is the number of times that the nozzle has passed directly under the nozzle.
[0072]
(13) Pressure (split) roll
Induction heating hydraulic two-roll clearance machine (manufactured by Yuri Roll Co., Ltd.)
Processing temperature: Atmospheric temperature
Treatment linear pressure: 40 kg / cm
Processing speed: 10m / min
[0073]
(14) Water pressure resistance
The measurement was performed according to JIS L1092.
[0074]
Examples 1-3
Polypropylene resin (propylene homopolymer) is used as the high melting point resin (A component), high density polyethylene resin is used as the low melting point resin (B component), and both the A component and B component resins are used using the split composite fiber die. A split type composite fiber having a fiber cross-sectional shape shown in FIG. 1 and having a single yarn denier of 7.5 dtex was spun. In the take-off process, an alkyl phosphate potassium salt was deposited. The obtained undrawn yarn was drawn at 90 ° C. and 4.1 times, attached with a papermaking finish, and then cut into 10 mm to obtain short fibers having a moisture content of 20% by weight.
To this short fiber, 20% by weight of polypropylene (core) / low-density polyethylene (sheath) sheath-core composite fiber (EAC fiber, Chisso Corp.) is added, and a papermaking method is performed using a square sheet machine (25 cm × 25 cm). The web. Using a Yankee dryer manufactured by Kumagai Riki Kogyo Co., Ltd., a web was obtained by drying at 105 ° C. for 3 minutes and pre-bonding. The web was subjected to the high-pressure liquid flow treatment and then dried with a dryer at 80 ° C. to obtain a fiber molded body.
[0075]
Example 4
Polypropylene resin (propylene homopolymer) is used as the high melting point resin (component A), high density polyethylene resin is used as the low melting point resin (component B), and the split composite fiber base is used. A split type composite fiber having a fiber cross-sectional shape shown in FIG. 2 with a single yarn denier of 7.5 dtex was spun. In the take-off process, an alkyl phosphate potassium salt was deposited. The obtained undrawn yarn was drawn at 90 ° C. and 1.5 times to give crimps and cut into 51 mm.
The obtained short fiber was used as a web with a roller card machine, and the high-pressure liquid flow treatment was performed on the web, and then dried with a dryer at 80 ° C. to obtain a fiber molded body. When the fiber molded body was used as a surface material for adult diapers, it was excellent in touch (soft feeling), non-woven fabric strength, etc., and very good as an absorbent article.
[0076]
Example 5
In accordance with Example 1 except that the split type composite fiber die for obtaining the fiber cross section shown in FIG. 3 was used, the split type composite fiber was spun and a fiber molded body was produced.
[0077]
Example 6
Except that linear low-density polyethylene was used instead of high-density polyethylene, spinning of split-type composite fibers and production of a fiber molded body were performed in accordance with Example 1.
[0078]
Example 7
Except that low-density polyethylene was used instead of high-density polyethylene, spinning of split-type composite fibers and production of a fiber molded body were performed in accordance with Example 1.
[0079]
Example 8
Polypropylene resin (propylene homopolymer) is used as the high melting point resin (component A), high density polyethylene resin is used as the low melting point resin (component B), and the split composite fiber base is used. A split type composite fiber having a fiber cross-sectional shape shown in FIG. 1 and having a single yarn denier of 20.0 dtex was spun. In the take-off process, an alkyl phosphate potassium salt was deposited. The obtained unstretched yarn was stretched at 90 ° C. and 4.1 times, attached with a papermaking finish, and then cut into 10 mm to obtain short fibers having a moisture content of 20% by weight. To this short fiber, 20% by weight of polypropylene (core) / low-density polyethylene (sheath) sheath-core composite fiber (EAC fiber, Chisso Corp.) is added, and a papermaking method is performed using a square sheet machine (25 cm × 25 cm). The web. Using a Yankee dryer manufactured by Kumagai Riki Kogyo Co., Ltd., a web was obtained by drying at 105 ° C. for 3 minutes and pre-bonding. The web was subjected to the high-pressure liquid flow treatment and then dried with a dryer at 80 ° C. to obtain a fiber molded body.
[0080]
Example 9
In accordance with Example 8, spinning of the split-type composite fiber and preparation of the fiber molded body were performed except that the split-type composite fiber base for obtaining the fiber cross section shown in FIG. 2 was used.
[0081]
The spinning / drawing conditions, fiber properties, shapes, nonwoven fabric properties, split ratios, and the like of Examples 1 to 9 are shown in Table 1 below.
[0082]
Example 10
Relative viscosity (measured at 20 ° C using an equal mixture of phenol and ethane tetrachloride as a solvent) 0.60 PET (Kanebo Co., Ltd., K101) is a high melting point resin (component A) and a low melting point resin. Using polypropylene resin (MFR: propylene homopolymer of 16 g / 10 min) as (B component), using a split type composite fiber die, the volume ratio of both the A component and B component resins is 50/50, A split type composite fiber having a fiber cross-sectional shape shown in FIG. 1 having a single yarn denier of 15.0 dtex was spun. In the take-off process, an alkyl phosphate potassium salt was deposited. The obtained undrawn yarn was drawn at 90 ° C. and 3.3 times, attached with a papermaking finish, and then cut into 10 mm to obtain short fibers having a moisture content of 20% by weight. To this short fiber, 20% by weight of polypropylene (core) / low-density polyethylene (sheath) sheath-core composite fiber (EAC fiber, Chisso Corp.) is added, and a papermaking method is performed using a square sheet machine (25 cm × 25 cm). The web. Using a Yankee dryer manufactured by Kumagai Riki Kogyo Co., Ltd., a web was obtained by drying at 105 ° C. for 3 minutes and pre-bonding. After the high-pressure liquid flow treatment, it was further dried with a dryer at 80 ° C. to obtain a fiber molded body.
[0083]
Example 11
A split type composite fiber was spun and a fiber molded body was produced in accordance with Example 1 except that the split type composite fiber base for obtaining the fiber cross section shown in FIG. 4 was used.
[0084]
Example 12
Polypropylene resin (propylene homopolymer) is used as the high melting point resin (component A), high density polyethylene resin is used as the low melting point resin (component B), and the split composite fiber base is used. A split type composite fiber having a fiber cross-sectional shape shown in FIG. 1 and having a single yarn denier of 7.5 dtex was spun. In the take-off process, an alkyl phosphate potassium salt was deposited. The obtained undrawn yarn was drawn at 90 ° C. and 4.1 times, attached with a papermaking finish, and then cut into 10 mm to obtain short fibers having a moisture content of 20% by weight. To this short fiber, 20% by weight of polypropylene (core) / low-density polyethylene (sheath) sheath-core composite fiber (EAC fiber, Chisso Corp.) is added, and a papermaking method is performed using a square sheet machine (25 cm × 25 cm). The web. The web was dried at 105 ° C. for 3 minutes and pre-adhered using a Yankee dryer manufactured by Kumagai Riki Kogyo Co., Ltd. to obtain a web. The web was subjected to the high-pressure liquid flow treatment and then dried with a dryer at 80 ° C. to obtain a fiber molded body.
[0085]
Example 13
Polypropylene resin (propylene homopolymer) is used as the high melting point resin (A component), high density polyethylene resin is used as the low melting point resin (B component), and both the A component and B component resins are used using the split composite fiber die. A split type composite fiber having a fiber cross-sectional shape shown in FIG. 1 was spun by the spunbond method. A composite fiber group discharged from a spinneret is introduced into an air soccer ball and pulled and drawn to obtain a composite long fiber having a single yarn denier of 2.0 dtex. After the same charge is applied and charged, the fibers are opened by colliding with the reflector, and the opened long fiber group is collected as a long fiber web on an endless net-like conveyor provided with a suction device on the back surface. The long fiber web was divided by a pressure roll and then processed by an embossing roll machine having an area ratio of 15% heated to 120 ° C. to obtain a fiber molded body.
[0086]
The spinning / drawing conditions, fiber properties, shapes, nonwoven fabric properties, split ratios, etc. of Examples 10 to 13 are shown in Table 2 below.
[0087]
Comparative Examples 1 and 2
Polypropylene resin (propylene homopolymer) is used as the high melting point resin (component A), high density polyethylene resin is used as the low melting point resin (component B), and the split composite fiber base is used. A split type composite fiber having a fiber cross-sectional shape shown in FIG. 1 and having a single yarn denier of 7.5 dtex was spun. In the take-off process, an alkyl phosphate potassium salt was deposited. The obtained undrawn yarn was drawn at 90 ° C. and 4.1 times, attached with a papermaking finish, and then cut into 10 mm to obtain short fibers having a moisture content of 20% by weight. To this short fiber, 20% by weight of polypropylene (core) / low-density polyethylene (sheath) sheath-core composite fiber (EAC fiber, Chisso Corp.) is added, and a papermaking method is performed using a square sheet machine (25 cm × 25 cm). The web. This was dried at 105 ° C. for 3 minutes using a Yankee dryer manufactured by Kumagai Riki Kogyo Co., Ltd. and pre-bonded to obtain a web. The web was subjected to the high-pressure liquid flow treatment and then dried with a dryer at 80 ° C. to obtain a fiber molded body. The spinning / drawing conditions, fiber properties, shape, nonwoven fabric properties, split ratio, etc. are shown in Table 2 below.
[0088]
Comparative Example 3
In accordance with Example 1 except that the split type composite fiber die for obtaining the fiber cross section shown in FIG. 9 was used, the split type composite fiber was spun and a fiber molded body was produced. The spinning / drawing conditions, fiber properties, shape, nonwoven fabric properties, split ratio, etc. are shown in Table 2 below.
[0089]
Comparative Example 4
In accordance with Example 1 except that the split type composite fiber die for obtaining the fiber cross section shown in FIG. 10 was used, the split type composite fiber was spun and a fiber molded body was produced. The spinning / drawing conditions, fiber properties, shape, nonwoven fabric properties, split ratio, etc. are shown in Table 2 below.
[0090]
Comparative Example 5
Spinning of the split-type composite fiber and preparation of the fiber molded body were performed in accordance with Example 13 except that the split-type composite fiber die for obtaining the fiber cross section shown in FIG. 10 was used. The spinning / drawing conditions, fiber properties, shape, nonwoven fabric properties, split ratio, etc. are shown in Table 2 below.
[0091]
Examples 14 and 15
The basis weight of 10 g / m in the previous step (before the high-pressure liquid flow treatment) for obtaining a fiber molded body in accordance with Example 12Web (abbreviated as A). Next, a high-density polyethylene (sheath) / polypropylene (core) sheath-core type composite fiber (ESC fiber, Chisso Corp.) 2.2 dtex × 51 mm short fiber was used, and the basis weight was 10 g / m.2Card web (abbreviated as B). After carrying out the said high pressure liquid flow process, what laminated | stacked A to the upper layer, B was laminated | stacked on the lower layer (Example 14), and A was laminated | stacked on the upper and lower layers, and B was laminated | stacked on the middle layer, respectively. The laminated fiber molded body was obtained by drying with a drier. Furthermore, when this laminated fiber molded body was used for a wiper for wiping, both Examples 14 and 15 showed very excellent wiping properties.
[0092]
Example 16
Polypropylene resin (propylene homopolymer) is used as the high melting point resin (component A), high density polyethylene resin is used as the low melting point resin (component B), and the split composite fiber base is used. A split type composite fiber having a fiber cross-sectional shape shown in FIG. 1 with a single yarn denier of 2.0 dtex is spun by the spunbond method, and the basis weight for the middle layer is 10 g / m.2Got the web. Next, in the combination of the resins, using a sheath core type composite fiber die, the A component is the core side, the B component is the sheath side, the volume ratio of both the A and B resins is 50/50, and the single yarn Spinning a composite fiber of denier 2.0dtex by the spunbond method, weight per unit area 5.0g / m2The above webs were laminated as upper and lower layers on the intermediate layer web, divided by a pressure roll, and then processed by an embossing machine having an area ratio of 15% heated to 120 ° C. to obtain a laminated fiber molded body. Furthermore, when the fiber molded body was used as a surface material for adult diapers, it was excellent in water pressure resistance, non-woven fabric strength, etc., and very good as an absorbent article.
[0093]
[Table 1]
Figure 0004026279
[0094]
[Table 2]
Figure 0004026279
[0095]
As is clear from Tables 1 and 2, the fiber molded body and the laminated fiber molded body obtained in each example of the examples of the present invention are divided at a higher split ratio even under the same conditions as in the comparative examples. That is, even without performing a high-pressure liquid flow treatment at a high water pressure as in the prior art, division and finening proceed easily, so even a nonwoven fabric with a relatively low basis weight can be produced without disturbing the formation, Furthermore, the cost of high pressure liquid flow treatment can be greatly reduced.
[0096]
【The invention's effect】
Since the split-type composite fiber of the present invention is very easy to split, it can be easily made into ultrafine fibers without adding any special additives for easy splitting and without increasing the physical impact. For this reason, when the split composite fiber of the present invention is used, a dense and well-formed fiber molded body and a laminated fiber molded body can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a fiber cross section of a split type composite fiber used in the present invention.
FIG. 2 is a schematic diagram of a fiber cross section of a split type composite fiber used in the present invention.
FIG. 3 is a schematic diagram of a fiber cross section of a split type composite fiber used in the present invention.
FIG. 4 is a schematic diagram of a fiber cross section of a split type composite fiber used in the present invention.
FIG. 5 is a schematic diagram of a fiber cross section of a split type composite fiber used in the present invention.
FIG. 6 is a schematic diagram showing an area (S1) surrounded by bending or bending and a cross-sectional area (S2) of a split-type conjugate fiber.
FIG. 7 is a schematic diagram of a fiber cross section of a split type composite fiber used in the present invention.
FIG. 8 is a schematic diagram of a fiber cross section of a split type composite fiber used in the present invention.
FIG. 9 is a schematic diagram of a fiber cross section of a split-type composite fiber used in a comparative example.
FIG. 10 is a schematic diagram of a fiber cross section of a split type composite fiber used in a comparative example.
[Explanation of symbols]
L: Represents the length of the longest section in the direction in which the components of the composite fiber are alternately adjacent to each other.
W: Represents the thickness of the cross-sectional shape in the contact surface direction of each component of the composite fiber.
a: Represents the length of the outer peripheral surface of a single component constituting the composite fiber.
b: Represents the contact length with one adjacent component constituting the composite fiber.
S1: An area of a portion surrounded by a straight line connecting both ends of the long axis and bending or bending.
S2: Represents the fiber cross-sectional area of the composite fiber.

Claims (16)

少なくとも2成分の熱可塑性樹脂から構成され、繊維断面において、各成分は長軸方向に交互に隣接され、かつ該断面は屈曲、湾曲、または、扁平形状としては、U型、馬蹄形型、もしくは、該U型または馬蹄形型の湾曲部が圧縮されて扁平になった断面形状の複合繊維であって、該複合繊維の複合比は、10/90〜90/10重量%の範囲であり、分割型複合繊維の繊維断面において、屈曲もしくは湾曲により囲まれた面積S1と該分割型複合繊維の断面積S2の比(S1/S2)が0.2〜1.0であり、該断面の長軸Lと短軸Wの比(L/W)が3〜20であることを特徴とする、物理的応力による分割細繊化処理用の分割型複合繊維。It is composed of at least two components of a thermoplastic resin, and in the fiber cross section, each component is alternately adjacent in the long axis direction, and the cross section is bent, curved , or flattened as a U shape, a horseshoe shape, or A composite fiber having a cross-sectional shape in which the U-shaped or horseshoe-shaped curved portion is compressed and flattened , and the composite ratio of the composite fiber is in the range of 10/90 to 90/10% by weight. In the fiber cross section of the composite fiber, the ratio (S1 / S2) of the area S1 surrounded by bending or bending to the cross sectional area S2 of the split composite fiber is 0.2 to 1.0, and the long axis L of the cross section A split type composite fiber for splitting and finening treatment by physical stress, wherein a ratio (L / W) of the axis to the minor axis W is 3 to 20. 分割型複合繊維の繊維断面において、繊維を構成する1成分の繊維外周面長aと隣接成分との接触長bの比(a/b)が0.1〜2.5である請求項1記載の分割型複合繊維。The ratio (a / b) of the contact length b between the outer peripheral surface length a of one component constituting the fiber and the adjacent component in the fiber cross section of the split-type conjugate fiber is 0.1 to 2.5. Split type composite fiber. 繊維成形後の該繊維を構成する少なくとも2成分の熱可塑性樹脂のメルトフローレートがいずれも10〜100g/10分であり、かつ該熱可塑性樹脂のうち、融点の最も高い樹脂成分(以下、A成分という)のメルトフローレート(MFR−A)と融点が最も低い樹脂成分(以下、B成分という)のメルトフローレート(MFR−B)の比(MFR−A/MFR−B)が0.1〜5である請求項1または請求項2記載の分割型複合繊維。The melt flow rate of at least two components of the thermoplastic resin constituting the fiber after fiber molding is 10 to 100 g / 10 minutes, and among the thermoplastic resins, the resin component having the highest melting point (hereinafter referred to as A) The ratio (MFR-A / MFR-B) of the melt flow rate (MFR-B) of the resin component having the lowest melting point (hereinafter referred to as component B) (MFR-B) is 0.1. The split-type conjugate fiber according to claim 1 or 2, which is -5. 少なくとも2成分の熱可塑性樹脂の組合せが、ポリプロピレン系樹脂とポリエチレン系樹脂である請求項1〜のいずれか1項記載の分割型複合繊維。The split composite fiber according to any one of claims 1 to 3 , wherein the combination of at least two thermoplastic resins is a polypropylene resin and a polyethylene resin. 分割型複合繊維の分割前の単糸繊度が0.5〜10デシテックス、分割後の単糸繊度が0.5デシテックス以下である請求項1〜のいずれか1項記載の分割型複合繊維。The split-type composite fiber according to any one of claims 1 to 4 , wherein the split-type composite fiber has a single yarn fineness before splitting of 0.5 to 10 dtex and a single-fiber fineness after splitting of 0.5 dtex or less. 請求項1〜のいずれかに記載の分割型複合繊維を少なくとも30重量%以上含み、かつ該分割型複合繊維の50%以上が分割している繊維成形体。A fiber molded body comprising at least 30% by weight or more of the split-type conjugate fiber according to any one of claims 1 to 5 , and 50% or more of the split-type conjugate fiber being split. 繊維成形体が繊維集合体である請求項記載の繊維成形体。The fiber molded body according to claim 6 , wherein the fiber molded body is a fiber assembly. 繊維成形体がスパンボンド法により得られる繊維集合体である請求項6または請求項7記載の繊維成形体。The fiber molded body according to claim 6 or 7 , wherein the fiber molded body is a fiber assembly obtained by a spunbond method. 請求項6〜8のいずれか1項記載の繊維成形体の片面または両面にシートを積層してなる積層繊維成形体。The laminated fiber molded object formed by laminating | stacking a sheet | seat on the single side | surface or both surfaces of the fiber molded object of any one of Claims 6-8 . 請求項6〜8のいずれか1項記載の繊維成形体をシートの両面に積層してなる積層繊維成形体。The laminated fiber molded object formed by laminating | stacking the fiber molded object of any one of Claims 6-8 on both surfaces of a sheet | seat. シートが不織布、フィルム、編物、織物の少なくとも1種から選ばれたシ−トである請求項9または請求項10記載の積層繊維成形体。The laminated fiber molded body according to claim 9 or 10 , wherein the sheet is a sheet selected from at least one of a nonwoven fabric, a film, a knitted fabric, and a woven fabric. 請求項6〜8のいずれか1項記載の繊維成形体もしくは請求項9〜11のいずれか1項記載の積層繊維成形体を用いた吸収性物品。An absorbent article using the fiber molded body according to any one of claims 6 to 8 or the laminated fiber molded body according to any one of claims 9 to 11 . 請求項6〜8のいずれか1項記載の繊維成形体もしくは請求項9〜11のいずれか1項記載の積層繊維成形体を用いたワイパー。A wiper using the fiber molded body according to any one of claims 6 to 8 or the laminated fiber molded body according to any one of claims 9 to 11 . 請求項6〜8のいずれか1項記載の繊維成形体もしくは請求項9〜11のいずれか1項記載の積層繊維成形体を用いたバッテリーセパレーター。A battery separator using the fiber molded body according to any one of claims 6 to 8 or the laminated fiber molded body according to any one of claims 9 to 11 . 請求項1記載の分割型複合繊維に物理的応力による分割細繊化を施すことを特徴とする極細繊維の製造方法。A method for producing ultrafine fibers, comprising subjecting the split type composite fibers according to claim 1 to splitting and finening by physical stress. 物理的応力による分割細繊化が、ニードルパンチ法、高圧液体流処理、または、加圧されたカレンダーロールによって行われることを特徴とする請求項15記載の極細繊維の製造方法。The method for producing ultrafine fibers according to claim 15, wherein the splitting and finening by physical stress is performed by a needle punch method, a high-pressure liquid flow treatment, or a pressurized calender roll.
JP16485199A 1999-03-08 1999-06-11 Split type composite fiber and fiber molded body using the same Expired - Fee Related JP4026279B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16485199A JP4026279B2 (en) 1999-03-17 1999-06-11 Split type composite fiber and fiber molded body using the same
PCT/JP2000/001180 WO2000053831A1 (en) 1999-03-08 2000-02-29 Split type conjugate fiber, method for producing the same and fiber formed article using the same
DE10080786.0T DE10080786B3 (en) 1999-03-08 2000-02-29 Cleavable multicomponent fiber and fibrous article comprising it
US09/674,384 US6410139B1 (en) 1999-03-08 2000-02-29 Split type conjugate fiber, method for producing the same and fiber formed article using the same
US10/153,133 US6617023B2 (en) 1999-03-08 2002-05-21 Splittable multi-component fiber, method for producing it, and fibrous article comprising it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7258399 1999-03-17
JP11-72583 1999-03-17
JP16485199A JP4026279B2 (en) 1999-03-17 1999-06-11 Split type composite fiber and fiber molded body using the same

Publications (2)

Publication Number Publication Date
JP2000328348A JP2000328348A (en) 2000-11-28
JP4026279B2 true JP4026279B2 (en) 2007-12-26

Family

ID=26413713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16485199A Expired - Fee Related JP4026279B2 (en) 1999-03-08 1999-06-11 Split type composite fiber and fiber molded body using the same

Country Status (1)

Country Link
JP (1) JP4026279B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020524A (en) * 2001-07-10 2003-01-24 Kuraray Co Ltd Joining-type conjugated staple fiber
WO2008038536A1 (en) * 2006-09-25 2008-04-03 Mitsui Chemicals, Inc. Split type composite long fiber, nonwoven fabric made of split type composite long fiber, and split-fiber nonwoven fabric
EP2778265A1 (en) * 2013-03-11 2014-09-17 Basell Polyolefine GmbH Multilayer fibers

Also Published As

Publication number Publication date
JP2000328348A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
JP5272229B2 (en) Split type composite fiber, aggregate thereof, and fiber molded body using the split type composite fiber
WO2000053831A1 (en) Split type conjugate fiber, method for producing the same and fiber formed article using the same
JP2003528226A (en) Multi-component perforated nonwoven
JP3852644B2 (en) Split type composite fiber, nonwoven fabric and absorbent article using the same
JPH10331063A (en) Composite nonwoven fabric and its production
EP3126551B1 (en) Modified cross-section fiber
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JP3948781B2 (en) Short fiber nonwoven fabric and method for producing the same
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP3562667B2 (en) Method for producing stretchable long-fiber nonwoven fabric
JP4608819B2 (en) Polyolefin-based split composite fiber and fiber molded body using the same
JP4015831B2 (en) Ultrafine fiber nonwoven fabric and method for producing the same
JP3309181B2 (en) Polyolefin-based splittable composite fiber and fiber molded article using the same
JP4026280B2 (en) Polyolefin-based split composite fiber, production method thereof, and fiber molded body using the fiber
JPH10280262A (en) Nonwoven fabric and its production
JP3580626B2 (en) Nonwoven fabric for hook-and-loop fastener and method for producing the same
JPH08109567A (en) Laminated nonwoven structure and its production
JP3857056B2 (en) Thermally divided composite fiber and fiber assembly
JP3318833B2 (en) Splittable conjugate fiber and fiber molded product using the same
JP4785659B2 (en) Thermally divided composite fiber and fiber assembly
JPH1121752A (en) Composite nonwoven fabric and its production
JPH10273870A (en) Composite non-woven fabric and its production
JPH10195750A (en) Composite nonwoven fabric and its production
JPH10158968A (en) Nonwoven fabric and its production
JPH10280258A (en) Nonwoven fabric and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees