JP4019328B2 - Electrode connection method - Google Patents

Electrode connection method Download PDF

Info

Publication number
JP4019328B2
JP4019328B2 JP2006159631A JP2006159631A JP4019328B2 JP 4019328 B2 JP4019328 B2 JP 4019328B2 JP 2006159631 A JP2006159631 A JP 2006159631A JP 2006159631 A JP2006159631 A JP 2006159631A JP 4019328 B2 JP4019328 B2 JP 4019328B2
Authority
JP
Japan
Prior art keywords
electrodes
electrode
connection
conductive material
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006159631A
Other languages
Japanese (ja)
Other versions
JP2006339163A (en
Inventor
功 塚越
幸寿 廣澤
宏治 小林
勝幸 上野
寛 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006159631A priority Critical patent/JP4019328B2/en
Publication of JP2006339163A publication Critical patent/JP2006339163A/en
Application granted granted Critical
Publication of JP4019328B2 publication Critical patent/JP4019328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Wire Bonding (AREA)

Description

本発明は、電子部品と回路板や回路板同士を接着固定すると共に、両者の電極同士を電気的に接続する電極の接続方法に関する。   The present invention relates to a method for connecting electrodes in which an electronic component and a circuit board or circuit boards are bonded and fixed, and the electrodes of both are electrically connected.

近年、電子部品の小型薄型化に伴い、これらに用いる回路は高密度、高精細化している。このような電子部品と微細電極の接続は、従来のはんだやゴムコネクタ等では対応が困難であることから、最近では分解能に優れた異方導電性の接着剤や膜状物(以下接続部材)が多用されている。
この接続部材は、導電粒子等の導電材料を所定量含有した接着剤からなるもので、この接続部材を電子部品と電極や回路との間に設け、加圧または加熱加圧手段を構じることによって、両者の電極同士が電気的に接続されると共に、電極に隣接して形成されている電極同士には絶縁性を付与して、電子部品と回路とが接着固定されるものである。
In recent years, with the miniaturization and thinning of electronic components, circuits used for these have become denser and higher definition. Since it is difficult to connect such electronic components and fine electrodes with conventional solders or rubber connectors, anisotropically conductive adhesives and membranes with excellent resolution (hereinafter referred to as connecting members) Is frequently used.
This connecting member is made of an adhesive containing a predetermined amount of a conductive material such as conductive particles, and this connecting member is provided between the electronic component and the electrode or circuit to form a pressurizing or heating / pressing means. As a result, the electrodes are electrically connected to each other, and the electrodes formed adjacent to the electrodes are provided with insulating properties so that the electronic component and the circuit are bonded and fixed.

上記接続部材を高分解能化するための基本的な考えは、導電粒子の粒径を隣接電極間の絶縁部分よりも小さくすることで隣接電極間における絶縁性を確保し、併せて導電粒子の含有量をこの粒子同士が接触しない程度とし、かつ電極上に確実に存在させることにより、接続部分における導電性を得ることである。
特開平9−55279号公報 特開平5−174890号公報 特開平7−73921号公報
The basic idea for increasing the resolution of the connecting member is to ensure the insulation between the adjacent electrodes by making the particle size of the conductive particles smaller than the insulating portion between the adjacent electrodes. The amount is set so that the particles do not come into contact with each other and is surely present on the electrode to obtain conductivity at the connection portion.
JP-A-9-55279 JP-A-5-174890 Japanese Unexamined Patent Publication No. 7-73922

上記の従来技術は、導電粒子の粒径を小さくすると、粒子表面積の著しい増加により粒子が2次凝集を起こして連結し、隣接電極間の絶縁性が保持できなくなる。また、導電粒子の含有量を減少すると接続すべき電極上の導電粒子の数も減少することから、接触点数が不足し接続電極間での導通が得られなくなるため、長期接続信頼性を保ちながら、接続部材を高分解能化することは極めて困難である。
すなわち、近年の著しい高分解能化すなわち電極面積や隣接電極間(スペース)の微細化により、電極上の導電粒子が接続時の加圧または加熱加圧により、接着剤と共に隣接電極間に流出し、接続部材の高分解能化の妨げとなっていた。
In the above prior art, when the particle size of the conductive particles is reduced, the particles are secondary agglomerated and connected due to a significant increase in the surface area of the particles, and insulation between adjacent electrodes cannot be maintained. In addition, if the content of the conductive particles is reduced, the number of conductive particles on the electrodes to be connected also decreases, so the number of contact points is insufficient and conduction between the connection electrodes cannot be obtained. It is extremely difficult to increase the resolution of the connecting member.
In other words, due to the recent significant increase in resolution, that is, the electrode area and the miniaturization between adjacent electrodes (spaces), the conductive particles on the electrodes flow out between the adjacent electrodes together with the adhesive by the pressurization or heating and pressurization at the time of connection, This hinders high resolution of the connecting member.

高分解能接続の対策として、突出電極の周壁部に絶縁被膜を形成して接続する試み(特開平6−232211号公報)も見られるが、対向電極面の絶縁被膜を除去する必要から、感光性樹脂でマスクしたりドライエッチング等で、絶縁被膜を除去するので工程が複雑なため経済的ではない。
さらに、このような微細電極や回路の接続を可能とし、かつ接続信頼性に優れた接続部材として、両方向の必要部に導電粒子の密集領域を有する接続部材の提案もある。これによれば、半導体チップのようなドット状の微細電極の接続が可能となるものの、導電粒子の密集領域とドット状電極との正確な位置合わせが必要なので、作業性に劣る欠点がある。
As a measure for high resolution connection, an attempt is made to form and connect an insulating film on the peripheral wall portion of the protruding electrode (Japanese Patent Laid-Open No. 6-232221). However, since it is necessary to remove the insulating film on the counter electrode surface, it is photosensitive. Since the insulating film is removed by masking with resin or by dry etching, the process is complicated, which is not economical.
Furthermore, there is also a proposal of a connection member that can connect such fine electrodes and circuits and has a dense region of conductive particles in necessary portions in both directions as a connection member that is excellent in connection reliability. According to this, although a dot-shaped fine electrode such as a semiconductor chip can be connected, there is a disadvantage that the workability is inferior because a precise alignment between the conductive particle dense region and the dot-shaped electrode is necessary.

本発明は、上記欠点に鑑みなされたもので、導電粒子が接続時に電極上から流出し難く、例え流出しても隣接電極間の絶縁性が保持可能であり、導電粒子と電極との正確な位置合わせが不要なことから作業性に優れ、対向電極面の絶縁被膜を除去する必要のない、低コストな微細電極の接続方法に関する。   The present invention has been made in view of the above-described drawbacks, and it is difficult for the conductive particles to flow out from the electrode at the time of connection. The present invention relates to a low-cost method for connecting a fine electrode that is excellent in workability because alignment is unnecessary and does not require removal of an insulating coating on a counter electrode surface.

本発明は、相対峙する電極の少なくとも一方の電極面を絶縁被覆し接続部材で電極間の接続を得る方法であって、下記工程よりなる少なくとも一方が、突出した電極を有する相対峙する電極の接続方法であり、また前記工程内に電極間の検査および/またはリペアを行う工程を付加できる、電極の接続方法に関する。
(1)相対峙する電極の少なくとも一方の電極面に、絶縁層として厚みが導電材料の粒子径よりも小さい熱可塑性フィルムをラミネートする工程
(2)少なくとも一方の電極面に絶縁層として熱可塑性フィルムがラミネートされた相対峙する電極間に、加圧変形性の架橋粒子を核材とする粒径が7μm以下1μm以上の導電材料と硬化性の接着剤よりなる接続部材を配置する工程
(3)相対峙する電極間の位置合わせを行い、加圧により電極面の前記熱可塑性フィルムを導電材料で破壊する工程
(4)加圧した電極間の接続部材を硬化する工程
The present invention is a method for insulatingly covering at least one electrode surface of electrodes facing each other and obtaining a connection between the electrodes with a connecting member, wherein at least one of the following steps includes a projecting electrode. It is a connection method, and also relates to an electrode connection method capable of adding a step of performing inspection and / or repair between electrodes in the step.
(1) A step of laminating a thermoplastic film having a thickness smaller than the particle diameter of the conductive material as an insulating layer on at least one electrode surface of the opposing electrodes (2) A thermoplastic film as an insulating layer on at least one electrode surface Step (3) of disposing a connecting member made of a conductive material having a particle size of 7 μm or less and 1 μm or more and a curable adhesive between pressure-deformable crosslinked particles as a core material, A step of aligning the electrodes facing each other and destroying the thermoplastic film on the electrode surface with a conductive material by pressing (4) A step of curing a connecting member between the pressed electrodes

本発明によれば、導電材料が接続時に電極上から流出し難く、隣接電極間の絶縁性が保持可能であり、導電粒子と電極との正確な位置合わせが不要のことから作業性に優れた、低コストな微細電極の接続方法が提供可能である。   According to the present invention, it is difficult for the conductive material to flow out from the electrode when connected, it is possible to maintain the insulation between the adjacent electrodes, and it is excellent in workability because accurate alignment between the conductive particles and the electrode is unnecessary. It is possible to provide a low-cost connection method for fine electrodes.

本発明を図面を参照しながら説明する。図1〜3は、本発明の実施例等を説明する接続部の断面模式図である。本発明は相対峙する電極1−2(図1〜2)や電極1−1’(図3)の少なくとも一方の電極面3上に絶縁層4を設けて、導電材料5と絶縁性接着剤6よりなる接続部材7で接続することを特徴とする。
絶縁層4は、図1〜2のように突出電極1もしくは平面電極2の少なくとも一方の全表面に形成するか、図3のように対向電極の双方に設けても良い。絶縁層4は突出電極1の全表面のみでも(図3)、基板表面8も合わせて(図1〜2)絶縁処理されても良い。基板表面と電極面の全面が、絶縁層4を有する場合は、絶縁処理工程が簡単であり、電極の表面保護も可能なことからより好ましい。
The present invention will be described with reference to the drawings. 1 to 3 are schematic cross-sectional views of connecting portions for explaining an embodiment of the present invention. In the present invention, an insulating layer 4 is provided on at least one electrode surface 3 of the facing electrode 1-2 (FIGS. 1-2) and electrode 1-1 ′ (FIG. 3), and the conductive material 5 and the insulating adhesive are provided. The connection member 7 made of 6 is used for connection.
The insulating layer 4 may be formed on the entire surface of at least one of the protruding electrode 1 and the planar electrode 2 as shown in FIGS. 1-2, or may be provided on both of the counter electrodes as shown in FIG. The insulating layer 4 may be insulated only on the entire surface of the protruding electrode 1 (FIG. 3) or on the substrate surface 8 (FIGS. 1-2). In the case where the entire surface of the substrate surface and the electrode surface has the insulating layer 4, it is more preferable because the insulating treatment process is simple and the surface of the electrode can be protected.

図4は、絶縁層4を電極表面3を含む電極の側面の一部に形成する場合であり、図5は絶縁層4を電極表面3のみに形成した場合である。これらは電極の一部を露出させる工程が必要であるが、絶縁処理部が少ないメリットがある。図4の場合、少なくとも絶縁層1が隣接した突出電極1−1’の対向した一方の側面に形成されれば良い。図1〜5の絶縁層付きの電極は、任意に組み合わせて使用できる。   FIG. 4 shows the case where the insulating layer 4 is formed on a part of the side surface of the electrode including the electrode surface 3, and FIG. 5 shows the case where the insulating layer 4 is formed only on the electrode surface 3. These require a step of exposing a part of the electrode, but have an advantage of having a small number of insulation processing portions. In the case of FIG. 4, at least the insulating layer 1 may be formed on one side surface facing the adjacent protruding electrode 1-1 ′. 1 to 5 can be used in any combination.

図1〜3において、相対峙する電極面に絶縁層4、4’が存在しているが、電極の接続条件下すなわち加圧もしくは加熱加圧により、絶縁層4、4’が導電材料5により破壊されることで、相対峙する電極の接続が可能となる。
絶縁層4、4’は、接続時に導電材料5により、破壊可能であれば良いので材質の制限はなく、シリカや窒化珪素、金属酸化物等の無機質や、樹脂類等の有機質ともに可能である。絶縁層4、4’の厚みは、導電材料5の粒子径よりも小さくすることが、加圧による電極間の導通が得やすいので好ましい。また電極間の導通接続が容易なことから、電極の接続部条件下で導電材料5よりも絶縁層4、4’を軟質とし、例えば樹脂等の有機質、中でも熱可塑性材料とすることが好ましい。
In FIGS. 1 to 3, the insulating layers 4 and 4 ′ are present on the electrode surfaces facing each other, but the insulating layers 4 and 4 ′ are made of the conductive material 5 under electrode connection conditions, that is, pressurization or heating and pressurization. By being destroyed, it becomes possible to connect the electrodes facing each other.
The insulating layers 4, 4 ′ are not limited as long as they can be broken by the conductive material 5 at the time of connection, and can be any inorganic material such as silica, silicon nitride, metal oxide, or organic materials such as resins. . It is preferable that the thickness of the insulating layers 4 and 4 ′ be smaller than the particle diameter of the conductive material 5 because conduction between the electrodes by pressurization is easily obtained. In addition, since the conductive connection between the electrodes is easy, it is preferable that the insulating layers 4 and 4 ′ be softer than the conductive material 5 under the electrode connection condition, for example, an organic material such as a resin, especially a thermoplastic material.

熱可塑性材料を限定でなく例示の目的で示すと、エチレン酢酸ビニル共重合体、ポリエチレン、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、アクリル酸エステル系ゴム、ポリイソブチレン、ポリビニルブチラール、アクリロニトリル−ブタジエン共重合体、スチレン−ブタジエンブロック共重合体、ポリブタジエン、フェノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコーンゴム、ポリイミド、ポリアミド、ポリクロロプレン等の、高分子化合物やゴム等を挙げることができる。これらは単独もしくは2種類以上併用することもできる。これらフィルム中には、粘着付与剤、架橋剤、老化防止剤、界面力向上剤等の各種調整剤も含有できる。   For the purpose of illustration and not limitation of the thermoplastic material, ethylene vinyl acetate copolymer, polyethylene, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, acrylic acid ester rubber, polyisobutylene, polyvinyl Examples include high molecular compounds and rubbers such as butyral, acrylonitrile-butadiene copolymer, styrene-butadiene block copolymer, polybutadiene, phenoxy resin, polyester resin, polyurethane resin, silicone rubber, polyimide, polyamide, and polychloroprene. it can. These can be used alone or in combination of two or more. These films can also contain various adjusting agents such as tackifiers, crosslinking agents, anti-aging agents, and interfacial force improvers.

電極の接続部に際しては、相対峙する電極間の位置合わせを行い、加圧もしくは加熱加圧により、電極面の絶縁層を導電材料で破壊して、両電極の接続を得る。絶縁性接着剤6の種類により、必要に応じて電極列間の接続部材を硬化する。
本発明は、また接続工程内に、電極間の検査および/またはリペアを行う工程を取り入れることも可能である。すなわち、加熱加圧工程を2段階以上分割することで、接着剤の硬化反応に伴う流動過程の粘度制御が可能になるので、気泡のない良好な接続が可能となる。加えて硬化型接着剤の問題点であるリペア性の付与が可能となる。リペア性とは、不要部の接着剤を除去し溶剤等で清浄化し、再接続することである。一般的に硬化型接着剤は、硬化終了後に網状構造が発達し、熱や溶剤等に不溶不融性となり、清浄化が極めて困難なため、従来から問題視されていた。
When the electrodes are connected, the electrodes are aligned with each other, and the insulating layer on the electrode surface is broken with a conductive material by pressing or heating and pressing to obtain a connection between both electrodes. Depending on the type of the insulating adhesive 6, the connection member between the electrode arrays is cured as necessary.
The present invention can also incorporate a process for performing inspection and / or repair between electrodes in the connection process. That is, by dividing the heating and pressurizing step into two or more steps, it is possible to control the viscosity of the flow process associated with the curing reaction of the adhesive, and thus it is possible to achieve a good connection without bubbles. In addition, it is possible to impart repairability, which is a problem with curable adhesives. Repairability means removing unnecessary part of the adhesive, cleaning it with a solvent, and reconnecting it. In general, a curable adhesive has been regarded as a problem because a network structure develops after curing, becomes insoluble and infusible with heat, solvent, and the like, and is extremely difficult to clean.

加熱加圧工程の第一段階は、例えば加圧変形性の架橋粒子を核材とする導電材料5が突出電極1と接触し、平面電極2との間で導通可能な状態で、両電極の通電検査や外観検査を行う。この時不良電極の接続部があれば、この状態でリペアし再接続を行う。接着剤は、未硬化あるいは硬化反応の不十分な状態とすることが可能なので、リペア作業が容易である。通電検査は、例えば両電極からリード線を取り出し接続抵抗の測定が可能であり、導電材料5と電極との接触状態を観る等の外観検査も可能である。   The first stage of the heating and pressing step is, for example, in a state in which the conductive material 5 having the pressure-deformable cross-linked particles as a core material is in contact with the protruding electrode 1 and can be electrically connected to the planar electrode 2. Conduct energization inspection and appearance inspection. At this time, if there is a connection portion of a defective electrode, repair and reconnection are performed in this state. Since the adhesive can be in an uncured state or an insufficient curing reaction state, the repair work is easy. In the energization inspection, for example, lead wires can be taken out from both electrodes and the connection resistance can be measured, and an appearance inspection such as observing the contact state between the conductive material 5 and the electrodes is also possible.

接続部材7は、加圧変形性の架橋粒子を核材とする導電材料5と絶縁性接着剤6よりなり、加圧方向に導電性を有するものが好適である。絶縁性接着剤6に対する導電材料5の割合は0.1〜30体積%程度、より好ましくは1〜20体積%が異方導電性が得やすく好ましい。本発明ではこれらは、通常の異方導電接続部材よりも高密度に添加可能である。   The connecting member 7 is preferably made of the conductive material 5 having the pressure-deformable crosslinked particles as the core material and the insulating adhesive 6 and having conductivity in the pressurizing direction. The ratio of the conductive material 5 to the insulating adhesive 6 is preferably about 0.1 to 30% by volume, and more preferably 1 to 20% by volume because anisotropic conductivity is easily obtained. In the present invention, these can be added at a higher density than ordinary anisotropic conductive connecting members.

導電材料5としては、Au、Ag、Pt、Ni、Cu、W、Sb、Sn、はんだ等の金属粒子やカーボン等があり、またこれら導電粒子を核材とするか、あるいは非導電性のガラス、セラミックス、プラスチック等の高分子等からなる核材に、前記したような材質からなる導電層を被覆形成したもので良い。さらに導電材料5を絶縁層で被覆してなる絶縁被覆粒子や、導電粒子とガラス、セラミックス、プラスチック等の絶縁粒子の併用等も、さらに分解能が向上し好ましい。導電材料5の粒径は、微小な電極上に1個以上好ましくはなるべく多くの粒子数を確保するには、小粒径粒子が好適であり15μm以下、より好ましくは、7μm以下1μm以上である。1μm以下では絶縁層を突き破って電極と接触し難い。導電材料5が、電極間に単層で存在すると、絶縁層を破壊しやすく好ましい。   Examples of the conductive material 5 include metal particles such as Au, Ag, Pt, Ni, Cu, W, Sb, Sn, and solder, carbon, and the like. These conductive particles are used as a core material or non-conductive glass. Alternatively, a core material made of a polymer such as ceramics or plastic may be coated with a conductive layer made of the above-described material. Furthermore, insulating coated particles obtained by coating the conductive material 5 with an insulating layer, and the combined use of conductive particles and insulating particles such as glass, ceramics, and plastics are preferable because the resolution is further improved. The conductive material 5 has a particle size of 1 or more, preferably 15 μm or less, more preferably 7 μm or less and 1 μm or more, in order to ensure the number of particles as small as possible on the minute electrode. . If it is 1 μm or less, it is difficult to break through the insulating layer and contact the electrode. It is preferable that the conductive material 5 exists as a single layer between the electrodes because the insulating layer is easily broken.

本発明では、これら導電粒子の中では、プラスチック等の高分子核材に導電層を形成したものが、加熱加圧もしくは加圧により変形性(図1)を有し、接続に回路との接触面積が増加し、信頼性が向上するので、加圧変形性の架橋粒子を核材とする導電粒子を用いる。特に高分子類を核とした場合、はんだのように融点を示さないので、軟化の状態を接続温度で広く制御でき、電極の厚みや平坦性のばらつきに対応し易い接続部材が得られるので特に好適である。   In the present invention, among these conductive particles, those in which a conductive layer is formed on a polymer core material such as plastic are deformable by heating or pressurization or pressurization (FIG. 1), and the connection is in contact with the circuit. Since the area is increased and the reliability is improved, conductive particles having a pressure deformable crosslinked particle as a core material are used. Especially when polymers are used as the core, it does not show a melting point like solder, so the softening state can be widely controlled at the connection temperature, and it is possible to obtain a connection member that can easily cope with variations in electrode thickness and flatness. Is preferred.

絶縁性接着剤6は、熱可塑性材料や、熱や光により硬化性を示す材料が広く適用できる。熱可塑性材料はリペア性が良好であり、硬化性材料は接続後の耐熱性や耐湿性に優れることから、用途に応じて選択する。接続信頼性は一般的に硬化性材料が優れるので好ましく適用できる。なかでもエポキシ系接着剤は、短時間硬化が可能で接続作業性が良く、分子構造上接着性に優れる等の特徴からより好ましく適用できる。エポキシ系接着剤は、例えば高分子量のエポキシ、固形エポキシと液状エポキシ、ウレタンやポリエステル、アクリルゴム、NBR、シリコーン、ナイロン等で変性したエポキシを主成分とし、硬化剤や触媒、カップリング剤、充填剤等を添加してなるものが一般的である。   As the insulating adhesive 6, a thermoplastic material or a material that exhibits curability by heat or light can be widely applied. The thermoplastic material has good repair properties, and the curable material is excellent in heat resistance and moisture resistance after connection, and therefore is selected according to the application. The connection reliability is preferably applicable because curable materials are generally excellent. Among these, epoxy adhesives can be more preferably applied because of their characteristics such that they can be cured in a short time, have good connection workability, and have excellent adhesion in terms of molecular structure. Epoxy adhesives are mainly composed of epoxy modified with high molecular weight epoxy, solid epoxy and liquid epoxy, urethane, polyester, acrylic rubber, NBR, silicone, nylon, etc., curing agent, catalyst, coupling agent, filling A material obtained by adding an agent or the like is generally used.

図において基板9としては、ポリイミドやポリエステル等のプラスチックフィルム、ガラスエポキシ等の複合体、シリコーン等の半導体、ガラスやセラミックス等の無機質等を例示できる。突出電極1は、上記した他に、各種回路類や端子類も含むことができる。平面電極2は、基板面からの凹凸がないか、あっても数μm以下とわずかな場合をいう。これらを例示すると、アディティブ法や薄膜法で得られた電極類が代表的である。これら各種電極類や基板類は、それぞれ任意に組み合わせて適用できる。   In the figure, examples of the substrate 9 include plastic films such as polyimide and polyester, composites such as glass epoxy, semiconductors such as silicone, inorganic materials such as glass and ceramics, and the like. In addition to the above, the protruding electrode 1 can also include various circuits and terminals. The planar electrode 2 refers to a case where there is no unevenness from the substrate surface or even a few μm or less. When these are illustrated, the electrodes obtained by the additive method and the thin film method are typical. These various electrodes and substrates can be applied in any combination.

本発明によれば、少なくとも一方が突出した電極を有する相対峙する電極の少なくとも一方の電極面に絶縁層を形成し、導電材料と接着剤よりなる接続部材で加圧もしくは加熱加圧により、相対峙する電極を接続する。
そのため、相対峙した電極部の突出電極部が集中的に加圧されるので、電極面の絶縁層が導電材料で破壊するので両電極の接続が可能となる。一方、突出電極部以外では、加圧力はないか、あっても僅かなので絶縁層が導電材料で破壊されずに、隣接電極間間隔が狭い場合も高い絶縁性が得られ、高分解能な接続が可能となる。この時導電材料は、電極上の破壊した絶縁層で保持されるので電極上からの流出が少なく、高い接続信頼性が得られる。また例え、導電材料が接続時に電極上から流出しても、隣接電極のいずれかに絶縁層が形成されている好ましい態様の場合なので絶縁性の保持が可能である。
According to the present invention, an insulating layer is formed on at least one electrode surface of electrodes facing each other and at least one of the electrodes protrudes, and the connection member made of a conductive material and an adhesive is pressed or heated and pressed to perform phase matching. Connect the opposite electrodes.
For this reason, the projecting electrode portions of the opposed electrode portions are intensively pressed, so that the insulating layer on the electrode surface is broken by the conductive material, so that both electrodes can be connected. On the other hand, other than the protruding electrode part, there is no applied pressure, or even a small amount, so the insulating layer is not broken by the conductive material, and high insulation is obtained even when the distance between adjacent electrodes is narrow, and high-resolution connection is achieved. It becomes possible. At this time, since the conductive material is held by the broken insulating layer on the electrode, there is little outflow from the electrode, and high connection reliability is obtained. For example, even when the conductive material flows out from the electrode at the time of connection, the insulating property can be maintained because the insulating layer is formed on any of the adjacent electrodes.

また本発明によれば、電極上に導電材料が確実に保持され導通可能となるので、導通検査や接続の信頼性が向上する。接着剤は、未硬化あるいは硬化反応の不十分な状態で導通検査可能なので、リペア作業が容易である。
電極面の絶縁層は、全面に形成可能であり、部分的な絶縁層の除去が原則的に不要なので、低コストな微細電極の接続が可能である。接続部材の導電材料は、全面に均一に分散されてなるので、導電粒子と電極との正確な位置合わせが不要なことから作業性に優れる。
In addition, according to the present invention, since the conductive material is reliably held on the electrode and becomes conductive, the reliability of continuity inspection and connection is improved. Since the adhesive can be inspected for continuity in an uncured state or in a state where the curing reaction is insufficient, repair work is easy.
The insulating layer on the electrode surface can be formed on the entire surface, and removal of a partial insulating layer is not necessary in principle, so that a low-cost fine electrode can be connected. Since the conductive material of the connection member is uniformly dispersed over the entire surface, it is excellent in workability because accurate alignment between the conductive particles and the electrodes is unnecessary.

以下実施例でさらに詳細に説明するが、本発明はこれに限定されない。
実施例1
(1)接続
ポリイミドフィルム上に、高さ18μmの銅の回路を有する2層FPC回路板(回路ピッチは70μm、電極幅20μmの平行回路の電極)を準備した。この回路形成面にラミネートにより、厚み3μmのフェノキシ樹脂系のフィルム(熱可塑性エポキシ樹脂、軟化点120℃)を180℃で圧着して絶縁層を形成した。熱可塑性樹脂なので軟化溶融して、回路ピッチに沿って絶縁層の形成が可能であった。接続部材は、フェノキシ樹脂と、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂の比率を20/80とし、酢酸エチルの30%溶液を得た。この溶液に粒径6±0.2μmのスチレン−ジビニルベンゼン系架橋粒子にNi/Auの厚さ0.2/0.02μmの金属被覆を形成した導電性粒子を5体積%添加し、混合分散した。この分散液をセパレータ(シリコーン処理ポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、110℃、20分乾燥し厚み20μmの接続部材を得た。ガラス0.7mm上に酸化インジウム厚み0.2μm(ITO、表面抵抗20Ω/□)の薄膜回路を有する平面電極との接続を行った。まず、平面電極側に前記接続部材を2mm幅で載置し、仮圧着を行いセパレータを剥離した。続いてFPC回路と相対峙する電極間の位置合わせを行い、接続部材の硬化反応が十分な条件の150℃、30kgf/mm、20秒で接続した。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
Example 1
(1) Connection A two-layer FPC circuit board (circuit pitch is 70 μm, electrode of a parallel circuit with an electrode width of 20 μm) having a copper circuit with a height of 18 μm was prepared on a polyimide film. A 3 μm thick phenoxy resin film (thermoplastic epoxy resin, softening point: 120 ° C.) was pressure-bonded at 180 ° C. by laminating on the circuit forming surface to form an insulating layer. Since it was a thermoplastic resin, it was softened and melted, and an insulating layer could be formed along the circuit pitch. For the connecting member, the ratio of the liquid epoxy resin containing the phenoxy resin and the microcapsule type latent curing agent was 20/80, and a 30% solution of ethyl acetate was obtained. To this solution, 5% by volume of conductive particles in which a 0.2 / 0.02 μm thick Ni / Au metal coating is added to styrene-divinylbenzene-based crosslinked particles having a particle size of 6 ± 0.2 μm are added and mixed and dispersed. did. This dispersion was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 110 ° C. for 20 minutes to obtain a connecting member having a thickness of 20 μm. Connection to a planar electrode having a thin film circuit with an indium oxide thickness of 0.2 μm (ITO, surface resistance 20Ω / □) on 0.7 mm of glass was performed. First, the connecting member was placed on the flat electrode side with a width of 2 mm, and was temporarily bonded to separate the separator. Subsequently, alignment between the electrodes facing the FPC circuit was performed, and the connection members were connected at 150 ° C., 30 kgf / mm 2 and 20 seconds under conditions where the curing reaction was sufficient.

(2)評価
この接続体の断面を研磨し顕微鏡で観察したところ、図1相当の接続構造であった。加圧により電極面の絶縁層であるフェノキシを導電材料で破壊できた。隣接電極間のスペースは、気泡混入がなく粒子が球状であったが、電極上は粒子が絶縁層に食い込み圧縮変形されて上下電極と接触保持されていた。架橋粒子なので接続条件温度下での堅さと、加圧による変形性が併せて得られたとみられる。相対峙する電極間を接続抵抗、隣接する電極間を絶縁抵抗として評価したところ、接続抵抗は1Ω以下、絶縁抵抗は10Ω以上であり、これらは85℃、85%RH、1000時間処理後も変化が殆どなく、良好な長期信頼性を示した。本実施例における電極上(20μm×2mm)の接続に寄与している有効平均粒子数は、50個(最大55個、最小46個)であり、電極上に多数の導電粒子が確保されそのばらつきも少ない。接続に寄与している有効粒子とは、接続面をガラス側から顕微鏡(×100)で観察し、電極との接触により光沢を発しているものとした。
(2) Evaluation When the cross section of this connection body was polished and observed with a microscope, it was a connection structure corresponding to FIG. Phenoxy, which is an insulating layer on the electrode surface, was able to be destroyed with a conductive material by pressurization. The space between adjacent electrodes was free of bubbles and particles were spherical, but on the electrodes, the particles dig into the insulating layer and were compressed and deformed and held in contact with the upper and lower electrodes. Since it is a crosslinked particle, it seems that the hardness under the connecting condition temperature and the deformability by pressurization were obtained together. When the resistance between the electrodes facing each other was evaluated as the connection resistance and the insulation resistance between the adjacent electrodes was evaluated, the connection resistance was 1Ω or less and the insulation resistance was 10 8 Ω or more. These were treated at 85 ° C. and 85% RH for 1000 hours. There was almost no change, and good long-term reliability was exhibited. The effective average number of particles contributing to the connection on the electrode (20 μm × 2 mm) in the present example is 50 (maximum 55, minimum 46), and a large number of conductive particles are secured on the electrode, and the variation There are few. The effective particles contributing to the connection are those in which the connection surface is observed with a microscope (× 100) from the glass side and gloss is generated by contact with the electrode.

比較例1
実施例1と同様であるが、絶縁層を形成しないFPC回路を用いた。実施例1と同様に評価したところ、電極上(20μm×2mm)の粒子数は最大38個、最小0個であり、電極上に有効粒子の無いものが見られ、また実施例1に比べ最大と最小のばらつきが大きかった。また、接続体の絶縁抵抗を測定したところショート不良が発生した。接続時に導電粒子が電極上から流出し、隣接電極間(スペース部)での絶縁性が保持できなくなったと見られる。
Comparative Example 1
The same FPC circuit as that of Example 1 but without forming an insulating layer was used. When evaluated in the same manner as in Example 1, the number of particles on the electrode (20 μm × 2 mm) was 38 at the maximum and 0 at the minimum, and there was no effective particle on the electrode. And the smallest variation was large. Further, when the insulation resistance of the connection body was measured, a short circuit defect occurred. It seems that the conductive particles flowed out from the electrodes at the time of connection, and the insulation between adjacent electrodes (space portions) cannot be maintained.

参考例1
実施例1と同様であるが、FPCに変えて、ICチップ(2×10mm、高さ0.5mm、4辺周囲にバンプ(突起電極)と呼ばれる50μm角、高さ20μmの金電極が200個形成)を用いた。このICチップは、ウエハ段階で突起電極形成面に、ポリイミド系(ガラス転移点170℃)の溶液をスピンコータで形成後、溶剤を乾燥して、電極上の厚みが2μmの絶縁層を形成してある。またガラス側のITO電極を、前記ICチップのバンプ電極サイズに対応するように変更した。実施例1の接続部材を用いて同様に接続した。接続体は図2に相当する構成(導電材料は図1)である。本実施例も良好な接続特性を示した。
Reference example 1
Similar to Example 1, but instead of FPC, there are 200 IC chips (2 × 10 mm, height 0.5 mm, 4 side 50 μm square, 20 μm height called bumps (projection electrodes) around 4 sides. Formation) was used. In this IC chip, a polyimide-based (glass transition point 170 ° C.) solution is formed on the protruding electrode formation surface at the wafer stage by a spin coater, and then the solvent is dried to form an insulating layer having a thickness of 2 μm on the electrode. is there. The ITO electrode on the glass side was changed to correspond to the bump electrode size of the IC chip. The connection was made in the same manner using the connection member of Example 1. The connection body has a configuration corresponding to FIG. 2 (the conductive material is FIG. 1). This example also showed good connection characteristics.

実施例2
実施例1のFPC同士を同様に接続し、図3相当の接続体(導電材料は図1)を得た。実施例1と同様に評価したところ良好な接続特性を示した。この構成は突起電極にそれぞれ絶縁層を形成した同士の接続であるが、電極上の有効粒子数は、突出電極同士の接続で粒子が流出し易い構成だが全電極において、15個以上の確保ができた。
Example 2
The FPCs of Example 1 were similarly connected to obtain a connection body corresponding to FIG. 3 (the conductive material is FIG. 1). When evaluated in the same manner as in Example 1, good connection characteristics were shown. This configuration is a connection between the protruding electrodes, each formed with an insulating layer, but the number of effective particles on the electrodes is such that particles easily flow out due to the connection between the protruding electrodes. did it.

参考例2〜3
参考例1と同様であるが、ガラス基板上に5個のICチップを搭載できる基板に変更し、加熱加圧工程を2段階とした。まず、150℃、30kgf/mm、2秒後に加圧しながら各接続点の接続抵抗をマルチメータで測定検査した(参考例2)。同様であるが他の一方は、150℃、30kgf/mm、3秒後に接続装置から除去した。加熱加圧により接着剤の凝集力が向上したので、各ICチップは、ガラス側に仮固定が可能で無加圧であり、同様に検査した(参考例3)。両参考例ともに1個のICチップが異常であった。そこで異常チップを剥離して新規チップで前記同様の接続を行ったところ、今度はいずれも良好であった。接着剤は硬化反応の不十分な状態なので、チップの剥離や、その後のアセトンを用いた清浄化も極めて簡単であり、リペア作業が容易であった。
以上の通電検査工程およびリペア工程の後で、150℃、30kgf/mm、20秒で接続したところ、両参考例ともに良好な接続特性を示した。バンプ上の有効粒子数は、全電極において7個以上の確保が可能であった。本参考例では、参考例1に比べバンプ上の有効粒子数が増加し、電極上からの流出が少ない。加熱加圧工程を2段階としたことで、粒子の保持性がさらに向上したものと見られる。
Reference Examples 2-3
Although it is the same as that of the reference example 1, it changed into the board | substrate which can mount five IC chips on a glass substrate, and made the heating-pressing process into two steps. First, the connection resistance at each connection point was measured and inspected with a multimeter while applying pressure at 150 ° C., 30 kgf / mm 2 after 2 seconds (Reference Example 2). Similar but the other was removed from the connection device after 150 seconds at 150 ° C., 30 kgf / mm 2 . Since the cohesive strength of the adhesive was improved by heating and pressing, each IC chip was temporarily fixed on the glass side and was not pressurized, and was similarly examined (Reference Example 3). In both reference examples, one IC chip was abnormal. Then, when the abnormal chip was peeled off and the same connection as described above was performed with a new chip, both were good this time. Since the adhesive is in a state where the curing reaction is insufficient, the chip peeling and the subsequent cleaning with acetone are very simple, and the repair work is easy.
After the above energization inspection process and repair process, when connected at 150 ° C., 30 kgf / mm 2 for 20 seconds, both reference examples showed good connection characteristics. The number of effective particles on the bumps could be secured to 7 or more for all electrodes. In this reference example, the number of effective particles on the bumps is increased and the outflow from the electrodes is less than in Reference Example 1. It is considered that the retention property of the particles is further improved by making the heating and pressing step into two stages.

本発明の実施例1を示す電極の接続構造の断面模式図である。It is a cross-sectional schematic diagram of the connection structure of the electrode which shows Example 1 of this invention. 本発明の参考例1を示す電極の接続構造の断面模式図である。It is a cross-sectional schematic diagram of the connection structure of the electrode which shows the reference example 1 of this invention. 本発明の実施例2を示す電極の接続構造の断面模式図である。It is a cross-sectional schematic diagram of the connection structure of the electrode which shows Example 2 of this invention. 本発明の参考例2を示す電極の断面模式図である。It is a cross-sectional schematic diagram of the electrode which shows the reference example 2 of this invention. 本発明の参考例3を示す電極の断面模式図である。It is a cross-sectional schematic diagram of the electrode which shows the reference example 3 of this invention.

符号の説明Explanation of symbols

1 突出電極 2 平面電極
3 電極面 4 絶縁層
5 導電材料 6 絶縁性接着剤
7 接続部材 8 基板面
9 基板 10 基板























DESCRIPTION OF SYMBOLS 1 Protruding electrode 2 Planar electrode 3 Electrode surface 4 Insulating layer 5 Conductive material 6 Insulating adhesive 7 Connection member 8 Substrate surface 9 Substrate 10 Substrate























Claims (2)

相対峙する電極の少なくとも一方の電極面を絶縁被覆し接続部材で電極間の接続を得る方法であって、下記工程よりなる少なくとも一方が突出した電極を有する相対峙する電極の接続方法
(1)相対峙する電極の少なくとも一方の電極面に、絶縁層として厚みが導電材料の粒子径よりも小さい熱可塑性フィルムをラミネートする工程
(2)少なくとも一方の電極面に絶縁層として熱可塑性フィルムがラミネートされた相対峙する電極間に、加圧変形性の架橋粒子を核材とする粒径が7μm以下1μm以上の導電材料と硬化性の接着剤よりなる接続部材を配置する工程
(3)相対峙する電極間の位置合わせを行い、加圧により電極面の前記熱可塑性フィルムを導電材料で破壊する工程
(4)加圧した電極間の接続部材を硬化する工程
A method of connecting at least one electrode surface of electrodes facing each other with insulation covering and obtaining a connection between the electrodes with a connecting member, wherein at least one of the following steps comprises a projecting electrode (1) Step (2) of laminating a thermoplastic film having a thickness smaller than the particle diameter of the conductive material as an insulating layer on at least one electrode surface of the opposing electrodes (2) A thermoplastic film as an insulating layer is laminated on at least one electrode surface Step (3) of placing a connecting member made of a conductive material having a particle size of 7 μm or less and 1 μm or more and a curable adhesive between the electrodes that are pressed against each other and having a pressure-deformable crosslinked particle as a core material A step of aligning the electrodes and breaking the thermoplastic film on the electrode surface with a conductive material by pressing (4) A step of curing the connecting member between the pressed electrodes
相対峙する電極の少なくとも一方の電極面を絶縁被覆し接続部材で電極間の接続を得る方法であって、下記工程よりなる少なくとも一方が突出した電極を有する相対峙する電極の接続方法
(1)相対峙する電極の少なくとも一方の電極面に、絶縁層として厚みが導電材料の粒子径よりも小さい熱可塑性フィルムをラミネートする工程
(2)少なくとも一方の電極面に絶縁層として熱可塑性フィルムがラミネートされ、相対峙する電極間に、加圧変形性の架橋粒子を核材とする粒径が7μm以下1μm以上の導電材料と硬化性の接着剤よりなる接続部材を配置する工程
(3)相対峙する電極間の位置合わせを行い、加圧により電極面の前記熱可塑性フィルムを導電材料で破壊する工程
(4)電極間の検査および/またはリペアを行う工程
(5)電極間の接続部材を硬化する工程
A method of connecting at least one electrode surface of electrodes facing each other with insulation covering and obtaining a connection between the electrodes with a connecting member, wherein at least one of the following steps comprises a projecting electrode (1) Step (2) of laminating a thermoplastic film having a thickness smaller than the particle diameter of the conductive material as an insulating layer on at least one electrode surface of the opposing electrodes (2) A thermoplastic film as an insulating layer is laminated on at least one electrode surface Step (3) of placing a connecting member made of a conductive material having a particle diameter of 7 μm or less and 1 μm or more and a curable adhesive between pressure-deformable crosslinked particles as a core material between the opposing electrodes (3) A step of aligning the electrodes and destroying the thermoplastic film on the electrode surface with a conductive material by pressurization (4) A step of inspecting and / or repairing between the electrodes (5) Electricity The process of curing the connecting member between the electrodes
JP2006159631A 2006-06-08 2006-06-08 Electrode connection method Expired - Lifetime JP4019328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006159631A JP4019328B2 (en) 2006-06-08 2006-06-08 Electrode connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006159631A JP4019328B2 (en) 2006-06-08 2006-06-08 Electrode connection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7204343A Division JPH0955279A (en) 1995-08-10 1995-08-10 Electrode connecting method and connection structure of electrode obtained by the method

Publications (2)

Publication Number Publication Date
JP2006339163A JP2006339163A (en) 2006-12-14
JP4019328B2 true JP4019328B2 (en) 2007-12-12

Family

ID=37559509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006159631A Expired - Lifetime JP4019328B2 (en) 2006-06-08 2006-06-08 Electrode connection method

Country Status (1)

Country Link
JP (1) JP4019328B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101330018B1 (en) * 2009-02-16 2013-11-15 가부시키가이샤 무라타 세이사쿠쇼 Conductive resin composition, process for producing electronic part using same, connecting method, connection structure, and electronic part
JP6286473B2 (en) * 2016-04-19 2018-02-28 デクセリアルズ株式会社 Zygote
KR20180041296A (en) * 2016-10-13 2018-04-24 삼성디스플레이 주식회사 Display Panel
KR20200103043A (en) * 2017-12-28 2020-09-01 히타치가세이가부시끼가이샤 Connection structure and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188184A (en) * 1986-02-14 1987-08-17 日立化成工業株式会社 Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials
JPH05290946A (en) * 1992-04-03 1993-11-05 Hitachi Ltd Packaging method for electronic parts
JPH0775177B2 (en) * 1992-05-06 1995-08-09 カシオ計算機株式会社 Junction structure
JPH0773921A (en) * 1993-09-06 1995-03-17 Hitachi Chem Co Ltd Connecting member
JP3883214B2 (en) * 1993-10-04 2007-02-21 富士通株式会社 Adhesive for joining electronic components
JPH07133466A (en) * 1993-11-09 1995-05-23 Soken Kagaku Kk Bonding method
JP2880894B2 (en) * 1993-12-17 1999-04-12 日本電気株式会社 Structure of liquid crystal display element and method of manufacturing the same
JPH08138773A (en) * 1994-11-02 1996-05-31 Ricoh Co Ltd Electrode portion structure of printed wiring board

Also Published As

Publication number Publication date
JP2006339163A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP3801666B2 (en) Electrode connection method and connection member used therefor
US20050211464A1 (en) Method of microelectrode connection and connected structure of use threof
JPH09312176A (en) Connecting member, and structure and method for connecting electrodes using this connecting member
JP3656768B2 (en) Connection member, electrode connection structure using the connection member, and connection method
JP4019328B2 (en) Electrode connection method
JP3856233B2 (en) Electrode connection method
JP2006339160A (en) Thermosetting circuit connection member, connection structure of electrode using it and connection method of electrode
JPH08148211A (en) Connection member and structure and method for connecting electrode using the same
JP4661914B2 (en) Electrode connection method
JPH0955279A (en) Electrode connecting method and connection structure of electrode obtained by the method
JP2004006417A (en) Connecting element and connection structure of electrode using this
JP2010010142A (en) Thermosetting circuit connection member and connection structure of electrode using it and connecting method of electrode
JP2004165659A (en) Method of connecting electrodes and connecting structure of electrodes obtained by the same
JP4631893B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP4595981B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP2007049179A (en) Multi-chip mounting method and curing film-like adhesive used for the same
JP4181239B2 (en) Connecting member
JP2004111993A (en) Method for connecting electrode and connecting member for use in the same
JP4572929B2 (en) Connection member and electrode connection structure using the same
JP4595980B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP4670859B2 (en) Connection member and electrode connection structure using the same
JP4563362B2 (en) Chip mounting method
JP2008112732A (en) Connecting method of electrode
JP4032320B2 (en) Electrode connection method
JP4473661B2 (en) Connecting member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5