JP4018956B2 - Particle size distribution measuring device and signal detection method in particle size distribution measuring device - Google Patents

Particle size distribution measuring device and signal detection method in particle size distribution measuring device Download PDF

Info

Publication number
JP4018956B2
JP4018956B2 JP2002269049A JP2002269049A JP4018956B2 JP 4018956 B2 JP4018956 B2 JP 4018956B2 JP 2002269049 A JP2002269049 A JP 2002269049A JP 2002269049 A JP2002269049 A JP 2002269049A JP 4018956 B2 JP4018956 B2 JP 4018956B2
Authority
JP
Japan
Prior art keywords
suspension
ultrasonic
dispersion
particle size
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002269049A
Other languages
Japanese (ja)
Other versions
JP2004108830A (en
Inventor
拓司 黒住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2002269049A priority Critical patent/JP4018956B2/en
Publication of JP2004108830A publication Critical patent/JP2004108830A/en
Application granted granted Critical
Publication of JP4018956B2 publication Critical patent/JP4018956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粒径分布測定装置および粒径分布測定装置における信号検出方法に関する。
【0002】
【従来の技術】
【特許文献1】
特開平7−311204号公報
従来より、粒径分布測定装置で粒径分布を測定する際、測定対象試料を水などの分散媒中に分散攪拌して懸濁液とし、この懸濁液を遠心ポンプやペリスタポンプなどの循環用ポンプによってフローセルに供給し、その状態でフローセル内の懸濁液に対してレーザ光を照射した時の散乱光または回折光を検出器によって検出し、これらの光の強度分布を、フランホーファ回折やミー散乱理論に基づいて処理し、試料の粒子径分布を求めていた。
【0003】
前記粒径分布測定装置において、自動化を進める上で液面の検知が必要となるため、従来はフロートなどを用いた液面センサを用いて懸濁液の量を検出していた。前記液面センサとして、一般的には電極式、光学式、静電容量式、フロート式などの液面センサが知られている。(前記特許文献1を参照)これらの液面センサによって懸濁液量が超音波振動子による分散に適する所定量を満たしているかどうかを判断し、また、分散バスに注入する分散媒の流量と注入時間を制御することで、懸濁液が所定量になるように制御していた。
【0004】
【発明が解決しようとする課題】
しかしながら、前記液面センサはそれぞれ以下のような欠点がある。すなわち、電極式の場合は電気を通さないアルコールのような分散媒を用いた場合に液面検出ができず、静電容量式の場合は誘電率が分散媒によって大きく異なるため正確な測定ができないという問題があり、一方、光学式の液面センサは汚れによって正確な測定ができないという問題が生じ、フロート式の液面センサはフロート部分の摺動部に測定対象試料が詰まったり、摩耗などによって誤動作が発生することがあると共に、他の形式の液面センサに比べて質感がないという問題があった。
【0005】
一方、前記粒径分布測定装置において、懸濁液に対して超音波を照射し、懸濁液中の測定対象試料の粒子が固まらないよう適宜振動を与えることが通常行われているが、懸濁液がない状態で超音波振動子を駆動すると、超音波振動子自体が破損したり、本来は懸濁液内の測定対象試料を分散させるために加わる超音波が装置内部の別の部分(例えば分散バスの槽)に作用して粒径分布測定装置の破損を招くことが懸念される。このため、超音波振動子は液面センサによって懸濁液が存在することを検知しているときにのみ作動するように、インターロックをかけることが行われているが、液面センサが誤動作することで懸濁液が存在しないにもかかわらず超音波振動子が動作するという問題が生じる可能性があった。
【0006】
また、超音波振動子は分散させる分散媒やその温度、分散媒に含まれる粒子の種類、濃度によって超音波振動子の能力が低下したり、変動したりすることがあった。加えて、超音波振動子に取り付けてある振動子は消耗するものであり、長期の使用によってこの振動子が消耗した場合、本来の分散能力が発揮できないことがある。
【0007】
このため、装置の使用者は超音波分散の動作が正常に動作しているかどうかを判断するために、超音波振動子の発振によって装置内の各部から生じる音を前記装置の使用者が自らの耳で確認して判断していた。しかしながら、超音波振動子の発振状態を判断するには多くの経験と技能が必要であり、誤った判断をした場合、懸濁内の測定対象試料が正常に分散がなされないことがあった。また、超音波分散は装置使用者の設定した超音波分散レベルと時間により測定対象試料を所定の強さで分散させていたが、正常な分散が行われない場合には、分散状態が十分でない状態で測定対象試料を測定することとなり、測定結果に悪影響を及ぼすことがあった。
【0008】
本発明は、上述の事柄を考慮に入れてなされたものであって、その目的は、測定対象試料を含んだ分散媒の懸濁液の液面を検知すると共に、測定対象試料を分散させるための超音波振動子の破損を防ぎ、また、前記超音波振動子の自己診断を行って適正な強度による測定対象試料の分散を行なうことができる粒径分布測定装置および粒径分布測定装置における信号検出方法を提供することである。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の粒径分布測定装置は、測定対象試料を分散媒中に分散させて懸濁液とする分散バスと、この分散バス内の前記懸濁液に超音波を照射して前記測定対象試料の分散を促進させるための超音波照射手段と、前記分散バスとフローセルとを接続する循環流路とを有し、前記フローセル内の懸濁液に光を照射するときに生じる光を検出することで、測定対象試料の粒径分布を求める粒径分布測定装置において、前記超音波照射手段から照射される超音波の影響を受ける位置で少なくとも前記分散バスの下端部における内壁面に取付けられて、前記超音波またはこの超音波によって振動した懸濁液の音波信号を検出する検知手段と、前記検知手段より検出された音波信号を用いて分散バス中の懸濁液の液面を検知して懸濁液の量を求め、その求めた懸濁液の量が超音波分散に必要かつ十分であることを検出したとき、測定対象試料の分散を行うように前記超音波照射手段を所定時間に亘り駆動制御すべく演算する演算手段及び前記音波信号をもとに前記超音波照射手段からの出力の状態を検出して該超音波照射手段の出力を一定に保つようにフィードバック制御すべく演算する演算手段を有する演算とを備えたことを特徴としている。(請求項1)
【0010】
すなわち、超音波照射手段から懸濁液に照射する超音波により生じる振動を検知手段を用いて検知し、液面やフローセル内の懸濁液の量を検知することで、液面検知のための発信器としての超音波照射手段を別個に設けることなく懸濁液中の測定対象試料の分散および液面検知の両方を行うことができるので、超音波照射手段のための取付スペースの削減、取付け部品点数の削減につながる。
【0011】
また、超音波や振動を音波信号として検知するための検知手段は、例えばマイクなどの音響検出器といった比較的安価な機器が用いられるため、部品点数の削減に加えて高価な部品を必要としないことにより製造コストの削減を行うことができる。なお、本発明における懸濁液の量を検出するための液面検知には液面の位置を検出することだけでなく、懸濁液の有無を検知するものも含まれる。
【0012】
さらに、液面は超音波やそれによる懸濁液の振動の伝達によって検知するので、粉体による汚れや摩耗による誤動作の心配がなく、それだけ粒径分布測定装置の信頼性を向上できる。加えて、懸濁液の種類(導電率、誘電率など)に影響されることなく、その液面を検知できるので、懸濁液の液量を常に正確に求めることができる。これによって循環層の液量を適宜調整できると共に、液面センサの誤動作による動作不良や、懸濁液が存在しない状態での超音波照射手段の駆動による装置内部の破損を確実に防ぐことができる。
【0013】
なお、前記超音波の影響を受ける位置としては、例えば超音波の振動を受ける対極の位置に音響検出器や加速度センサなどの検知手段を設けることで、音響検出器は超音波照射手段からの音波を直接的に受け取ることができる。また、超音波の影響を受ける位置として液面によって反射した音波を受ける位置に音響検出器などを設けることで、超音波の発振時点から液面によって反射した音波を受けた時点までの遅れ時間を用いて懸濁液の液量を検出することが可能となる。
【0014】
さらに、超音波の影響を受ける位置は懸濁液に触れる位置に限られるものではなく、懸濁液の容器や流路の外側であっても超音波の照射によって発生する音波や振動を良好に検出できる範囲であれば任意の位置に取付けることができる。
【0015】
前記検知手段が前記音波信号の強度および/または周波数を検知するものである場合(請求項2)には、液体と気体の音の伝達率の違いを用いて検出した音波信号の強度によって懸濁液の液量を判断することができ、懸濁液の液量によって定まる共振周波数の違いを用いて検出した音波信号の周波数によって懸濁液の液量を判断することが可能である。
【0016】
前記演算手段が、前記音波信号の強度、周波数、遅延時間のうちの少なくとも1つから求められる分散バス中の懸濁液の液面の高さと前記音波信号の強度、周波数、遅延時間の少なくとも1つとの関係を検量線として記憶するための記憶部を有する場合(請求項3)には、振動子の侵食(消耗)などが生じ、発振部の振動が十分に懸濁液に届かないときに、演算手段が超音波照射手段の分散能力を数値化して診断することができる。振動子の振幅の大きさを数値化して検知するものとしては特殊な振動計があるが、本発明では、このような特殊な機器を用いることなく、安価な検知手段によって超音波照射手段が懸濁液に与える影響の強さを数値化して超音波照射手段の分散能力を判断することができる。
【0017】
そして、この超音波照射手段から生じる超音波の強度を一定にするように、これをフィードバックして超音波照射手段に供給する電力を調節することで分散能力を一定に保つことができ、それだけ性能の安定化を図ることができる。さらには、振動子の浸食によって所定強度の超音波を照射できない場合には、その振動子が使用不能であることを診断できる。つまり、振動子診断部によって振動子の劣化や寿命を知ることができる。
【0018】
なお、前記超音波の影響を受ける位置としては、例えば超音波の振動を受ける対極の位置や、液面によって反射した音波を受ける位置、さらには、懸濁液の容器や流路の外側であっても超音波の照射によって発生する振動などを良好に検出できる範囲であれば任意の位置に選択できる。
【0019】
本発明の粒径分布測定装置における信号検出方法は、測定対象試料を分散媒中に分散させて懸濁液とする分散バスと、この分散バス内の前記懸濁液に超音波を照射して前記測定対象試料の分散を促進させるための超音波照射手段と、前記分散バスとフローセルとを接続する循環流路とを有し、前記フローセル内の懸濁液に光を照射するときに生じる光を検出することで、測定対象試料の粒径分布を求める粒径分布測定装置において、前記超音波照射手段から照射される超音波の影響を受ける位置で少なくとも前記分散バスの下端部における内壁面で前記超音波またはこの超音波によって振動した懸濁液の音波信号を検知し、その検知した音波信号から、分散バス中の懸濁液の液面を検知して懸濁液のを求め、その求めた懸濁液の量が超音波分散に必要かつ十分であることを検出したとき、測定対象試料の分散を行うように前記超音波照射手段を所定時間に亘り駆動制御すべく演算するとともに、前記音波信号をもとに前記超音波照射手段からの出力の状態を検出して該超音波照射手段の出力を一定に保つようにフィードバック制御すべく演算することを特徴としている。(請求項4)
【0020】
すなわち、懸濁液の量の検出方法は、測定対象試料を分散媒中に分散させて懸濁液とする分散バスとフローセルとを循環流路を介して接続し、フローセル内の懸濁液に光を照射することによって生ずる光を検出することで、測定対象試料の粒径分布を求める粒径分布測定装置において、測定対象試料の分散を促進するために懸濁液に超音波を照射したときに、この超音波の影響を受ける位置において音波を検出し、この音波の検出信号を用いて懸濁液の液面を検知する。
【0021】
また、超音波照射手段の劣化状態の検出方法は、測定対象試料を分散媒中に分散させて懸濁液とする分散バスとフローセルとを循環流路を介して接続し、フローセル内の懸濁液に光を照射することによって生ずる光を検出することで、測定対象試料の粒径分布を求める粒径分布測定装置において、測定対象試料の分散を促進するために懸濁液に超音波を照射したときに、この超音波の影響を受ける位置において音波信号を検出し、この音波信号を用いて超音波の発振源の状態を検知する。
【0022】
一方、粒径分布測定装置の制御方法としては、測定対象試料を分散媒中に分散させて懸濁液とする分散バスとフローセルとを循環流路を介して接続し、フローセル内の懸濁液に光を照射することによって生ずる光を検出することで、測定対象試料の粒径分布を求める粒径分布測定装置において、測定対象試料の分散を促進するために懸濁液に超音波を照射したときに、この超音波の影響を受ける位置において音波信号を検出し、この音波信号を用いて超音波の発振源の出力を一定に保つように制御する。
【0023】
すなわち、前記検出した音波信号をもとに、超音波照射手段の振動能力を検知し、超音波強度のフィードバックを行い、超音波の振動出力をモニタしてこれを制御するなどして、超音波の発振源の出力を一定に保つことで、常に同程度の強度で分散を行うことができ、測定の再現性が良くなる。
【0024】
【発明の実施の形態】
図1は、本発明の粒径分布測定装置1の全体的な構成の一例を示す図である。図1において、本例の粒径分布測定装置1は測定部1aと、パソコンなどの演算処理装置などによって構成される演算部1bとからなる。
【0025】
2は測定対象試料、3は分散媒の一例としての蒸留水(以下、分散媒3という)、4は測定対象試料2を分散媒3中に分散させた濁液であり、5はこの濁液4を生成(または調整)するための分散バス、6はフローセル、7は分散バス5とフローセル6とを連通連結する循環流路である。8は例えば分散バス5の底面に設けた超音波照射手段(超音波振動子)、9は検知手段を構成する音響検出器の一例としてのマイクロフォン(例えば可聴周波数の音波に加えて可聴周波数以上の超音波も受信可能とする耐水性のハイドロフォンなどが望ましいが、以下の説明では単にマイク9という)である。
【0026】
10は前記分散媒3を収容する容器、11はこの容器10から分散媒3を汲み上げて前記分散バス5に供給する分散媒供給手段である。すなわち所定時間の間分散媒供給手段11を動作させることにより、分散バス5中に分散媒3を供給することができ、これらの容器10および分散媒供給手段11が、粒径分布の測定に適切な濃度になるように懸濁液4を希釈可能とする自動希釈装置を構成している。
【0027】
12は前記循環流路7に分散媒を循環させながら測定対象試料を攪拌するための遠心ポンプ、13はこの遠心ポンプ12に回転力を供給するモータ、14は分散バス5内の懸濁液4の量が多くなりすぎたときに余った懸濁液4を排出させるための排水部、15は循環流路7内の全ての懸濁液4を排出させるための排水部である。
【0028】
16は前記フローセル6内の懸濁液4に対してレーザ光などの光を照射する光源、17は受光器である。なお、図1では説明を簡単にするための一つの受光器17だけを図示しているが、実際には光の照射角度に対して複数の角度で反射および/または反射した光を複数の受光器17で受光するものである。
【0029】
本発明の粒径分布測定装置1においては、超音波振動子8からの超音波の影響を受ける位置にマイク9を取り付けたことが重要であり、本例では例えば分散バス5の下端部における内側の壁面に面一となるように設けた第1マイク9aと、前記排水部14より少し下部の内壁面に面一となるように設けた第2マイク9bとからなる例を示している。
【0030】
両マイク9a,9bは何れも超音波振動子8からの超音波を直接的に受けることができる分散バス5の内壁面に面しているので、超音波振動子8からの超音波をそのまま音波信号Sa,Sbとして検出することができる。そして、マイク9が懸濁液4に漬かっているときには強い超音波を音波信号Sa,Sbとして検出することができ、懸濁液4に漬かっていないときには空気によって減衰した弱い超音波を音波信号Sa,Sbとして検出する。
【0031】
また、第1マイク9aは分散バス5の下端部に設けているので、この第1マイク9aが弱い超音波を音波信号Saとして検出したときは分散バス5内に懸濁液4がほとんど入っていないことを示している。一方、第2マイク9bは分散バス5の排水部14より少し下部に設けているので、この第2マイク9bが強い超音波を音波信号Sbとして検出したときは、分散バス5内の懸濁液4が溢れそうになっていることを検知できる。
【0032】
演算部1bは前記両マイク9a,9bからの音波信号Sa,Sbを入力し、この音波信号Sa,Sbの大きさを適宜の閾値と比較することで、両マイク9a,9bを取り付けた位置における懸濁液4の有無を判断することができる。すなわち、演算部1bは音波信号Sa,Sbを用いて液面4aを検知する演算手段であり、液面検知部としての機能を有する。
【0033】
また、演算部1bは液面4aを監視しながら前記分散媒供給手段11を駆動することにより分散媒3を分散バス5内に供給し、超音波振動子8を用いて分散バス5内の懸濁液4に超音波を照射することで測定対象試料2を分散させると共に、モータ13を駆動することにより循環流路7内の全ての懸濁液4を混合攪拌できる。そして、演算部1bは粒径分布の測定に適する濃度に希釈した懸濁液4に光源16を用いてレーザ光を照射し、受光器17を用いてフローセル6内の懸濁液4によって散乱および/または分散した光を検出することで、測定対象試料の粒径分布の解析演算を行なうことができる。
【0034】
なお、本実施例ではマイク9を分散バス5の内周面に面するように設けることで検出感度を可及的に向上し、かつ、マイク9を取り付けたことによって測定対象試料2の溜まりや懸濁液4の乱流を形成することがなくなる。しかしながら、本発明はマイク9の設置位置や数を本例に示したものに限定するものではない。すなわち、マイク9は超音波振動子8から発生した超音波によって生じた懸濁液4からの音波や振動を検知できる位置であれば原則的にどこであっても設置可能である。この場合、マイクを取り付けた位置において超音波振動子を駆動させ、検知した音波信号と分散バス内の懸濁液の量(液面高さ)との関係をあらかじめ実験などによって求めておくことが望ましい。
【0035】
図2は前記マイク9a,9bを用いた液面検知の原理を概念的に示す図であって、図2(A)は超音波振動子8からの超音波の影響を受ける部分の例として分散バス5を中心とする各部の構成および状態の変化を示す図、図2(B)はこの状態において超音波振動子8から照射された超音波Uと、マイク9a,9bによって検出される音波信号Sa,Sbとの関係を示す図である。
【0036】
なお、図2において、超音波振動子8から照射された超音波Uまたはこの超音波Uによって振動した懸濁液4の音波(以下、説明を簡略化するために超音波Uも音波として表現する)は図2(A)の矢印a〜hに示すように分散バス5内を伝播し、矢印a〜hのうち、実線で示す音波の伝播は懸濁液4中で起こり、点線で示す音波の伝播は大気中で起こるものとする。
【0037】
図2(B)が示すように、超音波振動子8から照射される超音波Uはパルス的に一瞬だけ出力され、これが分散バス5内の分散媒4または空気を伝播してマイク9a,9bに検出される。
【0038】
そして、分散バス5内に懸濁液4が存在しない場合には、各マイク9a,9bは矢印a,bに示すように空気を伝播した超音波Uを音波信号Sa1 ,Sb1 として検出するので、これらの音波信号Sa1 ,Sb1 は液中を伝播する場合に比べて伝わりにくい。このため、元の超音波Uに対して大幅に減衰している。また、音波信号Sa1 ,Sb1 は大気中を伝播した超音波Uを検出するので、元の超音波Uに対して遅れた信号となる。
【0039】
次に、分散バス5内に懸濁液4が幾らか存在する場合には、各マイク9aは矢印cに示すように懸濁液4中をまっすぐに伝播した超音波Uと、矢印dに示すように液面4aなどによって反射した音波とを検出する。したがって、マイク9aは懸濁液4中を高速に伝播した強い音波信号Sa2 と、幾らか遅延した音波信号Sa2 ’とを検出する。一方、マイク9bは矢印eに示すように、途中まで懸濁液4中を伝播し、後に大気中を伝播した音波を検出する。すなわち、マイク9bは幾らかの減衰し、遅延した音波信号Sb2 を検出する。
【0040】
最後に、分散バス5内に溢れるほどの懸濁液4が存在する場合には、各マイク9aは矢印fに示すように懸濁液4中をまっすぐに伝播した超音波Uと、矢印hに示すように液面4aなどによって反射した音波とを検出する。したがって、マイク9aは懸濁液4中を高速に伝播した強い音波信号Sa3 と、前記音波信号Sa2 ’よりも長い時間遅延した音波信号Sa3 ’とを検出する。一方、マイク9bは矢印gに示すように懸濁液4中を伝播したほとんど減衰しない音波信号Sb3 を検出する。
【0041】
すなわち、前記演算部1bはマイク9a,9bから音波信号Sa,Sbを受信することで、その強度から分散バス5内における懸濁液4の有無や、懸濁液4が排水部14から溢れそうな状態であるかどうかを判断できる。つまり、演算部1bが液面検知部として機能する。
【0042】
本例では分散バス5の下端部の位置と、排水部14の間際の位置に、2つのマイク9a,9bを用いて液面4aを検知することにより、音波信号Sa,Sbの強度だけで液面4aを判断したとしても、例えば、「懸濁液が全くない状態」、「ある程度の懸濁液がある状態」、「溢れそうな程度に懸濁液が満たされている状態」の3段階に分けて懸濁液4がどの状態にあるかを見分けることができる。また、マイク9の数を増やすことにより、さらに多くの段階に分けて液面4aを検知することも可能である。
【0043】
また、前記演算部1bは前記音波信号Sa,Sbの周波数を用いて懸濁液4の固有振動を求め、これから懸濁液4の量を検出することも可能である。この場合、演算部1bは音波信号Sa,Sbの周波数を用いた懸濁液4の液面検知を行なう液面検知部として機能する。そして、音波信号Sa,Sbの周波数を用いた液面検知を行う場合は、マイク9を複数設けることに限定する必要はなく、単一のマイク9を分散バス5の下端部に取付けるだけでもよい。
【0044】
さらには、前記音波信号Sa2 ’,Sa3 ’の遅延時間の長さから、液面4aの位置を検出することも可能となる。この場合も、マイク9を複数設けることに限定されない。そして、音波信号Sa,Sbの強度、周波数、遅延時間を全て液面検知の判断に用いることで、より精度の高い液面4aの位置を検出できる。
【0045】
加えて、前記何れの方法で液面4aの検知を行なう場合においても、幾らかの分散媒を用いてあらかじめ音波信号Sa,Sbを検出し、液面4aの高さと音波信号Sa,Sbの強度、周波数、遅延時間などとの関係を検量線にして、演算部1bに記憶しておくことが望ましい。これによって液面4aの検出精度を高めることができる。
【0046】
また、分散バス5の形状を縦長の筒状にするなどして、液面4aの検知によって懸濁液4の量を正確に求められるようにすることも可能である。すなわち、粒径分布の測定においては、懸濁液4の濃度が測定に適した程度になるように分散媒3を追加するなどして濃度を薄めて調整する必要があるが、本発明の液面検知方法を用いて追加した分散媒3の量を算出し、その懸濁液4の濃度を求めることも可能である。
【0047】
これに加えて、本例のマイク9a,9bによって検出された音波信号Sa,Sbを用いて超音波振動子8の状態を診断する。すなわち、前記図2(B)の音波信号Sa2 ,Sa3 のように懸濁液4を入れた状態における特定の信号を、超音波振動子8から発信される超音波の振幅の大きさを数値化して検知するために用いる。すなわち、超音波振動子8の振動子が侵食を受けて摩耗が進行すると、振動子が十分の振動を伝えられなくなるが、この状態を音波信号Sa2 ,Sa3 を用いて正確に検出できる。
【0048】
そして、本発明のように比較的安価なマイク9を用いて超音波の振幅を検出することで、専用の振幅計を取付ける場合に比べて製造コストを削減できる。また、本例の演算部1bはマイク9a,9bによって検出された音波信号Sa,Sbを用いて超音波振動子8の状態を診断する振動子診断部として機能する。
【0049】
さらに、前記音波信号Sa2 ,Sa3 が所定の強度になるように超音波振動子8に電力を供給することにより、超音波振動子8にフィードバックをかけることもできる。このとき、超音波振動子8に最大電力を供給した状態であっても音波信号Sa2 ,Sa3 が所定の強度にならない場合には、超音波振動子8の振動子の寿命であることを、演算部1bのディスプレイDなどに表示し、使用者に超音波振動子の交換を促すことができる。
【0050】
図3は前記粒径分布測定装置1によって行われる粒径分布測定のための一連の動作において各部の動きを説明する図である。
【0051】
図3に示すように、時点t0 において、使用者が分散バス5内に測定対象試料を収容し測定を開始すると、まず,分散媒供給手段11が時点t1 までの所定時間の間、分散媒3を分散バス5内に注入し、時点t1 〜t2 までの短い時間に超音波振動子8を用いてパルス的な超音波を照射することで、懸濁液4の液面4aを検知する。本例では時点t1 〜t2 間における液面の検知では、マイク9aは懸濁液4に漬かったものの懸濁液4の量は十分でないことを検知したものとする。
【0052】
ここで、仮に使用者が超音波振動子8の駆動を行おうとすると、前記演算部1bは、懸濁液4の量が十分でないことを、ディスプレイDに表示するなどして、使用者に警告する。
【0053】
次に、時点t2 〜t3 までの間、分散媒供給手段11をさらに駆動して、十分の分散媒3を分散バス5内に注入する。また、分散バス5内に幾らかの懸濁液4が存在するので、時点t2 からポンプ12を動作させることで懸濁液4の循環による拡散を行なう。
【0054】
次いで、粒径分布測定装置1は時点t3 〜t4 間において2回目の液面検知を行って、懸濁液4の量が十分であるかどうかを判断する。そして、本例ではこの2回目の液面検知において超音波分散に十分な量の懸濁液4があることを検出し、時点t5 〜t6 間の所定時間に超音波振動子8を用いて測定対象試料の分散を行なう。このときマイク9は、超音波振動子8からの超音波の照射によって発生する音波を検出して、演算部1bが超音波振動子8から出力される超音波の強度を一定にするようにフィードバックをかける。
【0055】
つまり、所定の強さで所定時間の間超音波を照射することで、所定の分散を起こし、懸濁液4の状態を整えることができる。そして、時点t7 〜t8 の間に、演算部1bは、光源16を用いて懸濁液4に光を照射させ、受光器17を用いて各角度における散乱光および/または回折光の強度を検出する。また、この角度毎の光の強度分布を用いて測定対象試料2の粒径分布を演算する。
【0056】
粒径分布の測定が終了すると、時点t9 以降において、排水部15を用いて測定後の懸濁液4を排出する。
【0057】
【発明の効果】
以上説明したように、本発明によれば、分散バス内の懸濁液中の測定対象試料(粒子)を分散させるための超音波振動子と、安価な音響検出器とによって形成された極めて簡単な構成で、分散バス内の懸濁液の量を検知することができると共に、堅牢性に優れ信頼性の高い液面検知を行うことで、超音波振動子自体の破損や、分析装置内部の破損を招きかねない懸濁液のない状態での超音波振動子の駆動を確実に防ぐことができる。また、同じ音響検出器を用いて超音波振動子から出力される超音波の強度を正確に求めることができ、常に同じ強度の超音波を照射することも可能となる。
【図面の簡単な説明】
【図1】 本発明の粒径分布測定装置の全体構成を示す図である。
【図2】 液面の検知を行う原理を説明する図である。
【図3】 粒径分布の測定に関する一連の動作を説明する図である。
【符号の説明】
1…粒径分布測定装置、1b…演算手段(演算部)、2…測定対象試料、3…分散媒(蒸留水)、4…懸濁液、4a…液面、5…分散バス、6…フローセル、7…循環流路、8…超音波照射手段(超音波振動子)、9(9a,9b)…検知手段(マイク)、Sa,Sb…音波信号、U…超音波。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a particle size distribution measuring device and a signal detection method in the particle size distribution measuring device.
[0002]
[Prior art]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 7-311204
Conventionally, when measuring the particle size distribution with a particle size distribution measuring device, the sample to be measured is dispersed and stirred in a dispersion medium such as water to form a suspension, and this suspension is used for circulation such as a centrifugal pump or a perista pump. Scattered light or diffracted light is supplied to the flow cell by a pump and the suspension in the flow cell is irradiated with laser light in that state, and the detector detects the intensity distribution of these lights. Processing was performed based on the scattering theory to determine the particle size distribution of the sample.
[0003]
In the particle size distribution measuring apparatus, since it is necessary to detect the liquid level for further automation, conventionally, the amount of suspension has been detected using a liquid level sensor using a float or the like. As the liquid level sensor, an electrode type, an optical type, a capacitance type, a float type or the like is generally known. (See Patent Document 1) These liquid level sensors determine whether the amount of suspension satisfies a predetermined amount suitable for dispersion by the ultrasonic vibrator, and the flow rate of the dispersion medium injected into the dispersion bath. By controlling the injection time, the suspension was controlled to be a predetermined amount.
[0004]
[Problems to be solved by the invention]
However, each of the liquid level sensors has the following drawbacks. That is, in the case of the electrode type, the liquid level cannot be detected when a dispersion medium such as alcohol that does not conduct electricity is used, and in the case of the capacitance type, the dielectric constant varies greatly depending on the dispersion medium, so accurate measurement cannot be performed. On the other hand, there is a problem that the optical liquid level sensor cannot be measured accurately due to dirt, and the float type liquid level sensor is clogged with the sample to be measured in the sliding part of the float part, or due to wear etc. There is a problem that malfunction may occur and there is no texture compared to other types of liquid level sensors.
[0005]
On the other hand, in the particle size distribution measuring apparatus, it is usually performed by irradiating the suspension with ultrasonic waves and applying appropriate vibration so that the particles of the sample to be measured in the suspension are not solidified. If the ultrasonic vibrator is driven in the absence of turbid liquid, the ultrasonic vibrator itself is damaged, or the ultrasonic waves that are originally applied to disperse the sample to be measured in the suspension are in another part of the device ( For example, there is a concern that the particle size distribution measuring device may be damaged by acting on a dispersion bath tank. For this reason, the ultrasonic transducer is interlocked so that it operates only when the liquid level sensor detects the presence of the suspension, but the liquid level sensor malfunctions. This may cause a problem that the ultrasonic transducer operates despite the absence of the suspension.
[0006]
In addition, the ultrasonic vibrator has a capability of being lowered or fluctuated depending on the dispersion medium to be dispersed, its temperature, the type and concentration of particles contained in the dispersion medium. In addition, the vibrator attached to the ultrasonic vibrator is consumed, and when the vibrator is consumed due to long-term use, the original dispersion ability may not be exhibited.
[0007]
For this reason, in order to determine whether or not the operation of ultrasonic dispersion is operating normally, the user of the device is responsible for the sound generated from each part in the device by the oscillation of the ultrasonic transducer. I checked it with my ears. However, it takes a lot of experience and skill to determine the oscillation state of an ultrasonic transducer. liquid Of the sample to be measured may not be normally dispersed. In addition, the ultrasonic dispersion was performed by dispersing the sample to be measured at a predetermined intensity according to the ultrasonic dispersion level and time set by the user of the apparatus. However, if normal dispersion is not performed, the dispersion state is not sufficient. In this state, the sample to be measured is measured, and the measurement result may be adversely affected.
[0008]
The present invention has been made in consideration of the above-mentioned matters, and its purpose is to detect the liquid level of the suspension of the dispersion medium containing the sample to be measured and to disperse the sample to be measured. Of particle size distribution measuring apparatus and particle size distribution measuring apparatus capable of preventing breakage of ultrasonic transducers, and performing self-diagnosis of ultrasonic transducers to disperse samples to be measured with appropriate strength It is to provide a detection method.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the particle size distribution measuring apparatus of the present invention comprises a dispersion bath in which a sample to be measured is dispersed in a dispersion medium to form a suspension, and ultrasonic waves are applied to the suspension in the dispersion bath. When irradiating the suspension in the flow cell with ultrasonic irradiation means for irradiating and promoting dispersion of the sample to be measured, and a circulation channel connecting the dispersion bath and the flow cell In the particle size distribution measuring device for obtaining the particle size distribution of the measurement target sample by detecting the light generated in the ultrasonic wave, at least at the lower end portion of the dispersion bath at a position affected by the ultrasonic wave irradiated from the ultrasonic wave irradiation means The ultrasonic signal of the ultrasonic wave or the suspension vibrated by this ultrasonic wave is attached to the inner wall surface. detection And a suspension in a dispersion bath using a sound wave signal detected by the detection means Detect the liquid level of the suspension Amount of And when it is detected that the amount of the obtained suspension is necessary and sufficient for ultrasonic dispersion, the ultrasonic irradiation means should be driven and controlled for a predetermined time so as to disperse the sample to be measured. Based on the computing means for computing and the sound wave signal, Output from ultrasonic irradiation means And calculating means for performing feedback control so as to detect the state of the ultrasonic wave and to keep the output of the ultrasonic wave irradiation means constant Calculation Part It is characterized by having. (Claim 1)
[0010]
That is, the vibration generated by the ultrasonic wave applied to the suspension from the ultrasonic irradiation means is detected using the detection means, and the liquid level and the amount of the suspension in the flow cell are detected to detect the liquid level. Since it is possible to both disperse the sample to be measured in the suspension and to detect the liquid level without providing a separate ultrasonic irradiation means as a transmitter, the installation space for the ultrasonic irradiation means can be reduced and installed. This leads to a reduction in the number of parts.
[0011]
In addition, as a detection means for detecting ultrasonic waves and vibrations as sound wave signals, for example, a relatively inexpensive device such as an acoustic detector such as a microphone is used. Therefore, in addition to reducing the number of components, expensive components are not required. Thus, the manufacturing cost can be reduced. The liquid level detection for detecting the amount of suspension in the present invention includes not only detecting the position of the liquid level but also detecting the presence or absence of the suspension.
[0012]
Furthermore, since the liquid level is detected by transmission of ultrasonic waves and vibrations of the suspension caused thereby, there is no fear of malfunction due to dirt or abrasion due to powder, and the reliability of the particle size distribution measuring apparatus can be improved accordingly. In addition, since the liquid level can be detected without being affected by the type of suspension (conductivity, dielectric constant, etc.), the liquid volume of the suspension can always be obtained accurately. As a result, the amount of liquid in the circulating layer can be adjusted as appropriate, and malfunction due to malfunction of the liquid level sensor and damage inside the apparatus due to driving of the ultrasonic irradiation means in the absence of suspension can be reliably prevented. .
[0013]
As the position affected by the ultrasonic wave, for example, a detection unit such as an acoustic detector or an acceleration sensor is provided at the position of the counter electrode that receives the vibration of the ultrasonic wave. Can be received directly. In addition, by providing an acoustic detector, etc., at the position where the sound wave reflected by the liquid surface is received as the position affected by the ultrasonic wave, the delay time from when the ultrasonic wave is oscillated to when the sound wave reflected by the liquid surface is received is reduced. It becomes possible to detect the liquid volume of the suspension.
[0014]
Furthermore, the position affected by the ultrasonic waves is not limited to the position where the suspension is touched, and the sound waves and vibrations generated by the irradiation of the ultrasonic waves can be improved even outside the suspension container or flow path. If it can be detected, it can be attached at any position.
[0015]
When the detection means detects the intensity and / or frequency of the sound wave signal (Claim 2), it is suspended depending on the intensity of the sound wave signal detected using the difference in the transmission rate of the sound between the liquid and the gas. The liquid volume of the liquid can be determined, and the liquid volume of the suspension can be determined based on the frequency of the sound wave signal detected using the difference in resonance frequency determined by the liquid volume of the suspension.
[0016]
The computing means is the intensity of the sound wave signal; frequency, At least one of the delay times Of the liquid level of the suspension in the dispersion bath and the intensity, frequency, and delay time of the sound wave signal In the case of having a storage unit for storing a relationship with at least one as a calibration curve (Claim 3), erosion (consumption) of the vibrator occurs, and vibration of the oscillation unit does not reach the suspension sufficiently. Sometimes, the calculation means can make a diagnosis by quantifying the dispersion ability of the ultrasonic irradiation means. There is a special vibrometer that detects the magnitude of the amplitude of the vibrator numerically. However, in the present invention, the ultrasonic irradiation means is suspended by an inexpensive detection means without using such special equipment. It is possible to determine the dispersion ability of the ultrasonic irradiation means by quantifying the strength of the influence on the suspension.
[0017]
Then, the dispersion power can be kept constant by adjusting the power supplied to the ultrasonic irradiation means by feeding it back so that the intensity of the ultrasonic wave generated from this ultrasonic irradiation means is constant. Can be stabilized. Furthermore, when the ultrasonic wave of a predetermined intensity cannot be irradiated due to the erosion of the vibrator, it can be diagnosed that the vibrator cannot be used. That is, the vibrator diagnosis unit can know the deterioration and life of the vibrator.
[0018]
The positions affected by the ultrasonic waves include, for example, the position of the counter electrode that receives ultrasonic vibrations, the position that receives the sound waves reflected by the liquid surface, and the outside of the suspension container and the flow path. However, any position can be selected as long as vibrations generated by ultrasonic irradiation can be detected satisfactorily.
[0019]
The signal detection method in the particle size distribution measuring apparatus of the present invention includes a dispersion bath in which a sample to be measured is dispersed in a dispersion medium to form a suspension, and ultrasonic waves are applied to the suspension in the dispersion bath. Light that is generated when the suspension in the flow cell is irradiated with light, including ultrasonic irradiation means for promoting dispersion of the sample to be measured, and a circulation channel that connects the dispersion bath and the flow cell. In the particle size distribution measuring apparatus for obtaining the particle size distribution of the sample to be measured by detecting the at least the inner wall surface at the lower end of the dispersion bath at a position affected by the ultrasonic waves irradiated from the ultrasonic irradiation means. The ultrasonic wave or a sound wave signal of the suspension vibrated by the ultrasonic wave is detected, and the suspension in the dispersion bath is detected from the detected sound wave signal. Detecting the liquid level of the suspension amount And when it is detected that the amount of the obtained suspension is necessary and sufficient for ultrasonic dispersion, the ultrasonic irradiation means should be driven and controlled for a predetermined time so as to disperse the sample to be measured. While calculating, based on the sound wave signal Ultrasonic irradiation means From Output Is calculated to perform feedback control so as to keep the output of the ultrasonic irradiation means constant. It is characterized by that. (Claim 4)
[0020]
In other words, a method for detecting the amount of suspension includes a dispersion bath in which a sample to be measured is dispersed in a dispersion medium to form a suspension, and a flow cell connected via a circulation channel to the suspension in the flow cell. In the particle size distribution measuring device that determines the particle size distribution of the sample to be measured by detecting the light generated by irradiating light, when the suspension is irradiated with ultrasonic waves to promote the dispersion of the sample to be measured In addition, a sound wave is detected at a position affected by the ultrasonic wave, and the liquid level of the suspension is detected using a detection signal of the sound wave.
[0021]
In addition, a method for detecting the deterioration state of the ultrasonic irradiation means is a method in which a dispersion bath and a flow cell, in which a sample to be measured is dispersed in a dispersion medium and suspended, are connected via a circulation channel, and suspended in the flow cell. In the particle size distribution measuring device that determines the particle size distribution of the sample to be measured by detecting the light generated by irradiating the liquid with light, the suspension is irradiated with ultrasonic waves to promote dispersion of the sample to be measured In this case, a sound wave signal is detected at a position affected by the ultrasonic wave, and the state of the ultrasonic oscillation source is detected using the sound wave signal.
[0022]
On the other hand, as a control method of the particle size distribution measuring apparatus, a dispersion bath in which a sample to be measured is dispersed in a dispersion medium and used as a suspension is connected to a flow cell via a circulation channel, and a suspension in the flow cell is obtained. In the particle size distribution measuring device that determines the particle size distribution of the sample to be measured by detecting the light generated by irradiating the sample with light, the suspension was irradiated with ultrasonic waves to promote the dispersion of the sample to be measured Sometimes, a sound wave signal is detected at a position affected by this ultrasonic wave, and control is performed using this sound wave signal to keep the output of the ultrasonic oscillation source constant.
[0023]
That is, based on the detected sound wave signal, the vibration capability of the ultrasonic irradiation means is detected, the ultrasonic intensity is fed back, and the ultrasonic vibration output is monitored and controlled. By keeping the output of the oscillation source constant, dispersion can always be performed with the same intensity, and the reproducibility of the measurement is improved.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing an example of the overall configuration of a particle size distribution measuring apparatus 1 of the present invention. In FIG. 1, a particle size distribution measuring apparatus 1 of this example includes a measuring unit 1a and a calculation unit 1b configured by a calculation processing device such as a personal computer.
[0025]
2 is a sample to be measured, 3 is distilled water (hereinafter referred to as dispersion medium 3) as an example of a dispersion medium, and 4 is a sample to be measured 2 dispersed in the dispersion medium 3 Hanging It is a turbid liquid, 5 is this Hanging A dispersion bath for generating (or adjusting) the turbid liquid 4, 6 is a flow cell, and 7 is a circulation channel that connects the dispersion bath 5 and the flow cell 6 in communication. 8 is an ultrasonic irradiation means (ultrasonic transducer) provided on the bottom surface of the dispersion bath 5, for example, and 9 is a microphone as an example of an acoustic detector constituting the detection means (for example, an audio frequency higher than or equal to an audio frequency) A water-resistant hydrophone that can receive ultrasonic waves is desirable, but is simply referred to as a microphone 9 in the following description.
[0026]
Reference numeral 10 denotes a container for accommodating the dispersion medium 3, and 11 denotes a dispersion medium supply means for pumping the dispersion medium 3 from the container 10 and supplying it to the dispersion bath 5. That is, by operating the dispersion medium supply means 11 for a predetermined time, the dispersion medium 3 can be supplied into the dispersion bath 5, and these containers 10 and the dispersion medium supply means 11 are suitable for measuring the particle size distribution. An automatic diluting device is configured that can dilute the suspension 4 so as to obtain a proper concentration.
[0027]
12 is a centrifugal pump for stirring the sample to be measured while circulating the dispersion medium in the circulation flow path 7, 13 is a motor for supplying rotational force to the centrifugal pump 12, and 14 is the suspension 4 in the dispersion bath 5. A drainage portion 15 for discharging the surplus suspension 4 when the amount of the liquid becomes too large, and a drainage portion 15 for discharging all the suspensions 4 in the circulation channel 7.
[0028]
Reference numeral 16 denotes a light source for irradiating the suspension 4 in the flow cell 6 with light such as laser light, and reference numeral 17 denotes a light receiver. Although only one light receiver 17 is shown in FIG. 1 for ease of explanation, actually, a plurality of light beams reflected and / or reflected at a plurality of angles with respect to the light irradiation angle are received. The light is received by the device 17.
[0029]
In the particle size distribution measuring apparatus 1 of the present invention, it is important that the microphone 9 is attached at a position affected by the ultrasonic wave from the ultrasonic vibrator 8, and in this example, for example, the inner side at the lower end of the dispersion bath 5 The example which consists of the 1st microphone 9a provided so that it may become flush with the wall surface of this and the 2nd microphone 9b provided so that it may become flush with the inner wall surface slightly lower than the said drainage part 14 is shown.
[0030]
Since both the microphones 9a and 9b face the inner wall surface of the dispersion bus 5 that can directly receive the ultrasonic waves from the ultrasonic vibrator 8, the ultrasonic waves from the ultrasonic vibrator 8 are directly used as sound waves. The signals Sa and Sb can be detected. When the microphone 9 is immersed in the suspension 4, strong ultrasonic waves can be detected as the sound wave signals Sa and Sb. When the microphone 9 is not immersed in the suspension 4, weak ultrasonic waves attenuated by air are detected as the sound wave signal Sa. , Sb.
[0031]
Further, since the first microphone 9a is provided at the lower end portion of the dispersion bus 5, when the first microphone 9a detects weak ultrasonic waves as the sound wave signal Sa, the suspension 4 is almost contained in the dispersion bus 5. It shows no. On the other hand, since the second microphone 9b is provided slightly below the drainage portion 14 of the dispersion bath 5, when the second microphone 9b detects a strong ultrasonic wave as the sound wave signal Sb, the suspension in the dispersion bus 5 4 can be detected to be overflowing.
[0032]
The calculation unit 1b receives the sound wave signals Sa and Sb from both the microphones 9a and 9b, and compares the magnitudes of the sound wave signals Sa and Sb with an appropriate threshold value. The presence or absence of the suspension 4 can be determined. That is, the calculation unit 1b is a calculation unit that detects the liquid level 4a using the sound wave signals Sa and Sb, and has a function as a liquid level detection unit.
[0033]
The computing unit 1b supplies the dispersion medium 3 into the dispersion bus 5 by driving the dispersion medium supply means 11 while monitoring the liquid level 4a, and uses the ultrasonic vibrator 8 to suspend the suspension medium 5 in the dispersion bus 5. By irradiating the suspension 4 with ultrasonic waves, the sample 2 to be measured is dispersed, and by driving the motor 13, all the suspensions 4 in the circulation channel 7 can be mixed and stirred. Then, the calculation unit 1b irradiates the suspension 4 diluted to a concentration suitable for the measurement of the particle size distribution with a laser beam using the light source 16, and scatters the suspension 4 in the flow cell 6 using the light receiver 17. By detecting the scattered light, / or the analytical calculation of the particle size distribution of the sample to be measured can be performed.
[0034]
In the present embodiment, the detection sensitivity is improved as much as possible by providing the microphone 9 so as to face the inner peripheral surface of the dispersion bus 5, and the accumulation of the sample 2 to be measured can be achieved by attaching the microphone 9. The turbulent flow of the suspension 4 is not formed. However, the present invention does not limit the installation positions and number of microphones 9 to those shown in this example. That is, the microphone 9 can be installed anywhere as long as it can detect sound waves and vibrations from the suspension 4 generated by the ultrasonic waves generated from the ultrasonic vibrator 8. In this case, the ultrasonic transducer is driven at the position where the microphone is attached, and the relationship between the detected sound wave signal and the amount of suspension (liquid level height) in the dispersion bath can be obtained in advance by experiments or the like. desirable.
[0035]
FIG. 2 is a diagram conceptually showing the principle of liquid level detection using the microphones 9a and 9b. FIG. 2A is an example of a portion affected by the ultrasonic wave from the ultrasonic vibrator 8. FIG. 2B is a diagram showing a change in the configuration and state of each part centered on the bus 5, and FIG. 2B shows an ultrasonic wave U irradiated from the ultrasonic transducer 8 in this state and a sound wave signal detected by the microphones 9a and 9b. It is a figure which shows the relationship with Sa and Sb.
[0036]
In FIG. 2, the ultrasonic wave U emitted from the ultrasonic vibrator 8 or the sound wave of the suspension 4 vibrated by the ultrasonic wave U (hereinafter, the ultrasonic wave U is also expressed as a sound wave for the sake of simplicity. ) Propagates in the distribution bus 5 as indicated by arrows a to h in FIG. 2A, and among the arrows a to h, propagation of sound waves indicated by solid lines occurs in the suspension 4 and sound waves indicated by dotted lines. Propagation of air shall occur in the atmosphere.
[0037]
As shown in FIG. 2B, the ultrasonic wave U irradiated from the ultrasonic vibrator 8 is output only momentarily in a pulse manner, and this propagates through the dispersion medium 4 or the air in the dispersion bath 5 to make the microphones 9a and 9b. Detected.
[0038]
When the suspension 4 does not exist in the dispersion bath 5, the microphones 9a and 9b use the ultrasonic wave U that has propagated the air as indicated by the arrows a and b as the sound wave signal Sa. 1 , Sb 1 These sound wave signals Sa are detected as 1 , Sb 1 Is less likely to propagate than in the liquid. For this reason, it is significantly attenuated with respect to the original ultrasonic wave U. Also, the sound wave signal Sa 1 , Sb 1 Detects the ultrasonic wave U that has propagated in the atmosphere, so that the signal is delayed with respect to the original ultrasonic wave U.
[0039]
Next, when there is some suspension 4 in the dispersion bath 5, each microphone 9a has an ultrasonic wave U that has propagated straight through the suspension 4 as indicated by an arrow c, and an arrow d. Thus, the sound wave reflected by the liquid surface 4a or the like is detected. Therefore, the microphone 9a is a strong sound wave signal Sa that propagates through the suspension 4 at high speed. 2 And a somewhat delayed sound wave signal Sa 2 'And detect. On the other hand, as indicated by an arrow e, the microphone 9b propagates through the suspension 4 partway and detects a sound wave that has propagated through the atmosphere later. That is, the microphone 9b is somewhat attenuated and delayed by the sound wave signal Sb. 2 Is detected.
[0040]
Finally, when there is a suspension 4 that overflows in the dispersion bath 5, each microphone 9a has an ultrasonic wave U that has propagated straight through the suspension 4 as indicated by an arrow f, and an arrow h. As shown, a sound wave reflected by the liquid surface 4a or the like is detected. Therefore, the microphone 9a is a strong sound wave signal Sa that propagates through the suspension 4 at high speed. Three And the sound wave signal Sa 2 Sound wave signal Sa delayed for a longer time than ' Three 'And detect. On the other hand, the microphone 9b transmits the sound wave signal Sb which has propagated through the suspension 4 and hardly attenuated as indicated by an arrow g. Three Is detected.
[0041]
That is, the arithmetic unit 1b receives the sound wave signals Sa and Sb from the microphones 9a and 9b, so that the presence or absence of the suspension 4 in the dispersion bath 5 and the suspension 4 are likely to overflow from the drainage unit 14 from the strength. It can be judged whether it is in a proper state. That is, the calculation part 1b functions as a liquid level detection part.
[0042]
In this example, the liquid level 4a is detected by using two microphones 9a and 9b at the position of the lower end portion of the dispersion bath 5 and the position just before the drainage portion 14, so that the liquid level can be determined only by the intensity of the sound wave signals Sa and Sb. Even if the surface 4a is determined, for example, there are three stages: “a state where there is no suspension”, “a state where there is a certain amount of suspension”, and “a state where the suspension is filled enough to overflow” It is possible to distinguish which state the suspension 4 is in. Further, by increasing the number of microphones 9, it is possible to detect the liquid level 4a in more stages.
[0043]
Further, the calculation unit 1b can obtain the natural vibration of the suspension 4 using the frequencies of the sound wave signals Sa and Sb, and can detect the amount of the suspension 4 therefrom. In this case, the calculation unit 1b functions as a liquid level detection unit that detects the liquid level of the suspension 4 using the frequencies of the sound wave signals Sa and Sb. And when performing the liquid level detection using the frequency of the sound wave signals Sa and Sb, it is not necessary to limit to providing a plurality of microphones 9, and only a single microphone 9 may be attached to the lower end of the distribution bus 5. .
[0044]
Further, the sound wave signal Sa 2 ', Sa Three It is also possible to detect the position of the liquid level 4a from the length of the delay time '. Also in this case, it is not limited to providing a plurality of microphones 9. Then, by using all the intensities, frequencies, and delay times of the sound wave signals Sa and Sb for the determination of the liquid level detection, it is possible to detect the position of the liquid level 4a with higher accuracy.
[0045]
In addition, even when the liquid level 4a is detected by any of the above methods, the sound wave signals Sa and Sb are detected in advance using some dispersion medium, and the height of the liquid level 4a and the intensity of the sound wave signals Sa and Sb are detected. It is desirable to store the relationship with the frequency, delay time, etc. in the calculation unit 1b as a calibration curve. Thereby, the detection accuracy of the liquid level 4a can be increased.
[0046]
It is also possible to obtain the amount of the suspension 4 accurately by detecting the liquid level 4a, for example, by making the shape of the dispersion bath 5 into a vertically long cylinder. That is, in the measurement of the particle size distribution, it is necessary to adjust by decreasing the concentration by adding the dispersion medium 3 or the like so that the concentration of the suspension 4 is suitable for the measurement. It is also possible to calculate the amount of the added dispersion medium 3 by using the surface detection method and obtain the concentration of the suspension 4.
[0047]
In addition, the state of the ultrasonic transducer 8 is diagnosed using the sound wave signals Sa and Sb detected by the microphones 9a and 9b of this example. That is, the sound wave signal Sa in FIG. 2 , Sa Three As described above, the specific signal in the state where the suspension 4 is put is used to detect the magnitude of the amplitude of the ultrasonic wave transmitted from the ultrasonic vibrator 8 as a numerical value. That is, when the vibrator of the ultrasonic vibrator 8 is eroded and wear proceeds, the vibrator cannot transmit sufficient vibration. This state is indicated by the sound wave signal Sa. 2 , Sa Three Can be detected accurately.
[0048]
Then, by detecting the amplitude of the ultrasonic wave using the relatively inexpensive microphone 9 as in the present invention, the manufacturing cost can be reduced as compared with the case of installing a dedicated amplitude meter. In addition, the calculation unit 1b of this example functions as a vibrator diagnosis unit that diagnoses the state of the ultrasonic vibrator 8 using the sound wave signals Sa and Sb detected by the microphones 9a and 9b.
[0049]
Further, the sound wave signal Sa 2 , Sa Three It is also possible to apply feedback to the ultrasonic transducer 8 by supplying electric power to the ultrasonic transducer 8 so that becomes a predetermined intensity. At this time, even when the maximum power is supplied to the ultrasonic transducer 8, the sound wave signal Sa 2 , Sa Three Is not a predetermined strength, the life of the ultrasonic transducer 8 is displayed on the display D of the calculation unit 1b, and the user can be prompted to replace the ultrasonic transducer. .
[0050]
FIG. 3 is a diagram for explaining the movement of each part in a series of operations for particle size distribution measurement performed by the particle size distribution measuring apparatus 1.
[0051]
As shown in FIG. 0 When the user stores the sample to be measured in the dispersion bath 5 and starts the measurement, first, the dispersion medium supply means 11 moves to the time t. 1 The dispersion medium 3 is injected into the dispersion bath 5 for a predetermined time until the time t 1 ~ T 2 The liquid level 4a of the suspension 4 is detected by irradiating pulsed ultrasonic waves using the ultrasonic vibrator 8 in a short period of time. In this example, time t 1 ~ T 2 In the detection of the liquid level in the meantime, it is assumed that the microphone 9a detects that the amount of the suspension 4 is not sufficient although it is immersed in the suspension 4.
[0052]
Here, if the user tries to drive the ultrasonic transducer 8, the calculation unit 1b warns the user by displaying on the display D that the amount of the suspension 4 is not sufficient. To do.
[0053]
Next, at time t 2 ~ T Three In the meantime, the dispersion medium supply means 11 is further driven to inject a sufficient amount of the dispersion medium 3 into the dispersion bath 5. Also, since some suspension 4 is present in the dispersion bath 5, the time t 2 Then, the pump 12 is operated to diffuse the suspension 4 by circulation.
[0054]
Next, the particle size distribution measuring apparatus 1 Three ~ T Four In the meantime, a second liquid level detection is performed to determine whether the amount of the suspension 4 is sufficient. In this example, in the second liquid level detection, it is detected that there is a sufficient amount of the suspension 4 for ultrasonic dispersion, and the time t Five ~ T 6 The sample to be measured is dispersed using the ultrasonic vibrator 8 at a predetermined time. At this time, the microphone 9 detects the sound wave generated by the irradiation of the ultrasonic wave from the ultrasonic vibrator 8 and feeds back the operation unit 1b so that the intensity of the ultrasonic wave output from the ultrasonic vibrator 8 is constant. multiply.
[0055]
That is, by irradiating ultrasonic waves at a predetermined intensity for a predetermined time, predetermined dispersion can be caused and the state of the suspension 4 can be adjusted. And time t 7 ~ T 8 In the meantime, the calculation unit 1 b irradiates the suspension 4 with light using the light source 16 and detects the intensity of scattered light and / or diffracted light at each angle using the light receiver 17. Further, the particle size distribution of the measurement target sample 2 is calculated using the light intensity distribution for each angle.
[0056]
When the measurement of the particle size distribution is completed, time t 9 Thereafter, the suspension 4 after measurement is discharged using the drainage unit 15.
[0057]
【The invention's effect】
As described above, according to the present invention, the ultrasonic transducer for dispersing the sample (particle) to be measured in the suspension in the dispersion bath and the inexpensive acoustic detector are extremely simple. With a simple configuration, it is possible to detect the amount of suspension in the dispersion bath and to perform liquid level detection with excellent robustness and reliability. It is possible to reliably prevent the ultrasonic vibrator from being driven in a state where there is no suspension that may cause damage. Further, it is possible to accurately obtain the intensity of the ultrasonic wave output from the ultrasonic transducer using the same acoustic detector, and it is possible to always irradiate the ultrasonic wave having the same intensity.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of a particle size distribution measuring apparatus of the present invention.
FIG. 2 is a diagram illustrating the principle of detecting the liquid level.
FIG. 3 is a diagram illustrating a series of operations related to measurement of particle size distribution.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Particle size distribution measuring apparatus, 1b ... Calculation means (calculation part), 2 ... Sample to be measured, 3 ... Dispersion medium (distilled water), 4 ... Suspension, 4a ... Liquid surface, 5 ... Dispersion bath, 6 ... Flow cell, 7 ... circulation flow path, 8 ... ultrasonic irradiation means (ultrasonic transducer), 9 (9a, 9b) ... detection means (microphone), Sa, Sb ... acoustic wave signal, U ... ultrasonic wave.

Claims (4)

測定対象試料を分散媒中に分散させて懸濁液とする分散バスと、この分散バス内の前記懸濁液に超音波を照射して前記測定対象試料の分散を促進させるための超音波照射手段と、前記分散バスとフローセルとを接続する循環流路とを有し、前記フローセル内の懸濁液に光を照射するときに生じる光を検出することで、測定対象試料の粒径分布を求める粒径分布測定装置において、
前記超音波照射手段から照射される超音波の影響を受ける位置で少なくとも前記分散バスの下端部における内壁面に取付けられて、前記超音波またはこの超音波によって振動した懸濁液の音波信号を検出する検知手段と、
前記検知手段より検出された音波信号を用いて、分散バス中の懸濁液の有無を含む液面を検知して懸濁液の量を求め、その求めた懸濁液の量が超音波分散に必要かつ十分であることを検出したとき、測定対象試料の分散を行うように前記超音波照射手段を所定時間に亘り駆動制御すべく演算する演算手段及び前記音波信号をもとに前記超音波照射手段からの出力の状態を検出して該超音波照射手段の出力を一定に保つようにフィードバック制御すべく演算する演算手段を有する演算とを備えたことを特徴とする粒径分布測定装置。
Dispersion bath in which a sample to be measured is dispersed in a dispersion medium to form a suspension, and ultrasonic irradiation to promote dispersion of the sample to be measured by irradiating the suspension in the dispersion bath with ultrasonic waves Means, and a circulation channel connecting the dispersion bath and the flow cell, and detecting the light generated when the suspension in the flow cell is irradiated with light, thereby determining the particle size distribution of the sample to be measured. In the desired particle size distribution measuring device,
Attached to the inner wall surface at least at the lower end of the dispersion bath at a position affected by the ultrasonic wave emitted from the ultrasonic wave irradiation means, and detects the ultrasonic wave signal of the ultrasonic wave or a suspension vibrated by the ultrasonic wave. Detecting means for
Using the sound wave signal detected by the detection means, the liquid level including the presence or absence of the suspension in the dispersion bath is detected to determine the amount of the suspension, and the obtained suspension amount is the ultrasonic dispersion. When it is detected that it is necessary and sufficient for the measurement, the ultrasonic wave is calculated on the basis of the sound wave signal and the calculation means for performing drive control of the ultrasonic wave irradiation means for a predetermined time so as to disperse the sample to be measured. A particle size distribution measuring apparatus comprising: a calculation unit having a calculation unit that detects a state of an output from the irradiation unit and performs feedback control so as to keep the output of the ultrasonic irradiation unit constant .
前記検知手段が前記音波信号の強度および/または周波数を検知するものである請求項1に記載の粒径分布測定装置。  2. The particle size distribution measuring apparatus according to claim 1, wherein the detecting means detects the intensity and / or frequency of the sound wave signal. 前記演算手段が、前記音波信号の強度、周波数、遅延時間のうちの少なくとも1つから求められる分散バス中の懸濁液の液面の高さと前記音波信号の強度、周波数、遅延時間の少なくとも1つとの関係を検量線として記憶するための記憶部を有する請求項1または2に記載の粒径分布測定装置。Said calculating means, the intensity of the acoustic signal, the frequency, intensity from at least one of the height and the wave signal of the liquid surface of the suspension in the dispersion bath sought among the delay time, frequency, delay time of at least 1 The particle size distribution measuring apparatus according to claim 1, further comprising a storage unit for storing a relationship between the two as a calibration curve. 測定対象試料を分散媒中に分散させて懸濁液とする分散バスと、この分散バス内の前記懸濁液に超音波を照射して前記測定対象試料の分散を促進させるための超音波照射手段と、前記分散バスとフローセルとを接続する循環流路とを有し、前記フローセル内の懸濁液に光を照射するときに生じる光を検出することで、測定対象試料の粒径分布を求める粒径分布測定装置において、
前記超音波照射手段から照射される超音波の影響を受ける位置で少なくとも前記分散バスの下端部における内壁面で前記超音波またはこの超音波によって振動した懸濁液の音波信号を検知し、
その検知した音波信号から、分散バス中の懸濁液の液面を検知して懸濁液のを求め、その求めた懸濁液の量が超音波分散に必要かつ十分であることを検出したとき、測定対象試料の分散を行うように前記超音波照射手段を所定時間に亘り駆動制御すべく演算するとともに、前記音波信号をもとに前記超音波照射手段からの出力の状態を検出して該超音波照射手段の出力を一定に保つようにフィードバック制御すべく演算することを特徴とする粒径分布測定装置における信号検出方法。
Dispersion bath in which a sample to be measured is dispersed in a dispersion medium to form a suspension, and ultrasonic irradiation to promote dispersion of the sample to be measured by irradiating the suspension in the dispersion bath with ultrasonic waves Means, and a circulation channel connecting the dispersion bath and the flow cell, and detecting the light generated when the suspension in the flow cell is irradiated with light, thereby determining the particle size distribution of the sample to be measured. In the desired particle size distribution measuring device,
Detecting a sound wave signal of the ultrasonic wave or a suspension vibrated by the ultrasonic wave at an inner wall surface at a lower end of the dispersion bath at a position affected by the ultrasonic wave irradiated from the ultrasonic wave irradiation unit;
From the detected sound wave signal, the liquid level of the suspension in the dispersion bath is detected to determine the amount of the suspension, and it is detected that the obtained amount of suspension is necessary and sufficient for ultrasonic dispersion. Then, the ultrasonic irradiation means is operated to drive and control over a predetermined time so that the sample to be measured is dispersed, and the state of the output from the ultrasonic irradiation means is detected based on the sound wave signal. A signal detection method in a particle size distribution measuring apparatus, wherein the calculation is performed so as to perform feedback control so as to keep the output of the ultrasonic wave irradiation means constant .
JP2002269049A 2002-09-13 2002-09-13 Particle size distribution measuring device and signal detection method in particle size distribution measuring device Expired - Fee Related JP4018956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269049A JP4018956B2 (en) 2002-09-13 2002-09-13 Particle size distribution measuring device and signal detection method in particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269049A JP4018956B2 (en) 2002-09-13 2002-09-13 Particle size distribution measuring device and signal detection method in particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2004108830A JP2004108830A (en) 2004-04-08
JP4018956B2 true JP4018956B2 (en) 2007-12-05

Family

ID=32267099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269049A Expired - Fee Related JP4018956B2 (en) 2002-09-13 2002-09-13 Particle size distribution measuring device and signal detection method in particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP4018956B2 (en)

Also Published As

Publication number Publication date
JP2004108830A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP5277214B2 (en) Automatic analyzer
JP5384527B2 (en) Method for inspecting pipette condition, pipetting method, pipetting device, and suction pipe for pipetting device
US20040006409A1 (en) Active acoustic spectroscopy
US20100206079A1 (en) Ultrasonic monitor for a bioreactor
US7739911B2 (en) Ultrasonic characterization of solid liquid suspensions
US20040182138A1 (en) System and technique for ultrasonic characterization of settling suspensions
CN105891416A (en) Ultrasonic assisting high-sensitivity detection system for pollutants in fluid and working method of ultrasonic assisting high-sensitivity detection system
JP2007517219A (en) Fluid level measurement by ultrasonic wave introduced into the container wall
JP4018956B2 (en) Particle size distribution measuring device and signal detection method in particle size distribution measuring device
JP2014106088A (en) Suspended matter analysis method, suspended matter analysis device using the same and ultrasonic attenuation spectrum analysis device
JP2604742B2 (en) Ultrasonic solution concentration measurement device
JP2010096638A (en) Automatic analyzer
US4770042A (en) Suspension stability monitoring apparatus
US20100064812A1 (en) Ultrasonic probe
JPH10300651A (en) Chemical analyzed
US11860128B2 (en) System for measuring an inhomogeneity of a medium
CA3041917C (en) Method and device for examining a sample
JP2007315881A (en) Weld inspection instrument, device, method, program, and recording medium for recording same program
HU212141B (en) Method and device for measuring thickness of a layer in centrifuge
US20230384195A1 (en) An apparatus and method to measure speed of sound and density of a fluid
WO2022263854A1 (en) Fluid sensor
JPH05184569A (en) Ultrasonic wave transmission inspection device
JPS6175256A (en) Fungus body density measuring apparatus
JPH06197893A (en) Ultrasonic wave transmissive inspection device
JP5577958B2 (en) Method for measuring concentration of non-dissolved liquid by ultrasound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees