JP4013883B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP4013883B2
JP4013883B2 JP2003358897A JP2003358897A JP4013883B2 JP 4013883 B2 JP4013883 B2 JP 4013883B2 JP 2003358897 A JP2003358897 A JP 2003358897A JP 2003358897 A JP2003358897 A JP 2003358897A JP 4013883 B2 JP4013883 B2 JP 4013883B2
Authority
JP
Japan
Prior art keywords
porous body
heat exchanger
cooling fluid
heat
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003358897A
Other languages
Japanese (ja)
Other versions
JP2005123496A (en
Inventor
茂俊 一法師
伸哲 上原
山田  晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003358897A priority Critical patent/JP4013883B2/en
Publication of JP2005123496A publication Critical patent/JP2005123496A/en
Application granted granted Critical
Publication of JP4013883B2 publication Critical patent/JP4013883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本発明は熱交換器に関するものである。本発明の熱交換器は、発熱体、例えばCPU、IGBT等の電子素子から発する熱を放熱するために上記発熱体に設けられる伝熱壁もしくは伝熱容器、または高温流体と低温流体との間で熱交換するために、各流体間に設けられる伝熱壁もしくは伝熱容器を指すものである。   The present invention relates to a heat exchanger. The heat exchanger according to the present invention includes a heat transfer wall or a heat transfer container provided on the heat generating body or a high temperature fluid and a low temperature fluid to dissipate heat generated from an electronic element such as a heat generating element such as a CPU or IGBT. In order to exchange heat with the heat transfer wall, it refers to a heat transfer wall or heat transfer container provided between the fluids.

従来、発熱体からの熱を流体に伝え放熱する場合、あるいは流体間の熱交換を行う場合、熱交換器の表面に突起物を設け、伝熱面積及び流体攪拌力を増大させて、熱交換器から流体への伝熱促進を行うようになされていた。例えば、伝熱壁表面に複数の板を設けたストレートフィン付き熱交換器、伝熱壁表面に複数の円柱を設けたピンフィン付き熱交換器等がある(例えば、特許文献1参照。)。
また、最近では、CPU、IGBT等の電子素子の発熱量が急増しており、より高性能の熱交換器が必要とされている。そこで、上記ストレートフィンの間隙、または上記ピンフィンのピン直径、及びピン間距離を小さし、伝熱壁表面の突起物をより集積させることにより、伝熱面積を増大させ、熱交換器の伝熱特性を向上させる試みがなされている。
Conventionally, when transferring heat from a heating element to a fluid to dissipate heat, or when exchanging heat between fluids, heat is exchanged by providing protrusions on the surface of the heat exchanger to increase the heat transfer area and fluid stirring force. The heat transfer from the vessel to the fluid was promoted. For example, there are a heat exchanger with straight fins provided with a plurality of plates on the surface of the heat transfer wall, a heat exchanger with pin fins provided with a plurality of columns on the surface of the heat transfer wall (see, for example, Patent Document 1).
In recent years, the amount of heat generated by electronic elements such as CPUs and IGBTs has increased rapidly, and higher performance heat exchangers are required. Therefore, by reducing the gap between the straight fins or the pin diameter of the pin fins and the distance between the pins, and by integrating the protrusions on the surface of the heat transfer wall, the heat transfer area is increased and the heat transfer of the heat exchanger is increased. Attempts have been made to improve the properties.

特開2003−47258号公報(第2−3頁、図1)JP 2003-47258 A (page 2-3, FIG. 1)

このような構成の従来の熱交換器は、伝熱壁表面に設けらる突起物を微細加工により製造するため、高コストになり、引いてはそのような微細加工が困難な場合さえあるという問題があった。
また、上記のような突起物を設けた場合、冷却流体の通流に伴う圧力損失が増大するため、より高揚程のファンまたはポンプ等が必要となり、コストが高くなり、引いては必要とされる送風または通水能力を有するファンまたはポンプが存在しない場合さえあるという問題があった。
また、熱交換器内を通流する冷却流体は受熱により温度上昇するため、下流になるほど温度上昇し、結果として下流側の伝熱壁温度が上昇し、伝熱壁面内に大きな温度分布を生じるという問題もあった。
Since the conventional heat exchanger having such a structure is manufactured by microfabrication of protrusions provided on the surface of the heat transfer wall, the cost becomes high, and in some cases, such micromachining may be difficult. There was a problem.
In addition, when the protrusions as described above are provided, the pressure loss accompanying the flow of the cooling fluid increases, so a fan or pump with a higher head is required, which increases the cost and is required. There has been a problem that there may even be no fan or pump with the ability to blow or flow through.
Moreover, since the temperature of the cooling fluid flowing through the heat exchanger rises due to heat reception, the temperature rises as it goes downstream, and as a result, the heat transfer wall temperature on the downstream side rises, resulting in a large temperature distribution in the heat transfer wall surface. There was also a problem.

本発明は、上記のような問題点を解決するためになされたもので、熱抵抗が小さく、また冷却流体の通流に伴う圧力損失が小さい熱交換器を低コストで提供することを目的とする。
さらに、伝熱壁面内の温度分布が生じ難い熱交換器を提供することを目的とする。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat exchanger with low thermal resistance and low pressure loss due to cooling fluid flow at low cost. To do.
Furthermore, it aims at providing the heat exchanger with which the temperature distribution in a heat-transfer wall surface does not produce easily.

の発明に係る熱交換器は、冷却流体入口と冷却流体出口とが設けられた容器、上記冷却流体入口より流入した冷却流体が上記容器の伝熱壁面に沿って分散されるように上記伝熱壁面に沿った面上で蛇行して設置されたリブ、及び上記リブと接合されるように上記容器内に設置され、上記容器の内部を冷却流体入口側の空間R1と冷却流体出口側の空間R2とに分割すると共に、分散された上記冷却流体を上記空間R1より上記空間R2に通過させる多孔質体を備えたものである。 Heat exchanger according to this invention, a container cooling fluid inlet and the cooling fluid outlet is provided, the heat transfer as the cooling fluid is distributed along the heat transfer wall of the container which has flowed from the cooling fluid inlet Ribs installed meandering on a surface along the thermal wall, and installed in the container so as to be joined to the ribs, and the interior of the container is connected to the space R1 on the cooling fluid inlet side and the cooling fluid outlet side. A porous body is provided that is divided into a space R2 and allows the dispersed cooling fluid to pass from the space R1 to the space R2.

の発明は、容器内を蛇行するリブと、このリブと接合されるように設置された多孔質体とで、上記容器内を冷却流体入口側の空間R1と冷却流体出口側の空間R2とに区切り、冷却流体が、伝熱壁面に沿って設けられた、通過断面積の大きな流路と、総表面積が大きな、多孔質体内の多数の流路とを通過し、上記多孔質体で熱交換するようにしたので、熱抵抗が小さく、冷却流体の通流に伴う圧力損失が小さい熱交換器を低コストで提供できるようになる。
This invention includes a rib which meanders in the container, in the installed a porous body so as to be joined to the rib, the vessel and the space R1 of the cooling fluid inlet side and a cooling fluid outlet side of the space R2 The cooling fluid passes through a flow passage having a large passage cross-sectional area provided along the heat transfer wall surface and a large number of flow passages in the porous body having a large total surface area. Since the heat exchanger is exchanged, it is possible to provide a heat exchanger with low thermal resistance and low pressure loss due to the flow of the cooling fluid at low cost.

実施の形態1.
図1は本発明の実施の形態1による熱交換器を示す断面構成図であり、図1(a)は図1(b)のA−A線断面構成図、図1(b)は縦断面構成図である。図1において、容器1内には冷却流体2が収容され、容器壁には冷却流体入口4と冷却流体出口5とが設けられている。また、各冷却流体出入口4,5にはそれぞれ配管6が設けられている。放熱を必要とする発熱体7は、容器1の伝熱壁面の外壁に設けられる。容器1の内部には、図1に示すように、蛇行する一連の多孔質体3が収容されており、多孔質体3により容器内が2分割されている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional configuration diagram showing a heat exchanger according to Embodiment 1 of the present invention, FIG. 1 (a) is a cross-sectional configuration diagram along line AA in FIG. 1 (b), and FIG. It is a block diagram. In FIG. 1, the cooling fluid 2 is accommodated in the container 1, and the cooling fluid inlet 4 and the cooling fluid outlet 5 are provided in the container wall. In addition, pipes 6 are provided at the cooling fluid inlets 4, 5, respectively. The heating element 7 that requires heat radiation is provided on the outer wall of the heat transfer wall surface of the container 1. As shown in FIG. 1, a series of meandering porous bodies 3 are accommodated inside the container 1, and the inside of the container is divided into two by the porous body 3.

容器1は、一体構造の高熱伝導材(例えば、金属等)からなる容器、または上蓋8と、側壁9と、底板10から構成された容器である。上記側壁9は、上蓋8または底板10と一体構造でも良い。上記上蓋8、側壁9、及び底板10の各接続部には、Oリングまたはガスケットの装着、あるいは充填材(例えば、接着剤)の充填により、容器内を密閉するようにした方が良い。   The container 1 is a container made of a highly heat conductive material (for example, metal) having an integral structure, or a container composed of an upper lid 8, a side wall 9 and a bottom plate 10. The side wall 9 may be integrated with the top lid 8 or the bottom plate 10. It is preferable to seal the inside of the container by attaching an O-ring or a gasket or filling a filler (for example, an adhesive) to each connection portion of the top lid 8, the side wall 9, and the bottom plate 10.

冷却流体2は、窒素等の単一成分よりなる気体、または空気等の混合気体が使用される。さらに、蒸留水、アンモニア、フロリナート等の単一成分よりなる液体、またはエチレングリコール水溶液等の混合液体が使用される。   As the cooling fluid 2, a gas composed of a single component such as nitrogen or a mixed gas such as air is used. Furthermore, a liquid composed of a single component such as distilled water, ammonia or fluorinate, or a mixed liquid such as an ethylene glycol aqueous solution is used.

多孔質体3は、焼結金属、発泡金属、不織体(集積されたピン群または板群を含む)、織体(積層した金網を含む)、ハニカム成形金属等の空隙(細孔)を有する金属塊または金属群である。また、多孔質体3は、容器1の内部を冷却流体入口側の空間R1と出口側の空間R2とに分割するように、容器内に設置されている。さらに、多孔質体3は、冷却流体入口4より流入した冷却流体2が、容器1の伝熱壁面に沿って分散されるように、容器内に蛇行して設置されると共に、容器1内に、分配用流路11と合流用流路12とができるような蛇行形状をしている。多孔質体3の蛇行形状は、例えば図1に示すような一連の蛇行形状でも良いし、図2に示すような、一連の蛇行形状であってもよい。多孔質体3の蛇行形状は特に限定されない。また、分割された多孔質体3を複数組合せて、一連の蛇行形状を形成しても良い。   The porous body 3 has voids (pores) such as sintered metal, foam metal, non-woven body (including integrated pin group or plate group), woven body (including laminated wire mesh), and honeycomb formed metal. It is a metal lump or metal group. The porous body 3 is installed in the container so as to divide the inside of the container 1 into a space R1 on the cooling fluid inlet side and a space R2 on the outlet side. Further, the porous body 3 is installed in a meandering manner in the container so that the cooling fluid 2 flowing in from the cooling fluid inlet 4 is dispersed along the heat transfer wall surface of the container 1. The distribution channel 11 and the merging channel 12 have a meandering shape. The meandering shape of the porous body 3 may be a series of meandering shapes as shown in FIG. 1, for example, or may be a series of meandering shapes as shown in FIG. The meandering shape of the porous body 3 is not particularly limited. A series of meandering shapes may be formed by combining a plurality of divided porous bodies 3.

上記構成の多孔質体3を容器内に設置することにより、冷却流体入口4より容器内の空間R1に流入した冷却流体2は、分配用流路11を通過して、容器1の伝熱壁面(図1では上蓋8)に沿って分散され、空間R1における流路であって、かつ多孔質体3に隣接する流路13を通過後、多孔質体3を通過し、さらに空間R2における流路であって、かつ多孔質体3に隣接する流路14を通過後、合流用流路12で合流して冷却流体出口5から流出する。   By installing the porous body 3 having the above configuration in the container, the cooling fluid 2 that has flowed into the space R1 in the container from the cooling fluid inlet 4 passes through the distribution flow path 11 and the heat transfer wall surface of the container 1. (The upper lid 8 in FIG. 1) is distributed along the flow path 13 in the space R1 and adjacent to the porous body 3, passes through the porous body 3, and further flows in the space R2. After passing through the flow path 14 that is a path and adjacent to the porous body 3, it merges in the flow path 12 for merging and flows out from the cooling fluid outlet 5.

なお、冷却流体2の分配を効率良く行い、圧力損失の低減を行うために、流路13は、図1に示すように、テーパ状流路にすると良い。   In order to efficiently distribute the cooling fluid 2 and reduce the pressure loss, the flow path 13 is preferably a tapered flow path as shown in FIG.

本実施の形態においては、多孔質体3は、発熱体7が設けられる容器1の壁面と、ハンダ付け、ロウ付け、圧接等により接合されているが、焼ばめにより容器1に装着されても良く、さらに、焼結金属、発泡金属等の場合は容器1と一体成形すると良い。また、例えば板群、ピン群よりなる多孔質体を、鍛造またはダイカスト製法により上蓋または底板に直接一体成形しても良い。図3は上蓋8にダイカスト製法により一体成形された多孔質体3の例を示す斜視図である。図3(a)はストレートフィン群により蛇行形状の多孔質体を構成したもの、図3(b)はピンフィン群により蛇行形状の多孔質体を構成したものである。   In the present embodiment, the porous body 3 is joined to the wall surface of the container 1 on which the heating element 7 is provided by soldering, brazing, pressure welding or the like, but is attached to the container 1 by shrink fitting. Furthermore, in the case of a sintered metal, a foamed metal, etc., it is good to integrally mold with the container 1. Further, for example, a porous body composed of a group of plates and a group of pins may be directly integrally formed on the upper lid or the bottom plate by forging or die casting. FIG. 3 is a perspective view showing an example of the porous body 3 integrally formed on the upper lid 8 by a die casting method. FIG. 3A shows a meander-shaped porous body composed of straight fin groups, and FIG. 3B shows a meander-shaped porous body composed of pin fin groups.

冷却流体入口4及び冷却流体出口5は、配管6から冷却流体2が送入または送出される孔であり、その形状は特に限定されない。
また、容器1の任意の同一面、または直交する二面に冷却流体入口4と冷却流体出口5とを設けても良い。
The cooling fluid inlet 4 and the cooling fluid outlet 5 are holes through which the cooling fluid 2 is sent or sent from the pipe 6, and their shapes are not particularly limited.
In addition, the cooling fluid inlet 4 and the cooling fluid outlet 5 may be provided on any same surface of the container 1 or two orthogonal surfaces.

配管6は、冷却流体2を移送する円管、楕円管、矩形管、コルゲート管(フレキシブルパイプ)等からなる通路であり、その材質は特に限定されない。   The pipe 6 is a passage made of a circular pipe, an elliptical pipe, a rectangular pipe, a corrugated pipe (flexible pipe) or the like for transferring the cooling fluid 2, and the material thereof is not particularly limited.

発熱体7は、電子素子(例えばCPU、IGBT等)等の発熱体の放熱部、または上記発熱体から熱を輸送する機器の放熱部、または流体間熱交換を行う場合の熱交換部であり、容器1の伝熱壁面の外壁に複数点在しても良く、また容器1の二面以上の伝熱壁面に設けられても良い。
さらに、発熱体7は、熱膨張による電子素子の破損を防止するために、電子素子に設けられた線膨張係数緩和材料または絶縁材料(例えば、AlN、Al、AlSiC等)、または熱を広げるために設けられた熱拡散板(例えば、Cu等)を積層させたものの放熱部、さらに基板(例えば、Al、ガラエポ等)に複数の電子素子を配置したものの放熱部等も含む。
The heat generating element 7 is a heat radiating part of a heat generating element such as an electronic element (for example, CPU, IGBT, etc.), a heat radiating part of a device that transports heat from the heat generating element, or a heat exchanging part when performing heat exchange between fluids A plurality of points may be scattered on the outer wall of the heat transfer wall surface of the container 1 or may be provided on two or more heat transfer wall surfaces of the container 1.
Further, the heating element 7 is provided with a linear expansion coefficient relaxation material or an insulating material (for example, AlN, Al 2 O 3 , AlSiC, etc.) provided in the electronic element, or heat to prevent the electronic element from being damaged due to thermal expansion. In addition, a heat radiating portion in which a heat diffusion plate (for example, Cu or the like) provided in order to spread is laminated, and a heat radiating portion in which a plurality of electronic elements are arranged on a substrate (for example, Al, glass epoxy, etc.) are also included.

次に、本実施の形態1による熱交換器の動作を説明する。冷却流体2は、配管6から冷却流体入口4へ送入され、分配用流路11にて分配され、流路13を移動し、多孔質体3内に存在する多数の細孔(流路)を通過し、さらに流路14を移動し、合流用流路12にて合流し、冷却流体出口5から配管6へ送出される。その際、発熱体7からの熱は、容器1の伝熱壁面(例えば上蓋8)を経て、多孔質体3に熱伝導により熱が伝えられ、多孔質体3内を通過する冷却流体2に熱伝達により熱が伝えられる。したがって、発熱体7から冷却流体2に熱が伝えられ、冷却流体2の温度が上昇し、この高温の冷却流体2が冷却流体出口5から送出されることにより、熱を熱交換器外へ放出する。なお、多孔質体3を経ずに、発熱体7から容器1の伝熱壁面(例えば上蓋8)を経て冷却流体2に伝えられる熱は比較的小さい。   Next, the operation of the heat exchanger according to the first embodiment will be described. The cooling fluid 2 is sent from the pipe 6 to the cooling fluid inlet 4, distributed in the distribution channel 11, moves through the channel 13, and has a large number of pores (channels) existing in the porous body 3. , Further moves through the flow path 14, merges in the merging flow path 12, and is sent from the cooling fluid outlet 5 to the pipe 6. At that time, the heat from the heating element 7 is transferred to the porous body 3 by heat conduction through the heat transfer wall surface (for example, the upper lid 8) of the container 1, and is transferred to the cooling fluid 2 passing through the porous body 3. Heat is transferred by heat transfer. Therefore, heat is transferred from the heating element 7 to the cooling fluid 2, the temperature of the cooling fluid 2 rises, and the high-temperature cooling fluid 2 is sent out from the cooling fluid outlet 5, thereby releasing the heat to the outside of the heat exchanger. To do. The heat transferred from the heating element 7 to the cooling fluid 2 via the heat transfer wall surface (for example, the upper lid 8) of the container 1 without passing through the porous body 3 is relatively small.

低温の冷却流体2が、大きな通過断面積を有する分配用流路11及び流路13を通過することから、圧力損失が小さい。また、低温の冷却流体2が表面積(伝熱面積、つまり熱交換量)の小さな該流路11,13を通過して熱交換していることから、該冷却流体2の温度上昇は小さい。また、上記流路11,13は熱交換器全体に広がっていることから、上記冷却流体2が熱交換器全体に広がるため、熱交換器全体の温度分布が小さくなる。
また、多孔質体3内には無数の細孔(流路)があり、多孔質体3内の総合した伝熱面積が大きいことから、伝熱特性が良い。また、流路直径(即ち、代表長さ)が小さくなる程、固体壁から流体への伝熱特性(例えば熱伝達係数)が大きくなるので、多孔質体3内の伝熱特性はさらに向上する。また、一般に流路入口では速度分布の変化が著しいことから熱伝達係数が大きい(前縁効果)が、本実施の形態では流路長の短い細孔が多数存在することから、流路入口部に相当する部分が多数有り、より伝熱特性が向上する。
一方、上記細孔の直径が小さくなるほど通流に伴う圧力損失が増大するが、図1及び2に示すように、該細孔の流路長は短く、また、複数並列の流路である(全ての細孔が有する通過断面積は大きい)ことから、該流路を通過する冷却流体2の速度は小さくなり、従来の長い流路を有する熱交換器に比べて圧力損失が小さくなる。
さらに、多孔質体3内を通過して流出する高温の冷却流体2は、大きな通過断面積を有する流路14及び合流用流路12を通過することから、圧力損失が小さい。
Since the low-temperature cooling fluid 2 passes through the distribution channel 11 and the channel 13 having a large passage cross-sectional area, the pressure loss is small. Further, since the low-temperature cooling fluid 2 exchanges heat through the flow paths 11 and 13 having a small surface area (heat transfer area, that is, heat exchange amount), the temperature rise of the cooling fluid 2 is small. Moreover, since the said flow paths 11 and 13 spread over the whole heat exchanger, since the said cooling fluid 2 spreads over the whole heat exchanger, the temperature distribution of the whole heat exchanger becomes small.
In addition, the porous body 3 has innumerable pores (flow paths), and since the total heat transfer area in the porous body 3 is large, the heat transfer characteristics are good. Moreover, since the heat transfer characteristic (for example, heat transfer coefficient) from the solid wall to the fluid increases as the flow path diameter (that is, the representative length) decreases, the heat transfer characteristic in the porous body 3 further improves. . In general, the velocity distribution changes significantly at the inlet of the channel, so the heat transfer coefficient is large (leading edge effect). In this embodiment, there are a large number of pores with a short channel length. There are many parts corresponding to, and the heat transfer characteristics are further improved.
On the other hand, the pressure loss accompanying flow increases as the diameter of the pores decreases, but as shown in FIGS. 1 and 2, the channel length of the pores is short, and there are a plurality of parallel channels ( Therefore, the speed of the cooling fluid 2 passing through the flow path is reduced, and the pressure loss is reduced as compared with a heat exchanger having a conventional long flow path.
Further, the high-temperature cooling fluid 2 flowing out through the porous body 3 passes through the flow path 14 and the merge flow path 12 having a large passage cross-sectional area, so that the pressure loss is small.

本実施の形態の熱交換器においては、容器内に設けた一連の蛇行形状の多孔質体3内に、流路長が短い多数の小さな並列流路が存在し、この並列流路に、冷却流体入口4に設けられた配管6から分配用流路11を経て、低温の冷却流体2を均等に送入する。多孔質体3内の上記並列流路は、総表面積が大きく、上記並列流路内を冷却流体2が通過する際に効率良く発熱体7で生じた熱を冷却流体2に伝える。さらに、多孔質体3内で熱交換された高温の冷却流体2は、合流用流路12を経て冷却流体出口5に設けられた配管6から送出する。その結果、発熱体7で発生した熱が熱交換器外に放熱される。   In the heat exchanger according to the present embodiment, a large number of small parallel flow paths having a short flow path length exist in a series of meandering porous bodies 3 provided in the container. The low-temperature cooling fluid 2 is uniformly fed from the pipe 6 provided at the fluid inlet 4 through the distribution channel 11. The parallel flow path in the porous body 3 has a large total surface area, and efficiently transfers heat generated in the heating element 7 to the cooling fluid 2 when the cooling fluid 2 passes through the parallel flow path. Further, the high-temperature cooling fluid 2 exchanged in the porous body 3 is sent out from the pipe 6 provided at the cooling fluid outlet 5 through the merging channel 12. As a result, the heat generated in the heating element 7 is dissipated outside the heat exchanger.

以上のように、本実施の形態の構成によれば、容器内を一連の蛇行する多孔質体で区切ることにより、熱抵抗が小さく、冷却流体の通流に伴う圧力損失が小さい熱交換器が提供できる。また、冷却流体分配・合流流路(分配用流路11、合流用流路12、流路13、14)と高熱伝達流路(多孔質体内並列流路)とを伝熱壁面に沿って効率良く配置することにより、発熱体7が設けられた伝熱壁面内の温度分布が生じ難くなる。また、高コストな微細加工を必要としない多孔質体3を用いることにより、低コスト化できる。   As described above, according to the configuration of the present embodiment, by dividing the inside of the container with a series of meandering porous bodies, a heat exchanger with low thermal resistance and low pressure loss due to the flow of the cooling fluid can be obtained. Can be provided. Further, the cooling fluid distribution / merging channel (distribution channel 11, merging channel 12, channels 13, 14) and the high heat transfer channel (porous body parallel channel) are efficiently along the heat transfer wall surface. By arranging them well, the temperature distribution in the heat transfer wall provided with the heating element 7 is less likely to occur. Further, the use of the porous body 3 that does not require high-cost fine processing can reduce the cost.

実施の形態2.
図4は本発明の実施の形態2による熱交換器を示す図であり、図4(a)は容器を分解した状態、図4(b)は縦断面構成図、図4(c)は図4(b)のC−C線断面構成図である。本実施の形態では、図4に示すように、容器底板10内面に、多孔質体3の底板側頂部形状と略同形状のリブ15を設けており、多孔質体3を介して上蓋8と底板10とを接合したときに、リブ15と多孔質体3とが接合する。このようにすることにより、流路13,14の通過断面積を、実施の形態1のものより大きくとれる。その結果、流通に伴う圧力損失をより小さくすることができる。
Embodiment 2. FIG.
4A and 4B are diagrams showing a heat exchanger according to Embodiment 2 of the present invention, in which FIG. 4A is a disassembled state, FIG. 4B is a longitudinal sectional configuration diagram, and FIG. 4C is a diagram. It is a CC line cross-section block diagram of 4 (b). In the present embodiment, as shown in FIG. 4, ribs 15 having substantially the same shape as the bottom plate-side top shape of the porous body 3 are provided on the inner surface of the container bottom plate 10, and the top lid 8 is interposed via the porous body 3. When the bottom plate 10 is joined, the rib 15 and the porous body 3 are joined. By doing in this way, the passage cross-sectional area of the flow paths 13 and 14 can be made larger than that of the first embodiment. As a result, the pressure loss accompanying the distribution can be further reduced.

なお、図4において、リブ15の断面形状は矩形であったが、図5(b−1)〜(b−3)に示すように、リブ15の多孔質体側形状を、略T型、略Y型、または略L型等にした方が良い。図5において、図5(a)は縦断面構成図、図5(b−1)〜(b−3)は図5(a)のB−B線断面構成図、図5(c)は図5(b−1)のC−C線断面構成図である。
このようにすることにより、多孔質体間の流路13,14と連通するリブ間の流路16,17は、流路13,14と同様の役割を果たし、かつリブ間流路16,17は、流路13,14より流路断面積が大きいので、流路13,14の幅を小さくし、より多孔質体3を密に容器内に設けることができる。その結果、熱交換器の伝熱特性を向上させることができる。
また、リブ15の形状が略Y型または略L型の場合、リブ15を多孔質体3に押し付けることにより、リブ15上端形状が変形し、より密接にリブ15と多孔質体3とが接触し、この部分からの冷却流体2の漏れを減少させることができる。
In FIG. 4, the cross-sectional shape of the rib 15 is rectangular, but as shown in FIGS. 5B-1 to 5B-3, the shape of the rib 15 on the porous body side is substantially T-shaped, substantially It is better to make it Y-shaped or substantially L-shaped. 5A is a longitudinal sectional configuration diagram, FIGS. 5B-1 to 5B-3 are BB sectional configuration diagrams of FIG. 5A, and FIG. 5C is a diagram. It is a CC line cross-section block diagram of 5 (b-1).
By doing in this way, the flow paths 16, 17 between the ribs communicating with the flow paths 13, 14 between the porous bodies play the same role as the flow paths 13, 14, and the inter-rib flow paths 16, 17 Since the channel cross-sectional area is larger than that of the channels 13 and 14, the width of the channels 13 and 14 can be reduced, and the porous body 3 can be provided more densely in the container. As a result, the heat transfer characteristics of the heat exchanger can be improved.
In addition, when the shape of the rib 15 is substantially Y-shaped or substantially L-shaped, pressing the rib 15 against the porous body 3 deforms the upper end shape of the rib 15 so that the rib 15 and the porous body 3 are in closer contact with each other. In addition, the leakage of the cooling fluid 2 from this portion can be reduced.

なお、リブ15の多孔質体側形状を、略T型、略Y型、または略L型等にする際、図6(a)〜(c)に示すように、リブ15をリブ脚部15aとリブ上端部15bとに分割して構成し、両者を接合させて熱交換器を製造しても良い。   When the shape of the rib 15 on the porous body side is substantially T-shaped, substantially Y-shaped, or substantially L-shaped, the rib 15 is connected to the rib leg portion 15a as shown in FIGS. The heat exchanger may be manufactured by dividing the rib upper end portion 15b and joining the two.

本実施の形態は、例えば、容器1の容積(特に厚さ)の制限は厳しくないが、多孔質体3のフィン効率が悪くなるため多孔質体3高さを高くすることができない場合に、特に有効である。また、通過する冷却流体2の温度上昇が大きく、下流側での熱伝達が悪くなる場合、あるいは冷却流体入口4と冷却流体出口5間の距離が長い場合、あるいは冷却流体2の比熱が小さいために冷却流体2の温度上昇が大きく、下流側での熱伝達が悪くなる空冷式放熱または熱交換の場合に、特に有効である。   In the present embodiment, for example, the limit of the volume (particularly the thickness) of the container 1 is not strict, but the fin efficiency of the porous body 3 is deteriorated, so that the height of the porous body 3 cannot be increased. It is particularly effective. Moreover, when the temperature rise of the cooling fluid 2 passing through is large and heat transfer on the downstream side is deteriorated, or when the distance between the cooling fluid inlet 4 and the cooling fluid outlet 5 is long, or the specific heat of the cooling fluid 2 is small. In particular, this is particularly effective in the case of air-cooling heat dissipation or heat exchange in which the temperature rise of the cooling fluid 2 is large and the heat transfer on the downstream side becomes poor.

なお、リブ間流路16から直接あるいは流路13を通過して多孔質体3へ流入する冷却流体2の流入、及び多孔質体3から直接あるいは流路14を通過してリブ間流路17へ流出する冷却流体2の流出を良くするために、多孔質体3のリブ側端部にテーパを設ける、または湾曲部を設けると良い。   In addition, the inflow of the cooling fluid 2 flowing into the porous body 3 directly from the inter-rib flow path 16 or passing through the flow path 13, and the inter-rib flow path 17 directly from the porous body 3 or passing through the flow path 14. In order to improve the outflow of the cooling fluid 2 flowing out to the rib, it is preferable to provide a taper or a curved portion at the rib side end of the porous body 3.

なお、本実施の形態は容器1の底板10が複雑な壁面形状になるので、リブ15を設ける容器壁面(例えば、底板10)は樹脂成形により一体成形する方が低コスト化できる。   In the present embodiment, since the bottom plate 10 of the container 1 has a complicated wall shape, the container wall surface (for example, the bottom plate 10) on which the ribs 15 are provided can be manufactured at a lower cost by being integrally formed by resin molding.

また、上記各実施の形態において、容器内の空間R1または空間R2に面した多孔質体3の側壁表面(図5(b−1)の3a)を傾斜、または湾曲させ、発熱体7が設けられた容器1の伝熱壁面側の多孔質体接触面積を増加させることにより、多孔質体部分のフィン効率を大きくすることができ、熱伝達特性を向上させることができる。また、該傾斜または湾曲を設けると、ダイカストまたは鍛造による製作が容易になり(型からの取り出しが容易になる)、さらに細密化した多孔質体を製作することができ、伝熱特性が向上する。
さらに、その際、多孔質体3の空隙率及び細孔直径を多孔質体3の高さ方向(図5(b−1)のH方向)に変化させると、上記効果がより顕著になる。即ち、多孔質体3の側壁表面を傾斜させると先端側(リブ側)流路長が短く、根元側(伝熱壁面側)が長くなるので、圧力損失が小さな先端側を冷却流体が通り易くなる。そこで、先端側の流路を密にし、根元側を粗にすることにより、圧力損失を調整し、多孔質体内を均一に流体が流れるようにすることが可能となる。
In each of the above embodiments, the heating element 7 is provided by inclining or curving the side wall surface (3a in FIG. 5 (b-1)) of the porous body 3 facing the space R1 or the space R2 in the container. By increasing the porous body contact area on the heat transfer wall surface side of the container 1 thus obtained, the fin efficiency of the porous body portion can be increased, and the heat transfer characteristics can be improved. Further, when the inclined or curved portion is provided, fabrication by die casting or forging becomes easy (removal from the mold is facilitated), and a finer porous body can be fabricated, improving heat transfer characteristics. .
Further, at that time, if the porosity and pore diameter of the porous body 3 are changed in the height direction of the porous body 3 (H direction in FIG. 5B-1), the above effect becomes more remarkable. That is, if the side wall surface of the porous body 3 is inclined, the flow path length at the tip side (rib side) is short and the base side (heat transfer wall surface side) is long, so that the cooling fluid can easily pass through the tip side with small pressure loss. Become. Therefore, by making the flow path on the tip side dense and making the root side rough, it is possible to adjust the pressure loss and allow the fluid to flow uniformly in the porous body.

実施の形態3.
図7は本発明の実施の形態3による熱交換器に設けられる多孔質体3を示す図である。図7(a)は多孔質体3に成形する前の状態を示す平面図であり、両側に切欠き18aを有する平板18で構成されている。平板18は、例えば、Al,Cu等よりなる。図7(b)は成形後の多孔質体3の斜視図であり、上記平板18をコルゲート状に成形して構成される。
Embodiment 3 FIG.
FIG. 7 is a view showing a porous body 3 provided in a heat exchanger according to Embodiment 3 of the present invention. FIG. 7A is a plan view showing a state before being molded into the porous body 3, and is composed of a flat plate 18 having notches 18 a on both sides. The flat plate 18 is made of, for example, Al, Cu or the like. FIG. 7B is a perspective view of the porous body 3 after being formed, and is configured by forming the flat plate 18 into a corrugated shape.

このように成形した多孔質体3は、簡易に、より密な多孔質体3を成形することができ、伝熱特性の向上及び低コスト化を実現することができる。   The porous body 3 formed in this way can easily form a denser porous body 3, and can realize improvement in heat transfer characteristics and cost reduction.

実施の形態4.
図8は本発明の実施の形態4による熱交換器を示す断面構成図であり、図8(a)は縦断面構成図、図8(b−1)〜(b−3)は図8(a)のB−B線断面構成図、図8(c)は図8(b−1)のC−C線断面構成図である。
本実施の形態では、多孔質体3の形状は、実施の形態1〜3のような蛇行形状ではなく、図8(a)に示すように、伝熱壁面に沿った多孔質体面内に複数の長穴3bを有する梯子形状をしている。また、実施の形態2と同様、容器1の底板10の内面にリブ15を設けているが、リブ15と多孔質体3とは同形状ではなく、リブ15の方が蛇行形状をしている。即ち、底板10に設けられたリブ15は、冷却流体入口4より流入した冷却流体2が、容器1の伝熱壁面に沿って分散されるように、容器内に蛇行して設置されており、多孔質体3を介して上蓋8と底板10とを接合したときに、多孔質体3とリブ15とが接合し、容器1の内部が、冷却流体入口側の空間R1と出口側の空間R2とに分割されるように構成されている。多孔質体3は、分散された冷却流体2を上記空間R1より上記空間R2に通過させる。
リブ15の形状は図5(b−1)〜(b−3)と同様、略T型、略Y型、または略L型であり、リブ15とリブ15との間に、多孔質体3間の流路13,14とそれぞれ連通する流路16,17を構成する。
Embodiment 4 FIG.
FIG. 8 is a cross-sectional configuration diagram showing a heat exchanger according to Embodiment 4 of the present invention. FIG. 8 (a) is a vertical cross-sectional configuration diagram, and FIGS. 8 (b-1) to (b-3) are FIG. FIG. 8C is a cross-sectional configuration diagram along line BB in FIG. 8B-1.
In the present embodiment, the shape of the porous body 3 is not a meandering shape as in the first to third embodiments, but a plurality of shapes are provided in the porous body surface along the heat transfer wall as shown in FIG. It has a ladder shape having a long hole 3b. Moreover, although the rib 15 is provided in the inner surface of the baseplate 10 of the container 1 similarly to Embodiment 2, the rib 15 and the porous body 3 are not the same shape, and the rib 15 has a meandering shape. . That is, the rib 15 provided on the bottom plate 10 is installed meandering in the container so that the cooling fluid 2 flowing in from the cooling fluid inlet 4 is dispersed along the heat transfer wall surface of the container 1, When the upper lid 8 and the bottom plate 10 are joined via the porous body 3, the porous body 3 and the rib 15 are joined, and the interior of the container 1 is a space R1 on the cooling fluid inlet side and a space R2 on the outlet side. It is comprised so that it may be divided. The porous body 3 allows the dispersed cooling fluid 2 to pass from the space R1 to the space R2.
The shape of the rib 15 is substantially T-shaped, substantially Y-shaped, or substantially L-shaped as in FIGS. 5 (b-1) to (b-3), and the porous body 3 is between the rib 15 and the rib 15. Channels 16 and 17 communicating with the channels 13 and 14 therebetween are configured.

リブ間流路16,17がそれぞれ分配用流路11、及び合流用流路12に直接連通しているため、リブ間流路16,17に隣接する多孔質体3間の流路13,14は、分配用流路11、及び合流用流路12に直接連通しなくてもよく、リブ間流路16から多孔質体3を通過してリブ間流路17に冷却流体2を通過させる通路の役割を担うだけでも良い。即ち、図8(a)に示すように、多孔質体3の形状が蛇行形状をしていなくても、多孔質体面内に複数の長穴を有する梯子形状であっても、上記役割を担うことが可能となる。その結果、多孔質体3の両側に切欠きを無くすことができ、破損し難くなる。また、製作が容易になる。   Since the inter-rib flow paths 16 and 17 communicate directly with the distribution flow path 11 and the merge flow path 12, the flow paths 13 and 14 between the porous bodies 3 adjacent to the inter-rib flow paths 16 and 17. May not directly communicate with the distribution flow path 11 and the merge flow path 12, and is a path through which the cooling fluid 2 is passed from the inter-rib flow path 16 through the porous body 3 to the inter-rib flow path 17. You can just play the role of That is, as shown in FIG. 8A, even if the shape of the porous body 3 is not a meandering shape or a ladder shape having a plurality of long holes in the surface of the porous body, it plays the above role. It becomes possible. As a result, notches can be eliminated on both sides of the porous body 3, and it is difficult to break. Also, the manufacture becomes easy.

特に、実施の形態3のように、平板をコルゲート状に成形して多孔質体3を成形する際には、製作が容易になる。図9にこのようにして多孔質体3を成形する場合を示す。図9(a)は多孔質体3に成形する前の状態を示す平面図であり、複数の長穴19aを設けた平板19で構成されている。平板19は、例えば、Al,Cu等よりなる。図9(b)は成形後の多孔質体3の斜視図であり、上記平板19をコルゲート状に成形して構成される。このように成形した多孔質体3は、簡易に、より密な多孔質体3を成形することができ、伝熱特性の向上及び低コスト化を実現することができる。また、両端に切欠きが無いことから切欠き部が開くことが無く、製作時の設置が容易であり、製作が容易になる。   In particular, as in the third embodiment, when the porous body 3 is formed by forming a flat plate into a corrugated shape, the manufacture becomes easy. FIG. 9 shows a case where the porous body 3 is molded in this way. FIG. 9A is a plan view showing a state before being molded into the porous body 3, and is composed of a flat plate 19 provided with a plurality of long holes 19 a. The flat plate 19 is made of, for example, Al, Cu or the like. FIG. 9B is a perspective view of the molded porous body 3 and is formed by forming the flat plate 19 into a corrugated shape. The porous body 3 formed in this way can easily form a denser porous body 3, and can realize improvement in heat transfer characteristics and cost reduction. Moreover, since there is no notch at both ends, the notch portion does not open, and installation at the time of manufacture is easy and manufacture becomes easy.

実施の形態5.
図10は本発明の実施の形態5による熱交換器に設けられる多孔質体3を示す図である。図10(a)は多孔質体3に成形する前の状態を示す平面図であり、両側に切欠き20aを有する溝付き平板20で構成されている。図10(b−1)〜(b−3)は図10(a)のB−B線断面図であり、溝付き平板20の例を示す。溝付き平板20とは、図10(b−1)に示すような、平板表面に切欠き溝を付けたもの、図10(b−2)に示すような、平板を凹凸状に変形させたもの、図10(b−3)に示すような、平板をコルゲート状に蛇行させたもの等を指す。各図において、溝の方向は切欠き20aに直交する方向、即ち空間R1から空間R2へと冷却流体2がコルゲート状の多孔質体3内を通過する方向に設けられている。図10(c)は成形後の多孔質体3の斜視図であり、上記溝付き平板20をコルゲート状に成形して構成される。
なお、溝の方向は、必ずしも切欠き20aに直交する方向でなくても、上記方向より傾いていてもよい。
Embodiment 5 FIG.
FIG. 10 is a diagram showing a porous body 3 provided in a heat exchanger according to Embodiment 5 of the present invention. FIG. 10A is a plan view showing a state before the porous body 3 is formed, and is constituted by a grooved flat plate 20 having notches 20a on both sides. FIGS. 10B-1 to 10B-3 are cross-sectional views taken along line B-B in FIG. The grooved flat plate 20 is a flat plate surface with a notch groove as shown in FIG. 10 (b-1), and the flat plate as shown in FIG. 10 (b-2) is deformed into an uneven shape. 10 or a plate meandering in a corrugated shape as shown in FIG. 10 (b-3). In each figure, the direction of the groove is provided in a direction perpendicular to the notch 20a, that is, a direction in which the cooling fluid 2 passes through the corrugated porous body 3 from the space R1 to the space R2. FIG. 10C is a perspective view of the porous body 3 after being formed, and is configured by forming the grooved flat plate 20 into a corrugated shape.
The direction of the groove is not necessarily a direction orthogonal to the notch 20a, but may be inclined from the above direction.

このようにすることにより、簡易に、より密な多孔質体3を成形することができ、伝熱特性の向上及び低コスト化を実現することができる。また、単位体積あたりの表面積を増大させることができ、より熱伝達特性が向上する。特に、溝付き平板20ではコルゲート状に成形された板と隣接する板が接した場合、該溝部のみが流路を形成し、より高い熱伝達特性を示す。   By doing in this way, the more dense porous body 3 can be shape | molded easily and the improvement of a heat-transfer characteristic and cost reduction can be implement | achieved. Further, the surface area per unit volume can be increased, and the heat transfer characteristics are further improved. In particular, in the grooved flat plate 20, when a corrugated plate and an adjacent plate are in contact with each other, only the groove portion forms a flow path and exhibits higher heat transfer characteristics.

なお、上記実施の形態においては、多孔質体3は蛇行形状のものを示したが、実施の形態4と同様の梯子形状であってもよい。   In the above embodiment, the porous body 3 has a meandering shape, but may have a ladder shape similar to that of the fourth embodiment.

実施の形態6.
上記各実施の形態では、多孔質体3が伝熱面に沿った蛇行形状、あるいは梯子形状である例を示したが、図11に示すように、切欠きの無いブロックまたは平板で構成された多孔質体3であっても良い。即ち、流路13,14の通過断面積を0にしても良い。図11において、図11(a)は容器を分解した状態、図11(b)は縦断面構成図、図11(c)は図11(b)のC−C線断面構成図である。
本実施の形態では、冷却流体2は、分配用流路11で分配され、リブ間流路16を通過して、容器1の伝熱壁面に沿って分散され、空間R1に面する多孔質体3から直接流入し、多孔質体3を通過し、さらに空間R2に面する多孔質体3から流出し、リブ間流路17を通過し、合流用流路12で合流して冷却流体出口5から流出する。
このようにすることにより、伝熱壁面全体に多孔質体3を設けることができ、伝熱面積が増大し、伝熱特性が向上する。
Embodiment 6 FIG.
In each of the above embodiments, the porous body 3 has an example of a meandering shape or a ladder shape along the heat transfer surface. However, as shown in FIG. The porous body 3 may be used. That is, the passage cross-sectional area of the flow paths 13 and 14 may be zero. In FIG. 11, FIG. 11 (a) is an exploded view of the container, FIG. 11 (b) is a longitudinal sectional view, and FIG. 11 (c) is a sectional view taken along line CC in FIG. 11 (b).
In the present embodiment, the cooling fluid 2 is distributed in the distribution channel 11, passes through the inter-rib channel 16, is distributed along the heat transfer wall surface of the container 1, and is a porous body facing the space R <b> 1. 3 directly flows in, passes through the porous body 3, further flows out of the porous body 3 facing the space R <b> 2, passes through the inter-rib channel 17, merges in the merging channel 12, and then exits the cooling fluid outlet 5. Spill from.
By doing in this way, the porous body 3 can be provided in the whole heat-transfer wall surface, a heat-transfer area increases and a heat-transfer characteristic improves.

実施の形態7.
図12は本発明の実施の形態7による熱交換器を示す断面構成図である。図12(a)は縦断面構成図、図12(b)は図12(a)のB−B線断面構成図、図12(c)は図12(b)のC−C線断面構成図である。
本実施の形態では、図12(c)に示すように、容器1の側壁9に、容器1の伝熱壁面に沿った蛇行形状のリブ15を設けている。また、該リブ15の形状は両端部が略T型、略Y型、または略L型等をしている。また、リブ15の両側にはそれぞれ梯子形状の多孔質体3c,3dが配され、上蓋8及び底板10と側壁9とを接合したときに、リブ15を多孔質体3c,3dにより両側から挟むように構成されている。上記接合により、多孔質体3cは上蓋8とリブ15とに、多孔質体3dは底板10とリブ15とに接合する。
なお、図12では、リブ15は容器1の側壁9に設けられていたが、側壁9とは別個に、容器内に設置され、多孔質体3c,3dにより両側から挟むように構成されるものであっても良い。
Embodiment 7 FIG.
FIG. 12 is a cross-sectional configuration diagram showing a heat exchanger according to Embodiment 7 of the present invention. 12 (a) is a longitudinal sectional view, FIG. 12 (b) is a sectional view taken along the line BB in FIG. 12 (a), and FIG. 12 (c) is a sectional view taken along the line CC in FIG. 12 (b). It is.
In the present embodiment, as shown in FIG. 12C, meandering ribs 15 along the heat transfer wall surface of the container 1 are provided on the side wall 9 of the container 1. The rib 15 has a substantially T-shaped, substantially Y-shaped or substantially L-shaped shape at both ends. Further, ladder-shaped porous bodies 3c and 3d are disposed on both sides of the rib 15, respectively, and when the top lid 8, the bottom plate 10 and the side wall 9 are joined, the rib 15 is sandwiched from both sides by the porous bodies 3c and 3d. It is configured as follows. By the bonding, the porous body 3 c is bonded to the upper lid 8 and the rib 15, and the porous body 3 d is bonded to the bottom plate 10 and the rib 15.
In FIG. 12, the rib 15 is provided on the side wall 9 of the container 1. However, the rib 15 is installed in the container separately from the side wall 9 and is configured to be sandwiched from both sides by the porous bodies 3 c and 3 d. It may be.

このようにすることにより、容器1の両面で効率良く熱交換することができると共に、冷却流体2の流路16,17を共有化することができ、コンパクトになる。   By doing in this way, while being able to exchange heat efficiently on both surfaces of the container 1, the flow paths 16 and 17 of the cooling fluid 2 can be shared, and it becomes compact.

なお、上記実施の形態においては、多孔質体3c,3dは梯子形状のものを示したが、実施の形態2と同様の蛇行形状であってもよい。   In the above embodiment, the porous bodies 3c and 3d are ladder-shaped, but may have a meandering shape similar to that of the second embodiment.

また、本実施の形態において、リブ15は、図13に示すような中仕切り15cを伴ったリブ15であっても良い。図13において、図13(a)は縦断面構成図、図13(b)は図13(a)のB−B線断面構成図、図13(c)は図13(b)のC−C線断面構成図である。
このようにすることにより、冷却流体2は、分配用流路11から、中仕切り15cの両側に形成される2つの異なる流通路を経て合流用流路12へ流出するようになる。中仕切りの位置により、各流通路それぞれへの冷却流体2の通流量を調節することができる。例えば、図13に示すように、中仕切り15cを左側に寄せると、左側流路16,17の通過断面積が小さくなり、通流に伴う圧力損失が増大する。逆に、右側流路16,17では通過断面積が大きくなり通流に伴う圧力損失が小さくなる。したがって、この圧力損失の隔たりにより、通流量が異なるため、放熱能力を大きくなければならない伝熱壁面の方の通流量を増大させ、放熱能力が小さくても良い伝熱壁面の方の通流量を減少させることが容易に可能となる。その結果、効率良く放熱することができる。
Further, in the present embodiment, the rib 15 may be a rib 15 with a partition 15c as shown in FIG. In FIG. 13, FIG. 13 (a) is a longitudinal sectional view, FIG. 13 (b) is a sectional view taken along the line BB in FIG. 13 (a), and FIG. 13 (c) is a view taken along line CC in FIG. It is a line section lineblock diagram.
By doing so, the cooling fluid 2 flows out from the distribution channel 11 to the merging channel 12 through two different flow paths formed on both sides of the partition 15c. The flow rate of the cooling fluid 2 to each flow passage can be adjusted by the position of the partition. For example, as shown in FIG. 13, when the partition 15 c is moved to the left side, the cross-sectional area of the left passages 16 and 17 decreases, and the pressure loss associated with the flow increases. On the contrary, in the right flow paths 16 and 17, the passage cross-sectional area becomes large and the pressure loss accompanying the flow becomes small. Therefore, the flow rate varies depending on the pressure loss gap. Therefore, the flow rate toward the heat transfer wall that should have a large heat dissipation capacity is increased, and the flow rate toward the heat transfer wall that may have a small heat dissipation capacity is increased. It can be easily reduced. As a result, heat can be radiated efficiently.

実施の形態8.
図14は本発明の実施の形態8による熱交換器を示す図であり、図14(a)は斜視図、図14(b)は図14(a)のB−B線断面構成図である。本実施の形態では、2つの熱交換器を積層させ、それぞれに低温流体2aと高温流体2bとを流すようにしたものである。2つの熱交換器はそれぞれ上記各実施の形態で示した熱交換器と同様の構成のものを用いており、各熱交換器の上蓋8を共有するように積層されている。
このようにすることにより、より高性能な、流体−流体間熱交換器を提供することができる。
Embodiment 8 FIG.
14 is a view showing a heat exchanger according to an eighth embodiment of the present invention, FIG. 14 (a) is a perspective view, and FIG. 14 (b) is a cross-sectional configuration view taken along line BB in FIG. 14 (a). . In the present embodiment, two heat exchangers are stacked so that the low temperature fluid 2a and the high temperature fluid 2b flow through each of them. Each of the two heat exchangers has the same configuration as the heat exchanger shown in each of the above embodiments, and is stacked so as to share the upper lid 8 of each heat exchanger.
By doing in this way, a higher performance fluid-fluid heat exchanger can be provided.

図15は本発明の実施の形態8による他の熱交換器を示す図であり、熱交換器をさらに多層に積層したものである。
また、図16は本発明の実施の形態8によるさらに他の熱交換器を示す図であり、低温流体2aと高温流体2bとがそれぞれに流れる2つの熱交換器をロール状に成形したものである。このように構成することによって、よりコンパクト化することができる。
また、複数の熱交換器を複数並列、または直列に連結させて、熱交換器を構成しても良く、分散熱源からの放熱または熱交換が可能な熱交換器を提供できる。
FIG. 15 is a view showing another heat exchanger according to Embodiment 8 of the present invention, in which the heat exchangers are further laminated in multiple layers.
FIG. 16 is a view showing still another heat exchanger according to Embodiment 8 of the present invention, in which two heat exchangers in which the low temperature fluid 2a and the high temperature fluid 2b flow are formed into a roll shape. is there. By constituting in this way, it can be made more compact.
In addition, a plurality of heat exchangers may be connected in parallel or in series to form a heat exchanger, and a heat exchanger capable of radiating heat or exchanging heat from a distributed heat source can be provided.

本発明の実施の形態1による熱交換器を示す断面構成図である。It is a section lineblock diagram showing the heat exchanger by Embodiment 1 of the present invention. 本発明の実施の形態1による他の熱交換器を示す断面構成図である。It is a section lineblock diagram showing other heat exchangers by Embodiment 1 of the present invention. 本発明の実施の形態1に係る多孔質体の例を示す斜視図である。It is a perspective view which shows the example of the porous body which concerns on Embodiment 1 of this invention. 本発明の実施の形態2による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 2 of this invention. 本発明の実施の形態2による他の熱交換器を示す断面構成図である。It is a section lineblock diagram showing other heat exchangers by Embodiment 2 of the present invention. 本発明の実施の形態2による他の熱交換器を示す断面構成図である。It is a section lineblock diagram showing other heat exchangers by Embodiment 2 of the present invention. 本発明の実施の形態3による熱交換器に設けられる多孔質体を示す図である。It is a figure which shows the porous body provided in the heat exchanger by Embodiment 3 of this invention. 本発明の実施の形態4による熱交換器を示す断面構成図である。It is a section lineblock diagram showing the heat exchanger by Embodiment 4 of the present invention. 本発明の実施の形態4による他の熱交換器に設けられる多孔質体を示す図である。It is a figure which shows the porous body provided in the other heat exchanger by Embodiment 4 of this invention. 本発明の実施の形態5による熱交換器に設けられる多孔質体を示す図である。It is a figure which shows the porous body provided in the heat exchanger by Embodiment 5 of this invention. 本発明の実施の形態6による熱交換器を示す構成図である。It is a block diagram which shows the heat exchanger by Embodiment 6 of this invention. 本発明の実施の形態7による熱交換器を示す断面構成図である。It is a section lineblock diagram showing the heat exchanger by Embodiment 7 of the present invention. 本発明の実施の形態7による他の熱交換器を示す断面構成図である。It is a cross-sectional block diagram which shows the other heat exchanger by Embodiment 7 of this invention. 本発明の実施の形態8による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 8 of this invention. 本発明の実施の形態8による他の熱交換器を示す図である。It is a figure which shows the other heat exchanger by Embodiment 8 of this invention. 本発明の実施の形態8による他の熱交換器を示す図である。It is a figure which shows the other heat exchanger by Embodiment 8 of this invention.

符号の説明Explanation of symbols

1 容器、2 冷却流体、2a 低温流体、2b 高温流体、3,3c,3d 多孔質体、3a 多孔質体の側壁表面、3b,19a 長穴、4 冷却流体入口、5 冷却流体出口、6 配管、7 発熱体、8 上蓋、9側壁、10 底板、11分配用流路、12 合流用流路、13,14 流路、15 リブ、15a リブ脚部、15b リブ上端部、15c 中仕切り16,17 リブ間流路、18,19 平板、18a,20a 切欠き、20 溝付き平板。   DESCRIPTION OF SYMBOLS 1 Container, 2 Cooling fluid, 2a Low temperature fluid, 2b High temperature fluid, 3, 3c, 3d Porous body, 3a Side wall surface of porous body, 3b, 19a Long hole, 4 Cooling fluid inlet, 5 Cooling fluid outlet, 6 Piping 7 Heating element 8 Top lid 9 Side wall 10 Bottom plate 11 Distribution flow path 12 Merge flow path 13 14 Flow path 15 Rib 15a Rib leg 15b Rib upper end 15c Partition 16 17 Inter-rib channel, 18, 19 flat plate, 18a, 20a notch, 20 grooved flat plate.

Claims (14)

却流体入口と冷却流体出口とが設けられた容器、
上記冷却流体入口より流入した冷却流体が上記容器の伝熱壁面に沿って分散されるように上記伝熱壁面に沿った面上で蛇行して設置されたリブ、
及び上記リブと接合されるように上記容器内に設置され、上記容器の内部を冷却流体入口側の空間R1と冷却流体出口側の空間R2とに分割すると共に、分散された上記冷却流体を上記空間R1より上記空間R2に通過させる多孔質体
を備えたことを特徴とする熱交換器。
Containers and cold却流fluid inlet and a cooling fluid outlet is provided,
Ribs installed meandering on the surface along the heat transfer wall so that the cooling fluid flowing in from the cooling fluid inlet is dispersed along the heat transfer wall of the container;
And the inside of the container is divided into a space R1 on the cooling fluid inlet side and a space R2 on the cooling fluid outlet side, and the dispersed cooling fluid is A heat exchanger comprising a porous body that passes from the space R1 to the space R2.
多孔質体は、リブと略同形状であることを特徴とする請求項記載の熱交換器。 The porous body, heat exchanger according to claim 1, characterized in that the rib substantially the same shape. 各空間R1,R2において、リブとリブとの間に作られるリブ間流路の流路断面積が、上記リブに接合される多孔質体と多孔質体との間に作られる流路の流路断面積より大きいことを特徴とする請求項または記載の熱交換器。 In each space R1, R2, the cross-sectional area of the flow path between the ribs formed between the ribs is the flow of the flow path formed between the porous body joined to the ribs. The heat exchanger according to claim 1 or 2 , wherein the heat exchanger is larger than a road cross-sectional area. リブの多孔質体側形状が、略T型、略Y型、または略L型であることを特徴とする請求項記載の熱交換器。 The heat exchanger according to claim 3 , wherein the shape of the rib on the porous body side is substantially T-shaped, substantially Y-shaped, or substantially L-shaped. リブは容器の一部と樹脂成形により一体成形されたことを特徴とする請求項1〜4のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4 , wherein the rib is integrally formed with a part of the container by resin molding. リブの両側に多孔質体を配し、上記リブを上記多孔質体で挟むようにしたことを特徴とする請求項1〜5のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 5 , wherein a porous body is disposed on both sides of the rib, and the rib is sandwiched between the porous body. 多孔質体は、面内に複数の長穴を有する多孔質体を用いたことを特徴とする請求項記載の熱交換器。 The porous body, heat exchanger according to claim 1, characterized by using a porous body having a plurality of elongated holes in the plane. 多孔質体は、切欠き部を有する平板をコルゲート状に成形したものであることを特徴とする請求項1〜のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 6 , wherein the porous body is a corrugated flat plate having a notch. 多孔質体は、複数の長穴を設けた平板をコルゲート状に成形したものであることを特徴とする請求項記載の熱交換器。 The porous body, heat exchanger according to claim 1, characterized in that is obtained by forming a plate having a plurality of elongated holes in corrugated. コルゲート状に成形した多孔質体は、多孔質体内部を冷却流体が通過する方向に、平板表面に溝が設けられていることを特徴とする請求項または記載の熱交換器。 The heat exchanger according to claim 8 or 9 , wherein the porous body formed in a corrugated shape is provided with a groove on a flat plate surface in a direction in which the cooling fluid passes through the porous body. 多孔質体は、容器内の空間R1または空間R2に面した側壁表面が傾斜、または湾曲していることを特徴とする請求項1〜10のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 10 , wherein the porous body has an inclined or curved side wall surface facing the space R1 or the space R2 in the container. 多孔質体と容器とが一体成形されたことを特徴とする請求項1〜11のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 11 , wherein the porous body and the container are integrally formed. 請求項1〜12のいずれか1項に記載の熱交換器を積層し、各熱交換器に温度の異なる流体を流し、流体−流体間の熱交換を行うようにしたことを特徴とする熱交換器。 A heat exchanger according to any one of claims 1 to 12 , wherein heat exchangers according to any one of claims 1 to 12 are stacked, and fluids having different temperatures are allowed to flow through each of the heat exchangers to perform heat exchange between the fluid and the fluid. Exchanger. 請求項13に記載の熱交換器をロール状に成形したことを特徴とする熱交換器。 A heat exchanger according to claim 13 , wherein the heat exchanger is formed into a roll shape.
JP2003358897A 2003-10-20 2003-10-20 Heat exchanger Expired - Fee Related JP4013883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358897A JP4013883B2 (en) 2003-10-20 2003-10-20 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003358897A JP4013883B2 (en) 2003-10-20 2003-10-20 Heat exchanger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007153850A Division JP4572911B2 (en) 2007-06-11 2007-06-11 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2005123496A JP2005123496A (en) 2005-05-12
JP4013883B2 true JP4013883B2 (en) 2007-11-28

Family

ID=34615282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358897A Expired - Fee Related JP4013883B2 (en) 2003-10-20 2003-10-20 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4013883B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821563B2 (en) * 2006-10-31 2011-11-24 株式会社デンソー Adsorption module and method of manufacturing adsorption module
JP4909725B2 (en) * 2006-12-06 2012-04-04 株式会社東芝 Heat exchanger
US8746330B2 (en) * 2007-08-09 2014-06-10 Coolit Systems Inc. Fluid heat exchanger configured to provide a split flow
JP4983664B2 (en) * 2008-03-17 2012-07-25 株式会社豊田中央研究所 Cooling system
JP5344994B2 (en) * 2009-05-29 2013-11-20 三菱電機株式会社 Heat sink device
JP2011003708A (en) * 2009-06-18 2011-01-06 Furukawa-Sky Aluminum Corp Heat exchanger using corrugated heat radiation unit
JP5178872B2 (en) * 2011-04-01 2013-04-10 三菱電機株式会社 Cooler
JP2017044461A (en) * 2015-08-28 2017-03-02 住友電気工業株式会社 Heat exchanger
JPWO2020235449A1 (en) * 2019-05-21 2020-11-26
CN115668491A (en) * 2020-05-29 2023-01-31 株式会社巴川制纸所 Temperature control unit and method for manufacturing temperature control unit
CN115668490A (en) * 2020-05-29 2023-01-31 株式会社巴川制纸所 Temperature regulating unit
CN113363617B (en) * 2021-06-18 2022-07-08 中国第一汽车股份有限公司 Battery liquid cooling plate assembly, power battery assembly and electric vehicle

Also Published As

Publication number Publication date
JP2005123496A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
US8561673B2 (en) Sealed self-contained fluidic cooling device
US8472193B2 (en) Semiconductor device
JP5135225B2 (en) Use of a micro heat transfer device as a fluid cooler for micro heat transfer and electronic devices
JP4013883B2 (en) Heat exchanger
US20090145581A1 (en) Non-linear fin heat sink
US20090114372A1 (en) Heat sink
US20010035285A1 (en) High performance cold plate for electronic cooling
WO2007145352A1 (en) Heat sink and cooler
JPH11510962A (en) Liquid-cooled heat sink for cooling electronic components
JP2009501439A (en) Microstructured cooler and use thereof
US20080179046A1 (en) Water cooling apparatus
JP2001035981A (en) Cooler for semiconductor element and power-converting device using it
CN113251837A (en) Pulsating heat pipe temperature equalizing plate
CN110998833A (en) Heat radiator
JP2017135227A (en) heat sink
JP4572911B2 (en) Heat exchanger
CN114649284A (en) Micro-channel radiator with rib bionic structure
CN113446883B (en) Double-fluid loop staggered wave type micro-channel radiator based on elastic turbulence
CN111868923A (en) Liquid-cooled cooler
CN110678038A (en) Heat abstractor and air conditioner frequency conversion module structure
TWI786526B (en) Ultra-thin vapor chamber device with two phase unidirectional flow
CN114649280B (en) Micro-channel radiator with gill bionic structure
CN216852886U (en) Heat radiation structure
CN210868543U (en) Heat abstractor and air conditioner frequency conversion module structure
US11924997B2 (en) Textile weave redundant loop cold plate design

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4013883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees