JP4010791B2 - Electroless plating apparatus and electroless plating method - Google Patents

Electroless plating apparatus and electroless plating method Download PDF

Info

Publication number
JP4010791B2
JP4010791B2 JP2001319837A JP2001319837A JP4010791B2 JP 4010791 B2 JP4010791 B2 JP 4010791B2 JP 2001319837 A JP2001319837 A JP 2001319837A JP 2001319837 A JP2001319837 A JP 2001319837A JP 4010791 B2 JP4010791 B2 JP 4010791B2
Authority
JP
Japan
Prior art keywords
plating
substrate
plating solution
tank
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001319837A
Other languages
Japanese (ja)
Other versions
JP2003129250A (en
Inventor
明久 本郷
新明 王
尚起 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001319837A priority Critical patent/JP4010791B2/en
Priority to TW091118071A priority patent/TW554069B/en
Priority to EP02755912A priority patent/EP1474545A2/en
Priority to CNA028150368A priority patent/CN1633520A/en
Priority to KR10-2003-7005088A priority patent/KR20040030428A/en
Priority to PCT/JP2002/008213 priority patent/WO2003014416A2/en
Priority to US10/482,477 priority patent/US20040234696A1/en
Publication of JP2003129250A publication Critical patent/JP2003129250A/en
Application granted granted Critical
Publication of JP4010791B2 publication Critical patent/JP4010791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無電解めっき装置及び無電解めっき方法に関し、特に半導体基板等の基板の表面に設けた配線用の微細な凹部に、銅や銀等の導電体を埋め込んで埋め込み配線を形成したり、このようにして形成した配線の表面を保護する保護膜を形成したりするのに使用される無電解めっき装置及び無電解めっき方法に関する。
【0002】
【従来の技術】
無電解めっきは、外部から電気を流すことなく、めっき液中の金属イオンを化学的に還元して被処理材の被めっき面にめっき膜を形成するようにした方法であり、耐食、耐摩耗性のニッケル−りん,ニッケル−硼素めっき、プリント配線基板用銅めっきなどに広く用いられている。
【0003】
この無電解めっき装置としては、無電解めっき液をオーバーフローさせつつ保持するめっき処理槽と、このめっき処理槽の上部に配置され、基板等の被処理材を横向きに保持する上下動自在な保持部とを有し、この保持部で保持した被処理材をめっき処理槽内のめっき液に浸漬(いわゆるどぶ漬け)させるようにしたものや、基板等の被処理材を上向き(フェースアップ)に保持する保持部と、この保持部で保持した被処理材の上面(被めっき面)に無電解めっき液を供給するめっき液供給部とを有し、この保持部で保持した被処理材の上面に沿って無電解めっき液を流すようにしたもの等が一般に知られている。
【0004】
近年、半導体チップの高速化、高集積化に伴い、半導体基板上に配線回路を形成するための金属材料として、アルミニウムまたはアルミニウム合金に代えて、電気抵抗率が低くエレクトロマイグレーション耐性が高い銅(Cu)を用いる動きが顕著になっている。この種の銅配線は、基板の表面に設けた微細凹みの内部に銅を埋込むことによって一般に形成される。この銅配線を形成する方法としては、CVD、スパッタリング及びめっきといった手法があるが、めっきが一般的である。いずれにしても、基板の表面に銅層を成膜した後、その表面を化学的機械的研磨(CMP)により平坦に研磨するようにしている。
【0005】
この種の配線にあっては、平坦化後、その配線の表面が外部に露出しており、この上に埋め込み配線を形成する際、例えば次工程の層間絶縁膜形成プロセスにおけるSiO形成時の表面酸化やコンタクトホールを形成するためのSiOエッチング等に際して、コンタクトホールの底に露出した配線のエッチャントやレジスト剥離等による表面汚染、更には銅配線にあっては銅の拡散が懸念されている。
【0006】
このため、銀や銅等の配線材料との接合が強く、しかも比抵抗(ρ)が低い、例えばNi−B合金膜等からなる保護膜(めっき膜)で配線の表面を選択的に覆って保護することが考えられる。ここで、Ni−B合金膜は、例えばニッケルイオン、ニッケルイオンの錯化剤、ニッケルイオンの還元剤としてのアルキルアミンボランまたは硼素化水素化合物等を有する無電解めっき液を使用した無電解めっきを施すことによって、銅等の表面に選択的に形成することができる。
【0007】
【発明が解決しようとする課題】
無電解めっきの適用箇所は、銅配線の主たる埋め込み材(Cu)、バリヤメタル上のシード層の形成、またはシードの補強(Cu)、さらにはバリヤメタルそのものの形成、銅配線材の蓋材形成(いずれもNi−P,Ni−B,Co−P,Ni−W−P,Ni−Co−P,Co−W−P,Co−W−B)などがあるが、いずれの無電解めっきプロセスでも被処理材の全面に亘る膜厚の均一性が要求される。
【0008】
ここで、無電解めっきにあっては、被処理材が無電解めっき液と接触すると同時に被めっき面にめっき金属が析出し、めっき液の温度によってめっき金属の析出速度が異なる。このため、被処理材の被めっき面に均一な膜厚のめっき膜を形成するためには、めっき液が被処理材と接触した当初から被めっき面の面内全域におけるめっき液の温度が均一で、接触中の全めっき処理中に亘ってこの温度を一定に保持することが要求される。
【0009】
しかしながら、従来の無電解めっき装置は、一般にヒータを内蔵した保持部の上面または下面に基板等の被処理材を密着させて保持し、ヒータを介して被処理材を加熱した状態で、被処理材の被めっき面に所定の温度に加熱した無電解めっき液を接触させるようにしていた。このため、被処理材の凹凸や保持部の面粗度等の影響で、被処理材と保持部との間に空気溜まりが発生して、この空気溜まりが断熱材として作用する等、共に固体である被処理材と保持部との間の熱伝導に大きなばらつきが生じ、しかも、保持部の表面には、一般に熱伝導率の悪いテフロン(商標名)等のシートが貼着されているため、被処理材の全面における温度が一様にならず、温度均一性に問題があった。
【0010】
つまり、無電解めっきのレートや膜質は、無電解めっき液の温度に依存するところが大きく、被処理材の全面に亘る膜厚の均一性を確保するためには、めっき液の温度を被処理材の全面に亘って±1℃の範囲でコントロールすることが望まれるが、従来の無電解めっき装置にあっては、めっき中に被処理材に接触するめっき液に±5℃程度の温度のばらつきが生じて、この要求に応えることが困難であった。更に、保持部からの熱の逃げや、めっき液表面からの熱の逃げも被処理材の外周部の温度を低下させる要因になっていた。このように、被処理材の全面における温度が一様にならず、温度均一性に問題があることは、電解めっき装置にあっても同様であった。
【0011】
本発明は上記に鑑みてなされたもので、被処理材の被めっき面により均一なめっき膜を容易に形成できるようにした無電解めっき装置及び無電解めっき方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
請求項1に記載の発明は、被めっき面の外周縁をシールリングでシールし被めっき面を上向きにして被処理材を保して、被めっき面上に前記シールリングで包囲されて上方に開口するめっき槽を形成する保持部と、前記保持部で保持した被処理材の裏面に接触させて被処理材を加熱する加熱流体であって、温水、アルコールまたは有機溶液からなり、下記のめっき液の温度と同じ温度の加熱流体を保持する加熱流体保持部と、前記保持部で保持した被処理材の被めっき面上に形成される前記めっき槽内所定の温度に加熱しためっき液を供給するめっき液供給部とを有することを特徴とする無電解めっき装置である。
【0013】
このように、被処理材の裏面に加熱流体を接触させて被処理材を加熱することで、加熱流体が被処理材の裏面の凹凸に追従してその全面で接触するようにして、接触面積を増大させて効率よく被処理材への熱伝導を行い、しかも熱容量が大きな流体を熱源に利用することで、被処理材を短時間でより均一に加熱することができる。例えば、温度が60℃となるようにコントロールした温水を半導体ウエハの裏面に接触させることで、約2〜3秒で半導体ウエハをその表面温度が60℃になるように加熱することができる。しかも、被処理材全体をめっき液中に浸漬することがないので、めっき液の管理が容易となる。
【0016】
請求項に記載の発明は、前記めっき槽の上方を開閉自在に覆うとともに、該めっき槽内に供給されためっき液の放熱を防ぐヒータを備えた蓋体を更に有することを特徴とする請求項1記載の無電解めっき装置である。これにより、被めっき面の上に供給されためっき液表面からの放熱を抑えることができる。
【0018】
請求項に記載の発明は、前記保持部は、上下動及び回転自在に構成されていることを特徴とする請求項1または2記載の無電解めっき装置である。これにより、保持部を下降させて、保持部で保持した被処理材の裏面を加熱流体に接触させることができる。また、保持部を回転させて、保持部で保持した被処理材の被めっき面に供給しためっき液で被めっき面を均一に濡らしたり、めっき後のめっき液の液切りを行ったりすることができる。
【0019】
請求項に記載の発明は、前記保持部は、チルト自在に構成されていることを特徴とする請求項1乃至のいずれか一項に記載の無電解めっき装置である。これにより、保持部で保持した被処理材を加熱流体の水面に対して傾斜させた状態で、被処理材の裏面を加熱流体に接触させ、しかる後、被処理材を水平に戻すことで、被処理材の裏面に気泡が残ってしまうことを防止することができる。また、めっき終了後に被処理材を傾斜させることで、被処理材の被めっき面上のめっき液を1ヶ所に集めて排出し易いようにすることができる。
【0020】
請求項に記載の発明は、前記めっき液供給部は、上下動自在で、前記めっき槽の上方を覆う位置と該位置の側方の待避位置との間を移動自在な蓋体を兼ねたヘッド部を有する揺動自在な揺動アームと、このヘッド部に取付けためっき液供給ノズルを有することを特徴とする請求項1乃至のいずれか一項に記載の無電解めっき装置である。これにより、めっき処理にあたっては、ヘッド部を保持部で保持した被処理材の上方を覆う所定の位置に位置させ、それ以外は、ヘッド部を待避位置に待避させることで、ヘッド部が被処理材の搬送等を阻害してしまうことを防止することができる。
【0021】
請求項に記載の発明は、前記めっき液供給部は、めっき1回分の所定量のめっき液を保持し該めっき液を自重で前記めっき液供給ノズルから前記めっき槽内に供給するめっき液保持タンクと、このめっき液保持タンクで保持しためっき液を所定の温度に維持する機構を更に有することを特徴とする請求項記載の無電解めっき装置である。これにより、例えば無電解めっきで直径200mmのウエハ表面に保護膜形成用の銅めっきを行う際には、約100〜200ccのめっき液が、直径300mmのウエハ表面に保護膜形成用の銅めっきを行う際には、約200〜400ccのめっき液が必要となるが、この所定量のめっき液を、液温を低下させることなく、常に一定の温度に保持した状態で、自由落下により瞬時(例えば1〜5秒)に被処理材の被めっき面に供給することができる。
【0022】
請求項に記載の発明は、前記ヘッド部には、めっき前処理液を保持し該めっき前処理液を自重で前記めっき槽内に供給するめっき前処理液保持タンクが備えられていることを特徴とする請求項5または6記載の無電解めっき装置である。このめっき前処理液としては、前処理洗浄を行う洗浄液や、触媒付与処理を行う触媒付与液などが挙げられる。これにより、保持部で被処理材を保持した状態で、例えば洗浄や触媒付与等のめっき前処理とめっき処理とを1槽で連続して行うことができる。この洗浄液としては、HSO,HF,HCl,NH,DMAB(ジメチルアミンボラン)またはしゅう酸等が、触媒付与液としては、PdSOやPdCl等が挙げられる。
【0023】
請求項に記載の発明は、前記ヘッド部には、前記めっき槽内に純水を供給する純水供給ノズルが備えられていることを特徴とする請求項5乃至7のいずれか一項に記載の無電解めっき装置である。これにより、めっき処理とめっき処理後の純水によるリンス洗浄とを1槽で連続して行うことができる。
【0024】
請求項に記載の発明は、前記めっき槽内に供給されためっき液を回収するめっき液回収ノズルを更に有することを特徴とする請求項1乃至のいずれか一項に記載の無電解めっき装置である。これにより、めっき液をめっき液回収ノズルから回収して再使用することで、めっき液の使用量を減少させ、ランニングコストを低くすることができる。
【0025】
請求項10に記載の発明は、前記保持部で保持した被処理材と前記めっき槽上方を覆うように位置させた前記ヘッド部との間の空間に不活性ガスを導入し、該空間を所定の温度の不活性ガス雰囲気に保持する不活性ガス導入部を更に有することを特徴とする請求項7乃至のいずれか一項に記載の無電解めっき装置である。これにより、めっき処理中に保持部で保持した被処理材と該被処理材の上面を覆うヘッド部との間の空間に不活性ガスを導入し、この空間を所定の温度の不活性ガス雰囲気にすることで、めっき液の液面が空気と接触し、空気中の酸素をめっき液中に取込んでめっき液中の溶存酸素量が増加し、還元剤の酸化作用を抑制してめっきが析出しづらくなることを防止し、同時にめっき液の液温がめっき中に低下することを防止することができる。また、自己分解しやすい還元剤(たとえばDMAB,GOA)の場合は空気との接触を防ぐことで液のライフを延ばすことも可能である。この不活性ガスは、例えばNガスで、このガスの温度は、例えばめっき液の液温が70℃の時、60〜70℃、好ましくは65〜70℃程度である。
【0026】
請求項11に記載の発明は、前記めっき液保持タンクと前記めっき液供給ノズルの内部に洗浄液を流して洗浄する洗浄液導入部を更に有することを特徴とする請求項6乃至10のいずれか一項に記載の無電解めっき装置である。これにより、めっき液保持タンクやめっき液供給ノズルの壁面に生成された付着物を、定期的或いは任意の時期に洗浄して除去することができる。この洗浄液としては、例えば、純水や、HNO,王水またはHF等の洗浄用薬品が挙げられる。
【0027】
求項12に記載の発明は、被めっき面の周縁部をシールリングでシールし被めっき面を上向きにして保持して、被めっき面上に前記シールリングで包囲されて上方に開口するめっき槽を形成した被処理材の裏面を、温水、アルコールまたは有機溶液からなり、下記のめっき液と同じ温度の加熱流体に接触させて被処理を加熱しつつ、被めっき面上に形成された前記めっき槽内に所定の温度に加熱した所定量のめっき液を供給してめっきを行うことを特徴とする無電解めっき方法である。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1は、半導体装置における銅配線形成例を工程順に示すもので、先ず、図1(a)に示すように、半導体素子を形成した半導体基材1上の導電層1aの上にSiOからなる絶縁膜2を堆積し、この絶縁膜2の内部に、例えばリソグラフィ・エッチング技術によりコンタクトホール3と配線用の溝4を形成し、その上にTaN等からなるバリア層5、更にその上に電解めっきの給電層としての銅シード層6をスパッタリング等により形成する。
【0029】
そして、図1(b)に示すように、半導体基板Wの表面に銅めっきを施すことで、半導体基板Wのコンタクトホール3及び溝4内に銅を充填させるとともに、絶縁膜2上に銅層7を堆積させる。その後、化学的機械的研磨(CMP)により、絶縁膜2上の銅層7を除去して、コンタクトホール3及び配線用の溝4に充填させた銅層7の表面と絶縁膜2の表面とをほぼ同一平面にする。これにより、図1(c)に示すように、絶縁膜2の内部に銅シード層6と銅層7からなる配線8を形成する。次に、基板Wの表面に、例えば無電解Ni−Bめっきを施して、図1(d)に示すように、配線8の露出表面にNi−B合金膜からなる保護膜(めっき膜)9を選択的に形成して配線8を保護する。
【0030】
図2及び図3は、本発明の実施の形態の無電解めっき装置を示す。この無電解めっき装置は、例えば図1におけるバリア層5の形成、銅シード層6の補強、銅層7を堆積、更には、保護膜(めっき膜)9の形成に使用される。
【0031】
この無電解めっき装置10は、半導体ウエハ等の基板(被処理材)Wを該基板Wの表面(被めっき面)を上向き(フェースアップ)にして保持する基板保持部12を有している。この基板保持部12は、下記のように、基板Wを加熱する加熱流体を保持する加熱流体保持部40を有する処理槽14と、この処理槽14の周囲を包囲する基板押圧部16とから主に構成され、この基板押圧部16には、処理槽14の上方に延出する延出部18が一体に連接され、この延出部18の内周縁部の下面に、シールリング20が下方に突出して取付けられている。
【0032】
処理槽14は、モータ22の駆動に伴ってベルト23を介して回転する主軸24の上端に連結され、上面には、基板Wの大きさに沿った段差14aが設けられている。一方、基板押圧部16は、この主軸24を囲繞する基台26の周辺部に立設したロッド28の上端に連結されている。更に、基台26と主軸24に設けたフランジ24aとの間にシリンダ30が配置され、このシリンダ30の作動に伴って、基板押圧部16が処理槽14に対して相対的に上下動するようになっている。また、基台26には、上方に突出して基板押圧部16の延出部18の下方に達する突上げピン32が取付けられ、処理槽14の該突上げピン32と対向する位置には、上下に貫通する貫通孔14bが設けられている。
【0033】
これにより、基板押圧部16を処理槽14に対して相対的に上昇させた状態で、この内部に基板Wを挿入し、この基板Wを突上げピン32の上端に載置して保持し、この状態で基板押圧部16を処理槽14に対して相対的に下降させることで、基板Wを処理槽14の上面の段差14a内に位置させ、更に下降させることで、シールリング20を基板Wの上面の外周縁部に圧接させて、ここをシールして基板Wを保持し、これによって、基板Wの上面とシールリング20で包囲され上方に開口しためっき槽34を形成する。そして、この逆の動作で基板Wの保持を解くようになっている。更に、モータ22の駆動に伴って、基板保持部12で基板Wを保持したまま、処理槽14と基板押圧部16が一体に回転するようになっている。
【0034】
処理槽14の上面には、例えば温水、アルコールまたは有機溶液等の加熱流体を保持し該加熱流体に基板Wの裏面を接触させて基板Wを加熱する加熱流体保持部40が設けられている。つまり、この加熱流体保持部40は、図3に示すように、段差14aから連続して基板Wの形状に沿った円状に形成された凹部42と、この凹部42よりも深く形成されて放射状に延びる複数の流路溝44とを有しており、この流路溝44は、同一深さで処理槽14の外周部に達している。この各流路溝44は、主軸24の内部に設けた流体通路24bに連通し、更に、この流体通路24bは、例えば、加熱流体として加熱した純水を使用した場合には、純水供給源から延び、純水をめっき温度と同じ、例えば60℃に加熱する純水加熱部46を途中に介装した流体供給パイプ48に接続されている。
【0035】
これにより、純水供給源から供給され純水加熱部46で加熱された加熱流体(温水)は、流体通路24bを通過して加熱流体保持部40内に流入し、主に流路溝44に沿って流れた後、処理槽14の外部に流出するようになっている。
【0036】
そして、このようにして加熱流体保持部40内に流入した加熱流体が、基板保持部12で保持した基板Wの裏面に接触して、基板Wを加熱するのであり、これにより、加熱流体が基板Wの裏面の凹凸に追従してその全面で接触し、接触面積を増大させて効率よく基板Wへの熱伝導を行い、しかも熱容量が大きな温水等の加熱流体を熱源に利用することで、基板Wを短時間でより均一に加熱することができる。例えば、温度が60℃となるようにコントロールした温水を半導体ウエハの裏面に接触させることで、約2〜3秒で半導体ウエハをその表面温度が60℃になるように加熱することができる。しかも、基板Wの全体をめっき液中に浸漬することがないので、めっき液の管理が容易となる。
【0037】
更に、この例では、処理槽14の内部にヒータ50が内蔵され、このヒータ50で加熱流体保持部40内を流れる加熱流体を加熱して、加熱流体の温度が徐々に低下することを防止できるようになっている。
【0038】
基板押圧部16の周囲には、加熱流体の飛散を防止し、加熱流体を集めてドレン52aから排出する飛散防止カバー52が配置されている。更に、この飛散防止カバー52の上部に位置して、モータ56を介して開閉自在で、基板保持部12で保持した基板Wの表面を覆って密閉に近い空間を形成する一対の蓋体58が配置されている。この蓋体58は、例えば1枚板で構成してもよい。
【0039】
これにより、めっき中に蓋体58を閉じて密閉に近い空間内に基板Wを位置させることで、基板Wからの放熱を蓋体58で防止して、めっき中における基板Wの温度をより均一に維持し、しかも基板Wを基板保持部12で保持して昇降させる際には、蓋体58を開くことで、蓋体58が基板保持部12と干渉してしまうことを防止することができる。
【0040】
更に、基板保持部12の上方に位置して、基板Wの上面とシールリング20で形成されためっき槽34内に、所定の温度、例えば60℃に加熱しためっき液(無電解めっき液)60を供給するめっき液供給部62が配置されている。このめっき液供給部62は、揺動自在なアーム64を有し、このアーム64の先端に備えた噴射ノズル66からめっき液60を基板保持部12で保持した基板Wに向けて均一に噴射するようになっている。このめっき液の温度は、例えば25〜90℃、好ましくは55〜85℃程度であり、更に好ましくは60〜80℃程度である。
【0041】
なお、図示しないが、基板保持部12の上方に位置して、めっき槽34内のめっき液を吸引して回収する、上下動及び旋回自在なめっき液回収ノズルと、めっき後の基板Wの表面に超純水等の洗浄液を供給する洗浄ノズルが配置されている。
【0042】
この実施の形態の無電解めっき装置にあっては、先ず基板押圧部16を処理槽14に対して相対的に上昇させた状態で、基板Wを基板押圧部16の内部に挿入して、突上げピン32の上に載置保持する。なお、この時、蓋体58は開いた位置にある。一方、処理槽14の加熱流体保持部40内に、めっき液60と同じ温度、例えば60℃に加熱した温水等の加熱流体を導入し、流路溝44を通過させてオーバーフローさせておく。
【0043】
この状態で、基板押圧部16を処理槽14に対して相対的に下降させ、基板Wを処理槽14の上面の段差14a内に位置させ、更に下降させることで、シールリング20を基板Wの上面の外周縁部に圧接させて、ここをシールして基板Wを保持し、これによって、基板Wの上面とシールリング20で包囲され上方に開口しためっき槽34を形成する。同時に、基板Wの裏面を処理槽14の加熱流体保持部40内に導入した加熱流体に接触させる。
【0044】
そして、基板Wが加熱流体で加熱されて、加熱流体と同じ温度、例えば60℃に達した時に、めっき液供給部62の噴射ノズル66から、所定の温度、例えば60℃に加熱しためっき液60を、基板Wの上面のシールリング20で包囲されためっき槽34内に、一定量(例えば直径200mmウエハでは約100cc〜200cc)注入する。めっき液の注入タイミングに合わせて、加熱流体の供給タイミングを調整することができるので、基板保持部12上に基板が置かれてめっき液が注入されるまでの間に基板表面が乾燥してしまうことはない。
【0045】
そして、蓋体58を閉じて、基板Wの表面からの放熱を防止し、必要に応じて、ヒータ50で加熱流体保持部40内に導入した加熱流体を加熱して、この加熱流体の温度がめっき中に低下することを防止する。これにより、基板Wは、その全面に亘って加熱流体の温度に維持され、均一な膜厚のめっき膜が成長する。しかも、基板Wの外周縁部も加熱流体に浸漬されているので、基板の外周縁部の温度が低下することはない。この時、例えば基板Wを回転させて、被めっき面の水素の密度、溶存酸素濃度を均一な状態にすることもできる。
【0046】
めっき処理が完了した後、加熱流体保持部40内への加熱流体の導入を停止して、導入側から排出し、基板Wの上面のシールリング20で包囲されためっき槽34内のめっき液を吸引等により除去する。そして、基板Wを回転させつつ、洗浄液ノズル(図示せず)から洗浄液を基板Wの被めっき面に向けて噴射して、被めっき面を冷却すると同時に希釈化・洗浄することで無電解めっき反応を停止させる。
【0047】
そして、基板押圧部16を処理槽14に対して相対的に上昇させ、基板Wを突上げピン32で持上げて基板Wの保持を解き、しかる後、ロボットのハンド等でめっき後の基板を次工程に搬送する。
【0048】
図4は、無電解めっき装置10によって一連のめっき処理を行うめっき処理装置の全体構成を示す。このめっき処理装置は、各一対の無電解めっき装置10、ロード・アンロード部70、例えばPd触媒を付与する触媒処理や露出配線表面に付着した酸化膜を除去する酸化膜除去処理等のめっき前処理を行うめっき前処理装置72、粗洗浄可能な仮置き部74及び後洗浄装置76を有し、更にロード・アンロード部70、後洗浄装置76及び仮置き部74の間で基板Wを搬送する第1搬送装置78aと、無電解めっき装置10、めっき前処理装置72及び仮置き部74の間で基板Wを搬送する第2搬送装置78bが備えられている。
【0049】
次に、上記のように構成しためっき処理装置による一連のめっき処理の工程について説明する。まず、ロード・アンロード部70に保持された基板Wを第1搬送装置78aにより取出し、仮置き部74に置く。第2搬送装置78bは、これをめっき前処理装置72に搬送し、ここでPdCl液等の触媒による触媒付与処理や露出配線表面に付着した酸化膜を除去する酸化膜除去処理等のめっき前処理を行い、しかる後リンスする。
【0050】
第2搬送装置78bは、基板Wをさらに無電解めっき装置10に運び、ここで所定の還元剤と所定のめっき液を用いて無電解めっき処理を行う。次に、第2搬送装置78bでめっき後の基板を無電解めっき装置10から取出して仮置き部74に運ぶ。仮置き部74では、基板の粗洗浄を行う。そして、第1搬送装置78aは、この基板を後洗浄装置76に運び、この後洗浄装置76でペンシル・スポンジによる仕上げの洗浄とスピンドライによる乾燥を行って、ロード・アンロード部70へ戻す。基板は後にめっき装置や酸化膜形成装置に搬送される。
【0051】
図5は、図1に示す保護膜9を形成する一連のめっき処理(蓋めっき処理)を行うめっき処理装置の全体構成を示す。このめっき処理装置は、ロード・アンロード部80、前処理部82、Pd付着部84、めっき前処理部86、無電解めっき装置10及び洗浄・乾燥処理部88を有し、更に、搬送経路90に沿って走行自在で、これらの間で基板の受渡しを行う搬送装置92が備えられている。
【0052】
次に、上記のように構成しためっき処理装置による一連のめっき処理(蓋めっき処理)の工程について説明する。まず、ロード・アンロード部80に保持された基板Wを搬送装置92により取出し、前処理部82に搬送し、ここで、基板に例えば基板表面を再度洗浄する前処理を施す。そして、銅層7(図1参照)の表面にPd付着部84でPdを付着させて銅層7の露出表面を活性化させ、しかる後、めっき前処理部86でめっき前処理、例えば中和処理を施す。次に、無電解めっき装置10に搬送し、ここで、活性化した銅層7の表面に、例えばCo−W−Pによる選択的な無電解めっきを施し、これによって、図1(d)に示すように、銅層7の露出表面をCo−W−P膜(保護膜)9で保護する。この無電解めっき液としては、例えば、コバルトの塩とタングステンの塩に、還元剤、錯化剤、pH緩衝剤及びpH調整剤を添加したものがあげられる。
【0053】
なお、研磨後に露出した表面に、例えば無電解Ni−Bめっきを施して、配線8の外部への露出表面に、Ni−B合金膜からなる保護膜(めっき膜)9を選択的に形成して配線8を保護するようにしてもよい。この保護膜9の膜厚は、0.1〜500nm、好ましくは、1〜200nm、更に好ましくは、10〜100nm程度である。
【0054】
この保護膜9を形成する無電解Ni−Bめっき液としては、例えばニッケルイオン、ニッケルイオンの錯化剤、ニッケルイオンの還元剤としてのアルキルアミンボランまたは硼素化水素化合物を含有し、pH調整にTMAH(水酸化テトラメチルアンモニウム)を使用して、pHを5〜12に調整したものが使用される。
【0055】
次に、この蓋めっき処理後の基板Wを洗浄・乾燥処理部88に搬送して洗浄・乾燥処理を行い、この洗浄・乾燥後の基板Wを搬送装置92でロード・アンロード部80のカセットに戻す。
なお、この例では、蓋めっき処理として、Co−W−P無電解めっき処理を施す前に、Pdを付着することによって活性化させた銅層7の露出表面をCo−W−P膜で選択的に被覆するようにした例を示しているが、これに限定されないことは勿論である。
【0056】
図6は、本発明の他の実施の形態の無電解めっき装置を示す。この無電解めっき装置10cは、基板保持部12で保持した基板Wの表面を開閉自在に覆う上下動自在な円板状の蓋体58aを備え、この蓋体58aとめっき液供給部62とを一体化し、基板Wと蓋体58aで囲まれ保温空間をめっき液の温度付近に保つヒータ59を蓋体58aに内蔵したものである。その他の構成は、図2及び図3に示すものと同様である。この例によれば、基板Wの被めっき面上に供給されためっき液表面からの放熱を抑えることができる。なお、処理槽14にもヒータ50を内蔵して、上下から加熱するようにしてもよい。
【0057】
図7は、本発明の更に他の実施の形態の無電解めっき装置を示す。この無電解めっき装置10aは、基板(被処理材)Wを該基板Wの表面(被めっき面)を上向き(フェースアップ)にして保持する基板保持部100と、この基板保持部100の下方に配置された処理槽102を有している。基板保持部100は、下端に内方に突出して基板Wの外周縁部を載置保持する保持爪104aを有するハウジング104と、円筒状で、下端に内方に突出するシール爪106aを有する基板押圧部106とを備え、シール爪106aの下面には、シールリング108が下方に突出させて取付けられている。更に、基板押圧部106は、ハウジング104の内部に配置され、ハウジング104に取付けたシリンダ110の作動に伴って、ハウジング104に対して相対的に上下動するようになっている。
【0058】
これにより、基板押圧部106をハウジング104に対して相対的に上昇させた状態で、この内部に基板Wを挿入して、ハウジング104の保持爪104aで基板Wを載置保持し、この状態で基板押圧部106をハウジング104に対して相対的に下降させることで、シールリング108を基板Wの上面の外周縁部に圧接させて、ここをシールして基板Wを保持し、これによって、基板Wの上面と基板押圧部106で包囲され上方に開口しためっき槽112を形成する。そして、この逆の動作で基板Wの保持を解くようになっている。
【0059】
基板保持部100は、ハウジング104を介してモータ114に接続され、このモータ114は、アーム116の自由端に固着されている。更に、このアーム116は、モータ118の駆動に伴って上下動する上下動板120に取付けられ、更にチルト用のモータ121の駆動に伴って、上下方向にチルトするようになっている。これによって、基板保持部100は、回転、上下動及びチルト自在で、これらの複合動作を行えるようになっている。
【0060】
処理槽102の上面には、温水等の加熱流体を保持して基板Wを加熱する、基板Wより大きな内径の凹部からなる加熱流体保持部122が備えられている。この加熱流体保持部122は、溢流堰124に包囲され、この溢流堰124の外方に加熱流体排出路126が形成され、この加熱流体排出路126にドレン128が設けられている。更に、加熱流体保持部122は、例えば加熱流体として加熱した純水を使用する場合は、純水供給源から延び、純水をめっき温度と同じ、例えば60℃に加熱する純水加熱部46を途中に介装した加熱流体供給パイプ48に接続されている。
【0061】
これにより、純水供給源から供給され純水加熱部46で加熱された加熱流体(温水)は、加熱流体保持部122内に流入し、溢流堰124をオーバーフローして処理槽102の外部に流出するようになっている。
【0062】
更に、基板保持部100の側方には、基板Wの上面と基板押圧部106で形成されためっき槽112内に、所定の温度、例えば60℃に加熱しためっき液(無電解めっき液)60を供給するめっき液供給部130が配置されている。このめっき液供給部130は、先端にめっき液を噴射する噴射ノズル132を有している。
【0063】
この実施の形態によれば、前述のようにして基板Wを保持した基板保持部100を下降させ、この基板Wの裏面を加熱流体保持部122に保持した加熱流体に接触させて基板Wを加熱し、この基板Wがめっき温度に達した時に、めっき液供給部130から基板Wの上面と基板押圧部106で形成されためっき槽112内に所定の温度のめっき液を注入して無電解めっきを行う。
【0064】
ここで、この例によれば、基板保持部100で保持した基板Wを処理槽102内の加熱流体の水面に対して傾斜させた状態で、基板Wの裏面を加熱流体に接触させ、しかる後、基板Wを水平に戻すことで、基板Wの裏面に気泡が残ってしまうことを防止することができる。また、めっき終了後に基板Wを傾斜させることで、基板Wの被めっき面上の無電解めっき液を1カ所に集めて排出し易いようにすることができる。
【0065】
図8は、本発明の更に他の実施の形態の無電解めっき装置を示す。この無電解めっき装置10bの前記図7に示す無電解めっき装置10aと異なる点は、以下の通りである。すなわち、ハウジング104を下方に延出させ、このハウジング104の下方延出部に取付けた従動ローラ140とモータ142に取付けた駆動ローラ144との間にベルト146を掛け渡し、モータ148を介して上下動する上下動板150に取付けたフランジ152に前記モータ142を固着して、基板保持部100が回転及び上下動するようにしている。
【0066】
また、処理槽102の内部に加熱流体供給通路102aと加熱流体排出通路102bを設け、この処理槽102の周囲をめっき液排出用のドレン154aを有する飛散防止カバー154で囲繞している。更に、めっき液供給部156は、飛散防止カバー154の側方を上下に延び、直角に屈曲して基板保持部100のほぼ中央の直上方に達し、この先端に下方に向けて取付けた噴射ノズル158からめっき液を基板Wの上面(被めっき面)に向けて噴射するようにしている。その他の構成は、図7に示すものと同様である。
【0067】
この例によれば、基板保持部100の回転及び上下動機構をハウジング104の下方に配置することで、基板保持部100の上方を開放させて、めっき液供給部156を基板保持部100の上方に配置し、これによって、めっき液の供給を容易に行うことができる。
【0068】
図9及び図10は、本発明の更に他の実施の形態の無電解めっき装置を示す。この無電解めっき装置10dは、基板(被処理材)Wを該基板Wの表面(被めっき面)を上向き(フェースアップ)にして保持する基板保持部200を有している。この基板保持部200は、下記のように、基板Wを加熱する加熱流体を保持する加熱流体保持部216を有する処理槽202と、この処理槽202の周囲を包囲する円筒状のハウジング204とから主に構成され、このハウジング204の上端には、中空円板状の支持板206が固着され、この支持板206の内周面にシールリング208が下方に突出して取付けられている。
【0069】
処理槽202の上面には、基板Wの周縁部を支持するリング状の基板ステージ210と、基板Wの外周部に位置して基板Wのずれを防止するガイドリング212が取付けられている。そして、この処理槽202は、ハウジング204に対して相対的に上下動自在で、処理槽202をハウジング204に対して相対的に下降させた状態で、ハウジング204の内部に基板Wを挿入し、この基板Wを基板ステージ210の上面に載置して保持し、この状態で処理槽202をハウジング204に対して相対的に上昇させることで、シールリング208を基板Wの上面の外周縁部に圧接させて、ここをシールして基板Wを保持し、これによって、基板Wの上面とシールリング208で包囲され上方に開口しためっき槽214を形成する。そして、この逆の動作で基板Wの保持を解くようになっている。更に、図示しないモータの駆動に伴って、基板保持部200で基板Wを保持したまま、処理槽202とハウジング204が一体に回転するようになっている。
【0070】
処理槽202の上面には、例えば温水、アルコールまたは有機溶液等の加熱流体を保持し該加熱流体に基板Wの裏面を接触させて基板Wを加熱する加熱流体保持部216が設けられている。この加熱流体保持部216は、上方に開く横断面ラッパ状の流路で構成され、この加熱流体保持部216は、前述と同様に、例えば、純水を60℃に加熱する純水加熱部を途中に介装した流体供給パイプに接続されている。そして、この加熱流体保持部216をオーバーフローした加熱流体は、処理槽202とハウジング204との間を通って外部に流出するようになっている。なお、ハウジング204の周囲には、前述のように、加熱流体の飛散を防止する飛散防止カバー(図示せず)が配置されている。
【0071】
基板保持部200の上方に位置して、基板Wの上面とシールリング208で形成されためっき槽214内に、所定の温度、例えば60℃に加熱しためっき液(無電解めっき液)60を供給するめっき液供給部220が配置されている。このめっき液供給部220は、上下動かつ揺動自在な揺動アーム222を有し、この揺動アーム222の自由端に、めっき槽214の開口部を略覆う形状に形成された円板状のヘッド部224が取付けられている。そして、このヘッド部224は、揺動アーム222の揺動に伴って、図10に示すようにして、基板保持部200の上方を覆う位置と待避位置との間を移動し、これによって、めっき処理にあたっては、ヘッド部224を基板保持部200で保持した基板Wの上方を覆う所定の位置に位置させ、それ以外は、ヘッド部224を待避位置に待避させることで、ヘッド部224が基板Wの搬送等を阻害してしまうことを防止するようになっている。
【0072】
ヘッド部224のほぼ中心に位置して、下方に開口するめっき液供給ノズル226が、このめっき液供給ノズル226の上方に位置して、めっき1回分の所定量のめっき液を保持する容積を有するめっき液保持タンク228がそれぞれ配置され、めっき液供給ノズル226とめっき液保持タンク228は、めっき液配管230で接続されている。めっき液保持タンク228には、めっき液供給管232とめっき液排出管234がそれぞれ接続され、更に、めっき液配管230、めっき液供給管232及びめっき液排出管234には、開閉バルブ(図示せず)が介装されている。
【0073】
これにより、非めっき時には、めっき液配管230の開閉バルブを閉じ、めっき液供給管232とめっき液排出管234の開閉バルブを開いて、めっき液保持タンク228内のめっき液を循環させることで、めっき液保持タンク228の内部に、常に一定の温度で、所定量のめっき液を保持する。そして、めっき液配管230の開閉バルブを開き、めっき液供給管232及びめっき液排出管234の開閉バルブを閉じることで、めっき液保持タンク228の内部に保持した、一定の温度で、所定量のめっき液を、その自重によって、めっき液供給ノズル226から瞬時(例えば1〜5秒)に基板Wの上面とシールリング208で形成されためっき槽214内に供給できるようになっている。
【0074】
めっき液供給ノズル226の上方に位置して、例えば、めっきの前処理洗浄を行う洗浄液や、触媒付与処理を行う触媒付与液等のめっき前処理液を保持するめっき前処理液保持タンク236が備えられ、このめっき前処理液保持タンク236とめっき液供給ノズル226とはめっき前処理液配管238で接続されている。更に、めっき前処理液保持タンク236には、めっき前処理液供給管240とめっき前処理液排出管242がそれぞれ接続され、めっき前処理液配管238、めっき前処理液供給管240及びめっき前処理液排出管242には、開閉バルブ(図示せず)が介装されている。
【0075】
これにより、前述のめっき液の場合と同様に、非めっき前処理時には、めっき前処理液保持タンク236の内部に、常に一定の温度で、所定量のめっき前処理液を保持し、めっき前処理時に、開閉バルブを介して、めっき前処理液保持タンク236の内部に保持しためっき前処理液を、その自重によって、めっき液供給ノズル226から瞬時(例えば1〜5秒)に基板Wの上面とシールリング208で形成されためっき槽214内に供給できるようになっている。なお、この例では、めっき液供給ノズル226がめっき前処理液を供給するノズルを兼用した例を示しているが、別々に設けてもよい。また複数のめっき前処理を行う場合には、複数のめっき前処理液保持タンクを備え、これらの各めっき前処理液保持タンクに保持しためっき前処理液を順次基板Wの被めっき面に供給するようにしてもよいことは勿論である。
【0076】
このように構成することで、基板保持部200で基板Wを保持した状態で、例えば洗浄や触媒付与等の前処理とめっき処理を1槽で連続して行うことができる。このめっきの前処理洗浄を行う洗浄液としては、HSO,HF,HCl,NH,DMAB(ジメチルアミンボラン)またはしゅう酸等が、触媒付与処理を行う触媒付与液としては、PdSOやPdCl等が挙げられる。
【0077】
ヘッド部224には、基板保持部200で保持した基板Wの上面(被めっき面)に純水を供給する純水供給ノズル250が備えられている。これにより、めっき処理後の基板の表面に純水供給ノズル250から純水を供給することで、めっき処理とめっき処理後の純水によるリンス洗浄とを1槽で連続して行うことができるようになっている。
【0078】
ヘッド部224には、基板保持部200で保持した基板Wの被めっき面に供給されためっき液を回収するめっき液回収ノズル252と、基板保持部200で保持した基板Wの被めっき面に供給されためっき前処理液を回収するめっき前処理液回収ノズル254とが備えられている。これにより、めっき液をめっき液回収ノズル252から回収して再使用したり、更には、必要に応じて、めっき前処理液をめっき前処理液回収ノズル254から回収して再使用したりすることで、めっき液やめっき前処理液の使用量を減少させて、ランニングコストを低くすることができる。
【0079】
めっき液供給ノズル226には、例えばNガス等の加熱した不活性ガスを導入する不活性ガス導入路(不活性ガス導入部)256が接続され、この不活性ガス導入路256からめっき液供給ノズル226の内部に導入された加熱した不活性ガスは、めっき液供給ノズル226の内部をパージした後、基板保持部200で保持した基板Wに向けて噴射されるようになっている。これにより、基板保持部200で保持した基板Wと該基板Wの上面を覆うように位置させたヘッド部224との間の空間に不活性ガスを導入し、この空間を所定の温度の不活性ガス雰囲気に保持することで、めっき液の液面が空気と接触し、空気中の酸素をめっき液中に取込んでめっき液中の溶存酸素量が増加し、還元剤の酸化作用を抑制してめっきが析出しづらくなることを防止し、同時にめっき液の液温がめっき中に低下することを防止することができるようになっている。又は、めっき液注入前にヘッド部224と基板Wに囲まれた部分を不活性ガス雰囲気で所定の温度にしておくことで、めっき液注入時の空気の混入や液温低下を防止することができる。このNガス等の不活性ガスの温度は、例えばめっき液の液温が70℃の時、60〜70℃(めっき液の温度−10℃〜めっき液の温度)、好ましくは65〜70℃(めっき液の温度−5℃〜めっき液の温度)程度である。
【0080】
めっき液保持タンク228には洗浄液導入路(洗浄液導入部)260aが、めっき前処理液保持タンク236には洗浄液導入路(洗浄液導入部)260bがそれぞれ接続されている。これによって、この洗浄液導入路260aからめっき液保持タンク228に導入された洗浄液が、この内部、めっき液配管230及びめっき液供給ノズル226の内部を順に流れ、また洗浄液導入路260bからめっき前処理液保持タンク236に導入された洗浄液が、この内部、めっき前処理液配管238及びめっき液供給ノズル226の内部を順に流れ、これらの内壁面に生成された付着物を洗浄して除去できるようになっている。この洗浄は、定期的、或いは任意の時期に行うことができる。この洗浄液としては、例えば、純水や、HNO,王水またはHF等の洗浄用薬品が挙げられる。
【0081】
なお、この例にあっては、ヘッド部224の内部に、基板保持部200で保持した基板Wとヘッド部224で囲まれ保温空間をめっき液の温度付近に保つヒータ262が内蔵されている。
【0082】
この実施の形態の無電解めっき装置によるめっき処理を、図11を参照して説明する。先ず処理槽202をハウジング204に対して相対的に下降させた状態で、基板Wをハウジング204の内部に挿入して、基板ステージ210の上に載置保持する。なお、この時、ヘッド部224は待避位置にある。この状態で、処理槽202をハウジング204に対して相対的に上昇させ、シールリング208を基板Wの上面の外周縁部に圧接させて、ここをシールして基板Wを保持し、これによって、基板Wの上面とシールリング208で包囲され上方に開口しためっき槽214を形成する。
【0083】
次に、ヘッド部224を基板保持部200の直上方位置まで移動させ、更に下降させる。この状態で、めっき前処理液保持タンク236で保持した、例えば洗浄液や触媒付与液等の一定量のめっき前処理液を、その自重により、めっき前処理液供給ノズルを兼用しためっき液供給ノズル226から基板保持部200で保持した基板の被めっき面に瞬時に供給してめっき前処理を行う。このめっき前処理終了後、基板Wの被めっき面上に残っためっき前処理液をめっき前処理液回収ノズル254で回収し、必要に応じて再利用する。
【0084】
次に、処理槽202の加熱流体保持部216内に、めっき液60と同じ温度、例えば70℃に加熱した温水等の加熱流体を導入し、基板保持部200で保持した基板Wの裏面を処理槽202の加熱流体保持部216内に導入した加熱流体に接触させ、オーバーフローさせる。そして、基板Wが加熱流体で加熱されて、加熱流体と同じ温度、例えば70℃に達した時に、めっき液保持タンク228で保持した一定量(例えば直径200mmウエハでは約100〜200cc、直径300mmウエハでは約200〜400cc)で一定の温度のめっき液を、その自重により、めっき液供給ノズル226から基板保持部200で保持した基板の被めっき面に瞬時に供給してめっき処理を行う。
【0085】
このめっき処理時に、不活性ガス導入路256からめっき液供給ノズル226の内部に加熱した不活性ガスを導入し、この不活性ガスでめっき液供給ノズル226の内部をパージし、更に基板保持部200で保持した基板Wと該基板Wの上面を覆うように位置させたヘッド部224との間の空間に不活性ガスを導入し、この空間を所定の温度の不活性ガス雰囲気に保持する。
【0086】
そして、必要に応じて、ヒータ262でめっき液を加熱して、めっき液の温度がめっき中に低下することを防止する。これにより、基板Wは、その全面に亘って加熱流体の温度に維持され、均一な膜厚のめっき膜が成長する。しかも、基板Wの外周縁部も加熱流体に浸漬されているので、基板の外周縁部の温度が低下することはない。この時、例えば基板Wを回転させて、被めっき面の水素の離脱、溶存酸素濃度を均一な状態にすることもできる。
【0087】
めっき処理が完了した後、加熱流体保持部216内への加熱流体の導入を停止して、導入側から排出し、基板Wの上面のシールリング208で包囲されためっき槽214内のめっき液をめっき液回収ノズル252から負圧吸引等により回収し、必要に応じて再使用する。そして、不活性ガス導入路256からの不活性ガスの導入を停止した後、基板Wを回転させつつ、純水供給ノズル250から純水を基板Wの被めっき面に向けて噴射して、被めっき面を冷却すると同時に希釈化・洗浄することで無電解めっき反応を停止させる。しかる後、基板Wを高速で回転させて液切りを行う。
【0088】
そして、ヘッド部224を上昇させ、待避部に待避させた後、処理槽202をハウジング204に対して相対的に下降させて基板Wの保持を解き、しかる後、ロボットのハンド等でめっき後の基板を次工程に搬送する。
【0089】
この実施の形態のめっき装置によれば、めっき前処理、めっき処置、純水リンス及び液切りといった各処理を1槽で連続して行うことができる。これにより、基板Wの表面(被めっき面)をウェットのまま、つまり乾燥してしまうことを防止しつつ、各処理を行うとともに、槽の数を減少させて、設置スペースを減少させることができる。
【0091】
【発明の効果】
以上説明したように、本発明によれば、めっき処理中に被処理材の被めっき面内に温度むらが生じたり、めっき温度がめっき処理中に変化してしまうことを防止し、これによって、被めっき面の全域に亘ってより温度がより均一になるようにして、被めっき材の被めっき面により均一な膜厚のめっき膜を形成することができる。
【図面の簡単な説明】
【図1】銅めっきにより銅配線を形成する例を工程順に示す図である。
【図2】本発明の実施の形態の無電解めっき装置を示す断面図である。
【図3】図2の処理槽の平面図である。
【図4】図2に示す無電解めっき装置を備えためっき処理装置の一例を示す平面配置図である。
【図5】図2に示す無電解めっき装置を備えためっき処理装置の他の例を示す平面配置図である。
【図6】本発明の実施の形態の無電解めっき装置の他の例を示す断面図である。
【図7】本発明の実施の形態の無電解めっき装置の更に他の例を示す断面図である。
【図8】本発明の実施の形態の無電解めっき装置の更に他の例を示す断面図である。
【図9】本発明の実施の形態の無電解めっき装置の更に他の例を示す断面図である。
【図10】図9に示す無電解めっき装置の平面図である。
【図11】図8に示す無電解めっき装置でめっきを行う時の処理の手順を示すフローチャートである。
【符号の説明】
6 銅シード層
7 銅層
8 配線
9 保護膜
10,10a,10b,10c,10d 無電解めっき装置
12,100,200 基板保持部
14,102,202 処理槽
16,106 基板押圧部
20,108,208 シールリング
24 主軸
34,112,214 めっき槽
40,122,216 加熱流体保持部
42 加熱流体保持部
44 流路溝
50,262 ヒータ
52,152 飛散防止カバー
58,58a 蓋体
60 めっき液
62,130,156 めっき液供給部
66、132,158 噴射ノズル
70 ロード・アンロード部
72 前処理装置
74 仮置き部
76 後洗浄装置
80 ロード・アンロード部
82 前処理部
84 Pd付着部
86 前処理部
88 洗浄・乾燥処理部
104 ハウジング
104a 保持爪
106a シール爪
124 溢流堰
204 ハウジング
222 揺動アーム
224 ヘッド部
226 めっき液供給ノズル
228 めっき液保持タンク
236 めっき前処理液保持タンク
250 純水供給ノズル
252 めっき液回収ノズル
254 めっき前処理液回収ノズル
256 不活性ガス導入路(不活性ガス導入部)
260a,260b 洗浄液導入路(洗浄液導入部)
[0001]
BACKGROUND OF THE INVENTION
The present invention Electroless Plating equipment and Electroless With regard to the plating method, in particular, an embedded wiring is formed by embedding a conductor such as copper or silver in a fine concave portion for wiring provided on the surface of a substrate such as a semiconductor substrate, or the surface of the wiring thus formed is formed. An electroless plating apparatus used to form a protective film for protection, and Electroless The present invention relates to a plating method.
[0002]
[Prior art]
Electroless plating is a method in which metal ions in the plating solution are chemically reduced to form a plating film on the surface to be treated without applying electricity from the outside. It is widely used for nickel-phosphorous, nickel-boron plating, copper plating for printed wiring boards, and the like.
[0003]
As this electroless plating apparatus, there are a plating tank that holds the electroless plating solution while overflowing, and a vertically movable holding part that is disposed on the upper part of the plating tank and holds a workpiece such as a substrate sideways. The material to be treated held by this holding part is immersed in the plating solution in the plating tank (so-called soaking), and the material to be treated such as the substrate is held upward (face-up). And a plating solution supply unit for supplying an electroless plating solution to the upper surface (surface to be plated) of the material to be processed held by the holding unit, on the upper surface of the material to be processed held by the holding unit. In general, an electroless plating solution flowing along the surface is known.
[0004]
In recent years, with the increase in the speed and integration of semiconductor chips, as a metal material for forming a wiring circuit on a semiconductor substrate, copper (Cu) having low electrical resistivity and high electromigration resistance is used instead of aluminum or aluminum alloy. ) Is a prominent movement. This type of copper wiring is generally formed by embedding copper in a fine recess provided on the surface of the substrate. As a method of forming this copper wiring, there are methods such as CVD, sputtering and plating, but plating is common. In any case, after a copper layer is formed on the surface of the substrate, the surface is polished flat by chemical mechanical polishing (CMP).
[0005]
In this type of wiring, after planarization, the surface of the wiring is exposed to the outside, and when forming a buried wiring thereon, for example, SiO 2 in the next step of interlayer insulating film formation process 2 SiO for forming surface oxidation and contact holes during formation 2 At the time of etching and the like, there are concerns about surface contamination due to etchant of the wiring exposed at the bottom of the contact hole, resist stripping, etc., and copper diffusion in copper wiring.
[0006]
For this reason, the surface of the wiring is selectively covered with a protective film (plating film) made of, for example, a Ni-B alloy film, which is strongly bonded to a wiring material such as silver or copper and has a low specific resistance (ρ). It is conceivable to protect. Here, the Ni-B alloy film is formed by electroless plating using an electroless plating solution having, for example, nickel ions, nickel ion complexing agents, alkylamine borane or borohydride compounds as nickel ion reducing agents. By applying, it can be selectively formed on the surface of copper or the like.
[0007]
[Problems to be solved by the invention]
Electroless plating can be applied to the main embedding material of copper wiring (Cu), formation of seed layer on barrier metal, or reinforcement of seed (Cu), formation of barrier metal itself, formation of lid material for copper wiring material (any Ni-P, Ni-B, Co-P, Ni-WP, Ni-Co-P, Co-WP, Co-WB), etc. The uniformity of the film thickness over the entire surface of the treatment material is required.
[0008]
Here, in electroless plating, the metal to be plated is deposited on the surface to be plated at the same time as the material to be treated comes into contact with the electroless plating solution, and the deposition rate of the plating metal varies depending on the temperature of the plating solution. For this reason, in order to form a plating film having a uniform thickness on the surface to be treated of the material to be treated, the temperature of the plating solution in the entire surface of the surface to be plated is uniform from the beginning when the plating solution contacts the material to be treated. Thus, it is required to keep this temperature constant throughout the entire plating process during contact.
[0009]
However, the conventional electroless plating apparatus generally holds a target material such as a substrate in close contact with the upper or lower surface of a holding unit having a built-in heater, and heats the target material via the heater. An electroless plating solution heated to a predetermined temperature is brought into contact with the surface to be plated of the material. For this reason, an air pool occurs between the material to be processed and the holding portion due to the unevenness of the material to be processed and the surface roughness of the holding portion, and the air pool acts as a heat insulating material. The heat conduction between the material to be treated and the holding part varies greatly, and a sheet of Teflon (trade name) having a poor thermal conductivity is generally adhered to the surface of the holding part. The temperature on the entire surface of the material to be treated is not uniform, and there is a problem in temperature uniformity.
[0010]
That is, the rate and film quality of electroless plating largely depend on the temperature of the electroless plating solution, and in order to ensure the uniformity of the film thickness over the entire surface of the material to be processed, the temperature of the plating solution is set to It is desirable to control the entire surface within a range of ± 1 ° C. However, in the conventional electroless plating apparatus, the temperature of the plating solution that contacts the material to be treated during plating varies by about ± 5 ° C. It was difficult to meet this demand. Furthermore, the escape of heat from the holding part and the escape of heat from the surface of the plating solution have been factors that reduce the temperature of the outer peripheral part of the material to be processed. As described above, even in the electroplating apparatus, the temperature on the entire surface of the material to be processed is not uniform and there is a problem in temperature uniformity.
[0011]
The present invention has been made in view of the above, and made it possible to easily form a uniform plating film on the surface to be treated of the material to be treated. Electroless Plating equipment and Electroless An object is to provide a plating method.
[0012]
[Means for Solving the Problems]
In the first aspect of the invention, the outer peripheral edge of the surface to be plated is With seal ring Seal With the surface to be plated facing upward Material to be treated Keep Holding Then, a plating tank surrounded by the seal ring and opening upward is formed on the surface to be plated. A holding fluid and a heating fluid that heats the material to be processed by contacting the back surface of the material to be processed held by the holding unit A heating fluid consisting of warm water, alcohol or organic solution and having the same temperature as the plating solution below A heated fluid holding part for holding the surface, and a plated surface of the material to be processed held by the holding part Inside the plating tank formed on In Heated to a given temperature And a plating solution supply unit that supplies the plating solution. Electroless It is a plating device.
[0013]
In this way, the heating fluid is brought into contact with the back surface of the material to be processed to heat the material to be processed, so that the heating fluid follows the irregularities on the back surface of the material to be processed and comes into contact with the entire surface. The material to be processed can be efficiently heated in a short time by efficiently conducting heat to the material to be processed and using a fluid having a large heat capacity as a heat source. For example, by bringing warm water controlled to a temperature of 60 ° C. into contact with the back surface of the semiconductor wafer, the semiconductor wafer can be heated to a surface temperature of 60 ° C. in about 2 to 3 seconds. In addition, since the entire material to be treated is not immersed in the plating solution, the management of the plating solution is facilitated.
[0016]
Claim 2 The invention described in , Above the plating tank While covering freely open and close, Inside the plating tank Lid with heater to prevent heat dissipation of plating solution supplied to Further It is characterized by having Electroless according to claim 1 It is a plating device. Thereby, the heat dissipation from the plating solution surface supplied on the to-be-plated surface can be suppressed.
[0018]
Claim 3 The invention according to claim 2, wherein the holding portion is configured to be vertically movable and rotatable. 1 or 2 Described Electroless It is a plating device. Thereby, a holding part can be lowered | hung and the back surface of the to-be-processed material hold | maintained by the holding part can be made to contact a heating fluid. In addition, by rotating the holding part, it is possible to evenly wet the plating surface with the plating solution supplied to the surface to be treated of the material held by the holding part, or to drain the plating solution after plating. it can.
[0019]
Claim 4 The invention according to claim 1, wherein the holding portion is configured to be tiltable. 3 Either One paragraph Described in Electroless It is a plating device. Thereby, in a state where the material to be processed held by the holding unit is inclined with respect to the water surface of the heating fluid, the back surface of the material to be processed is brought into contact with the heating fluid, and then the processing material is returned to the horizontal state It is possible to prevent bubbles from remaining on the back surface of the material to be processed. Further, by inclining the material to be treated after the end of plating, the plating solution on the surface to be treated of the material to be treated can be easily collected and discharged at one place.
[0020]
Claim 5 In the invention described in the above, the plating solution supply unit is movable up and down, Plating tank A position covering the top of At the side of the position 2. A swingable swinging arm having a head portion that also serves as a lid that is movable between a retracted position and a plating solution supply nozzle attached to the head portion. 4 Either One paragraph Described in Electroless It is a plating device. Thereby, in the plating process, the head unit is positioned at a predetermined position that covers the upper side of the material to be processed held by the holding unit, and otherwise, the head unit is retracted to the retracted position so that the head unit is processed. It is possible to prevent the conveyance of the material from being hindered.
[0021]
Claim 6 In the invention described in the above, the plating solution supply unit holds a predetermined amount of plating solution for one plating, and the plating solution is self-weighted from the plating solution supply nozzle. Inside the plating tank A plating solution holding tank supplied to the plating solution and a mechanism for maintaining the plating solution held in the plating solution holding tank at a predetermined temperature. 5 Described Electroless It is a plating device. Thus, for example, when performing copper plating for forming a protective film on a wafer surface having a diameter of 200 mm by electroless plating, about 100 to 200 cc of plating solution is applied to the surface of the wafer having a diameter of 300 mm. When performing, about 200 to 400 cc of plating solution is required, but this predetermined amount of plating solution is kept at a constant temperature without lowering the solution temperature, and is instantaneously (for example, by free fall) 1 to 5 seconds) can be supplied to the surface of the material to be treated.
[0022]
Claim 7 In the invention described in the above, the head portion holds the plating pretreatment liquid, and the plating pretreatment liquid is self-weighted. Inside the plating tank A plating pretreatment liquid holding tank is provided for supplying to the substrate. 5 or 6 Described Electroless It is a plating device. Examples of the plating pretreatment liquid include a cleaning liquid that performs pretreatment cleaning and a catalyst application liquid that performs a catalyst application process. Thereby, in the state which hold | maintained the to-be-processed material in the holding | maintenance part, for example, pre-plating processes, such as washing | cleaning and catalyst provision, and a plating process can be performed continuously by 1 tank. As this cleaning liquid, H 2 SO 4 , HF, HCl, NH 3 , DMAB (dimethylamine borane) or oxalic acid may be used as a catalyst-providing liquid such as PdSO. 4 And PdCl 2 Etc.
[0023]
Claim 8 In the invention described in (2), the head portion includes the Inside the plating tank A pure water supply nozzle for supplying pure water to the water is provided. 5 to 7 Either One paragraph Described in Electroless It is a plating device. Thereby, the plating treatment and the rinsing with pure water after the plating treatment can be continuously performed in one tank.
[0024]
Claim 9 The invention described in the above Inside the plating tank A plating solution recovery nozzle for recovering the plating solution supplied to the substrate is further provided. 8 Either One paragraph Described in Electroless It is a plating device. Thereby, by recovering the plating solution from the plating solution recovery nozzle and reusing it, the amount of the plating solution used can be reduced and the running cost can be reduced.
[0025]
Claim 10 According to the invention described in item 3, the material to be processed held by the holding unit The plating tank of Upward An inert gas introduction part is further provided for introducing an inert gas into a space between the head part and the head part positioned so as to cover the atmosphere, and maintaining the space in an inert gas atmosphere at a predetermined temperature. Claims 7 to 9 Either One paragraph Described in Electroless It is a plating device. As a result, an inert gas is introduced into a space between the material to be processed held by the holding part during the plating process and the head part covering the upper surface of the material to be processed, and this space is filled with an inert gas atmosphere at a predetermined temperature. In this way, the surface of the plating solution comes into contact with the air, oxygen in the air is taken into the plating solution, the amount of dissolved oxygen in the plating solution increases, and the oxidizing action of the reducing agent is suppressed to prevent plating. It is possible to prevent precipitation from becoming difficult, and at the same time, it is possible to prevent the temperature of the plating solution from decreasing during plating. In the case of a reducing agent that easily decomposes (for example, DMAB, GOA), it is possible to extend the life of the liquid by preventing contact with air. This inert gas is, for example, N 2 The temperature of the gas is, for example, about 60 to 70 ° C., preferably about 65 to 70 ° C. when the temperature of the plating solution is 70 ° C.
[0026]
Claim 11 The invention according to claim 2, further comprising a cleaning liquid introduction section for cleaning by flowing a cleaning liquid into the plating liquid holding tank and the plating liquid supply nozzle. 6 to 10 Either One paragraph Described in Electroless It is a plating device. Thereby, the deposit | attachment produced | generated on the wall surface of the plating solution holding tank or the plating solution supply nozzle can be removed periodically or at an arbitrary time. Examples of the cleaning liquid include pure water and HNO. 3 , Cleaning chemicals such as aqua regia or HF.
[0027]
Contract Claim 12 The invention described in The peripheral edge of the plate was sealed with a seal ring and held with the surface to be plated facing upward, and a plating tank surrounded by the seal ring and opened upward was formed on the surface to be plated The back side of the workpiece , Consisting of hot water, alcohol or organic solution, at the same temperature as the plating solution below Treated by contact with heated fluid Material On the surface to be plated while heating Heated to a predetermined temperature in the formed plating tank Plating is performed by supplying a predetermined amount of plating solution. Electroless It is a plating method.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of copper wiring formation in a semiconductor device in the order of steps. First, as shown in FIG. 1A, SiO is formed on a conductive layer 1a on a semiconductor substrate 1 on which a semiconductor element is formed. 2 An insulating film 2 is deposited, and a contact hole 3 and a wiring groove 4 are formed in the insulating film 2 by, for example, lithography / etching technique. A copper seed layer 6 as a power feeding layer for electrolytic plating is formed by sputtering or the like.
[0029]
Then, as shown in FIG. 1B, the surface of the semiconductor substrate W is plated with copper so that the contact holes 3 and the grooves 4 of the semiconductor substrate W are filled with copper, and a copper layer is formed on the insulating film 2. 7 is deposited. Thereafter, the copper layer 7 on the insulating film 2 is removed by chemical mechanical polishing (CMP), and the surface of the copper layer 7 filled in the contact hole 3 and the wiring groove 4 and the surface of the insulating film 2 Are almost coplanar. Thereby, as shown in FIG. 1C, a wiring 8 composed of the copper seed layer 6 and the copper layer 7 is formed inside the insulating film 2. Next, for example, electroless Ni—B plating is applied to the surface of the substrate W, and a protective film (plating film) 9 made of a Ni—B alloy film is formed on the exposed surface of the wiring 8 as shown in FIG. Is selectively formed to protect the wiring 8.
[0030]
2 and 3 show an electroless plating apparatus according to an embodiment of the present invention. This electroless plating apparatus is used, for example, for forming the barrier layer 5 in FIG. 1, reinforcing the copper seed layer 6, depositing the copper layer 7, and further forming a protective film (plating film) 9.
[0031]
The electroless plating apparatus 10 includes a substrate holding unit 12 that holds a substrate (material to be processed) W such as a semiconductor wafer with the surface (surface to be plated) of the substrate W facing upward (face-up). The substrate holding unit 12 includes a processing tank 14 having a heating fluid holding unit 40 for holding a heating fluid for heating the substrate W and a substrate pressing unit 16 surrounding the processing tank 14 as described below. The substrate pressing portion 16 is integrally connected with an extending portion 18 that extends upward from the processing tank 14, and a seal ring 20 is provided below the inner peripheral edge of the extending portion 18. Protrusively installed.
[0032]
The processing tank 14 is connected to the upper end of a main shaft 24 that rotates via a belt 23 as the motor 22 is driven, and a step 14 a along the size of the substrate W is provided on the upper surface. On the other hand, the substrate pressing portion 16 is connected to the upper end of a rod 28 erected on the periphery of a base 26 that surrounds the main shaft 24. Further, a cylinder 30 is disposed between the base 26 and a flange 24 a provided on the main shaft 24, and the substrate pressing portion 16 moves up and down relatively with respect to the processing tank 14 as the cylinder 30 operates. It has become. Further, the base 26 is provided with a push-up pin 32 that protrudes upward and reaches the lower side of the extending portion 18 of the substrate pressing portion 16. A through hole 14b penetrating therethrough is provided.
[0033]
Thereby, in a state where the substrate pressing portion 16 is relatively raised with respect to the processing tank 14, the substrate W is inserted therein, and the substrate W is placed and held on the upper end of the push-up pin 32, In this state, the substrate pressing portion 16 is lowered relative to the processing tank 14 so that the substrate W is positioned in the step 14a on the upper surface of the processing tank 14, and further lowered, whereby the seal ring 20 is moved to the substrate W. The substrate W is held in pressure contact with the outer peripheral edge of the upper surface of the substrate, thereby holding the substrate W, thereby forming a plating tank 34 surrounded by the upper surface of the substrate W and the seal ring 20 and opened upward. The holding of the substrate W is released by the reverse operation. Further, as the motor 22 is driven, the processing tank 14 and the substrate pressing unit 16 are integrally rotated while the substrate W is held by the substrate holding unit 12.
[0034]
A heating fluid holding unit 40 that holds a heating fluid such as warm water, alcohol, or an organic solution, and heats the substrate W by bringing the back surface of the substrate W into contact with the heating fluid is provided on the upper surface of the processing tank 14. That is, the heating fluid holding unit 40 FIG. As shown in FIG. 5, the recess 42 is formed in a circular shape along the shape of the substrate W continuously from the step 14a, and a plurality of flow channel grooves 44 that are formed deeper than the recess 42 and extend radially. The flow channel 44 reaches the outer peripheral portion of the processing tank 14 at the same depth. Each channel groove 44 communicates with a fluid passage 24b provided inside the main shaft 24. Further, the fluid passage 24b is, for example, a pure water supply source when heated pure water is used as a heating fluid. Is connected to a fluid supply pipe 48 having a pure water heating section 46 for heating pure water to the same temperature as the plating temperature, for example, 60 ° C.
[0035]
As a result, the heating fluid (hot water) supplied from the pure water supply source and heated by the pure water heating unit 46 passes through the fluid passage 24 b and flows into the heating fluid holding unit 40, and mainly enters the flow channel groove 44. After flowing along, it flows out of the processing tank 14.
[0036]
The heating fluid that has flowed into the heating fluid holding unit 40 in this way contacts the back surface of the substrate W held by the substrate holding unit 12 and heats the substrate W, whereby the heating fluid is transferred to the substrate. By following the irregularities on the back surface of W and making contact with the entire surface, increasing the contact area to efficiently conduct heat to the substrate W, and using a heating fluid such as hot water having a large heat capacity as a heat source, the substrate W can be heated more uniformly in a short time. For example, by bringing warm water controlled to a temperature of 60 ° C. into contact with the back surface of the semiconductor wafer, the semiconductor wafer can be heated to a surface temperature of 60 ° C. in about 2 to 3 seconds. And since the whole board | substrate W is not immersed in a plating solution, management of a plating solution becomes easy.
[0037]
Furthermore, in this example, the heater 50 is built in the processing tank 14, and the heating fluid flowing in the heating fluid holding unit 40 is heated by the heater 50, so that the temperature of the heating fluid can be prevented from gradually decreasing. It is like that.
[0038]
Around the substrate pressing portion 16, there is disposed a scattering prevention cover 52 that prevents the heated fluid from scattering and collects the heated fluid and discharges it from the drain 52a. Further, a pair of lids 58 that are positioned above the scattering prevention cover 52 and that can be opened and closed via a motor 56 and that cover the surface of the substrate W held by the substrate holding unit 12 and form a space close to hermetic sealing. Has been placed. The lid body 58 may be constituted by a single plate, for example.
[0039]
Thus, the lid 58 is closed during plating and the substrate W is positioned in a space close to hermetic sealing, so that heat from the substrate W is prevented by the lid 58 and the temperature of the substrate W during plating is more uniform. In addition, when the substrate W is moved up and down while being held by the substrate holding portion 12, it is possible to prevent the lid 58 from interfering with the substrate holding portion 12 by opening the lid 58. .
[0040]
Further, a plating solution (electroless plating solution) 60 heated to a predetermined temperature, for example, 60 ° C., is placed in the plating tank 34 formed by the upper surface of the substrate W and the seal ring 20, located above the substrate holding unit 12. A plating solution supply unit 62 for supplying the liquid is disposed. The plating solution supply unit 62 has a swingable arm 64, and uniformly sprays the plating solution 60 toward the substrate W held by the substrate holding unit 12 from an injection nozzle 66 provided at the tip of the arm 64. It is like that. The temperature of this plating solution is, for example, about 25 to 90 ° C, preferably about 55 to 85 ° C, and more preferably about 60 to 80 ° C.
[0041]
Although not shown, a plating solution recovery nozzle that is positioned above the substrate holding unit 12 and sucks and recovers the plating solution in the plating tank 34 and can freely move up and down, and the surface of the substrate W after plating. A cleaning nozzle for supplying a cleaning liquid such as ultrapure water is disposed.
[0042]
In the electroless plating apparatus according to this embodiment, the substrate W is first inserted into the substrate pressing portion 16 in a state where the substrate pressing portion 16 is relatively raised with respect to the processing tank 14, and It is placed and held on the raising pin 32. At this time, the lid 58 is in an open position. On the other hand, a heating fluid such as warm water heated to the same temperature as the plating solution 60, for example, 60 ° C., is introduced into the heating fluid holding unit 40 of the processing tank 14, and is allowed to overflow through the flow channel groove 44.
[0043]
In this state, the substrate pressing portion 16 is lowered relative to the processing bath 14, the substrate W is positioned in the step 14a on the upper surface of the processing bath 14, and further lowered, whereby the seal ring 20 is moved to the substrate W. The substrate W is held in pressure contact with the outer peripheral edge of the upper surface to hold the substrate W, thereby forming a plating tank 34 surrounded by the upper surface of the substrate W and the seal ring 20 and opened upward. At the same time, the back surface of the substrate W is brought into contact with the heating fluid introduced into the heating fluid holding unit 40 of the processing tank 14.
[0044]
Then, when the substrate W is heated by the heating fluid and reaches the same temperature as the heating fluid, for example, 60 ° C., the plating solution 60 heated to a predetermined temperature, for example, 60 ° C., from the spray nozzle 66 of the plating solution supply unit 62. Is injected into a plating tank 34 surrounded by the seal ring 20 on the upper surface of the substrate W (for example, about 100 cc to 200 cc for a 200 mm diameter wafer). Since the heating fluid supply timing can be adjusted to match the plating solution injection timing, Substrate holder 12 The substrate surface is not dried between the time when the substrate is placed and the plating solution is injected.
[0045]
Then, the lid 58 is closed to prevent heat dissipation from the surface of the substrate W, and the heating fluid introduced into the heating fluid holding unit 40 is heated by the heater 50 as necessary, and the temperature of the heating fluid is reduced. Prevents lowering during plating. Thereby, the substrate W is maintained at the temperature of the heating fluid over the entire surface, and a plating film having a uniform thickness grows. Moreover, since the outer peripheral edge of the substrate W is also immersed in the heating fluid, the temperature of the outer peripheral edge of the substrate does not decrease. At this time, for example, the substrate W can be rotated to make the hydrogen density and dissolved oxygen concentration of the surface to be plated uniform.
[0046]
After the plating process is completed, the introduction of the heating fluid into the heating fluid holding unit 40 is stopped, and the plating solution in the plating tank 34 surrounded by the seal ring 20 on the upper surface of the substrate W is discharged from the introduction side. Remove by suction. Then, while rotating the substrate W, a cleaning liquid is sprayed from a cleaning liquid nozzle (not shown) toward the surface to be plated of the substrate W, and the surface to be plated is cooled and diluted and cleaned at the same time. Stop.
[0047]
Then, the substrate pressing portion 16 is raised relative to the processing tank 14, the substrate W is lifted by the push-up pin 32, and the holding of the substrate W is released. Transport to process.
[0048]
FIG. 4 shows the overall configuration of a plating apparatus that performs a series of plating processes by the electroless plating apparatus 10. The plating apparatus includes a pair of electroless plating apparatuses 10 and a load / unload unit 70, such as a catalyst process for applying a Pd catalyst and an oxide film removing process for removing an oxide film attached to the exposed wiring surface. It has a pre-plating processing device 72 that performs processing, a rough-cleaning temporary placement unit 74, and a post-cleaning device 76, and further transports the substrate W between the load / unload unit 70, the post-cleaning device 76, and the temporary placement unit 74. And a second transport device 78b for transporting the substrate W between the electroless plating device 10, the pre-plating processing device 72, and the temporary placement unit 74.
[0049]
Next, a series of plating processes by the plating apparatus configured as described above will be described. First, the substrate W held on the load / unload unit 70 is taken out by the first transfer device 78 a and placed on the temporary placement unit 74. The second transport device 78b transports this to the plating pretreatment device 72, where PdCl 2 A pre-plating process such as a catalyst applying process using a catalyst such as a liquid or an oxide film removing process for removing an oxide film adhering to the exposed wiring surface is performed, followed by rinsing.
[0050]
The second transfer device 78b further carries the substrate W to the electroless plating apparatus 10, and performs an electroless plating process using a predetermined reducing agent and a predetermined plating solution. Next, the substrate after plating is taken out from the electroless plating apparatus 10 by the second transfer device 78 b and is carried to the temporary placement portion 74. In the temporary placement section 74, the substrate is roughly cleaned. Then, the first transport device 78 a transports the substrate to the post-cleaning device 76, and after that, the cleaning device 76 performs finishing cleaning with a pencil sponge and drying by spin drying, and returns to the load / unload unit 70. The substrate is later transferred to a plating apparatus or an oxide film forming apparatus.
[0051]
FIG. 5 shows the overall configuration of a plating apparatus that performs a series of plating processes (lid plating processes) for forming the protective film 9 shown in FIG. The plating apparatus includes a load / unload section 80, a pretreatment section 82, a Pd adhesion section 84, a plating pretreatment section 86, an electroless plating apparatus 10, and a cleaning / drying treatment section 88. A transport device 92 is provided which can travel along the path and transfer substrates between them.
[0052]
Next, a series of plating processes (lid plating process) performed by the plating apparatus configured as described above will be described. First, the substrate W held by the load / unload unit 80 is taken out by the transfer device 92 and transferred to the pretreatment unit 82, where the substrate is subjected to pretreatment for cleaning the substrate surface again, for example. Then, Pd is adhered to the surface of the copper layer 7 (see FIG. 1) by the Pd adhesion portion 84 to activate the exposed surface of the copper layer 7, and then the plating pretreatment portion 86 performs pretreatment for plating such as neutralization. Apply processing. Next, it conveys to the electroless-plating apparatus 10, and performs the selective electroless-plating by Co-WP, for example on the surface of the activated copper layer 7, Thereby, FIG.1 (d) is carried out. As shown, the exposed surface of the copper layer 7 is protected by a Co—WP film (protective film) 9. Examples of the electroless plating solution include a cobalt salt and a tungsten salt to which a reducing agent, a complexing agent, a pH buffering agent, and a pH adjusting agent are added.
[0053]
The surface exposed after polishing is subjected to, for example, electroless Ni—B plating, and a protective film (plating film) 9 made of a Ni—B alloy film is selectively formed on the surface exposed to the outside of the wiring 8. Thus, the wiring 8 may be protected. The thickness of the protective film 9 is about 0.1 to 500 nm, preferably about 1 to 200 nm, and more preferably about 10 to 100 nm.
[0054]
The electroless Ni-B plating solution for forming the protective film 9 contains, for example, nickel ions, nickel ion complexing agents, alkylamine borane or borohydride compounds as nickel ion reducing agents, and is used for pH adjustment. What adjusted pH to 5-12 using TMAH (tetramethylammonium hydroxide) is used.
[0055]
Next, the substrate W after the lid plating process is transported to the cleaning / drying processing unit 88 to perform cleaning / drying processing, and the substrate W after the cleaning / drying is transferred to the cassette of the loading / unloading unit 80 by the transporting device 92. Return to.
In this example, the exposed surface of the copper layer 7 activated by depositing Pd is selected by a Co—WP film before the Co—WP electroless plating process is performed as the lid plating process. Although an example in which coating is performed is shown, it is needless to say that the present invention is not limited to this.
[0056]
FIG. 6 shows an electroless plating apparatus according to another embodiment of the present invention. The electroless plating apparatus 10c includes a disc-shaped lid 58a that can be moved up and down to cover the surface of the substrate W held by the substrate holder 12 so as to be freely opened and closed, and the lid 58a and the plating solution supply unit 62 are provided. A heater 59 that is integrated and surrounded by the substrate W and the lid 58a and that keeps the thermal insulation space near the temperature of the plating solution is built in the lid 58a. Other configurations are the same as those shown in FIGS. According to this example, heat dissipation from the surface of the plating solution supplied onto the surface to be plated of the substrate W can be suppressed. Note that the processing tank 14 may also include a heater 50 so that it is heated from above and below.
[0057]
FIG. 7 shows an electroless plating apparatus according to still another embodiment of the present invention. The electroless plating apparatus 10 a includes a substrate holding unit 100 that holds a substrate (material to be processed) W with the surface (surface to be plated) of the substrate W facing upward (face-up), and a lower portion of the substrate holding unit 100. It has the processing tank 102 arranged. The substrate holding part 100 has a housing 104 having a holding claw 104a projecting inwardly at the lower end and mounting and holding the outer peripheral edge of the substrate W, and a substrate having a cylindrical shape and a sealing claw 106a projecting inwardly at the lower end. The seal ring 108 is attached to the lower surface of the seal claw 106a so as to protrude downward. Further, the substrate pressing portion 106 is disposed inside the housing 104 and moves up and down relatively with respect to the housing 104 in accordance with the operation of the cylinder 110 attached to the housing 104.
[0058]
Thus, with the substrate pressing portion 106 raised relative to the housing 104, the substrate W is inserted therein, and the substrate W is placed and held by the holding claws 104a of the housing 104. By lowering the substrate pressing portion 106 relative to the housing 104, the seal ring 108 is brought into pressure contact with the outer peripheral edge portion of the upper surface of the substrate W, and the substrate W is sealed and held thereby. A plating tank 112 surrounded by the upper surface of W and the substrate pressing portion 106 and opened upward is formed. The holding of the substrate W is released by the reverse operation.
[0059]
The substrate holding unit 100 is connected to a motor 114 via the housing 104, and the motor 114 is fixed to the free end of the arm 116. Further, the arm 116 is attached to a vertical moving plate 120 that moves up and down as the motor 118 is driven, and tilts in the vertical direction as the tilting motor 121 is driven. As a result, the substrate holder 100 can rotate, move up and down, and tilt, and can perform these combined operations.
[0060]
On the upper surface of the processing tank 102, a heating fluid holding unit 122 is provided that is formed of a recess having an inner diameter larger than that of the substrate W and holds the heating fluid such as hot water to heat the substrate W. The heating fluid holding unit 122 is surrounded by the overflow weir 124, a heating fluid discharge path 126 is formed outside the overflow weir 124, and a drain 128 is provided in the heating fluid discharge path 126. Furthermore, when using pure water heated as a heating fluid, for example, the heating fluid holding unit 122 includes a pure water heating unit 46 that extends from a pure water supply source and heats pure water to the same plating temperature as, for example, 60 ° C. It is connected to a heating fluid supply pipe 48 interposed in the middle.
[0061]
As a result, the heating fluid (hot water) supplied from the pure water supply source and heated by the pure water heating unit 46 flows into the heating fluid holding unit 122 and overflows the overflow weir 124 to the outside of the processing tank 102. It comes to leak.
[0062]
Further, on the side of the substrate holding unit 100, a plating solution (electroless plating solution) 60 heated to a predetermined temperature, for example, 60 ° C. in a plating tank 112 formed by the upper surface of the substrate W and the substrate pressing unit 106. Is disposed. The plating solution supply unit 130 has an injection nozzle 132 that injects a plating solution at the tip.
[0063]
According to this embodiment, the substrate holding unit 100 holding the substrate W is lowered as described above, and the back surface of the substrate W is brought into contact with the heating fluid held by the heating fluid holding unit 122 to heat the substrate W. When the substrate W reaches the plating temperature, the plating solution at a predetermined temperature is injected from the plating solution supply unit 130 into the plating tank 112 formed by the upper surface of the substrate W and the substrate pressing unit 106. I do.
[0064]
Here, according to this example, the back surface of the substrate W is brought into contact with the heating fluid in a state where the substrate W held by the substrate holding unit 100 is inclined with respect to the water surface of the heating fluid in the processing tank 102, and thereafter By returning the substrate W horizontally, it is possible to prevent bubbles from remaining on the back surface of the substrate W. In addition, by inclining the substrate W after the end of plating, the electroless plating solution on the surface to be plated of the substrate W can be easily collected and discharged at one place.
[0065]
FIG. 8 shows an electroless plating apparatus according to still another embodiment of the present invention. The electroless plating apparatus 10b is different from the electroless plating apparatus 10a shown in FIG. 7 as follows. That is, the housing 104 is extended downward, and the belt 146 is stretched between the driven roller 140 attached to the downwardly extending portion of the housing 104 and the driving roller 144 attached to the motor 142, and the upper and lower sides are interposed via the motor 148. The motor 142 is fixed to a flange 152 attached to a moving vertical moving plate 150 so that the substrate holder 100 rotates and moves up and down.
[0066]
Further, a heating fluid supply passage 102a and a heating fluid discharge passage 102b are provided inside the processing tank 102, and the periphery of the processing tank 102 is surrounded by a scattering prevention cover 154 having a drain 154a for discharging a plating solution. Further, the plating solution supply unit 156 extends vertically on the sides of the anti-scattering cover 154, bends at a right angle, reaches a position just above the center of the substrate holding unit 100, and is attached to the tip of the injection nozzle downward. A plating solution is sprayed from 158 toward the upper surface (surface to be plated) of the substrate W. Other configurations are the same as those shown in FIG.
[0067]
According to this example, the rotation and vertical movement mechanism of the substrate holding unit 100 is disposed below the housing 104, so that the upper side of the substrate holding unit 100 is opened, and the plating solution supply unit 156 is placed above the substrate holding unit 100. Accordingly, the plating solution can be easily supplied.
[0068]
9 and 10 show an electroless plating apparatus according to still another embodiment of the present invention. The electroless plating apparatus 10d includes a substrate holding unit 200 that holds a substrate (material to be processed) W with the surface (surface to be plated) of the substrate W facing upward (face up). The substrate holding unit 200 includes a processing tank 202 having a heating fluid holding unit 216 for holding a heating fluid for heating the substrate W and a cylindrical housing 204 surrounding the processing tank 202 as described below. A hollow disk-like support plate 206 is fixed to the upper end of the housing 204, and a seal ring 208 is attached to the inner peripheral surface of the support plate 206 so as to protrude downward.
[0069]
A ring-shaped substrate stage 210 that supports the peripheral portion of the substrate W and a guide ring 212 that is located on the outer peripheral portion of the substrate W and prevents the displacement of the substrate W are attached to the upper surface of the processing tank 202. The processing tank 202 is movable up and down relatively with respect to the housing 204, and the substrate W is inserted into the housing 204 with the processing tank 202 lowered relative to the housing 204. The substrate W is placed on and held on the upper surface of the substrate stage 210, and in this state, the processing tank 202 is raised relative to the housing 204, whereby the seal ring 208 is placed on the outer peripheral edge of the upper surface of the substrate W. The substrate W is held by pressure contact and sealed, thereby forming a plating bath 214 surrounded by the upper surface of the substrate W and the seal ring 208 and opened upward. The holding of the substrate W is released by the reverse operation. Further, as the motor (not shown) is driven, the processing tank 202 and the housing 204 rotate integrally while holding the substrate W by the substrate holding unit 200.
[0070]
A heating fluid holding unit 216 that holds a heating fluid such as warm water, alcohol, or an organic solution and heats the substrate W by bringing the heating fluid into contact with the back surface of the substrate W is provided on the upper surface of the processing tank 202. The heating fluid holding unit 216 is configured by a trumpet-shaped channel that opens upward, and the heating fluid holding unit 216 includes, for example, a pure water heating unit that heats pure water to 60 ° C., as described above. It is connected to a fluid supply pipe interposed in the middle. The heated fluid that has overflowed the heated fluid holding portion 216 flows out between the processing tank 202 and the housing 204 and flows out to the outside. As described above, a scattering prevention cover (not shown) for preventing the heating fluid from scattering is disposed around the housing 204.
[0071]
A plating solution (electroless plating solution) 60 heated to a predetermined temperature, for example, 60 ° C., is supplied into the plating tank 214 formed by the upper surface of the substrate W and the seal ring 208 located above the substrate holding unit 200. A plating solution supply unit 220 is disposed. The plating solution supply unit 220 has a swing arm 222 that can move up and down and swing, and is formed in a disk shape that is formed at the free end of the swing arm 222 so as to substantially cover the opening of the plating tank 214. The head portion 224 is attached. Then, as the swing arm 222 swings, the head portion 224 moves between a position covering the upper portion of the substrate holding portion 200 and a retracted position as shown in FIG. In the processing, the head unit 224 is positioned at a predetermined position covering the upper side of the substrate W held by the substrate holding unit 200, and otherwise, the head unit 224 is retracted to the retracted position, so that the head unit 224 is retracted to the substrate W. It is designed to prevent obstructing the conveyance and the like.
[0072]
A plating solution supply nozzle 226 that is located substantially at the center of the head portion 224 and opens downward has a volume that holds a predetermined amount of plating solution for one plating operation, located above the plating solution supply nozzle 226. A plating solution holding tank 228 is disposed, and the plating solution supply nozzle 226 and the plating solution holding tank 228 are connected by a plating solution pipe 230. A plating solution supply pipe 232 and a plating solution discharge pipe 234 are connected to the plating solution holding tank 228, respectively. Further, an opening / closing valve (not shown) is connected to the plating solution pipe 230, the plating solution supply pipe 232, and the plating solution discharge pipe 234. Z)).
[0073]
Thereby, at the time of non-plating, the opening / closing valve of the plating solution pipe 230 is closed, the opening / closing valve of the plating solution supply pipe 232 and the plating solution discharge pipe 234 is opened, and the plating solution in the plating solution holding tank 228 is circulated. A predetermined amount of plating solution is always held at a constant temperature inside the plating solution holding tank 228. Then, the opening / closing valve of the plating solution pipe 230 is opened, and the opening / closing valves of the plating solution supply pipe 232 and the plating solution discharge pipe 234 are closed, so that a predetermined amount of a predetermined amount held in the plating solution holding tank 228 is maintained. The plating solution can be supplied instantaneously (for example, for 1 to 5 seconds) from the plating solution supply nozzle 226 into the plating tank 214 formed by the upper surface of the substrate W and the seal ring 208 by its own weight.
[0074]
Located above the plating solution supply nozzle 226 is, for example, a plating pretreatment solution holding tank 236 that holds a plating pretreatment solution such as a washing solution for performing plating pretreatment washing or a catalyst application solution for performing a catalyst application treatment. The plating pretreatment liquid holding tank 236 and the plating liquid supply nozzle 226 are connected by a plating pretreatment liquid pipe 238. Furthermore, a plating pretreatment liquid supply pipe 240 and a plating pretreatment liquid discharge pipe 242 are connected to the plating pretreatment liquid holding tank 236, respectively, and a plating pretreatment liquid pipe 238, a plating pretreatment liquid supply pipe 240, and a plating pretreatment. An open / close valve (not shown) is interposed in the liquid discharge pipe 242.
[0075]
Thus, as in the case of the above-described plating solution, during the non-plating pretreatment, a predetermined amount of the plating pretreatment solution is always held at a constant temperature in the plating pretreatment solution holding tank 236, and the plating pretreatment is performed. Sometimes, the plating pretreatment liquid held inside the plating pretreatment liquid holding tank 236 via the opening / closing valve is instantaneously (for example, 1 to 5 seconds) from the plating liquid supply nozzle 226 to the upper surface of the substrate W. It can be supplied into the plating tank 214 formed by the seal ring 208. In this example, the plating solution supply nozzle 226 also serves as a nozzle for supplying a plating pretreatment solution, but may be provided separately. When performing a plurality of plating pretreatments, a plurality of plating pretreatment liquid holding tanks are provided, and the plating pretreatment liquids held in the respective plating pretreatment liquid holding tanks are sequentially supplied to the surface to be plated of the substrate W. Of course, you may do it.
[0076]
By comprising in this way, in the state which hold | maintained the board | substrate W with the board | substrate holding | maintenance part 200, pre-processing and plating processes, such as washing | cleaning and catalyst provision, can be continuously performed in 1 tank. As a cleaning solution for pretreatment cleaning of this plating, H 2 SO 4 , HF, HCl, NH 3 , DMAB (dimethylamine borane), oxalic acid, or the like may be used as a catalyst application liquid for performing the catalyst application process. 4 And PdCl 2 Etc.
[0077]
The head unit 224 includes a pure water supply nozzle 250 that supplies pure water to the upper surface (surface to be plated) of the substrate W held by the substrate holding unit 200. Thus, by supplying pure water from the pure water supply nozzle 250 to the surface of the substrate after the plating process, the plating process and the rinsing with the pure water after the plating process can be continuously performed in one tank. It has become.
[0078]
In the head part 224, a plating solution recovery nozzle 252 that recovers the plating solution supplied to the surface to be plated of the substrate W held by the substrate holding unit 200 and the surface to be plated of the substrate W held by the substrate holding unit 200 are supplied. And a plating pretreatment liquid recovery nozzle 254 for recovering the plated pretreatment liquid. As a result, the plating solution is recovered from the plating solution recovery nozzle 252 and reused, and further, if necessary, the plating pretreatment solution is recovered from the plating pretreatment solution recovery nozzle 254 and reused. Thus, the usage amount of the plating solution and the plating pretreatment solution can be reduced, and the running cost can be reduced.
[0079]
The plating solution supply nozzle 226 includes, for example, N 2 An inert gas introduction path (inert gas introduction section) 256 for introducing a heated inert gas such as a gas is connected, and the heated inert gas introduced into the plating solution supply nozzle 226 from the inert gas introduction path 256 is connected. The active gas is jetted toward the substrate W held by the substrate holding unit 200 after purging the inside of the plating solution supply nozzle 226. As a result, an inert gas is introduced into the space between the substrate W held by the substrate holder 200 and the head portion 224 positioned so as to cover the upper surface of the substrate W, and this space is inactivated at a predetermined temperature. By maintaining the gas atmosphere, the surface of the plating solution comes into contact with air, oxygen in the air is taken into the plating solution, the amount of dissolved oxygen in the plating solution increases, and the oxidizing agent of the reducing agent is suppressed. Thus, it is possible to prevent the plating from becoming difficult to deposit, and at the same time, it is possible to prevent the temperature of the plating solution from being lowered during the plating. Alternatively, before the plating solution is injected, the portion surrounded by the head portion 224 and the substrate W is kept at a predetermined temperature in an inert gas atmosphere, thereby preventing air contamination and a decrease in the solution temperature when the plating solution is injected. it can. This N 2 The temperature of the inert gas such as gas is, for example, 60 to 70 ° C. (plating solution temperature−10 ° C. to plating solution temperature), preferably 65 to 70 ° C. (plating solution) when the temperature of the plating solution is 70 ° C. The temperature is about −5 ° C. to the temperature of the plating solution.
[0080]
A cleaning liquid introduction path (cleaning liquid introduction part) 260a is connected to the plating liquid holding tank 228, and a cleaning liquid introduction path (cleaning liquid introduction part) 260b is connected to the plating pretreatment liquid holding tank 236, respectively. As a result, the cleaning liquid introduced into the plating liquid holding tank 228 from the cleaning liquid introduction path 260a sequentially flows through the inside of the plating liquid pipe 230 and the plating liquid supply nozzle 226, and from the cleaning liquid introduction path 260b, the plating pretreatment liquid. The cleaning liquid introduced into the holding tank 236 flows in this order, the plating pretreatment liquid pipe 238 and the plating liquid supply nozzle 226 in order, and the deposits generated on these inner walls can be cleaned and removed. ing. This cleaning can be performed periodically or at any time. Examples of the cleaning liquid include pure water and HNO. 3 , Cleaning chemicals such as aqua regia or HF.
[0081]
In this example, a heater 262 that is surrounded by the substrate W held by the substrate holding part 200 and the head part 224 and that keeps the heat insulation space near the temperature of the plating solution is built in the head part 224.
[0082]
The plating process by the electroless plating apparatus of this embodiment will be described with reference to FIG. First, in a state where the processing tank 202 is lowered relative to the housing 204, the substrate W is inserted into the housing 204 and placed and held on the substrate stage 210. At this time, the head unit 224 is in the retracted position. In this state, the processing tank 202 is raised relative to the housing 204, the seal ring 208 is pressed against the outer peripheral edge of the upper surface of the substrate W, and the substrate W is sealed to thereby hold the substrate W. A plating tank 214 surrounded by the upper surface of the substrate W and the seal ring 208 and opened upward is formed.
[0083]
Next, the head unit 224 is moved to a position immediately above the substrate holding unit 200 and further lowered. In this state, a predetermined amount of the plating pretreatment liquid, such as a cleaning liquid or a catalyst application liquid, held in the plating pretreatment liquid holding tank 236, by its own weight, is used as a plating liquid supply nozzle 226 that also serves as the plating pretreatment liquid supply nozzle. Then, a pre-plating process is performed by instantaneously supplying to the surface to be plated of the substrate held by the substrate holding unit 200. After this pre-plating process is completed, the pre-plating process liquid remaining on the surface to be plated of the substrate W is recovered by the pre-plating process liquid recovery nozzle 254 and reused as necessary.
[0084]
Next, a heating fluid such as hot water heated to the same temperature as the plating solution 60, for example, 70 ° C., is introduced into the heating fluid holding unit 216 of the processing tank 202, and the back surface of the substrate W held by the substrate holding unit 200 is processed. The heated fluid introduced into the heated fluid holding part 216 of the tank 202 is brought into contact with the heated fluid to overflow. Then, when the substrate W is heated with the heating fluid and reaches the same temperature as the heating fluid, for example, 70 ° C., a certain amount held in the plating solution holding tank 228 (for example, about 100 to 200 cc for a 200 mm diameter wafer and a 300 mm diameter wafer). In this case, the plating solution at a constant temperature of about 200 to 400 cc is instantaneously supplied from the plating solution supply nozzle 226 to the surface to be plated held by the substrate holding unit 200 by its own weight to perform the plating process.
[0085]
During this plating process, a heated inert gas is introduced into the plating solution supply nozzle 226 from the inert gas introduction path 256, the inside of the plating solution supply nozzle 226 is purged with this inert gas, and the substrate holding unit 200. An inert gas is introduced into a space between the substrate W held in step S1 and the head portion 224 positioned so as to cover the upper surface of the substrate W, and the space is held in an inert gas atmosphere at a predetermined temperature.
[0086]
And if necessary, the plating solution is heated by the heater 262 to prevent the temperature of the plating solution from decreasing during plating. Thereby, the substrate W is maintained at the temperature of the heating fluid over the entire surface, and a plating film having a uniform thickness grows. Moreover, since the outer peripheral edge of the substrate W is also immersed in the heating fluid, the temperature of the outer peripheral edge of the substrate does not decrease. At this time, for example, the substrate W can be rotated so that hydrogen is separated from the surface to be plated and the dissolved oxygen concentration is made uniform.
[0087]
After the plating process is completed, the introduction of the heating fluid into the heating fluid holding unit 216 is stopped, discharged from the introduction side, and the plating solution in the plating tank 214 surrounded by the seal ring 208 on the upper surface of the substrate W is removed. It is recovered from the plating solution recovery nozzle 252 by negative pressure suction or the like and reused as necessary. Then, after the introduction of the inert gas from the inert gas introduction path 256 is stopped, pure water is sprayed from the pure water supply nozzle 250 toward the plating surface of the substrate W while rotating the substrate W, The electroless plating reaction is stopped by diluting and cleaning the plated surface at the same time. Thereafter, the substrate W is rotated at a high speed to drain the liquid.
[0088]
Then, after raising the head portion 224 and retracting it to the retracting portion, the processing tank 202 is lowered relative to the housing 204 to release the holding of the substrate W, and then after plating with a robot hand or the like. The substrate is transferred to the next process.
[0089]
According to the plating apparatus of this embodiment, each treatment such as pre-plating treatment, plating treatment, pure water rinsing, and liquid removal can be continuously performed in one tank. Thereby, while preventing the surface (to-be-plated surface) of the board | substrate W from being wet, ie, drying, while performing each process, the number of tanks can be reduced and installation space can be reduced. .
[0091]
【The invention's effect】
As described above, according to the present invention, temperature unevenness occurs in the surface to be treated of the material to be treated during the plating process, or the plating temperature is prevented from changing during the plating process. A plating film having a uniform thickness can be formed on the surface to be plated of the material to be plated so that the temperature becomes more uniform over the entire surface to be plated.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of forming a copper wiring by copper plating in the order of steps.
FIG. 2 is a cross-sectional view showing an electroless plating apparatus according to an embodiment of the present invention.
3 is a plan view of the treatment tank of FIG. 2. FIG.
4 is a plan layout view showing an example of a plating apparatus provided with the electroless plating apparatus shown in FIG. 2. FIG.
FIG. 5 is a plan layout view showing another example of a plating apparatus provided with the electroless plating apparatus shown in FIG.
FIG. 6 is a cross-sectional view showing another example of the electroless plating apparatus according to the embodiment of the present invention.
FIG. 7 is a cross-sectional view showing still another example of the electroless plating apparatus according to the embodiment of the present invention.
FIG. 8 is a cross-sectional view showing still another example of the electroless plating apparatus according to the embodiment of the present invention.
FIG. 9 is a cross-sectional view showing still another example of the electroless plating apparatus according to the embodiment of the present invention.
10 is a plan view of the electroless plating apparatus shown in FIG.
FIG. 11 is a flowchart showing a processing procedure when plating is performed by the electroless plating apparatus shown in FIG. 8;
[Explanation of symbols]
6 Copper seed layer
7 Copper layer
8 Wiring
9 Protective film
10, 10a, 10b, 10c, 10d Electroless plating equipment
12, 100, 200 substrate holder
14, 102, 202 Treatment tank
16, 106 Substrate pressing part
20, 108, 208 Seal ring
24 Spindle
34, 112, 214 Plating bath
40, 122, 216 Heating fluid holding part
42 Heating fluid holding part
44 Channel groove
50,262 Heater
52,152 Anti-scatter cover
58,58a lid
60 Plating solution
62,130,156 Plating solution supply unit
66, 132, 158 Injection nozzle
70 Load / Unload Club
72 Pretreatment equipment
74 Temporary placement
76 Post-cleaning equipment
80 Load / Unload Club
82 Pre-processing section
84 Pd adhesion part
86 Pre-processing section
88 Cleaning / drying processing section
104 Housing
104a Holding claw
106a Sealing claw
124 Overflow weir
204 housing
222 Swing arm
224 head
226 Plating solution supply nozzle
228 Plating solution holding tank
236 Pretreatment solution holding tank for plating
250 Pure water supply nozzle
252 Plating solution recovery nozzle
254 Pretreatment plating liquid recovery nozzle
256 Inert gas introduction path (inert gas introduction part)
260a, 260b Cleaning liquid introduction path (cleaning liquid introduction part)

Claims (12)

被めっき面の外周縁をシールリングでシールし被めっき面を上向きにして被処理材を保して、被めっき面上に前記シールリングで包囲されて上方に開口するめっき槽を形成する保持部と、
前記保持部で保持した被処理材の裏面に接触させて被処理材を加熱する加熱流体であって、温水、アルコールまたは有機溶液からなり、下記のめっき液の温度と同じ温度の加熱流体を保持する加熱流体保持部と、
前記保持部で保持した被処理材の被めっき面上に形成される前記めっき槽内所定の温度に加熱しためっき液を供給するめっき液供給部とを有することを特徴とする無電解めっき装置。
Holding to form a plating tank which the workpiece in the upward outer periphery of the seal to the surface to be plated with the seal ring of the surface to be plated and hold, opens upward is surrounded by the seal ring on the surface to be plated And
A heating fluid that heats the material to be treated by bringing it into contact with the back surface of the material to be treated held by the holding unit, and is composed of warm water, alcohol, or an organic solution, and retains the heating fluid having the same temperature as the plating solution below. A heated fluid holding unit,
An electroless plating apparatus comprising: a plating solution supply unit configured to supply a plating solution heated to a predetermined temperature into the plating tank formed on the plating target surface of the material to be processed held by the holding unit. .
前記めっき槽の上方を開閉自在に覆うとともに、該めっき槽内に供給されためっき液の放熱を防ぐヒータを備えた蓋体を更に有することを特徴とする請求項1記載の無電解めっき装置 2. The electroless plating apparatus according to claim 1, further comprising a lid provided with a heater that covers the upper part of the plating tank so as to be openable and closable and prevents heat dissipation of the plating solution supplied into the plating tank . 前記保持部は、上下動及び回転自在に構成されていることを特徴とする請求項1または2記載の無電解めっき装置。The holding unit, an electroless plating apparatus according to claim 1 or 2, wherein it is configured to be movable vertically and rotate. 前記保持部は、チルト自在に構成されていることを特徴とする請求項1乃至のいずれか一項に記載の無電解めっき装置。The holding unit, an electroless plating apparatus according to any one of claims 1 to 3, characterized in that it is constituted tilt freely. 前記めっき液供給部は、上下動自在で、前記めっき槽の上方を覆う位置と該位置の側方の待避位置との間を移動自在な蓋体を兼ねたヘッド部を有する揺動自在な揺動アームと、このヘッド部に取付けためっき液供給ノズルを有することを特徴とする請求項1乃至のいずれか一項に記載の無電解めっき装置。The plating solution supply unit is movable up and down, and has a head unit that also functions as a lid that can move between a position covering the upper part of the plating tank and a side retracted position. The electroless plating apparatus according to any one of claims 1 to 4, further comprising a moving arm and a plating solution supply nozzle attached to the head portion. 前記めっき液供給部は、めっき1回分の所定量のめっき液を保持し該めっき液を自重で前記めっき液供給ノズルから前記めっき槽内に供給するめっき液保持タンクと、このめっき液保持タンクで保持しためっき液を所定の温度に維持する機構を更に有することを特徴とする請求項記載の無電解めっき装置。The plating solution supply unit holds a predetermined amount of plating solution for one plating and supplies the plating solution by its own weight from the plating solution supply nozzle into the plating tank, and the plating solution holding tank. 6. The electroless plating apparatus according to claim 5 , further comprising a mechanism for maintaining the held plating solution at a predetermined temperature. 前記ヘッド部には、めっき前処理液を保持し該めっき前処理液を自重で前記めっき槽内に供給するめっき前処理液保持タンクが備えられていることを特徴とする請求項5または6記載の無電解めっき装置。Said head portion, according to claim 5 or 6 further characterized in that is provided with a pre-plating treatment liquid holding tank for supplying the plating tank by its own weight and held the plating pretreatment solution plating pretreatment solution Electroless plating equipment. 前記ヘッド部には、前記めっき槽内に純水を供給する純水供給ノズルが備えられていることを特徴とする請求項5乃至7のいずれか一項に記載の無電解めっき装置。Wherein the head portion, an electroless plating apparatus according to any one of claims 5 to 7, characterized in that is provided with a pure water supply nozzle for supplying pure water to the plating tank. 前記めっき槽内に供給されためっき液を回収するめっき液回収ノズルを更に有することを特徴とする請求項1乃至のいずれか一項に記載の無電解めっき装置。The electroless plating apparatus according to any one of claims 1 to 8 , further comprising a plating solution recovery nozzle that recovers the plating solution supplied into the plating tank . 前記保持部で保持した被処理材と前記めっき槽上方を覆うように位置させた前記ヘッド部との間の空間に不活性ガスを導入し、該空間を所定の温度の不活性ガス雰囲気に保持する不活性ガス導入部を更に有することを特徴とする請求項7乃至のいずれか一項に記載の無電解めっき装置。An inert gas is introduced into a space between the material to be processed held by the holding part and the head part positioned so as to cover the upper part of the plating tank , and the space is brought to an inert gas atmosphere at a predetermined temperature The electroless plating apparatus according to any one of claims 7 to 9 , further comprising an inert gas introduction portion to be held. 前記めっき液保持タンクと前記めっき液供給ノズルの内部に洗浄液を流して洗浄する洗浄液導入部を更に有することを特徴とする請求項6乃至10のいずれか一項に記載の無電解めっき装置。The electroless plating apparatus according to any one of claims 6 to 10 , further comprising a cleaning liquid introduction section for cleaning by flowing a cleaning liquid into the plating liquid holding tank and the plating liquid supply nozzle. 被めっき面の周縁部をシールリングでシールし被めっき面を上向きにして保持して、被めっき面上に前記シールリングで包囲されて上方に開口するめっき槽を形成した被処理材の裏面を、温水、アルコールまたは有機溶液からなり、下記のめっき液と同じ温度の加熱流体に接触させて被処理材を加熱しつつ、被めっき面上に形成された前記めっき槽内に所定の温度に加熱した所定量のめっき液を供給してめっきを行うことを特徴とする無電解めっき方法。 The periphery of the surface to be plated is sealed with a seal ring, and the surface to be plated is held upward, and the back surface of the material to be treated is formed on the surface to be plated and is surrounded by the seal ring and opens upward. Heated to a predetermined temperature in the plating tank formed on the surface to be plated, which is made of hot water, alcohol or organic solution, and heated to the treatment material by contacting with the heating fluid having the same temperature as the plating solution An electroless plating method, wherein plating is performed by supplying a predetermined amount of plating solution.
JP2001319837A 2001-08-10 2001-10-17 Electroless plating apparatus and electroless plating method Expired - Fee Related JP4010791B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001319837A JP4010791B2 (en) 2001-08-10 2001-10-17 Electroless plating apparatus and electroless plating method
TW091118071A TW554069B (en) 2001-08-10 2002-08-09 Plating device and method
CNA028150368A CN1633520A (en) 2001-08-10 2002-08-12 Plating device and method
KR10-2003-7005088A KR20040030428A (en) 2001-08-10 2002-08-12 Plating device and method
EP02755912A EP1474545A2 (en) 2001-08-10 2002-08-12 Plating device and method
PCT/JP2002/008213 WO2003014416A2 (en) 2001-08-10 2002-08-12 Plating device and method
US10/482,477 US20040234696A1 (en) 2001-08-10 2002-08-12 Plating device and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-243534 2001-08-10
JP2001243534 2001-08-10
JP2001319837A JP4010791B2 (en) 2001-08-10 2001-10-17 Electroless plating apparatus and electroless plating method

Publications (2)

Publication Number Publication Date
JP2003129250A JP2003129250A (en) 2003-05-08
JP4010791B2 true JP4010791B2 (en) 2007-11-21

Family

ID=26620351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001319837A Expired - Fee Related JP4010791B2 (en) 2001-08-10 2001-10-17 Electroless plating apparatus and electroless plating method

Country Status (1)

Country Link
JP (1) JP4010791B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191520A1 (en) * 2012-06-22 2013-12-27 에스브이에스 주식회사 Apparatus for manufacturing semiconductor wafer
KR101361526B1 (en) * 2012-06-22 2014-02-13 에스브이에스 주식회사 Apparatus and Method for processing semiconductor
KR101390707B1 (en) * 2012-06-22 2014-04-30 에스브이에스 주식회사 Apparatus for processing semiconductor
KR101520048B1 (en) * 2012-06-28 2015-05-13 에스브이에스 주식회사 Apparatus for processing semiconductor
KR101536619B1 (en) * 2013-06-24 2015-07-14 에스브이에스 주식회사 Apparatus for processing semiconductor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644676B2 (en) * 2003-10-06 2011-03-02 アプライド マテリアルズ インコーポレイテッド Equipment to improve wafer temperature uniformity for face-up wet processing
US7465358B2 (en) * 2003-10-15 2008-12-16 Applied Materials, Inc. Measurement techniques for controlling aspects of a electroless deposition process
JP4861024B2 (en) * 2005-03-02 2012-01-25 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
KR20070058310A (en) * 2005-12-02 2007-06-08 도쿄 엘렉트론 가부시키가이샤 Electroless plating apparatus and electroless plating method
JP4547016B2 (en) * 2008-04-04 2010-09-22 東京エレクトロン株式会社 Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP5339235B2 (en) * 2010-01-12 2013-11-13 Ckテクニック株式会社 Electroless plating method and electroless plating apparatus for small parts
JP2012031506A (en) * 2010-06-30 2012-02-16 Tokyo Electron Ltd Metal film formation system, metal film formation method, program and computer storage medium
JP2013112846A (en) * 2011-11-28 2013-06-10 Tokyo Electron Ltd Plating processing apparatus, plating processing method and storage medium
JP5667550B2 (en) * 2011-11-28 2015-02-12 東京エレクトロン株式会社 Plating processing apparatus, plating processing method, and storage medium
JP5666419B2 (en) * 2011-11-28 2015-02-12 東京エレクトロン株式会社 Plating processing apparatus, plating processing method, and storage medium
JP5788349B2 (en) 2012-03-19 2015-09-30 東京エレクトロン株式会社 Plating processing apparatus, plating processing method, and storage medium
TW202129072A (en) * 2019-10-02 2021-08-01 日商東京威力科創股份有限公司 Apparatus for treating substrate with solution, and method for treating substrate with solution
WO2021085165A1 (en) * 2019-10-30 2021-05-06 東京エレクトロン株式会社 Substrate liquid processing method and substrate liquid processing device
KR102328866B1 (en) * 2019-12-26 2021-11-19 세메스 주식회사 Apparatus for treating substrate
KR102309576B1 (en) * 2021-07-19 2021-10-07 백운일 Rotary plating apparatus using stirring blades
CN115751892B (en) * 2022-10-19 2023-06-02 四川英创力电子科技股份有限公司 Device and method for efficiently recycling residual gold precipitation liquid on surface of printed circuit board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191520A1 (en) * 2012-06-22 2013-12-27 에스브이에스 주식회사 Apparatus for manufacturing semiconductor wafer
KR101361526B1 (en) * 2012-06-22 2014-02-13 에스브이에스 주식회사 Apparatus and Method for processing semiconductor
KR101390707B1 (en) * 2012-06-22 2014-04-30 에스브이에스 주식회사 Apparatus for processing semiconductor
US10090175B2 (en) 2012-06-22 2018-10-02 Scientific Value Solutions Co. Ltd Apparatus for manufacturing semiconductor wafer
KR101520048B1 (en) * 2012-06-28 2015-05-13 에스브이에스 주식회사 Apparatus for processing semiconductor
KR101536619B1 (en) * 2013-06-24 2015-07-14 에스브이에스 주식회사 Apparatus for processing semiconductor

Also Published As

Publication number Publication date
JP2003129250A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP4010791B2 (en) Electroless plating apparatus and electroless plating method
JP3960774B2 (en) Electroless plating apparatus and method
US20040234696A1 (en) Plating device and method
JP4875492B2 (en) Equipment for electroless deposition
US6824666B2 (en) Electroless deposition method over sub-micron apertures
US7138014B2 (en) Electroless deposition apparatus
US6716330B2 (en) Electroless plating apparatus and method
JP2003197591A (en) Substrate processing apparatus and method
US20030143837A1 (en) Method of depositing a catalytic layer
JP3985858B2 (en) Plating equipment
US6858084B2 (en) Plating apparatus and method
JP3963661B2 (en) Electroless plating method and apparatus
JP3998455B2 (en) Electroless plating apparatus and electroless plating method
JP3812891B2 (en) Wiring formation method
JP2003264159A (en) Catalyst treatment method and catalyst treatment solution
JP3985857B2 (en) Electroless plating apparatus and electroless plating method
JP4189876B2 (en) Substrate processing equipment
JP3886383B2 (en) Plating apparatus and plating method
JP2002129349A (en) Apparatus and method for plating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees