JP4001523B2 - Indoor temperature prediction method for building air conditioning and air conditioning condition optimization method for building - Google Patents

Indoor temperature prediction method for building air conditioning and air conditioning condition optimization method for building Download PDF

Info

Publication number
JP4001523B2
JP4001523B2 JP2002233210A JP2002233210A JP4001523B2 JP 4001523 B2 JP4001523 B2 JP 4001523B2 JP 2002233210 A JP2002233210 A JP 2002233210A JP 2002233210 A JP2002233210 A JP 2002233210A JP 4001523 B2 JP4001523 B2 JP 4001523B2
Authority
JP
Japan
Prior art keywords
temperature
air conditioning
distribution
indoor
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002233210A
Other languages
Japanese (ja)
Other versions
JP2004069273A (en
Inventor
茂 大野
泰成 森川
雅之 大黒
研 庄司
信介 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2002233210A priority Critical patent/JP4001523B2/en
Publication of JP2004069273A publication Critical patent/JP2004069273A/en
Application granted granted Critical
Publication of JP4001523B2 publication Critical patent/JP4001523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築物の空調における室内温度予測方法、特に、建築物の室内における室内温度分布を小さい計算負荷で予測することにより、建築計画時の室内環境予測に利用し、空気調和設備計画の効率化を実現するための室内温度予測方法と、建築物の空調条件最適化方法に関するものである。
【0002】
【従来の技術】
建築物の空調における室内温度を予測するための従来の方法としては、空調空気の室内一様拡散を仮定して代表温度を求める方法と、CFD解析(Computational Fluid Dynamics)により温度分布を求める方法とがあり、後者は、室内の流れ性状を記述する基礎方程式を数値的に解くことにより、室内の風速分布や温度分布を求めるものである。尚、CFD解析の室内環境への応用に関しては、下記文献を参照のこと。
▲1▼加藤:数値流体力学CFDの室内環境への応用(1)CFDによる室内環境解析の概観,空気調和。衛生工学,71−6(平成9−6)
▲2▼加藤:数値流体力学CFDの室内環境への応用(2)CFD解析の基礎(その1)基礎方程式,空気調和。衛生工学,71−7(平成9−7)
▲3▼加藤:数値流体力学CFDの室内環境への応用(3)CFD解析の基礎(その2)数値解法,空気調和。衛生工学,71−8(平成9−8)
▲4▼加藤:数値流体力学CFDの室内環境への応用(4)CFD解析の基礎(その3)精度と誤差,空気調和。衛生工学,71−9(平成9−9)
▲5▼加藤:数値流体力学CFDの室内環境への応用(5)CFD解析の実際(その1)境界条件と格子分割,空気調和。衛生工学,71−10(平成9−10)
▲6▼加藤:数値流体力学CFDの室内環境への応用(6)CFD解析の実際(その2)汚染質・粉じん拡散,空気調和。衛生工学,71−11(平成9−11)
▲7▼加藤:数値流体力学CFDの室内環境への応用(7)CFD解析の実際(その3)日照・長波放射・伝導連成解析,空気調和。衛生工学,72−1(平成10−1)
【0003】
前者の方法は、計算が容易で計算負荷も小さいのであるが、室内の代表温度しか求めることができない。一方、後者の方法は、メッシュ数を多くして計算精度を高くしようとすると計算負荷が大きくなり、高速の計算機が必要で、コストと労力がかかるのであるが、物理現象を再現した精密な解析ができるという利点がある。
【0004】
これらの方法は、目的により使い分けられるのであるが、例えば、在室者の快適性や、冬期に窓面付近で起こるコールドドラフトの評価をする場合等には、室内温度分布を把握することが重要となる。そして、このような室内温度分布を把握するためには前述したCFD解析が必要となる。
【0005】
【発明が解決しようとする課題】
上述したとおりCFD解析は、精度を高くしようとすると、計算負荷が大きくなるため、優れた計算能力の計算機であっても長い計算時間を必要とする。
【0006】
一般的に、上述したようなCFD解析では、様々な条件を評価するために、条件を変えて何度も繰り返し行うことが多く、大規模な建築になると計算時間が非常に長くなり、時間の制約によって、十分な検討をすることが困難となる。
【0007】
例えば室内に配置された複数の熱源の夫々の温度を変化させた場合の、夫々の室内温度分布を評価する場合には、熱源の数と同じ回数のCFD解析を行う必要があり、例えば2000m2程度のオフィスで、熱源が10個設置されている場合に、解析モデルを500万メッシュ程度の規模とすると、通常のパーソナルコンピュータを用いた場合には、1回のCFD解析に1週間程度必要であるため、全体としては10週間程度必要となり、実質的に不可能である。この場合には、通常のパーソナルコンピュータの数十倍の演算能力を有する大型計算機を使用する必要があり、コスト等の点から設計者が手軽に解析を行うことはできない。
【0008】
そこで、本発明はこのような課題を解決し、建築物の室内温度分布の予測を小さい計算負荷で行えるようにすることにより、設計者が手軽に自席の通常のパーソナルコンピュータを利用して温熱環境の検討を行えるようにすることを目的とするものである。
【0009】
【課題を解決するための手段】
上述した課題を解決するために、まず請求項1の発明では、室内形状と、熱源の配置と、その発熱量と、空調の初期条件を入力条件としてCFD解析を行うことにより、空調時の室内の温度分布と風速分布を求めるCFD解析過程と、対象とする熱源の温度を変化させて、CFD解析過程で求めた風速分布の条件における温度解析を行うことにより室内温度分布を求めると共に、熱源の単位温度上昇に対する各点の温度上昇率を求める温度上昇率算出過程と、対象とする熱源の温度の初期値からの変化量に、温度上昇率算出過程で求めた温度上昇率を乗じることにより、室内の各点の温度上昇を求め、これにCFD解析過程で求めた温度分布から得られる室内の各点の温度を加えることにより室内の各点の温度を求める温度分布算出過程とを有する建築物の空調における室内温度予測方法を提案するものである。
【0010】
次に請求項2の発明では、室内形状と、熱源の配置と、その発熱量と、空調の初期条件を入力条件としてCFD解析を行うことにより、空調時の室内の温度分布と風速分布を求めるCFD解析過程と、温度を変化させる熱源に対して、熱に代えて物質の発生を設定して、CFD解析過程で求めた風速分布の条件における上記物質の拡散による濃度解析を行うことにより室内濃度分布を求める濃度解析過程と、濃度解析過程で求めた室内濃度分布から得られる室内の各点の濃度を、上記物質の一様拡散濃度で除することにより、熱源の単位変動量に対する各点の上昇率を求める上昇率算出過程と、対象とする熱源の初期値からの変化量に、上昇率算出過程で求めた上昇率を乗じることにより、室内の各点の温度上昇を求め、これにCFD解析過程で求めた温度分布から得られる室内の各点の温度を加えることにより室内の各点の温度を求める温度分布算出過程とを有する建築物の空調における室内温度予測方法を提案するものである。
【0011】
次に請求項3の発明では、室内形状と、熱源の配置と、その発熱量と、空調の初期条件と、温度を変化させる熱源を入力条件とし、温度を変化させる熱源に対しては、熱に代えて物質の発生を設定してCFD解析を行うことにより、空調時の室内の温度分布と、風速分布と、この風速分布の条件における上記物質の拡散による室内濃度分布を求める濃度解析過程と、濃度解析過程で求めた室内濃度分布から得られる室内の各点の濃度を、上記物質の一様拡散濃度で除することにより、熱源の単位変動量に対する各点の上昇率を求める上昇率算出過程と、対象とする熱源の初期値からの変化量に、上昇率算出過程で求めた上昇率を乗じることにより、室内の各点の温度上昇を求め、これにCFD解析過程で求めた温度分布から得られる室内の各点の温度を加えることにより室内の各点の温度を求める温度分布算出過程を有する建築物の空調における室内温度予測方法を提案するものである。
【0012】
そして請求項4,5の発明では、請求項2,3の発明において、温度を変化させる複数の熱源に対して、夫々識別可能な物質を設定することを提案するものであり、この物質としては、例えば空気と同一性状の物質とすることを提案するものである。
【0013】
また請求項6の発明では、室内の構成と空調の初期条件を入力して空調時の室内の温度分布と、風速分布を求めるシミュレーション過程と、シミュレーション過程により求められた風速分布を固定化した状態で温度条件を変化させて空調条件の最適解を解析する最適化問題解析過程とから構成した建築物の空調条件最適化方法を提案するものである。
【0014】
請求項1の発明では、まず、CFD解析過程において、室内形状と、熱源の配置と、それらの発熱量と、空調の初期条件、例えば空調空気の風量や吹出し温度及び負荷条件を入力条件として、CFD解析を行って、空調時の室内の温度分布と風速分布を求める。
【0015】
次いで、温度上昇率算出過程において、対象とする熱源の温度を変化させて、CFD解析過程で求めた風速分布の条件における温度解析を行うことにより室内温度分布を求めると共に、熱源の単位温度上昇に対する各点の温度上昇率を求める。
【0016】
次いで、温度分布算出過程において、対象とする熱源の温度の初期値からの変化量に、上記上昇率算出過程で求めた温度上昇率を乗じることにより、室内の各点の温度上昇を求める。そして、この各点の温度上昇を、上記CFD解析過程で求めた温度分布から得られる室内の各点の温度を加えることにより室内の各点の温度を求めることができる。
【0017】
以上に説明した過程中、CFD解析過程におけるCFD解析は、大型のコンピュータ等を用いて1回行い、そして、このCFD解析により求めた空調時の室内の温度分布と風速分布を用いて、温度を変化させる熱源に対して、以降の上昇率算出過程、温度分布算出過程の各処理を一般のパーソナルコンピュータ等で行うことができる。
【0018】
次に請求項2の発明では、まず、CFD解析過程において、室内形状と、熱源の配置と、それらの発熱量と、空調の初期条件、例えば空調空気の風量や吹出し温度及び負荷条件を入力条件として、CFD解析を行って、空調時の室内の温度分布と風速分布を求める。
【0019】
次いで、濃度解析過程において、温度を変化させる熱源に、熱に代えて物質の発生を設定して、CFD解析過程で求めた風速分布の条件における上記物質の拡散による濃度解析を行うことにより、上記物質の室内濃度分布を求める。
【0020】
この濃度解析は、例えば、流れ場のCFD解析に基づき汚染質の室内濃度分布を解析し、さらにその分布性状をモーメントを用いて定量化する場合に用いるような手法を利用して、一般のパーソナルコンピュータ等でも比較的容易に短時間に行うことができる。
【0021】
次いで、上昇率算出過程において、上記濃度解析過程で求めた室内濃度分布から得られる室内の各点の濃度を、上記物質の一様拡散濃度で除することにより、熱源の単位変動量に対する各点の上昇率を求める。この上昇率は、温度の上昇率に対応する。
【0022】
次いで、温度分布算出過程において、対象とする熱源の初期値からの変化量に、上昇率算出過程で求めた上昇率を乗じることにより、室内の各点の温度上昇を求める。そして、この各点の温度上昇を、上記CFD解析過程で求めた温度分布から得られる室内の各点の温度を加えることにより室内の各点の温度を求めることができる。
【0023】
以上に説明した過程中、CFD解析過程におけるCFD解析は、大型のコンピュータ等を用いて1回行い、そして、このCFD解析により求めた空調時の室内の温度分布と風速分布を用いて、温度を変化させる複数の熱源毎に、以降の濃度解析過程、上昇率算出過程、温度分布算出過程の各処理を一般のパーソナルコンピュータ等で行うことができる。
【0024】
以上の各点の温度上昇率を求めるに際して、温度を変化させる対象の熱源が複数ある場合には、請求項2の発明のように、温度を変化させる熱源に、熱に代えて物質の発生を設定して、濃度解析過程と、上昇率算出過程により算出するのが効率的であるが、温度を変化させる対象の熱源が単数の場合には、請求項1の発明のように、直接的に温度解析から温度上昇率を算出する方が簡単である。
【0025】
次に、請求項3の発明は、温度を変化させる熱源が予め明確に特定できる場合の処理に関するもので、この発明では、まず、CFD解析過程において、室内形状と、熱源の配置と、その発熱量と、空調の初期条件の初期値と、温度を変化させる熱源を入力条件とし、温度を変化させる熱源に対しては、熱に代えて物質の発生を設定してCFD解析を行って、空調時の室内の温度分布と、風速分布と、この風速分布の条件における上記物質の拡散による室内濃度分布を求める。
【0026】
次いで、請求項2の発明の場合と同様に、上昇率算出過程において、上記CFD解析過程で求めた室内濃度分布から得られる室内の各点の濃度を、上記物質の一様拡散濃度で除することにより、熱源の単位変動量に対する各点の上昇率を求める。この上昇率は、温度上昇率に相当する。
【0027】
次いで、請求項2の発明の場合と同様に、温度分布算出過程において、対象とする熱源の初期値からの変化量に、上昇率算出過程で求めた上昇率を乗じることにより、室内の各点の温度上昇を求める。そして、この各点の温度上昇を、上記CFD解析過程で求めた温度分布から得られる室内の各点の温度を加えることにより室内の各点の温度を求めることができる。
【0028】
以上に説明した過程中、CFD解析過程におけるCFD解析は、大型のコンピュータ等を用いて1回行い、そして、このCFD解析により求めた空調時の室内の温度分布と風速分布、及び予め特定された熱源から発生する物質の濃度分布を用いて、温度を変化させる熱源毎に、以降の上昇率算出過程、温度分布算出過程の各処理を一般のパーソナルコンピュータ等で行うことができる。
【0029】
次に請求項6の発明では、室内の構成と空調の初期条件を入力して空調時の室内の温度分布と、風速分布を求めるシミュレーション過程と、シミュレーション過程により求められた風速分布を固定化した状態で温度条件を変化させて空調条件の最適解を解析する最適化問題解析過程とから構成しており、シミュレーション過程の実行に要する時間は、最適化問題解析過程の実行に要する時間と比較して圧倒的に長く、後者の時間は非常に短いため、空調条件の最適化を非常に効率的に行うことができる。
【0030】
【発明の実施の形態】
次に本発明の実施の形態を図を参照して説明する。
図1は請求項2の発明の実施の形態を示すフロー図である。
図中の2点鎖線の枠A,B,C,Dは、夫々CFD解析過程、濃度解析過程、上昇率算出過程及び温度分布算出過程を示すものである。
【0031】
まずCFD解析過程Aでは、ステップS1において、CFD解析のための条件として、室内形状と、熱源の配置と、その発熱量と、空調の初期条件を入力する。空調の初期条件は、空調空気の風量や吹出し温度及び負荷条件等である。
このような条件を入力してステップS2においてCFD解析を行う。このCFD解析は、演算能力の高い大型コンピュータを用いて1回行う。
ステップS2におけるCFD解析により、ステップS3において室内の温度分プと風速分布を出力として得ることができる。
【0032】
CFD解析過程Aにおける出力中、風速分布は、濃度解析過程Bに移行させ、ステップS4において、濃度解析のための条件として入力され、ステップS5において濃度解析がなされる。濃度解析は、温度を変化させて、その影響を評価しようとする熱源に対して、熱源に代えて物質の発生を設定し、その発生した物質が、上記風速分布のもとで拡散した後の濃度分布を求めるものであり、上述したように、例えば、流れ場のCFD解析に基づき汚染質の室内濃度分布を解析し、さらにその分布性状をモーメントを用いて定量化する場合に用いるような手法を利用して、一般のパーソナルコンピュータ等でも比較的容易に短時間に行うことができる。尚、この手法は、例えば、文献「村上・加藤:新たな換気効率指標と3次元乱流シミュレーションによる算出法,換気効率の評価モデルに関する研究,空気調和・衛生工学会論文集,No.32(昭61−10)」に記載されているような手法を適用することができる。
ステップS5における濃度解析により、ステップS6において、熱源に発生を設定した物質の濃度分布を出力として得ることができる。
【0033】
次いで濃度解析過程Bの出力である濃度分布は、上昇率算出過程Cに移行させ、ステップS7において入力される。この入力された濃度分布により評価の対象とする各点の濃度を求めることができ、ステップS8において、これらの各点の夫々の濃度を、上記物質が室内に一様に拡散した場合の濃度、即ち一様拡散濃度で除することにより、ステップS9において、物質の単位変動量に対する各点の上昇率を出力として求めることができ、この上昇率は、熱源の単位温度変化、即ち、単位温度上昇当りの温度上昇率に相当する。
【0034】
一方、CFD解析過程Aにおける出力中、温度分布は、温度分布算出過程Dに移行させ、ステップS10において入力される。この入力された温度分布により評価の対象とする各点の温度、この場合、初期温度を求めることができる。
次いでステップS11では、熱源の初期値からの変化量、即ち、対象とする熱源において上昇させる温度と、上昇率算出過程CのステップS9の出力とを乗じることにより、評価の対象とする各点の各熱源の変化量に起因する温度上昇を算出する。そしてステップS12において、評価の対象とする各点につき、上記初期温度と温度上昇を加えることにより、ステップS13において、室内の温度分布、この場合、評価の対象とする各点の夫々の温度を算出することができる。
【0035】
以上の方法において、空調計画の設計者は、CFD解析過程Aの出力中の風速分布が変化しない条件のもとで、温度を変化させる熱源を替えて、上記ステップS5以降を実行することにより、夫々の条件の基での温度分布を求めることができる。
【0036】
また同じ熱源に対しては、熱源の初期値からの変化量を変えてステップS11以降を実行することにより、夫々の条件の基での温度分布を求めることができる。
【0037】
尚、空調空気の吹出口の位置や吹出し角度、風量等を変化させる場合には、変化させた条件において、CFD解析過程Aを行う必要がある。
【0038】
以上の濃度解析過程Bにおいて同時に濃度解析を行う熱源の数は、単数でも複数でも良く、複数の場合には、温度を変化させる複数の熱源に対して、夫々識別可能な物質を設定する。これらの物質としては、例えば空気と同一性状の物質とし、添字や符号等により識別することができる。
【0039】
図3〜図5は、以上の発明に基づいて解析を行って温度分布を求めた結果を示すものである。
図3は室の平面図、図4は図3のA−A線断面図であり、図中、符号aは窓面、bはFCU、cは空調空気の吹出口であり、温度分布を求める対象位置は、図中○印で示す12点としている。
また解析条件中、空調条件は以下の通りである。
空調吹出し風量(m3/h) :1500
空調吹出し温度(℃) :22.1
FCU吹出し角度(°) :30
FCU吹出し風量(m3/h) :500
FCU吹出し温度(℃) :26.3
外気温度(℃) :-5
内部発熱(W) :2640
【0040】
図5は以上の条件で解析を行って上記12点の温度TI[n](但し、n=1〜12)を求めた結果を示すもので、「温度上昇率使用(1)」と表示した欄中の値が本発明に対応するものである。また「CFD使用(2)」と表示した欄中の値は、CFD解析のみで温度を求めた場合に対応するものである。
図5に示すように、本発明による値と、CFD解析のみで求めた値は、最大でも0.3℃(点2,4,8,12)、最小では0.0℃(点5)であり、本発明の方法では、CFD解析のみで温度を求めた場合に匹敵する程度の精度が得られていることが分かる。
【0041】
次に図2は請求項2の発明の実施の形態を示すフロー図である。
この方法は、温度を変化させる熱源が予め明確に特定できる場合の処理に関するもので、この発明では、上記請求項1の発明におけるCFD解析過程Aと濃度解析過程Bを構成するステップS1〜S6の処理の全てをCFD解析過程A’において行う。このCFD解析過程A’以外の上昇率算出過程Cと温度分布算出過程Dの各ステップS7〜S13は請求項1の発明と同様であるので、図中に同一の符号を付して重複する説明は省略する。
【0042】
即ち、この発明では、CFD解析過程A’のステップS101において、CFD解析のための条件として、室内形状と、熱源の配置と、その発熱量と、空調の初期条件の初期値と共に、温度を変化させる熱源を入力する。
そして次のステップS102では、温度を変化させる熱源に対しては、熱に代えて物質の発生を設定してCFD解析を行い、ステップS103において空調時の室内の温度分布と、風速分布に加え、この風速分布の条件における上記物質の拡散による室内濃度分布を出力として得ることができる。
【0043】
そしてCFD解析過程A’における出力中、濃度分布は、上昇率算出過程Cに移行し、また温度分布は温度分布算出過程Dに移行して、上述と同様な処理ステップを経て温度分布を求めることができる。
【0044】
【発明の効果】
本発明は以上のとおりであるので、以下に示すような効果がある。
a.建築物の室内温度分布の予測を、精度の高い計算を行えるが、計算負荷が大きくなるCFD解析を必要最小限の回数、即ち1回のみ利用して行い、その後の、条件を変更した計算を、小さい計算負荷で行えるようにしたので、設計者が手軽に自席の通常のパーソナルコンピュータ等を利用して温熱環境の検討を行うことができる。
b.コストと労力を低減することができる。
【図面の簡単な説明】
【図1】 請求項2の発明の実施の形態を示すフロー図である。
【図2】 請求項3の発明の実施の形態を示すフロー図である。
【図3】 請求項2の発明により室内温度分布を予測する室の平面図である。
【図4】 図3のA−A線断面図である。
【図5】 本発明により予測した室内温度分布を、全てCFD解析で行った場合と比較した結果を示すものである。
【符号の説明】
A CFD解析過程
B 濃度解析過程
C 上昇率算出過程
D 温度分布算出過程
a 窓面
b FCU
c 吹出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for predicting indoor temperature in air conditioning of a building, and in particular, by predicting indoor temperature distribution in a building with a small calculation load, it is used for predicting the indoor environment at the time of building planning. The present invention relates to a method for predicting indoor temperature for realizing efficiency and a method for optimizing air conditioning conditions for buildings.
[0002]
[Prior art]
As a conventional method for predicting the indoor temperature in air conditioning of a building, there are a method for obtaining a representative temperature assuming uniform indoor diffusion of conditioned air, and a method for obtaining a temperature distribution by CFD analysis (Computational Fluid Dynamics). The latter obtains the wind speed distribution and temperature distribution in the room by numerically solving the basic equations describing the flow characteristics in the room. For the application of CFD analysis to the indoor environment, refer to the following documents.
(1) Kato: Application of computational fluid dynamics CFD to indoor environment (1) Overview of indoor environment analysis by CFD, air conditioning. Sanitary engineering, 71-6 (Heisei 9-6)
(2) Kato: Application of computational fluid dynamics CFD to indoor environment (2) Basics of CFD analysis (1) Basic equations, air conditioning. Sanitary engineering, 71-7 (Heisei 9-7)
(3) Kato: Application of CFD CFD to the indoor environment (3) Fundamentals of CFD analysis (Part 2) Numerical solution, air conditioning. Sanitary engineering, 71-8 (Heisei 9-8)
(4) Kato: Application of computational fluid dynamics CFD to indoor environment (4) Basics of CFD analysis (Part 3) Accuracy, error, and air conditioning. Sanitary engineering, 71-9 (Heisei 9-9)
(5) Kato: Application of computational fluid dynamics CFD to indoor environment (5) Practical CFD analysis (Part 1) Boundary conditions, grid division, and air conditioning. Sanitary engineering, 71-10 (Heisei 9-10)
(6) Kato: Application of computational fluid dynamics CFD to indoor environment (6) Practical CFD analysis (2) Pollutant, dust diffusion, air conditioning. Sanitary engineering, 71-11 (Heisei 9-11)
(7) Kato: Application of computational fluid dynamics CFD to indoor environment (7) Practical CFD analysis (3) Sunlight, long wave radiation, conduction coupled analysis, air conditioning. Sanitary engineering, 72-1 (Heisei 10-1)
[0003]
The former method is easy to calculate and has a small calculation load, but it can only obtain a representative indoor temperature. On the other hand, the latter method increases the computational load and increases the calculation accuracy by increasing the number of meshes, requires a high-speed computer, and requires cost and labor. There is an advantage that can be.
[0004]
These methods can be used properly depending on the purpose, but it is important to understand the indoor temperature distribution, for example, when evaluating the comfort of people in the room and the cold draft that occurs near the window surface in winter. It becomes. And in order to grasp | ascertain such indoor temperature distribution, the CFD analysis mentioned above is needed.
[0005]
[Problems to be solved by the invention]
As described above, the CFD analysis requires a long calculation time because even if it is a computer having an excellent calculation capability, a calculation load increases if accuracy is increased.
[0006]
In general, in the CFD analysis as described above, in order to evaluate various conditions, the conditions are often changed many times, and the calculation time becomes very long for a large-scale building. Due to constraints, it becomes difficult to fully study.
[0007]
For example, when evaluating each indoor temperature distribution when the temperature of each of a plurality of heat sources arranged in a room is changed, it is necessary to perform CFD analysis as many times as the number of heat sources, for example, 2000 m 2. In an office with about 10 heat sources installed, if the analysis model is about 5 million meshes, a normal personal computer would require about a week for one CFD analysis. Therefore, as a whole, it takes about 10 weeks, which is substantially impossible. In this case, it is necessary to use a large computer having a calculation capability several tens of times that of a normal personal computer, and the designer cannot easily perform analysis in terms of cost and the like.
[0008]
Therefore, the present invention solves such a problem, and enables the designer to easily predict the indoor temperature distribution of the building with a small calculation load, so that the designer can easily use a normal personal computer in his / her seat to use the thermal environment. The purpose is to enable examination of the above.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problem, first, in the invention of claim 1, the CFD analysis is performed by using the indoor shape, the arrangement of the heat source, the amount of generated heat, and the initial condition of the air conditioning as input conditions, so The CFD analysis process for determining the temperature distribution and the wind speed distribution of the air and the temperature of the target heat source are changed, and the temperature analysis under the conditions of the wind speed distribution obtained in the CFD analysis process is performed to obtain the indoor temperature distribution, By multiplying the temperature rise rate calculated in the temperature rise rate calculation process by the temperature rise rate calculation process to find the temperature rise rate at each point relative to the unit temperature rise, and the amount of change from the initial value of the temperature of the target heat source, A temperature distribution calculation process for obtaining a temperature rise at each point in the room and adding a temperature at each point in the room obtained from the temperature distribution obtained in the CFD analysis process to obtain a temperature rise at each point in the room. Room temperature predicting method in the air conditioning of a building which is to propose.
[0010]
Next, in the invention of claim 2, the CFD analysis is performed by using the indoor shape, the arrangement of the heat source, the heat generation amount, and the initial condition of the air conditioning as input conditions, thereby obtaining the temperature distribution and the wind speed distribution during the air conditioning. By setting the generation of substances instead of heat for the CFD analysis process and the heat source that changes the temperature, and analyzing the concentration by the diffusion of the substances under the conditions of the wind speed distribution obtained in the CFD analysis process, the indoor concentration By dividing the concentration of each point in the room obtained from the concentration analysis process for obtaining the distribution and the indoor concentration distribution obtained in the concentration analysis process by the uniform diffusion concentration of the above substance, The temperature rise at each point in the room is obtained by multiplying the change rate from the initial value of the target heat source and the change rate from the initial value of the target heat source by the rise rate obtained in the rise rate calculation process to obtain the rise rate. Over analysis Proposes a room temperature predicting method in the air conditioning of a building having a temperature distribution calculation step by adding in temperature at each point in the room resulting from temperature distribution obtained determining the temperature of each point in the room.
[0011]
Next, in the invention of claim 3, the indoor shape, the arrangement of the heat source, the amount of generated heat, the initial condition of air conditioning, and the heat source that changes the temperature are input conditions. Instead of performing the CFD analysis by setting the generation of the substance, the concentration analysis process for obtaining the indoor temperature distribution during air conditioning, the wind speed distribution, and the indoor concentration distribution due to the diffusion of the substance under the condition of the wind speed distribution, By calculating the rate of increase of each point with respect to the unit fluctuation of the heat source by dividing the concentration of each point in the room obtained from the indoor concentration distribution obtained in the concentration analysis process by the uniform diffusion concentration of the above-mentioned substance The temperature rise at each point in the room is obtained by multiplying the amount of change from the initial value of the process and the target heat source by the rate of increase determined in the rate of increase calculation process, and this is the temperature distribution determined in the CFD analysis process Each indoor room obtained from By adding the temperature proposes a room temperature predicting method in the air conditioning of a building having a temperature distribution calculation step of determining the temperature of each point in the room.
[0012]
In the inventions of claims 4 and 5, in the inventions of claims 2 and 3, it is proposed to set an identifiable substance for each of a plurality of heat sources that change the temperature. For example, it is proposed to use a substance having the same property as air.
[0013]
Further, in the invention of claim 6, the room temperature distribution during the air conditioning by inputting the indoor configuration and the initial condition of the air conditioning, the simulation process for obtaining the wind speed distribution, and the state in which the wind speed distribution obtained by the simulation process is fixed This paper proposes a method for optimizing the air conditioning conditions of buildings, which consists of an optimization problem analysis process that analyzes the optimal solution of the air conditioning conditions by changing the temperature conditions.
[0014]
In the invention of claim 1, first, in the CFD analysis process, the indoor shape, the arrangement of the heat source, the heat generation amount thereof, and the initial condition of air conditioning, for example, the air volume of the conditioned air, the blowing temperature and the load condition are input conditions. CFD analysis is performed to determine the indoor temperature distribution and wind speed distribution during air conditioning.
[0015]
Next, in the temperature increase rate calculation process, the temperature of the target heat source is changed, and the temperature analysis under the condition of the wind speed distribution obtained in the CFD analysis process is performed to obtain the indoor temperature distribution, and the unit temperature rise for the heat source Obtain the rate of temperature rise at each point.
[0016]
Next, in the temperature distribution calculation process, the temperature increase at each point in the room is obtained by multiplying the amount of change from the initial value of the target heat source temperature by the temperature increase rate obtained in the increase rate calculation process. The temperature at each point in the room can be obtained by adding the temperature at each point in the room obtained from the temperature distribution obtained in the CFD analysis process to the temperature rise at each point.
[0017]
During the process described above, the CFD analysis in the CFD analysis process is performed once using a large computer or the like, and the temperature is calculated using the temperature distribution and the air velocity distribution during air conditioning obtained by this CFD analysis. With respect to the heat source to be changed, each process of the subsequent increase rate calculation process and temperature distribution calculation process can be performed by a general personal computer or the like.
[0018]
In the second aspect of the invention, first, in the CFD analysis process, the indoor shape, the arrangement of the heat sources, the amount of generated heat, and the initial conditions of the air conditioning, for example, the air volume of the conditioned air, the blowing temperature, and the load conditions are input conditions. Then, CFD analysis is performed to obtain the temperature distribution and wind speed distribution in the room during air conditioning.
[0019]
Next, in the concentration analysis process, the generation of the substance is set instead of heat in the heat source that changes the temperature, and the concentration analysis by the diffusion of the substance in the condition of the wind speed distribution obtained in the CFD analysis process is performed. Obtain the indoor concentration distribution of the substance.
[0020]
This concentration analysis is performed, for example, by analyzing the indoor concentration distribution of the pollutant based on the CFD analysis of the flow field, and further using a technique such as that used when quantifying the distribution using a moment. Even a computer or the like can be performed relatively easily in a short time.
[0021]
Next, in the rate of increase calculation process, by dividing the indoor concentration obtained from the indoor concentration distribution obtained in the concentration analysis process by the uniform diffusion concentration of the substance, each point for the unit fluctuation amount of the heat source is obtained. The rate of increase in This rate of increase corresponds to the rate of temperature increase.
[0022]
Next, in the temperature distribution calculation process, the temperature rise at each point in the room is obtained by multiplying the amount of change from the initial value of the target heat source by the increase rate obtained in the increase rate calculation process. The temperature at each point in the room can be obtained by adding the temperature at each point in the room obtained from the temperature distribution obtained in the CFD analysis process to the temperature rise at each point.
[0023]
During the process described above, the CFD analysis in the CFD analysis process is performed once using a large computer or the like, and the temperature is calculated using the temperature distribution and the air velocity distribution during air conditioning obtained by this CFD analysis. For each of the plurality of heat sources to be changed, each of the subsequent concentration analysis process, increase rate calculation process, and temperature distribution calculation process can be performed by a general personal computer or the like.
[0024]
When determining the rate of temperature rise at each of the above points, if there are a plurality of heat sources whose temperature is to be changed, as in the invention of claim 2, a substance is generated instead of heat in the heat source that changes the temperature. It is efficient to set and calculate by the concentration analysis process and the rate of increase calculation process. However, when there is a single heat source whose temperature is to be changed, as in the invention of claim 1, it is directly It is easier to calculate the temperature rise rate from the temperature analysis.
[0025]
Next, the invention of claim 3 relates to a process in the case where the heat source for changing the temperature can be clearly specified in advance. In this invention, first, in the CFD analysis process, the indoor shape, the arrangement of the heat source, and the heat generation thereof. The quantity, the initial value of the initial condition of the air conditioning, and the heat source that changes the temperature are input conditions. For the heat source that changes the temperature, the generation of a substance is set instead of the heat, and the CFD analysis is performed. The temperature distribution in the room at the time, the wind speed distribution, and the indoor concentration distribution due to the diffusion of the substance under the conditions of the wind speed distribution are obtained.
[0026]
Next, as in the case of the invention of claim 2, in the rate of increase calculation process, the concentration at each point in the room obtained from the room concentration distribution obtained in the CFD analysis process is divided by the uniform diffusion concentration of the substance. Thus, the rate of increase of each point with respect to the unit fluctuation amount of the heat source is obtained. This increase rate corresponds to the temperature increase rate.
[0027]
Next, as in the case of the invention of claim 2, in the temperature distribution calculation process, each change in the room is calculated by multiplying the amount of change from the initial value of the target heat source by the increase rate obtained in the increase rate calculation process. Determine the temperature rise. The temperature at each point in the room can be obtained by adding the temperature at each point in the room obtained from the temperature distribution obtained in the CFD analysis process to the temperature rise at each point.
[0028]
In the above-described process, the CFD analysis in the CFD analysis process is performed once using a large computer or the like, and the temperature distribution and the wind speed distribution in the air-conditioning room obtained by this CFD analysis are specified in advance. Using the concentration distribution of the substance generated from the heat source, each process of the subsequent increase rate calculation process and temperature distribution calculation process can be performed by a general personal computer or the like for each heat source that changes the temperature.
[0029]
Next, in the invention of claim 6, the room temperature distribution during the air conditioning, the simulation process for obtaining the wind speed distribution, and the wind speed distribution obtained by the simulation process are fixed by inputting the indoor configuration and the initial condition of the air conditioning. The time required for executing the simulation process is compared to the time required for executing the optimization problem analysis process. Since the latter time is overwhelmingly long and the latter time is very short, the air conditioning conditions can be optimized very efficiently.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing an embodiment of the invention of claim 2.
Two-dot chain lines A, B, C, and D in the figure indicate a CFD analysis process, a concentration analysis process, an increase rate calculation process, and a temperature distribution calculation process, respectively.
[0031]
First, in the CFD analysis process A, in step S1, the indoor shape, the arrangement of the heat source, the amount of generated heat, and the initial conditions for air conditioning are input as conditions for the CFD analysis. The initial conditions of the air conditioning are the air volume of the conditioned air, the blowing temperature, the load condition, and the like.
Such conditions are input and CFD analysis is performed in step S2. This CFD analysis is performed once using a large computer with high computing power.
By the CFD analysis in step S2, the indoor temperature component and the wind speed distribution can be obtained as outputs in step S3.
[0032]
During the output in the CFD analysis process A, the wind speed distribution is shifted to the concentration analysis process B, input as a condition for concentration analysis in step S4, and the concentration analysis is performed in step S5. In the concentration analysis, the generation of a substance is set instead of a heat source for a heat source whose temperature is to be changed, and the generated substance is diffused under the above wind velocity distribution. Concentration distribution is obtained, and as described above, for example, a method for analyzing the indoor concentration distribution of pollutants based on the CFD analysis of the flow field and further quantifying the distribution characteristics using moments. Can be performed relatively easily in a short time even with a general personal computer or the like. This method is described in, for example, the literature “Murakami and Kato: New ventilation efficiency index and calculation method by three-dimensional turbulence simulation, research on evaluation model of ventilation efficiency, Proceedings of the Society of Air Conditioning and Sanitary Engineering, No. 32 ( A method as described in "Sho 61-10)" can be applied.
By the concentration analysis in step S5, the concentration distribution of the substance set to generate in the heat source in step S6 can be obtained as an output.
[0033]
Next, the concentration distribution, which is the output of the concentration analysis process B, is transferred to the increase rate calculation process C and input in step S7. The concentration of each point to be evaluated can be obtained from the input concentration distribution. In step S8, the concentration of each of these points is the concentration when the substance is uniformly diffused in the room, That is, by dividing by the uniform diffusion concentration, in step S9, the rate of increase of each point with respect to the unit fluctuation amount of the substance can be obtained as an output. Corresponds to the temperature rise rate per unit.
[0034]
On the other hand, during the output in the CFD analysis process A, the temperature distribution is shifted to the temperature distribution calculation process D and input in step S10. The temperature of each point to be evaluated, in this case, the initial temperature can be obtained from the input temperature distribution.
Next, in step S11, by multiplying the amount of change from the initial value of the heat source, that is, the temperature to be increased in the target heat source, and the output of step S9 in the increase rate calculation process C, each point to be evaluated is calculated. Calculate the temperature rise caused by the amount of change in each heat source. In step S12, the initial temperature and the temperature rise are added to each point to be evaluated, and in step S13, the temperature distribution in the room, in this case, the temperature of each point to be evaluated is calculated. can do.
[0035]
In the above method, the designer of the air conditioning plan changes the heat source that changes the temperature under the condition that the wind speed distribution in the output of the CFD analysis process A does not change, and executes step S5 and subsequent steps. The temperature distribution under each condition can be obtained.
[0036]
For the same heat source, the temperature distribution under each condition can be obtained by changing the amount of change from the initial value of the heat source and executing step S11 and subsequent steps.
[0037]
In addition, when changing the position of the air-conditioning air outlet, the outlet angle, the air volume, etc., it is necessary to perform the CFD analysis process A under the changed conditions.
[0038]
In the concentration analysis process B, the number of heat sources for which concentration analysis is performed simultaneously may be singular or plural. In the case of a plurality of heat sources, identifiable substances are set for the plurality of heat sources that change the temperature. These substances are, for example, substances having the same characteristics as air and can be identified by subscripts or symbols.
[0039]
3 to 5 show results obtained by performing an analysis based on the above invention and obtaining a temperature distribution.
3 is a plan view of the chamber, and FIG. 4 is a cross-sectional view taken along line AA of FIG. 3. In the figure, symbol a is a window surface, b is an FCU, and c is a blowout port for conditioned air, and a temperature distribution is obtained. The target positions are 12 points indicated by ◯ in the figure.
In the analysis conditions, the air conditioning conditions are as follows.
Air-conditioning air flow (m 3 / h): 1500
Air conditioning outlet temperature (℃): 22.1
FCU outlet angle (°): 30
FCU blown air volume (m 3 / h): 500
FCU blowing temperature (° C): 26.3
Outside temperature (℃): -5
Internal heat generation (W): 2640
[0040]
FIG. 5 shows the results of analyzing the above-mentioned 12 points of temperature TI [n] (where n = 1 to 12) by performing the analysis under the above-mentioned conditions, and is expressed as “temperature increase rate use (1)”. The values in the columns correspond to the present invention. The value in the column labeled “Use CFD (2)” corresponds to the case where the temperature is obtained only by CFD analysis.
As shown in FIG. 5, the value according to the present invention and the value obtained only by the CFD analysis are 0.3 ° C. (points 2, 4, 8, 12) at the maximum and 0.0 ° C. (point 5) at the minimum. In this method, it can be seen that the accuracy comparable to that obtained when the temperature is obtained only by the CFD analysis is obtained.
[0041]
Next, FIG. 2 is a flow chart showing an embodiment of the invention of claim 2.
This method relates to a process in the case where the heat source for changing the temperature can be clearly specified in advance. In the present invention, in steps S1 to S6 constituting the CFD analysis process A and the concentration analysis process B in the invention of claim 1 above. All of the processing is performed in the CFD analysis process A ′. Steps S7 to S13 of the rate-of-rise calculation process C and the temperature distribution calculation process D other than the CFD analysis process A ′ are the same as those in the invention of claim 1, and thus the same reference numerals are used in the drawings for overlapping explanation. Is omitted.
[0042]
That is, in the present invention, in step S101 of the CFD analysis process A ′, the temperature is changed as the conditions for the CFD analysis together with the room shape, the arrangement of the heat source, the heat generation amount, and the initial value of the initial condition of the air conditioning. Enter the heat source to be used.
In the next step S102, for the heat source that changes the temperature, the generation of the substance is set instead of the heat and the CFD analysis is performed. In step S103, in addition to the temperature distribution in the room during air conditioning and the wind speed distribution, An indoor concentration distribution due to the diffusion of the substance under this wind speed distribution condition can be obtained as an output.
[0043]
During the output in the CFD analysis process A ′, the concentration distribution shifts to an increase rate calculation process C, and the temperature distribution shifts to the temperature distribution calculation process D, and the temperature distribution is obtained through the same processing steps as described above. Can do.
[0044]
【The invention's effect】
Since the present invention is as described above, the following effects are obtained.
a. Predicting the indoor temperature distribution of a building can be calculated with high accuracy, but the CFD analysis that increases the calculation load is performed only the required minimum number of times, that is, only once, and then the calculation with changed conditions is performed. Since the calculation can be performed with a small calculation load, the designer can easily examine the thermal environment by using a normal personal computer or the like in his / her seat.
b. Cost and labor can be reduced.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an embodiment of the invention of claim 2;
FIG. 2 is a flowchart showing an embodiment of the invention of claim 3.
FIG. 3 is a plan view of a chamber for predicting a room temperature distribution according to the invention of claim 2.
4 is a cross-sectional view taken along line AA in FIG.
FIG. 5 shows the result of comparing the indoor temperature distribution predicted by the present invention with the case where all the CFD analysis is performed.
[Explanation of symbols]
A CFD analysis process B Concentration analysis process C Increase rate calculation process D Temperature distribution calculation process a Window surface b FCU
c Air outlet

Claims (6)

室内形状と、熱源の配置と、その発熱量と、空調の初期条件を入力条件としてCFD解析を行うことにより、空調時の室内の温度分布と風速分布を求めるCFD解析過程と、対象とする熱源の温度を変化させて、CFD解析過程で求めた風速分布の条件における温度解析を行うことにより室内温度分布を求めると共に、熱源の単位温度上昇に対する各点の温度上昇率を求める温度上昇率算出過程と、対象とする熱源の温度の初期値からの変化量に、温度上昇率算出過程で求めた温度上昇率を乗じることにより、室内の各点の温度上昇を求め、これにCFD解析過程で求めた温度分布から得られる室内の各点の温度を加えることにより室内の各点の温度を求める温度分布算出過程とを有することを特徴とする建築物の空調における室内温度予測方法CFD analysis process for obtaining the temperature distribution and wind speed distribution in the air conditioner by performing CFD analysis using the indoor shape, the arrangement of the heat source, the amount of heat generated, and the initial condition of air conditioning as input conditions, and the target heat source The temperature rise rate calculation process for obtaining the indoor temperature distribution by performing the temperature analysis under the condition of the wind speed distribution obtained in the CFD analysis process while changing the temperature of the heat source and obtaining the temperature rise rate at each point with respect to the unit temperature rise of the heat source And the amount of change from the initial value of the temperature of the target heat source, multiplied by the temperature increase rate obtained in the temperature increase rate calculation process, the temperature increase at each point in the room is obtained, and this is obtained in the CFD analysis process. Room temperature prediction in air conditioning of buildings, characterized in that it has a temperature distribution calculation process for obtaining the temperature of each indoor point by adding the temperature of each indoor point obtained from the measured temperature distribution Act 室内形状と、熱源の配置と、その発熱量と、空調の初期条件を入力条件としてCFD解析を行うことにより、空調時の室内の温度分布と風速分布を求めるCFD解析過程と、温度を変化させる熱源に対して、熱に代えて物質の発生を設定して、CFD解析過程で求めた風速分布の条件における上記物質の拡散による濃度解析を行うことにより室内濃度分布を求める濃度解析過程と、濃度解析過程で求めた室内濃度分布から得られる室内の各点の濃度を、上記物質の一様拡散濃度で除することにより、熱源の単位変動量に対する各点の上昇率を求める上昇率算出過程と、対象とする熱源の初期値からの変化量に、上昇率算出過程で求めた上昇率を乗じることにより、室内の各点の温度上昇を求め、これにCFD解析過程で求めた温度分布から得られる室内の各点の温度を加えることにより室内の各点の温度を求める温度分布算出過程とを有することを特徴とする建築物の空調における室内温度予測方法CFD analysis process to obtain indoor temperature distribution and wind speed distribution at the time of air conditioning by changing CFD analysis using indoor shape, heat source arrangement, heat generation amount and initial condition of air conditioning as input conditions, and change temperature Concentration analysis process for determining the indoor concentration distribution by setting the generation of the substance for the heat source instead of heat and performing the concentration analysis by diffusion of the substance under the condition of the wind speed distribution obtained in the CFD analysis process, By calculating the rate of increase of each point with respect to the unit variation of the heat source by dividing the concentration of each point in the room obtained from the indoor concentration distribution obtained in the analysis process by the uniform diffusion concentration of the above substance, By multiplying the change from the initial value of the target heat source by the rate of increase obtained in the rate of increase calculation process, the temperature rise at each point in the room is obtained, and this is obtained from the temperature distribution obtained in the CFD analysis process. Room temperature predicting method in the air conditioning of a building, characterized in that by adding the temperature of each point in the room and a temperature distribution calculation step of determining the temperature of each point in the room to be 室内形状と、熱源の配置と、その発熱量と、空調の初期条件と、温度を変化させる熱源を入力条件とし、温度を変化させる熱源に対しては、熱に代えて物質の発生を設定してCFD解析を行うことにより、空調時の室内の温度分布と、風速分布と、この風速分布の条件における上記物質の拡散による室内濃度分布を求める濃度解析過程と、濃度解析過程で求めた室内濃度分布から得られる室内の各点の濃度を、上記物質の一様拡散濃度で除することにより、熱源の単位変動量に対する各点の上昇率を求める上昇率算出過程と、対象とする熱源の初期値からの変化量に、上昇率算出過程で求めた上昇率を乗じることにより、室内の各点の温度上昇を求め、これにCFD解析過程で求めた温度分布から得られる室内の各点の温度を加えることにより室内の各点の温度を求める温度分布算出過程を有することを特徴とする建築物の空調における室内温度予測方法The indoor shape, the arrangement of the heat source, the amount of heat generated, the initial condition of air conditioning, and the heat source that changes the temperature are set as input conditions.For the heat source that changes the temperature, the generation of substances instead of heat is set. By performing CFD analysis, the indoor temperature distribution during air conditioning, the wind speed distribution, the concentration analysis process for determining the indoor concentration distribution due to diffusion of the above substances under the conditions of this wind speed distribution, and the indoor concentration determined in the concentration analysis process By dividing the concentration of each point in the room obtained from the distribution by the uniform diffusion concentration of the above substance, the rate of increase calculation process for obtaining the rate of increase of each point with respect to the unit variation of the heat source, and the initial of the target heat source By multiplying the amount of change from the value by the rate of increase obtained in the rate of increase calculation process, the temperature rise at each point in the room is obtained, and this is the temperature of each point in the room obtained from the temperature distribution obtained in the CFD analysis process. By adding Room temperature predicting method in the air conditioning of a building, characterized in that it comprises a temperature distribution calculation step of determining the temperature of each point in the room 温度を変化させる複数の熱源に対して、夫々識別可能な物質を設定することを特徴とする請求項2又は3に記載の建築物の空調における室内温度予測方法The indoor temperature prediction method for air conditioning of a building according to claim 2 or 3, wherein a distinguishable substance is set for each of a plurality of heat sources that change temperature. 物質は、空気と同一性状の物質としたことを特徴とする請求項4に記載の建築物の空調における室内温度予測方法5. The indoor temperature prediction method for air conditioning of buildings according to claim 4, wherein the substance is a substance having the same property as air. 室内の構成と空調の初期条件を入力して、空調時の室内の温度分布と、風速分布を求めるシミュレーション過程と、シミュレーション過程により求められた風速分布を固定化した状態で温度条件を変化させて空調条件の最適解を解析する最適化問題解析過程とから構成したことを特徴とする建築物の空調条件最適化方法Enter the indoor configuration and initial conditions for air conditioning, and change the temperature conditions while fixing the temperature distribution during the air conditioning and the simulation process to obtain the wind speed distribution, and the wind speed distribution obtained by the simulation process. A method for optimizing the air conditioning condition of a building, characterized by comprising an optimization problem analysis process for analyzing the optimal solution of the air conditioning condition
JP2002233210A 2002-08-09 2002-08-09 Indoor temperature prediction method for building air conditioning and air conditioning condition optimization method for building Expired - Fee Related JP4001523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233210A JP4001523B2 (en) 2002-08-09 2002-08-09 Indoor temperature prediction method for building air conditioning and air conditioning condition optimization method for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233210A JP4001523B2 (en) 2002-08-09 2002-08-09 Indoor temperature prediction method for building air conditioning and air conditioning condition optimization method for building

Publications (2)

Publication Number Publication Date
JP2004069273A JP2004069273A (en) 2004-03-04
JP4001523B2 true JP4001523B2 (en) 2007-10-31

Family

ID=32018396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233210A Expired - Fee Related JP4001523B2 (en) 2002-08-09 2002-08-09 Indoor temperature prediction method for building air conditioning and air conditioning condition optimization method for building

Country Status (1)

Country Link
JP (1) JP4001523B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102374618A (en) * 2010-08-10 2012-03-14 株式会社山武 Air conditioning controlling device and method
CN106016636A (en) * 2016-07-29 2016-10-12 广东美的制冷设备有限公司 Control method of air conditioner and air conditioner
CN106979581A (en) * 2015-10-09 2017-07-25 阿自倍尔株式会社 Operation of air conditioner plan generating means and method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5492522B2 (en) 2009-10-21 2014-05-14 アズビル株式会社 Air conditioning control apparatus and method
JP5793350B2 (en) 2011-06-14 2015-10-14 アズビル株式会社 Air conditioning control apparatus and method
CN104236755B (en) * 2014-09-01 2017-02-01 青岛海信日立空调系统有限公司 Air conditioner outlet air temperature field detecting method
WO2018179750A1 (en) 2017-03-28 2018-10-04 パナソニックIpマネジメント株式会社 Environment control system and environment control method
CN109840307A (en) * 2018-12-29 2019-06-04 重庆大学 A kind of indoor temperature and humidity field quick predict system and method
CN114502894B (en) * 2019-10-07 2023-05-23 三菱电机株式会社 Control device for air conditioner, and recording medium
JP7130615B2 (en) * 2019-11-19 2022-09-05 矢崎エナジーシステム株式会社 Thermal load calculator
WO2023033155A1 (en) * 2021-09-02 2023-03-09 ダイキン工業株式会社 Air conditioning control system
JP2023036538A (en) * 2021-09-02 2023-03-14 ダイキン工業株式会社 Air-conditioning control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102374618A (en) * 2010-08-10 2012-03-14 株式会社山武 Air conditioning controlling device and method
CN102374618B (en) * 2010-08-10 2014-06-18 阿自倍尔株式会社 Air conditioning controlling device and method
CN106979581A (en) * 2015-10-09 2017-07-25 阿自倍尔株式会社 Operation of air conditioner plan generating means and method
CN106016636A (en) * 2016-07-29 2016-10-12 广东美的制冷设备有限公司 Control method of air conditioner and air conditioner
CN106016636B (en) * 2016-07-29 2019-08-27 广东美的制冷设备有限公司 The control method and air conditioner of air conditioner

Also Published As

Publication number Publication date
JP2004069273A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
Azar et al. A comprehensive analysis of the impact of occupancy parameters in energy simulation of office buildings
JP4001523B2 (en) Indoor temperature prediction method for building air conditioning and air conditioning condition optimization method for building
Zhou et al. Optimization of ventilation system design and operation in office environment, Part I: Methodology
Zhang et al. Building energy simulation considering spatial temperature distribution for nonuniform indoor environment
Sun et al. A CFD-based test method for control of indoor environment and space ventilation
Kobayashi et al. Numerical investigation and accuracy verification of indoor environment for an impinging jet ventilated room using computational fluid dynamics
Ai et al. Modeling of coupled urban wind flow and indoor air flow on a high-density near-wall mesh: Sensitivity analyses and case study for single-sided ventilation
Wang et al. Coupled simulations for naturally ventilated rooms between building simulation (BS) and computational fluid dynamics (CFD) for better prediction of indoor thermal environment
Du et al. Temperature sensor placement optimization for VAV control using CFD–BES co-simulation strategy
Barbason et al. Coupling building energy simulation and computational fluid dynamics: Application to a two-storey house in a temperate climate
Shen et al. Comparison of different methods for estimating ventilation rates through wind driven ventilated buildings
Zhang et al. A genetic-algorithm-based experimental technique for determining heat transfer coefficient of exterior wall surface
Munaretto et al. Empirical validation of different internal superficial heat transfer models on a full-scale passive house
Ye et al. Study of multi-objective optimization of overall ventilation performance for an impinging jet ventilation system using Taguchi-based grey relational analysis
Mora-Pérez et al. Computational analysis of wind interactions for comparing different buildings sites in terms of natural ventilation
Mao et al. A simplified numerical study on the energy performance and thermal environment of a bedroom TAC system
Zhang et al. Review and development of the contribution ratio of indoor climate (CRI)
Zhou et al. Pushing the boundaries of modular-integrated construction: A symmetric skeleton grammar-based multi-objective optimization of passive design for energy savings and daylight autonomy
Luo et al. Fast and accurate prediction of air temperature and velocity field in non-uniform indoor environment under complex boundaries
Guo et al. A semi-analytical model for evaluating the thermal storage capacity and heat use efficiency of flexible thermal storage heating floor
Chowdhury et al. Thermal performance assessment of a retrofitted building using an integrated energy and computational fluid dynamics (IE-CFD) approach
Deru et al. Infiltration and natural ventilation model for whole-building energy simulation of residential buildings
Khan et al. Optimising building heat load prediction using advanced control strategies and Artificial Intelligence for HVAC system
Novoselac Combined airflow and energy simulation program for building mechanical system design
Shan et al. Sensitivity and uncertainty analysis of measurements in outdoor airflow control strategies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140824

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees