JP3999436B2 - Master carrier for magnetic transfer - Google Patents

Master carrier for magnetic transfer Download PDF

Info

Publication number
JP3999436B2
JP3999436B2 JP2000066122A JP2000066122A JP3999436B2 JP 3999436 B2 JP3999436 B2 JP 3999436B2 JP 2000066122 A JP2000066122 A JP 2000066122A JP 2000066122 A JP2000066122 A JP 2000066122A JP 3999436 B2 JP3999436 B2 JP 3999436B2
Authority
JP
Japan
Prior art keywords
master
photoresist
metal
master carrier
magnetic transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000066122A
Other languages
Japanese (ja)
Other versions
JP2001256644A (en
Inventor
信 長尾
清一 渡辺
正一 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2000066122A priority Critical patent/JP3999436B2/en
Priority to MYPI20011097A priority patent/MY124923A/en
Priority to CNB011037121A priority patent/CN1208760C/en
Priority to KR1020010007052A priority patent/KR20010088331A/en
Priority to EP01105377A priority patent/EP1132898A3/en
Priority to SG200101486A priority patent/SG106603A1/en
Priority to US09/802,933 priority patent/US20010028964A1/en
Publication of JP2001256644A publication Critical patent/JP2001256644A/en
Priority to US10/425,598 priority patent/US6759183B2/en
Application granted granted Critical
Publication of JP3999436B2 publication Critical patent/JP3999436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/86Re-recording, i.e. transcribing information from one magnetisable record carrier on to one or more similar or dissimilar record carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/743Patterned record carriers, wherein the magnetic recording layer is patterned into magnetic isolated data islands, e.g. discrete tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/86Re-recording, i.e. transcribing information from one magnetisable record carrier on to one or more similar or dissimilar record carriers
    • G11B5/865Re-recording, i.e. transcribing information from one magnetisable record carrier on to one or more similar or dissimilar record carriers by contact "printing"
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/0057Intermediate mediums, i.e. mediums provided with an information structure not specific to the method of reproducing or duplication such as matrixes for mechanical pressing of an information structure ; record carriers having a relief information structure provided with or included in layers not specific for a single reproducing method; apparatus or processes specially adapted for their manufacture
    • G11B23/0064Intermediate mediums, i.e. mediums provided with an information structure not specific to the method of reproducing or duplication such as matrixes for mechanical pressing of an information structure ; record carriers having a relief information structure provided with or included in layers not specific for a single reproducing method; apparatus or processes specially adapted for their manufacture mediums or carriers characterised by the selection of the material
    • G11B23/0071Intermediate mediums, i.e. mediums provided with an information structure not specific to the method of reproducing or duplication such as matrixes for mechanical pressing of an information structure ; record carriers having a relief information structure provided with or included in layers not specific for a single reproducing method; apparatus or processes specially adapted for their manufacture mediums or carriers characterised by the selection of the material additional layers for lubrication or wear protection
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/596Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
    • G11B5/59633Servo formatting
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/146Laser beam

Description

【0001】
【発明の属する技術分野】
本発明は、情報が担持されたマスター担体からスレーブ媒体へ磁気転写する磁気転写方法に使用する磁気転写用マスター担体に関するものである。
【0002】
【従来の技術】
磁気記録媒体においては一般に、情報量の増加と共に多くの情報を記録する大容量で安価で、さらに好ましくは短時間で必要な箇所が読み出せるような、いわゆる高速アクセスが可能な媒体が望まれている。それらの一例として高密度フレキシブルディスクが知られ、その大容量を実現するためには、狭いトラック幅を正確に磁気ヘッドが走査し、高いS/N比で信号を再生する、いわゆるトラッキングサーボ技術が、大きな役割を担っている。ディスクの1周の中で、ある間隔でトラッキング用のサーボ信号、アドレス情報信号、再生クロック信号等が、いわるプリフォーマットとして記録されている。
【0003】
磁気ヘッドはこのようなプリフォーマットの信号を読み取って自らの位置を修正することにより正確にトラック上を走行することが可能に設定されている。現在のプリフォーマットは、ディスクを専用のサーボ記録装置を用いて1枚ずつまた1トラックずつ記録して作成される。
【0004】
しかしながら、サーボ記録装置は高価であり、またプリフォーマット作成に時間が掛かるために、この工程が製造コストの大きな部分を占めることになっており、その低コスト化が望まれている。
【0005】
一方、1トラックずつプリフォーマットを書くのではなく、磁気転写方法によりそれを実現する方法も提案されている。例えば、特開昭63−183623、特開平10−40544および特開平10−269566に転写技術が紹介されている。ところが、上記のような従来提案されている技術では、実際上具体的な手法は開示されておらず、特に転写時に印加する磁界の条件およびその磁界を発生するための具体的な装置構成などは全く不明のままであるのが実態であった。
【0006】
そこで、例えば特開昭63−183623号公報や特開平10−40544号公報では、基板の表面に情報信号に対応する凹凸形状が形成され、凹凸形状の少なくとも凸部表面に強磁性薄膜が形成された磁気転写用マスター担体の表面を、強磁性薄膜あるいは強磁性粉塗布層が形成されたシート状もしくはディスク状磁気記録媒体の表面に接触、あるいは更に交流バイアス磁界、あるいは直流磁界を印加して凸部表面を構成する強磁性材料を励起することにより、凹凸形状に対応する磁化パターンを磁気記録媒体に記録する方法が提唱されている。
【0007】
この方法では、マスター担体の凸部表面をプリフォーマットするべき磁気記録媒体、すなわちスレーブ媒体に密着させて同時に凸部を構成する強磁性材料を励磁することにより、スレーブ媒体に所定のフォーマットを形成する転写方法であり、磁気転写用マスター担体とスレーブ媒体との相対的な位置を変化させることなく静的に記録を行うことができ、正確なプリフォーマット記録が可能であり、しかも記録に要する時間も極めて短時間である。
【0008】
【発明が解決しようとする課題】
ところで、サーボ信号を磁気記録媒体に記録するのに磁気転写方法を適用する場合、マスター担体には1μm単位以下のサーボパターンを3.5型磁気記録媒体(直径3.5インチ)あるいは2.5型磁気記録媒体(直径2.5インチ)の全面積にわたって、任意の位置に精度よく配置して形成する必要がある。また、それぞれのサーボパターンが情報の番地を示すことから、全て異なったパターン形状を作成する必要がある。
【0009】
上記のような微細パターンは、半導体・磁気ヘッドのリソグラフィー技術によって作成可能であるが、この技術は原図を縮小して精度を高めているために、1回の露光で作成できるパターン形成範囲が2cm角程度に限定される。大面積のパターンを作成する場合、この2cm角のパターン形成範囲を繰り返し記録することで作成可能であるが、同一パターンが形成されるため、前述のように全て異なったパターンを形成するサーボ記録方式には適用できない。
【0010】
一方、磁気転写法では前記マスター担体はスレーブ媒体と密着させて磁気転写を行うことで、繰り返しての磁気転写に応じて情報を担持したパターン面形状が摩耗して転写精度が低下したり、塵埃の介在によって傷が付いたりして寿命となって交換が必要となる。この点からマスター担体は、その製造の容易性、低コスト化が要望される。つまり、マスター担体の基板に1枚ずつ微細パターンを精度良く露光等によって形成することは、品質管理が煩雑で、品質安定性および生産コストの点で不利となるものである。
【0011】
本発明はこのような問題に鑑みなされたもので、安価で簡易に作成し得る磁気転写用マスター担体を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本発明の磁気転写用マスター担体は、転写する情報に対応した凹凸パターンを有する磁気転写用マスター担体であって、フォトレジストが塗布された円板を回転させながら情報に応じて変調したレーザーまたは電子ビームを照射し、該フォトレジストを現像した凹凸を有する原盤に主成分がNiであるメッキを行い、金属の型をとった後剥離することで作成してなるNiもしくはNi合金による金属盤で構成し、該型をとった金属盤の凹凸パターンの上に軟磁性層を設け、さらに、該軟磁性層と前記金属盤の凹凸パターンとの間に非磁性層を設けたことを特徴とするものである。
【0013】
本発明の他の磁気転写用マスター担体は、転写する情報に対応した凹凸パターンを有する磁気転写用マスター担体であって、フォトレジストが塗布された円板を回転させながら情報に応じて変調したレーザーまたは電子ビームを照射し、該フォトレジストを現像した凹凸を有する第1の原盤にメッキを行い、第1の原盤を剥離した第2の原盤に主成分がNiであるメッキを行い、金属の型をとった後剥離することで作成してなるNiもしくはNi合金による金属盤で構成し、該型をとった金属盤の凹凸パターンの上に軟磁性層を設け、さらに、該軟磁性層と前記金属盤の凹凸パターンとの間に非磁性層を設けたことを特徴とするものである。
【0014】
本発明のさらに他の磁気転写用マスター担体は、転写する情報に対応した凹凸パターンを有する磁気転写用マスター担体であって、フォトレジストが塗布された円板を回転させながら情報に応じて変調したレーザーまたは電子ビームを照射し、該フォトレジストを現像した凹凸を有する第1の原盤にメッキを行い、第1の原盤を剥離した第2の原盤に、樹脂液を押し付けて硬化を行うかまたはメッキを行い、第2の原盤を剥離した第3の原盤に主成分がNiであるメッキを行い、金属の型をとった後剥離することで作成してなるNiもしくはNi合金による金属盤で構成し、該型をとった金属盤の凹凸パターンの上に軟磁性層を設け、さらに、該軟磁性層と前記金属盤の凹凸パターンとの間に非磁性層を設けたことを特徴とするものである。
【0015】
本発明のさらに他の磁気転写用マスター担体は、転写する情報に対応した凹凸パターンを有する磁気転写用マスター担体であって、フォトレジストが塗布された円板を回転させながら情報に応じて変調したレーザーまたは電子ビームを照射し、該フォトレジストを現像しエッチングを施して凹凸を設けた後フォトレジストを除去した凹凸を有する原盤に主成分がNiであるメッキを行い、金属の型をとった後剥離することで作成してなるNiもしくはNi合金による金属盤で構成し、該型をとった金属盤の凹凸パターンの上に軟磁性層を設け、さらに、該軟磁性層と前記金属盤の凹凸パターンとの間に非磁性層を設けたことを特徴とするものである。
【0016】
本発明のさらに他の磁気転写用マスター担体は、転写する情報に対応した凹凸パターンを有する磁気転写用マスター担体であって、フォトレジストが塗布された円板を回転させながら情報に応じて変調したレーザーまたは電子ビームを照射し、該フォトレジストを現像しエッチングを施して凹凸を設けた後フォトレジストを除去した凹凸を有する第1の原盤に、樹脂液を押し付けて硬化を行うかまたはメッキを行い、第1の原盤を剥離した第2の原盤に主成分がNiであるメッキを行い、金属の型をとった後剥離することで作成してなるNiもしくはNi合金による金属盤で構成し、該型をとった金属盤の凹凸パターンの上に軟磁性層を設け、さらに、該軟磁性層と前記金属盤の凹凸パターンとの間に非磁性層を設けたことを特徴とするものである。
【0017】
本発明のさらに他の磁気転写用マスター担体は、転写する情報に対応した凹凸パターンを有する磁気転写用マスター担体であって、フォトレジストが塗布された円板を回転させながら情報に応じて変調したレーザーまたは電子ビームを照射し、該フォトレジストを現像しエッチングを施して凹凸を設けた後フォトレジストを除去した凹凸を有する第1の原盤に、樹脂液を押し付けて硬化を行うかまたはメッキを行い、第1の原盤を剥離した第2の原盤に樹脂液を押し付けて硬化を行うかまたはメッキを行い、第2の原盤を剥離した第3の原盤に主成分がNiであるメッキを行い、金属の型をとった後剥離することで作成してなるNiもしくはNi合金による金属盤で構成し、該型をとった金属盤の凹凸パターンの上に軟磁性層を設け、さらに、該軟磁性層と前記金属盤の凹凸パターンとの間に非磁性層を設けたことを特徴とするものである。
【0018】
前記凹凸の深さが80nm〜800nmであることを特徴とする。さらに好ましくは150nm〜600nmである。
【0019】
前記軟磁性層の厚みが50nm〜500nmであることを特徴とする。さらに好ましくは150nm〜400nmである。最上層にダイヤモンドライクカーボン保護膜を設けたことを特徴とする。
【0020】
前記凹凸パターンが半径方向に長いことを特徴とする。この凹凸パターンは半径方向の長さは0.3〜20μm、円周方向は0.2〜5μmが好ましく、この範囲で半径方向の方が長いパターンを選ぶことがサーボ信号の情報を担持するパターンとして好ましい。
【0021】
なお、前記「メッキ」は、無電解メッキまたは電鋳による金属成膜法が適用できるものである。
【0022】
前記のような磁気転写用マスター担体を使用した磁気転写法は、マスター担体の情報を担持した面とスレーブ媒体の面とを密着させて転写用磁界を印加して行う。例えば、上記のように情報に対応する凹凸パターンを有する強磁性金属による金属盤または凹凸パターンの表面の部分に軟磁性層が形成された金属盤による磁気転写用マスター担体と転写を受けるスレーブ媒体とを使用し、予めスレーブ媒体の磁化をトラック方向に初期直流磁化し、前記マスター担体と前記初期直流磁化したスレーブ媒体とを密着させて該スレーブ媒体面の初期直流磁化方向と略逆向きの方向に転写用磁界を印加して磁気転写を行うのが好適である。
【0023】
なお、前記金属盤の凹凸パターンは、レーザーまたは電子ビームの照射パターンに対してポジ状パターンでもネガ状パターンでも、すなわち凹凸が逆になっていても、磁気転写工程における初期磁化と転写用磁界の方向を逆にすれば同じ磁気転写パターンを得ることができる。
【0024】
【発明の効果】
上記のような本発明によれば、磁気転写用マスター担体を情報に対応した凹凸パターンを有する金属盤で構成したことにより、磁気記録媒体にサーボ信号のような情報信号の磁気転写を行うのに必要なマスター担体を、所定の精度で安価に作成できる。特に、1枚の原盤からメッキにより同様の金属盤が多数作成でき、磁気転写の回数に対応して順次マスター担体を交換して、品質の安定した磁気転写が実施できる。
【0025】
また、前記マスター担体の金属盤の主成分がNiであり、硬度、成型性、耐候性等の点で良好である。前記金属盤がNiを主成分とする場合、これは強磁性であるため、この金属盤のみで磁気転写は可能であるが、転写特性の良い軟磁性層を設けることでより良好な磁気転写が行える。さらに、金属盤の磁性の影響を断つために、金属盤と軟磁性層との間に非磁性層を設けている。最上層にダイヤモンドライクカーボン保護膜を設けると、接触耐久性が向上しマスター担体からスレーブ媒体への多数回の磁気転写が可能となる。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。図1は本発明の非磁性層を備えていない基本形態に係るマスター担体を使用した磁気転写方法を示す図であって、(a)は磁場を一方向に印加してスレーブ媒体を直流磁化する工程、(b)はマスター担体とスレーブ媒体とを密着して反対方向に磁界を印加する工程、(c)は磁気転写後の状態をそれぞれ示す図である。図2は本発明の実施形態に係るマスター担体を示す断面図。図3〜図8はそれぞれマスター担体の金属盤の作成工程順を示す図である。
【0027】
磁気転写方法の概要は次のようなものである。まず図1(a)に示すように、最初にスレーブ媒体2に初期静磁界Hinをトラック方向の一方向に印加して予め直流磁化(直流消磁)を行う。その後、図1(b)に示すように、このスレーブ媒体2の磁気転写面とマスター担体3の金属盤31の微細凹凸パターン(半径方向すなわちトラックの幅方向に長い凹凸形状)に軟磁性層32が被覆されてなる情報担持面とを密着させ、スレーブ媒体2のトラック方向に前記初期磁界Hinとは逆方向に転写用磁界Hduを印加して磁気転写を行う。その結果、図1(c)に示すように、スレーブ媒体2の磁気転写面(トラック)にはマスター担体3の情報担持面の軟磁性層32の密着突部と凹部空間との形成パターンに応じた情報が磁気的に転写記録される。このような磁気転写方法の詳細については、例えば、特願平11−117800号に記載した内容を参照されたい。
【0028】
なお、上記マスター担体3は金属盤31の凹凸パターンが図1のポジパターンと逆の凹凸形状のネガパターンの場合であっても、初期磁界Hinの方向および転写用磁界Hduの方向を上記と逆の方向にすることによって同様の情報が磁気的に転写記録できる。
【0029】
また、前記金属盤31がNiなどによる強磁性体の場合はこの金属盤31のみで磁気転写は可能で、前記軟磁性層32は被覆しなくてもよいが、転写特性の良い軟磁性層32を設けることでより良好な磁気転写が行える。
【0030】
強磁性金属による金属盤31に軟磁性層32を被覆した場合に、金属盤31の磁性の影響を断つために、図2に示すように金属盤31と軟磁性層32との間に非磁性層33を設ける。すなわち、図2のマスター担体3は、前記と同様の凹凸パターンを有する金属盤31上に非磁性層33を被覆した後、この非磁性層33上に軟磁性層32を被覆し、さらに最上層にダイヤモンドライクカーボン(DLC)保護膜34が被覆されている。最上層のDLC保護膜34は、接触耐久性が向上し多数回の磁気転写が可能となり、図1の場合にも最上層に被覆するのが望ましい。なお、DLC保護膜34の下層にSi膜をスパッタリング等で形成するようにしてもよい。
【0031】
磁気転写用マスター担体3の金属盤31の第1の作成工程を、図3(a)〜(d)に基づいて述べる。まず(a)のように表面が平滑な円板10(ガラスまたは石英板)の上にフォトレジスト液をスピンコート等で塗布してフォトレジスト11を形成し、このフォトレジスト11を有する円板10を回転させながら、サーボ信号に対応して変調したレーザー光L(または電子ビーム、以下の形態で同様)を照射し、円板10全面のフォトレジスト11に所定のプリフォーマットパターン、例えば各トラックに回転中心から半径方向に線状に延びるサーボ信号に相当するパターンを円周上の各フレームに対応する部分に露光する。その後、(b)のようにフォトレジスト11を現像処理し、露光部分を除去しフォトレジスト11による凹凸形状を有する原盤12(第1の原盤)を得る。
【0032】
次に、前記原盤12の表面の凹凸パターンをもとに、この表面に(c)のようにメッキ処理により薄い銀メッキ層13を形成した上に電鋳を施し、金属の型をとったポジ状凹凸パターンを有する金属盤31Aを作成する。(d)のように原盤12から所定厚みとなった金属盤31Aを剥離する。
【0033】
上記金属盤31Aの表面の凹凸パターンは、前記原盤12の凹凸形状が反転されたものであり、磁気記録媒体全体の任意の位置にμm単位以下の精度でパターンが作成されている。この金属盤31A凹凸パターン上非磁性層33、軟磁性層32、保護膜34を被覆して磁気転写用マスター担体3とする。
【0034】
第2の作成工程を、図4(a)〜(f)に示す。(a)および(b)の円板10の上へのフォトレジスト11の形成、レーザー光Lによるパターンの露光、現像処理を行い、フォトレジスト11による凹凸形状を有する第1の原盤12の形成は、図3と同様である。次に、(c)のように第1の原盤12の表面の凹凸パターンにメッキを行い銀メッキ層13の上に電鋳を施し、ポジ状凹凸パターンを有する第2の原盤14を作成する。(d)のように第2の原盤14を剥離し、この第2の原盤14の表面の凹凸パターンに、(e)のようにメッキを行い、金属の型をとったネガ状凹凸パターンを有する金属盤31Bを作成する。(f)のように第2の原盤14から所定厚みとなった金属盤31Bを剥離する。
【0035】
上記金属盤31Bの表面の凹凸パターンは、前記第1の原盤12の凹凸形状と同じネガ状であり、この金属盤31B凹凸パターン上非磁性層33、軟磁性層32、保護膜34を被覆して磁気転写用マスター担体3とする。この金属盤31Bによるマスター担体3では、前述のように初期磁界Hinと転写用磁界Hduとを図1(b)とは逆方向とすることで、図1(c)と同様のパターンに磁気転写が行える。
【0036】
第3の作成工程を、図5(a)〜(h)に示す。(a)〜(d)の第1の原盤12への凹凸の形成および第2の原盤14の作成は、図4と同様である。次に、(e)のように第2の原盤14の表面の凹凸パターンにメッキを行うか、樹脂液を押し付けて硬化を行い、ネガ状凹凸パターンを有する第3の原盤15を作成する。(f)のように第2の原盤14から所定厚みとなった第3の原盤15を剥離する。次に、(g)のように第3の原盤15の表面の凹凸パターンにメッキを行い、金属の型をとったポジ状凹凸パターンを有する金属盤31Cを作成する。(h)のように第3の原盤13から所定厚みとなった金属盤31Cを剥離する。
【0037】
上記金属盤31Cの表面の凹凸パターンは、図3における金属盤31Aと同様のポジパターンであり、この凹凸パターン上非磁性層33、軟磁性層32、保護膜34を被覆して磁気転写用マスター担体3とする。
【0038】
第4の作成工程を、図6(a)〜(f)に基づいて述べる。まず(a)のように表面が平滑な円板10(ガラスまたは石英板)の上にフォトレジスト液をスピンコート等で塗布してフォトレジスト11を形成し、このフォトレジスト11を有する円板10を回転させながら、サーボ信号に対応して変調したレーザー光L(または電子ビーム、以下の形態で同様)を照射し、円板10全面のフォトレジスト11に所定のプリフォーマットパターンを露光する。その後、(b)のようにフォトレジスト11を現像処理し、露光部分を除去した後、エッチング工程でフォトレジスト11が除去された部分の円板10をエッチングし、(c)のように露光パターンに応じた穴10aを形成する。その後、残ったフォトレジスト11を除去し、(d)のように表面に穴10aによる凹凸パターンを有する原盤20(第1の原盤)を得る。
【0039】
次に、前記原盤20の表面の凹凸パターンをもとに、この表面に(e)のようにメッキ処理により薄い銀メッキ層13を形成した上に電鋳を施し、金属の型をとったポジ状凹凸パターンを有する金属盤31Dを作成する。(f)のように原盤20から所定厚みとなった金属盤31Dを剥離する。
【0040】
上記金属盤31Dの表面の凹凸パターンは、前記原盤20の凹凸形状が反転された前記図3の金属盤31Aと同様のものであり、磁気記録媒体全体の任意の位置にμm単位以下の精度でパターンが作成されている。この金属盤31D凹凸パターン上非磁性層33、軟磁性層32、保護膜34を被覆して磁気転写用マスター担体3とする。
【0041】
第5の作成工程を、図7(a)〜(h)に示す。(a)〜(d)の円板10の上へのフォトレジスト11の形成、レーザー光Lによるパターンの露光、現像処理、エッチングによる凹凸形状を有する第1の原盤20の形成は図6と同様である。次に、(e)のように第1の原盤20の表面の凹凸パターンにメッキ(銀メッキ層13の形成と電鋳)を行うか、樹脂液を押し付けて硬化を行い、ポジ状凹凸パターンを有する第2の原盤14を作成する。(f)のように第2の原盤14を剥離し、この第2の原盤14の表面の凹凸パターンに、(g)のようにメッキを行い、金属の型をとったネガ状凹凸パターンを有する金属盤31Eを作成する。(h)のように第2の原盤14から所定厚みとなった金属盤31Eを剥離する。
【0042】
上記金属盤31Eの表面の凹凸パターンは、前記第1の原盤20の凹凸形状と同じネガ状で前記金属盤31Bと同様であり、この金属盤31E凹凸パターン上非磁性層33、軟磁性層32、保護膜34を被覆して磁気転写用マスター担体3とする。この金属盤31Eによるマスター担体3では、前述のように初期磁界Hinと転写用磁界Hduとを図1(b)とは逆方向とすることで、図1(c)と同様のパターンに磁気転写が行える。
【0043】
第6の作成工程を、図8(a)〜(j)に示す。(a)〜(f)の第1の原盤20への凹凸の形成および第2の原盤14の作成は、図7と同様である。次に、(g)のように第2の原盤14の表面の凹凸パターンにメッキを行うか、樹脂液を押し付けて硬化を行い、ネガ状凹凸パターンを有する第3の原盤15を作成する。(h)のように第2の原盤14から所定厚みとなった第3の原盤15を剥離する。次に、(i)のように第3の原盤15の表面の凹凸パターンにメッキを行い、金属の型をとったポジ状凹凸パターンを有する金属盤31Fを作成する。(j)のように第3の原盤15から所定厚みとなった金属盤31Fを剥離する。
【0044】
上記金属盤31Fの表面の凹凸パターンは、図6における金属盤31Dと同様のポジパターンであり、この凹凸パターン上非磁性層33、軟磁性層32、保護膜34を被覆して磁気転写用マスター担体3とする。
【0045】
金属盤31の材料としては、NiもしくはNi合金を使用、この金属盤31を作成する前記メッキは、無電解メッキまたは電鋳による金属成膜法が適用できる。金属盤31の凹凸パターンの深さ(突起の高さ)は、80nm〜800nmの範囲が好ましく、より好ましくは150nm〜600nmである。この凹凸パターンはサーボ信号の場合は、半径方向に長く形成される。例えば、半径方向の長さは0.3〜20μm、円周方向は0.2〜5μmが好ましく、この範囲で半径方向の方が長いパターンを選ぶことがサーボ信号の情報を担持するパターンとして好ましい。
【0046】
前記軟磁性層32の形成は、磁性材料を真空蒸着法、スパッタリング法、イオンプレーティング法等の真空成膜手段、メッキ法などにより成膜する。軟磁性層32の磁性材料としては、Co、Co合金(CoNi、CoNiZr、CoNbTaZr等)、Fe、Fe合金(FeCo、FeCoNi、FeNiMo、FeAlSi、FeAl、FeTaN)、Ni、Ni合金(NiFe)が用いることができる。特に好ましくはFeCo、FeCoNiである。軟磁性層32の厚みは、50nm〜500nmの範囲が好ましく、さらに好ましくは150nm〜400nmである。
【0047】
また軟磁性層32の下層に下地層として設ける非磁性層34の材料としては、Cr、CrTi、CoCr、CrTa、CrMo、NiAl、Ru、C、Ti、Al、Mo、W、Ta、Nb等を用いる。この非磁性層34は金属盤31が強磁性体の場合における信号品位の劣化を抑制できる。
【0048】
なお、軟磁性層32の上にDLC等の保護膜34を設けることが好ましく、潤滑剤層を設けても良い。また保護膜として5〜30nmのDLC膜と潤滑剤層が存在することがさらに好ましい。また、軟磁性層32と保護膜34の間に、Si等の密着強化層を設けてもよい。潤滑剤は、スレーブ媒体2との接触過程で生じるずれを補正する際の、摩擦による傷の発生などの耐久性の劣化を改善する。
【0049】
次にスレーブ媒体2について述べる。スレーブ媒体2としては塗布型磁気記録媒体、あるいは金属薄膜型磁気記録媒体を用いる。塗布型磁気記録媒体としては高密度フレキシブルディスクなどの市販媒体が挙げられる。金属薄膜型磁気記録媒体については、まず磁性材料としてはCo、Co合金(CoPtCr、CoCr、CoPtCrTa、CoPtCrNbTa、CoCrB、CoNi等)、Fe、Fe合金(FeCo、FePt、FeCoNi)を用いることができる。これは磁束密度が大きいこと、スレーブ媒体2と同じ方向(面内記録なら面内方向、垂直なら垂直方向)の磁気異方性を有していることが、明瞭な転写が行えるため好ましい。そして磁性材料の下(支持体側)に必要な磁気異方性をつけるために非磁性の下地層を設けることが好ましい。結晶構造と格子常数を磁性層に合わすことが必要である。そのためにはCr、CrTi、CoCr、CrTa、CrMo、NiAl、Ru等を用いる。
【0050】
以下に、本発明の実施例1,2のマスター担体、および比較例1〜4のマスター担体を示し、その特性を評価した結果を表1に示す。
【0051】
表1では、磁気転写後の信号品位を確認するために、磁気転写後のスレーブ媒体を磁気現像液(シグマハイケミカル社製;シグマーカーQ)を10倍に希釈し、スレーブ媒体上に滴下、乾燥させ、現像された磁気転写信号端の変動量を評価することにした。顕微鏡で1000倍の拡大率で10視野観測し、明確なものから5点法(5点が最も明確、1点が最も不明確、0点は評価不能)で評価した。また、1000回磁気転写を行った後、同様な評価を行った。
【0052】
比較例1]
この比較例1のマスター担体は前記第1の作成工程(図3参照)に沿って形成したもので、表面粗さRaが0.8nmの合成石英の円板にフォトレジストを塗布し、プリベーク後のフォトレジストは厚さ200nmであった。レーザーカッティング装置でパターンをフォトレジストに露光しアルカリ現像液で現像した。ここでパターンは半径20mm〜40mmの位置まで、0.5μm幅で等間隔の放射状ラインを設け、ライン間隔は半径20mmの位置で0.5μmとした。フォトレジスト表面を洗浄後、ベーキングを行い原盤を作成した。これに薄い銀メッキを施した後、Niメッキ層を300μmの厚みに設け、原盤から剥離した金属盤を磁気転写用マスター担体とした。このマスター担体を使用して磁気転写を行った結果、1回目および1000回転写後においても、ある程度良好な転写パターンが得られた。
【0053】
比較例2]
この比較例2のマスター担体は前記第4の作成工程(図6参照)に沿って形成したもので、比較例1と同様にフォトレジストを塗布しレーザーでパターンを露光し現像処理した円板に対し、200nmの深さに反応性イオンエッチングを行い、残留フォトレジストを除去し原盤を作成した。これにNiメッキ層を設け、原盤から剥離した金属盤を磁気転写用マスター担体とした。このマスター担体を使用して磁気転写を行った結果、1回目および1000回転写後においても、比較例1と同等のある程度良好な転写パターンが得られた。
【0054】
比較例3]
この比較例3のマスター担体は、比較例2で作成した金属盤にFeNi50at%からなる厚さ200nmの軟磁性層を成膜して磁気転写用マスター担体とした。軟磁性層の成膜条件は、アネルバ社製730Hスパッタ装置で直流スパッタ法を使用し、作成温度は25℃、Arガス圧は4×10-4Pa、投入電力は3W/cm2とした。このマスター担体を使用して磁気転写を行った結果、軟磁性層を有することで、これを有さない比較例1および2よりさらに良好な転写パターンが得られた。
【0055】
実施例1
この実施例1のマスター担体は、比較例2で作成した金属盤にCrからなる厚さ300nmの非磁性層を成膜後、比較例3と同様な工程でFeNi50at%を200nmの厚さに成膜して軟磁性層を設け、磁気転写用マスター担体とした。このマスター担体を使用して磁気転写を行った結果、非磁性層上に軟磁性層を設けたことで、比較例1、2および3よりさらに良好な転写パターンが得られた。
【0056】
実施例2
この実施例2のマスター担体は、実施例1で作成したマスター担体の上に、Siをスパッタリングで1nm設けた後、CVD法でDLC保護膜を5nm被覆して、磁気転写用マスター担体とした。このマスター担体を使用して磁気転写を行った結果、DLC保護膜による耐摩耗性の向上で、1000回の磁気転写を行っても初期の良好な転写評価が維持されている。
【0057】
[比較例
この比較例のマスター担体は、比較例1のマスター担体の金属盤をシリコンウェハー基板に交換し、その基板上に比較例3と同様の軟磁性層を設け、さらにその上にフォトレジストを塗布し、マスクを用いて比較例1と同様のパターンを露光し、現像処理後、さらにエッチングを行って軟磁性層を部分的に除去した後、残っているフォトレジストを除去して作成したものである。このマスター担体を使用して磁気転写を行った結果、1回目から得られる転写パターンは不明確であり、1000回目では評価不能であった。
【0058】
【表1】

Figure 0003999436

【図面の簡単な説明】
【図1】 本発明の非磁性層を備えていない基本形態に係るマスター担体を使用した磁気転写方法を示す図
【図2】 本発明の実施形態に係るマスター担体示す断面図
【図3】 本発明の実施形態に係るマスター担体の金属盤の第1の作成工程順を示す図
【図4】 マスター担体の金属盤の第2の作成工程順を示す図
【図5】 マスター担体の金属盤の第3の作成工程順を示す図
【図6】 マスター担体の金属盤の第4の作成工程順を示す図
【図7】 マスター担体の金属盤の第5の作成工程順を示す図
【図8】 マスター担体の金属盤の第6の作成工程順を示す図
【符号の説明】
2 スレーブ媒体
3 マスター担体
10 円板
11 フォトレジスト
12,20 第1の原盤
13 銀メッキ層
14 第2の原盤
15 第3の原盤
31,31A〜31F 金属盤
32 軟磁性層
33 非磁性層
34 保護膜[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a magnetic transfer master carrier used in a magnetic transfer method for magnetic transfer from a master carrier carrying information to a slave medium.
[0002]
[Prior art]
  In general, a magnetic recording medium that has a large capacity and is inexpensive to record a large amount of information as the amount of information increases, and more preferably a medium capable of high-speed access that can read out a necessary portion in a short time is desired. Yes. A high-density flexible disk is known as an example of these, and in order to realize its large capacity, so-called tracking servo technology is used in which a magnetic head accurately scans a narrow track width and reproduces a signal with a high S / N ratio. , Have a big role. Servo signals for tracking, address information signals, regenerative clock signals, etc. are called at certain intervals within one round of the disk.YuIs recorded as a preformat.
[0003]
  The magnetic head is set to be able to travel on the track accurately by reading such a preformat signal and correcting its position. The current preformat is created by recording disks one by one and one track using a dedicated servo recording device.
[0004]
  However, since the servo recording apparatus is expensive and it takes time to create a preformat, this process occupies a large part of the manufacturing cost, and the cost reduction is desired.
[0005]
  On the other hand, instead of writing a preformat for each track, a method for realizing it by a magnetic transfer method has been proposed. For example, JP-A-63-183623, JP-A-10-40544, and JP-A-10-269566 introduce transfer techniques. However, in the conventional techniques as described above, a practical method is not disclosed, and in particular, conditions of a magnetic field to be applied at the time of transfer and a specific device configuration for generating the magnetic field, etc. The reality is that it remains completely unknown.
[0006]
  Therefore, for example, in Japanese Patent Application Laid-Open No. 63-183623 and Japanese Patent Application Laid-Open No. 10-40544, an uneven shape corresponding to an information signal is formed on the surface of the substrate, and a ferromagnetic thin film is formed on at least the surface of the uneven portion of the uneven shape. The surface of the magnetic transfer master carrier is brought into contact with the surface of a sheet-like or disk-like magnetic recording medium on which a ferromagnetic thin film or ferromagnetic powder coating layer is formed, or an AC bias magnetic field or a DC magnetic field is further applied to project the surface. There has been proposed a method of recording a magnetic pattern corresponding to a concavo-convex shape on a magnetic recording medium by exciting a ferromagnetic material constituting the surface of the part.
[0007]
  In this method, a predetermined format is formed on the slave medium by exciting the ferromagnetic material constituting the convex portion at the same time by bringing the convex surface of the master carrier into close contact with the magnetic recording medium to be preformatted, that is, the slave medium. This is a transfer method that can record statically without changing the relative position between the magnetic transfer master carrier and the slave medium, enables accurate preformat recording, and also requires a long recording time. It is extremely short time.
[0008]
[Problems to be solved by the invention]
  By the way, when the magnetic transfer method is applied to record the servo signal on the magnetic recording medium, a servo pattern of 1 μm or less is applied to the master carrier with a 3.5-type magnetic recording medium (diameter 3.5 inches) or 2.5. It is necessary to form the magnetic recording medium at an arbitrary position with high accuracy over the entire area of the magnetic recording medium (2.5 inches in diameter). In addition, since each servo pattern indicates an address of information, it is necessary to create all different pattern shapes.
[0009]
  The fine pattern as described above can be created by the lithography technique of the semiconductor / magnetic head. However, since this technique reduces the original drawing and increases the accuracy, the pattern forming range that can be created by one exposure is 2 cm. Limited to corners. When creating a pattern with a large area, it can be created by repeatedly recording this 2 cm square pattern formation range. However, since the same pattern is formed, the servo recording system forms all different patterns as described above. Not applicable to
[0010]
  On the other hand, in the magnetic transfer method, the master carrier is in close contact with the slave medium to perform magnetic transfer, so that the pattern surface shape carrying information is worn according to repeated magnetic transfer and the transfer accuracy is reduced, or dust It will be damaged due to the intervening and will have a life span and need to be replaced. From this point, the master carrier is required to be easy to manufacture and cost-effective. That is, it is disadvantageous in terms of quality stability and production cost to form a fine pattern on the substrate of the master carrier one by one with high accuracy by exposure or the like.
[0011]
  The present invention has been made in view of such problems, and an object of the present invention is to provide a magnetic transfer master carrier that can be easily produced at low cost.
[0012]
[Means for Solving the Problems]
  The magnetic transfer master carrier of the present invention is a magnetic transfer master carrier having a concavo-convex pattern corresponding to information to be transferred, and is a laser or an electron modulated according to information while rotating a disk coated with a photoresist. It consists of a metal disc made of Ni or Ni alloy, which is made by irradiating the beam, plating the main plate with unevenness developed with the photoresist, plating with the main component of Ni, taking a metal mold and then peeling off ShiA soft magnetic layer is provided on the concave / convex pattern of the metal plate taking the mold, and a nonmagnetic layer is provided between the soft magnetic layer and the concave / convex pattern of the metal disc.It is characterized by this.
[0013]
  Another magnetic transfer master carrier of the present invention is a magnetic transfer master carrier having a concavo-convex pattern corresponding to information to be transferred, and a laser modulated according to information while rotating a disk coated with a photoresist. Alternatively, an electron beam is irradiated, plating is performed on the first master having irregularities developed from the photoresist, plating is performed on the second master from which the first master is peeled, and the main component is Ni. It consists of a metal plate made of Ni or Ni alloy that is made by peeling after takingA soft magnetic layer is provided on the concave / convex pattern of the metal plate taking the mold, and a nonmagnetic layer is provided between the soft magnetic layer and the concave / convex pattern of the metal disc.It is characterized by this.
[0014]
  Still another magnetic transfer master carrier of the present invention is a magnetic transfer master carrier having a concavo-convex pattern corresponding to information to be transferred, which is modulated according to information while rotating a disk coated with a photoresist. Irradiating with a laser or electron beam, plating is performed on the first master having irregularities developed from the photoresist, and the resin is pressed against the second master from which the first master has been peeled off, or is plated. It is composed of a metal plate made of Ni or Ni alloy formed by plating the third master plate from which the second master plate has been peeled off, the main component being Ni, taking a metal mold and then peeling off.A soft magnetic layer is provided on the concave / convex pattern of the metal plate taking the mold, and a nonmagnetic layer is provided between the soft magnetic layer and the concave / convex pattern of the metal disc.It is characterized by this.
[0015]
  Still another magnetic transfer master carrier of the present invention is a magnetic transfer master carrier having a concavo-convex pattern corresponding to information to be transferred, which is modulated according to information while rotating a disk coated with a photoresist. After irradiating a laser or an electron beam, developing and etching the photoresist, providing irregularities, and then removing the photoresist, plating the main plate having irregularities with Ni as the main component, and taking a metal mold It consists of a metal disc made of Ni or Ni alloy made by peeling.A soft magnetic layer is provided on the concave / convex pattern of the metal plate taking the mold, and a nonmagnetic layer is provided between the soft magnetic layer and the concave / convex pattern of the metal disc.It is characterized by this.
[0016]
  Still another magnetic transfer master carrier of the present invention is a magnetic transfer master carrier having a concavo-convex pattern corresponding to information to be transferred, which is modulated according to information while rotating a disk coated with a photoresist. Irradiate a laser or electron beam, develop and etch the photoresist, provide irregularities, and then press the resin solution against the first master having the irregularities after removing the photoresist, or perform curing or plating The second master from which the first master is peeled is plated with Ni as the main component, and is made of a metal disc made of Ni or Ni alloy formed by peeling after taking a metal mold.A soft magnetic layer is provided on the concave / convex pattern of the metal plate taking the mold, and a nonmagnetic layer is provided between the soft magnetic layer and the concave / convex pattern of the metal disc.It is characterized by this.
[0017]
  Still another magnetic transfer master carrier of the present invention is a magnetic transfer master carrier having a concavo-convex pattern corresponding to information to be transferred, which is modulated according to information while rotating a disk coated with a photoresist. Irradiate a laser or electron beam, develop and etch the photoresist, provide irregularities, and then press the resin solution against the first master having the irregularities after removing the photoresist, or perform curing or plating Then, the resin liquid is pressed against the second master from which the first master has been peeled off and cured or plated, and the third master from which the second master is peeled off is plated with Ni as the main component, It is composed of a metal plate made of Ni or Ni alloy, which is made by peeling after taking the mold ofA soft magnetic layer is provided on the concave / convex pattern of the metal plate taking the mold, and a nonmagnetic layer is provided between the soft magnetic layer and the concave / convex pattern of the metal disc.It is characterized by this.
[0018]
  The depth of the unevenness is 80 nm to 800 nm. More preferably, it is 150 nm-600 nm.
[0019]
  SaidThe soft magnetic layer has a thickness of 50 nm to 500 nm. More preferably, it is 150 nm-400 nm. A diamond-like carbon protective film is provided as the uppermost layer.
[0020]
  The uneven pattern is long in the radial direction. This concave / convex pattern preferably has a radial length of 0.3 to 20 μm and a circumferential direction of 0.2 to 5 μm. A pattern having a longer radial direction within this range is a pattern that carries servo signal information. As preferred.
[0021]
  The “plating” is applicable to a metal film forming method by electroless plating or electroforming.
[0022]
  The magnetic transfer method using the magnetic transfer master carrier as described above is performed by applying a transfer magnetic field with the information carrier surface of the master carrier and the surface of the slave medium in close contact with each other. For example, a magnetic transfer master carrier using a ferromagnetic metal plate having a concavo-convex pattern corresponding to information as described above, or a metal disc having a soft magnetic layer formed on the surface of the concavo-convex pattern, and a slave medium receiving the transfer The magnetization of the slave medium is initially DC magnetized in the track direction in advance, and the master carrier and the slave medium with the initial DC magnetization are brought into close contact with each other in a direction substantially opposite to the initial DC magnetization direction of the slave medium surface. It is preferable to perform magnetic transfer by applying a magnetic field for transfer.
[0023]
  The concave / convex pattern of the metal disk may be a positive pattern or a negative pattern with respect to the irradiation pattern of the laser or electron beam, that is, even if the concave / convex are reversed, the initial magnetization and the magnetic field for transfer in the magnetic transfer step are reversed. If the direction is reversed, the same magnetic transfer pattern can be obtained.
[0024]
【The invention's effect】
  According to the present invention as described above, the magnetic transfer master carrier is formed of a metal plate having a concavo-convex pattern corresponding to information, so that magnetic transfer of an information signal such as a servo signal to a magnetic recording medium can be performed. Necessary master carriers can be produced with a predetermined accuracy at low cost. In particular, a large number of similar metal disks can be produced from a single master disk by plating, and the master carrier can be sequentially replaced according to the number of times of magnetic transfer, and magnetic transfer with stable quality can be performed.
[0025]
  Further, the main component of the metal plate of the master carrier is Ni, which is good in terms of hardness, moldability, weather resistance and the like. When the metal disk is mainly composed of Ni, it is ferromagnetic, so magnetic transfer is possible only with this metal disk, but a soft magnetic layer with good transfer characteristics should be provided.Better magnetic transfer. further,In order to cut off the magnetic effect of the metal plate, a non-magnetic layer is provided between the metal plate and the soft magnetic layer.ing. When a diamond-like carbon protective film is provided on the uppermost layer, the contact durability is improved, and the magnetic transfer from the master carrier to the slave medium can be performed many times.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 shows the present invention.Basic form without a non-magnetic layerFIG. 2 is a diagram showing a magnetic transfer method using a master carrier according to (a), a step of applying a magnetic field in one direction to DC magnetize a slave medium, and (b) a close contact between the master carrier and the slave medium. The step of applying a magnetic field in the opposite direction, (c) is a diagram showing the state after magnetic transfer. Figure 2Master carrier according to an embodiment of the present inventionFIG. FIGS. 3 to 8 are diagrams showing the order of steps for producing a metal plate of a master carrier.
[0027]
  The outline of the magnetic transfer method is as follows. First, as shown in FIG. 1A, first, an initial static magnetic field Hin is applied to the slave medium 2 in one direction in the track direction to perform DC magnetization (DC demagnetization) in advance. Thereafter, as shown in FIG. 1B, the soft magnetic layer 32 is formed into a fine uneven pattern (uneven shape elongated in the radial direction, that is, the track width direction) of the magnetic transfer surface of the slave medium 2 and the metal plate 31 of the master carrier 3. Is magnetically transferred by applying a transfer magnetic field Hdu in the direction opposite to the initial magnetic field Hin in the track direction of the slave medium 2. As a result, as shown in FIG. 1 (c), the magnetic transfer surface (track) of the slave medium 2 corresponds to the formation pattern of the close contact protrusion and the concave space of the soft magnetic layer 32 on the information carrying surface of the master carrier 3. The recorded information is magnetically transferred and recorded. For details of such a magnetic transfer method, see, for example, the contents described in Japanese Patent Application No. 11-117800.
[0028]
  In the master carrier 3, even if the concave / convex pattern of the metal plate 31 is a negative pattern having a concave / convex shape opposite to the positive pattern in FIG. 1, the direction of the initial magnetic field Hin and the direction of the transfer magnetic field Hdu are opposite to those described above. The same information can be magnetically transferred and recorded by setting the direction.
[0029]
  When the metal plate 31 is a ferromagnetic material such as Ni, magnetic transfer can be performed only with the metal plate 31 and the soft magnetic layer 32 may not be covered, but the soft magnetic layer 32 having good transfer characteristics. Can provide better magnetic transferThe
[0030]
  When the soft magnetic layer 32 is coated on the metal disk 31 made of a ferromagnetic metal, in order to cut off the influence of the magnetism of the metal disk 31, as shown in FIG. 2, the nonmagnetic property is provided between the metal disk 31 and the soft magnetic layer 32. Layer 33 is providedTheThat is, in the master carrier 3 of FIG. 2, after the nonmagnetic layer 33 is coated on the metal plate 31 having the same concavo-convex pattern as described above, the soft magnetic layer 32 is coated on the nonmagnetic layer 33 and the uppermost layer. A diamond-like carbon (DLC) protective film 34 is coated thereon. The uppermost DLC protective film 34 has improved contact durability and can be magnetically transferred many times, and it is desirable to cover the uppermost layer also in the case of FIG. Note that a Si film may be formed under the DLC protective film 34 by sputtering or the like.
[0031]
  A first production process of the metal disk 31 of the master carrier 3 for magnetic transfer will be described with reference to FIGS. First, as shown in (a), a photoresist liquid is applied on a disk 10 (glass or quartz plate) having a smooth surface by spin coating or the like to form a photoresist 11, and the disk 10 having this photoresist 11 is formed. , The laser beam L (or electron beam, which is the same in the following form) modulated in accordance with the servo signal is irradiated to the photoresist 11 on the entire surface of the disk 10 with a predetermined preformat pattern, for example, each track. A pattern corresponding to a servo signal extending linearly in the radial direction from the center of rotation is exposed at a portion corresponding to each frame on the circumference. Thereafter, the photoresist 11 is developed as shown in (b), the exposed portion is removed, and a master 12 (first master) having an uneven shape by the photoresist 11 is obtained.
[0032]
  Next, based on the concavo-convex pattern on the surface of the master 12, a thin silver plating layer 13 is formed on the surface by plating as shown in FIG. A metal plate 31A having a concavo-convex pattern is created. As shown in (d), the metal disc 31A having a predetermined thickness is peeled off from the master disc 12.
[0033]
  The concavo-convex pattern on the surface of the metal plate 31A is obtained by inverting the concavo-convex shape of the master 12 and is formed at an arbitrary position on the entire magnetic recording medium with an accuracy of a unit of μm or less. This metal board 31AofOn uneven patternInThe magnetic transfer master carrier 3 is formed by covering the nonmagnetic layer 33, the soft magnetic layer 32, and the protective film 34.
[0034]
  The second creation process is shown in FIGS. (a) and (b) formation of the photoresist 11 on the disk 10, exposure of the pattern by the laser beam L, development processing, and formation of the first master 12 having the concavo-convex shape by the photoresist 11 This is the same as FIG. Next, as shown in (c), the uneven pattern on the surface of the first master 12 is plated and electroformed on the silver plating layer 13 to create a second master 14 having a positive uneven pattern. The second master 14 is peeled off as shown in (d), and the uneven pattern on the surface of the second master 14 is plated as shown in (e) to have a negative uneven pattern taking the shape of a metal. A metal plate 31B is created. As shown in (f), the metal plate 31B having a predetermined thickness is peeled from the second master 14.
[0035]
  The concavo-convex pattern on the surface of the metal plate 31B has the same negative shape as the concavo-convex shape of the first master 12, and the metal plate 31B.ofOn uneven patternInThe magnetic transfer master carrier 3 is formed by covering the nonmagnetic layer 33, the soft magnetic layer 32, and the protective film 34. In the master carrier 3 using the metal disk 31B, the initial magnetic field Hin and the transfer magnetic field Hdu are reversed in the direction opposite to that shown in FIG. Can be done.
[0036]
  The third production process is shown in FIGS. The formation of irregularities on the first master 12 and the creation of the second master 14 in (a) to (d) are the same as in FIG. Next, as shown in (e), plating is performed on the concave / convex pattern on the surface of the second master 14 or curing is performed by pressing a resin liquid to create a third master 15 having a negative concave / convex pattern. As shown in (f), the third master 15 having a predetermined thickness is peeled off from the second master 14. Next, as shown in (g), the uneven pattern on the surface of the third master 15 is plated to form a metal plate 31C having a positive uneven pattern taking the shape of a metal. As shown in (h), the metal plate 31C having a predetermined thickness is peeled off from the third master 13.
[0037]
  The uneven pattern on the surface of the metal plate 31C is a positive pattern similar to the metal plate 31A in FIG.thisOn uneven patternInThe magnetic transfer master carrier 3 is formed by covering the nonmagnetic layer 33, the soft magnetic layer 32, and the protective film 34.
[0038]
  The fourth creation process will be described with reference to FIGS. First, as shown in (a), a photoresist liquid is applied on a disk 10 (glass or quartz plate) having a smooth surface by spin coating or the like to form a photoresist 11, and the disk 10 having this photoresist 11 is formed. , A predetermined preformat pattern is exposed on the photoresist 11 on the entire surface of the disk 10 by irradiating a laser beam L (or an electron beam, which is the same in the following form) modulated in accordance with the servo signal. Thereafter, the photoresist 11 is developed as shown in (b), and the exposed portion is removed. Then, the disc 10 where the photoresist 11 is removed in the etching step is etched, and the exposed pattern is shown as (c). A hole 10a corresponding to the above is formed. Thereafter, the remaining photoresist 11 is removed to obtain a master 20 (first master) having a concavo-convex pattern of holes 10a on the surface as shown in (d).
[0039]
  Next, based on the concave / convex pattern on the surface of the master 20, a thin silver plating layer 13 is formed on the surface by plating as shown in FIG. A metal disc 31D having a concavo-convex pattern is created. As shown in (f), the metal plate 31D having a predetermined thickness is peeled off from the master 20.
[0040]
  The uneven pattern on the surface of the metal plate 31D is the same as the metal plate 31A of FIG. 3 in which the uneven shape of the master 20 is inverted, and with an accuracy of μm or less at an arbitrary position on the entire magnetic recording medium. A pattern has been created. This metal board 31DofOn uneven patternInThe magnetic transfer master carrier 3 is formed by covering the nonmagnetic layer 33, the soft magnetic layer 32, and the protective film 34.
[0041]
  The fifth production process is shown in FIGS. The formation of the photoresist 11 on the disk 10 of (a) to (d), the pattern exposure by the laser beam L, the development process, and the formation of the first master 20 having the concavo-convex shape by etching are the same as in FIG. It is. Next, as shown in (e), the uneven pattern on the surface of the first master 20 is plated (formation of the silver plating layer 13 and electroforming) or cured by pressing a resin solution to form a positive uneven pattern. A second master 14 having the same is created. The second master 14 is peeled off as shown in (f), and the uneven pattern on the surface of the second master 14 is plated as shown in (g) to have a negative uneven pattern that takes the shape of a metal. A metal board 31E is created. As shown in (h), the metal plate 31E having a predetermined thickness is peeled off from the second master 14.
[0042]
  The concave / convex pattern on the surface of the metal plate 31E is the same negative shape as the concave / convex shape of the first master 20, and is similar to the metal plate 31B.ofOn uneven patternInThe magnetic transfer master carrier 3 is formed by covering the nonmagnetic layer 33, the soft magnetic layer 32, and the protective film 34. In the master carrier 3 by the metal plate 31E, the initial magnetic field Hin and the transfer magnetic field Hdu are reversed in the direction opposite to that shown in FIG. Can be done.
[0043]
  The sixth production process is shown in FIGS. The formation of irregularities on the first master 20 and the creation of the second master 14 in (a) to (f) are the same as in FIG. Next, as shown in (g), the concave / convex pattern on the surface of the second master 14 is plated or cured by pressing a resin solution to create a third master 15 having a negative concave / convex pattern. As shown in (h), the third master 15 having a predetermined thickness is peeled from the second master 14. Next, as shown in (i), the uneven pattern on the surface of the third master 15 is plated to form a metal disk 31F having a positive uneven pattern taking a metal mold. As shown in (j), the metal plate 31F having a predetermined thickness is peeled from the third master plate 15.
[0044]
  The uneven pattern on the surface of the metal plate 31F is a positive pattern similar to the metal plate 31D in FIG.thisOn uneven patternInThe magnetic transfer master carrier 3 is formed by covering the nonmagnetic layer 33, the soft magnetic layer 32, and the protective film 34.
[0045]
  Ni or Ni alloy is used as the material of the metal plate 31ShiThe plating for forming the metal plate 31 can be applied with a metal film forming method by electroless plating or electroforming. The depth of the concavo-convex pattern (projection height) of the metal plate 31 is preferably in the range of 80 nm to 800 nm, more preferably 150 nm to 600 nm. In the case of a servo signal, the uneven pattern is formed long in the radial direction. For example, the length in the radial direction is preferably 0.3 to 20 μm, and the circumferential direction is preferably 0.2 to 5 μm, and it is preferable as the pattern carrying the servo signal information to select a pattern longer in the radial direction within this range. .
[0046]
  The soft magnetic layer 32 is formed by depositing a magnetic material by a vacuum film forming means such as a vacuum deposition method, a sputtering method, or an ion plating method, or a plating method. As the magnetic material of the soft magnetic layer 32, Co, Co alloy (CoNi, CoNiZr, CoNbTaZr, etc.), Fe, Fe alloy (FeCo, FeCoNi, FeNiMo, FeAlSi, FeAl, FeTaN), Ni, Ni alloy (NiFe) are used. be able to. Particularly preferred are FeCo and FeCoNi. The thickness of the soft magnetic layer 32 is preferably in the range of 50 nm to 500 nm, more preferably 150 nm to 400 nm.
[0047]
  In addition, as a material for the nonmagnetic layer 34 provided as an underlayer under the soft magnetic layer 32, Cr, CrTi, CoCr, CrTa, CrMo, NiAl, Ru, C, Ti, Al, Mo, W, Ta, Nb, and the like are used. Use. The nonmagnetic layer 34 can suppress deterioration of signal quality when the metal plate 31 is a ferromagnetic material.
[0048]
  A protective film 34 such as DLC is preferably provided on the soft magnetic layer 32, and a lubricant layer may be provided. More preferably, a 5-30 nm DLC film and a lubricant layer are present as the protective film. Further, an adhesion reinforcing layer such as Si may be provided between the soft magnetic layer 32 and the protective film 34. The lubricant improves the deterioration of durability such as the occurrence of scratches due to friction when correcting the deviation caused in the contact process with the slave medium 2.
[0049]
  Next, the slave medium 2 will be described. As the slave medium 2, a coating type magnetic recording medium or a metal thin film type magnetic recording medium is used. Examples of the coating type magnetic recording medium include commercially available media such as a high-density flexible disk. Regarding the metal thin film type magnetic recording medium, first, Co, Co alloy (CoPtCr, CoCr, CoPtCrTa, CoPtCrNbTa, CoCrB, CoNi, etc.), Fe, Fe alloy (FeCo, FePt, FeCoNi) can be used as the magnetic material. It is preferable that the magnetic flux density be large and that the magnetic anisotropy be in the same direction as the slave medium 2 (in-plane direction for in-plane recording, vertical direction for perpendicular), since clear transfer can be performed. In order to give necessary magnetic anisotropy under the magnetic material (on the support side), it is preferable to provide a nonmagnetic underlayer. It is necessary to match the crystal structure and lattice constant to the magnetic layer. For that purpose, Cr, CrTi, CoCr, CrTa, CrMo, NiAl, Ru or the like is used.
[0050]
  Example 1 of the present invention will be described below., 2Master carrier and Comparative Example 1~ 4Table 1 shows the results of evaluating the characteristics of the master carrier.
[0051]
  In Table 1, in order to confirm the signal quality after the magnetic transfer, the slave medium after the magnetic transfer was diluted 10 times with a magnetic developer (Sigma High Chemical Co .; Sigma Marker Q) and dropped on the slave medium. It was decided to evaluate the fluctuation amount of the dried and developed magnetic transfer signal edge. Ten fields of view were observed with a microscope at a magnification of 1000 times, and evaluated from a clear one by a five-point method (five points are the clearest, one point is the most unclear, and zero points are unevaluable). The same evaluation was performed after 1000 times of magnetic transfer.
[0052]
  [ComparisonExample 1]
  thisComparisonThe master carrier of Example 1 was formed according to the first preparation step (see FIG. 3), and a photoresist was applied to a synthetic quartz disk having a surface roughness Ra of 0.8 nm, and the prebaked photo The resist was 200 nm thick. The pattern was exposed to photoresist with a laser cutting device and developed with an alkaline developer. Here, the pattern was provided with radial lines at equal intervals of 0.5 μm up to a radius of 20 mm to 40 mm, and the line spacing was 0.5 μm at a radius of 20 mm. After cleaning the photoresist surface, baking was performed to create a master. After thin silver plating was applied thereto, a Ni plating layer was provided to a thickness of 300 μm, and a metal disk peeled off from the master was used as a master carrier for magnetic transfer. As a result of magnetic transfer using this master carrier, a somewhat good transfer pattern was obtained even after the first transfer and 1000 transfer.
[0053]
  [ComparisonExample 2]
  thisComparisonThe master carrier of Example 2 was formed along the fourth production process (see FIG. 6),ComparisonAs in Example 1, a photo resist was applied, a pattern was exposed with a laser, and the developed disc was subjected to reactive ion etching to a depth of 200 nm to remove the residual photo resist and create a master. A metal plate provided with a Ni plating layer and peeled off from the master was used as a master carrier for magnetic transfer. As a result of magnetic transfer using this master carrier, even after the first transfer and 1000 transfer,ComparisonA somewhat good transfer pattern equivalent to Example 1 was obtained.
[0054]
  [ComparisonExample 3]
  thisComparisonThe master carrier of Example 3 isComparisonA soft magnetic layer made of FeNi 50 at% and having a thickness of 200 nm was formed on the metal disk prepared in Example 2 to obtain a magnetic transfer master carrier. The soft magnetic layer was formed by using a direct current sputtering method with a 730H sputtering apparatus manufactured by Anerva Co., Ltd., a production temperature of 25 ° C., and an Ar gas pressure of 4 × 10.-FourPa, input power is 3W / cm2It was. As a result of magnetic transfer using this master carrier, it has a soft magnetic layer and does not have thisComparisonA better transfer pattern than in Examples 1 and 2 was obtained.
[0055]
  [Example 1]
  thisExample 1The master carrier ofComparisonAfter depositing a 300 nm thick nonmagnetic layer made of Cr on the metal disk created in Example 2,ComparisonIn the same process as in Example 3, FeNi 50 at% was formed to a thickness of 200 nm and a soft magnetic layer was provided to obtain a magnetic transfer master carrier. As a result of magnetic transfer using this master carrier, by providing a soft magnetic layer on the nonmagnetic layer,ComparisonBetter transfer patterns were obtained than in Examples 1, 2 and 3.
[0056]
  [Example 2]
  thisExample 2The master carrier ofExample 1On the master carrier prepared in (1), Si was provided by 1 nm by sputtering, and then a DLC protective film was coated by CVD to 5 nm to obtain a magnetic transfer master carrier. As a result of performing magnetic transfer using this master carrier, the initial good transfer evaluation is maintained even after 1000 times of magnetic transfer due to improved wear resistance by the DLC protective film.
[0057]
  [Comparative example4]
  This comparative example4The master carrier ofComparisonReplace the metal plate of the master carrier of Example 1 with a silicon wafer substrate and place it on the substrate.Comparative Example 3A soft magnetic layer similar to the above is provided, and a photoresist is applied thereon, and a mask is used.ComparisonThe same pattern as in Example 1 was exposed, developed, and further etched to partially remove the soft magnetic layer and then remove the remaining photoresist. As a result of magnetic transfer using this master carrier, the transfer pattern obtained from the first time was unclear, and evaluation was impossible at the 1000th time.
[0058]
[Table 1]
Figure 0003999436

[Brief description of the drawings]
FIG. 1 of the present inventionUsing a master carrier according to a basic form not provided with a nonmagnetic layerDiagram showing magnetic transfer method
[Figure 2]According to the embodiment of the present inventionMaster carrierTheCross section shown
FIG. 3 is a diagram showing a first creation process sequence of a metal plate of a master carrier according to an embodiment of the present invention.
FIG. 4 is a diagram showing the order of the second creation process of the metal plate of the master carrier
FIG. 5 is a diagram showing a third order of production steps for the metal plate of the master carrier.
FIG. 6 is a diagram showing a fourth production process sequence of the metal plate of the master carrier.
FIG. 7 is a diagram showing a fifth production process sequence of the metal plate of the master carrier.
FIG. 8 is a diagram showing the order of the sixth production process of the metal plate of the master carrier
[Explanation of symbols]
      2 Slave media
      3 Master carrier
      10 disc
      11 photoresist
      12, 20 First master
      13 Silver plating layer
      14 Second master
      15 Third master
      31,31A ~ 31F Metal board
      32 Soft magnetic layer
      33 Nonmagnetic layer
      34 Protective film

Claims (10)

転写する情報に対応した凹凸パターンを有する磁気転写用マスター担体であって、
フォトレジストが塗布された円板を回転させながら情報に応じて変調したレーザーまたは電子ビームを照射し、該フォトレジストを現像した凹凸を有する原盤に主成分がNiであるメッキを行い、金属の型をとった後剥離することで作成してなるNiもしくはNi合金による金属盤で構成し、該型をとった金属盤の凹凸パターンの上に軟磁性層を設け、さらに、該軟磁性層と前記金属盤の凹凸パターンとの間に非磁性層を設けたことを特徴とする磁気転写用マスター担体。
A magnetic transfer master carrier having a concavo-convex pattern corresponding to information to be transferred,
A metal mold is formed by irradiating a laser or electron beam modulated in accordance with information while rotating a disk coated with a photoresist, and plating the main plate having irregularities developed from the photoresist with Ni as a main component. It is composed of a metal disk made of Ni or Ni alloy formed by peeling after taking , and a soft magnetic layer is provided on the concavo-convex pattern of the metal disk taking the mold, and the soft magnetic layer and the above-mentioned A master carrier for magnetic transfer, wherein a nonmagnetic layer is provided between the concave and convex pattern of a metal disk .
転写する情報に対応した凹凸パターンを有する磁気転写用マスター担体であって、
フォトレジストが塗布された円板を回転させながら情報に応じて変調したレーザーまたは電子ビームを照射し、該フォトレジストを現像した凹凸を有する第1の原盤にメッキを行い、第1の原盤を剥離した第2の原盤に主成分がNiであるメッキを行い、金属の型をとった後剥離することで作成してなるNiもしくはNi合金による金属盤で構成し、該型をとった金属盤の凹凸パターンの上に軟磁性層を設け、さらに、該軟磁性層と前記金属盤の凹凸パターンとの間に非磁性層を設けたことを特徴とする磁気転写用マスター担体。
A magnetic transfer master carrier having a concavo-convex pattern corresponding to information to be transferred,
Rotate a disc coated with photoresist and irradiate a laser or electron beam modulated according to the information, plate the first master with irregularities developed from the photoresist, and peel off the first master The second master is plated with Ni as a main component, and is made of a metal plate made of Ni or Ni alloy formed by peeling after taking a metal mold. A magnetic transfer master carrier , wherein a soft magnetic layer is provided on an uneven pattern, and a nonmagnetic layer is provided between the soft magnetic layer and the uneven pattern of the metal disk .
転写する情報に対応した凹凸パターンを有する磁気転写用マスター担体であって、
フォトレジストが塗布された円板を回転させながら情報に応じて変調したレーザーまたは電子ビームを照射し、該フォトレジストを現像した凹凸を有する第1の原盤にメッキを行い、第1の原盤を剥離した第2の原盤に、樹脂液を押し付けて硬化を行うかまたはメッキを行い、第2の原盤を剥離した第3の原盤に主成分がNiであるメッキを行い、金属の型をとった後剥離することで作成してなるNiもしくはNi合金による金属盤で構成し、該型をとった金属盤の凹凸パターンの上に軟磁性層を設け、さらに、該軟磁性層と前記金属盤の凹凸パターンとの間に非磁性層を設けたことを特徴とする磁気転写用マスター担体。
A magnetic transfer master carrier having a concavo-convex pattern corresponding to information to be transferred,
Rotate a disc coated with photoresist and irradiate a laser or electron beam modulated according to the information, plate the first master with irregularities developed from the photoresist, and peel off the first master After the second master is cured by pressing the resin liquid or plating, the third master from which the second master is peeled is plated with the main component of Ni, and after taking the metal mold It consists of a metal disk made of Ni or Ni alloy formed by peeling , and a soft magnetic layer is provided on the uneven pattern of the metal disk taking the mold, and further, the unevenness of the soft magnetic layer and the metal disk A master carrier for magnetic transfer, wherein a nonmagnetic layer is provided between the pattern and the pattern .
転写する情報に対応した凹凸パターンを有する磁気転写用マスター担体であって、
フォトレジストが塗布された円板を回転させながら情報に応じて変調したレーザーまたは電子ビームを照射し、該フォトレジストを現像しエッチングを施して凹凸を設けた後フォトレジストを除去した凹凸を有する原盤に主成分がNiであるメッキを行い、金属の型をとった後剥離することで作成してなるNiもしくはNi合金による金属盤で構成し、該型をとった金属盤の凹凸パターンの上に軟磁性層を設け、さらに、該軟磁性層と前記金属盤の凹凸パターンとの間に非磁性層を設けたことを特徴とする磁気転写用マスター担体。
A magnetic transfer master carrier having a concavo-convex pattern corresponding to information to be transferred,
A master having unevenness by rotating a disk coated with a photoresist while irradiating a laser or an electron beam modulated in accordance with information, developing the photoresist and etching to provide unevenness, and then removing the photoresist It is composed of a metal plate made of Ni or Ni alloy, which is made by performing plating after the main component is Ni, taking a metal mold and then peeling off , on the uneven pattern of the metal plate taking the mold A magnetic transfer master carrier comprising a soft magnetic layer and a nonmagnetic layer provided between the soft magnetic layer and the concave-convex pattern of the metal disk .
転写する情報に対応した凹凸パターンを有する磁気転写用マスター担体であって、
フォトレジストが塗布された円板を回転させながら情報に応じて変調したレーザーまたは電子ビームを照射し、該フォトレジストを現像しエッチングを施して凹凸を設けた後フォトレジストを除去した凹凸を有する第1の原盤に、樹脂液を押し付けて硬化を行うかまたはメッキを行い、第1の原盤を剥離した第2の原盤に主成分がNiであるメッキを行い、金属の型をとった後剥離することで作成してなるNiもしくはNi合金による金属盤で構成し、該型をとった金属盤の凹凸パターンの上に軟磁性層を設け、さらに、該軟磁性層と前記金属盤の凹凸パターンとの間に非磁性層を設けたことを特徴とする磁気転写用マスター担体。
A magnetic transfer master carrier having a concavo-convex pattern corresponding to information to be transferred,
A laser or electron beam modulated according to information is irradiated while rotating a disk coated with photoresist, and the photoresist is developed and etched to provide unevenness, and then the photoresist is removed. The first master is cured by pressing the resin liquid or plated, and the second master obtained by peeling the first master is plated with Ni as the main component, and after removing the metal mold, the first master is peeled off. And a metal disk made of Ni or Ni alloy formed by providing a soft magnetic layer on the uneven pattern of the metal disk taking the mold, and further, the soft magnetic layer and the uneven pattern of the metal disk A magnetic transfer master carrier, wherein a nonmagnetic layer is provided between the two .
転写する情報に対応した凹凸パターンを有する磁気転写用マスター担体であって、
フォトレジストが塗布された円板を回転させながら情報に応じて変調したレーザーまたは電子ビームを照射し、該フォトレジストを現像しエッチングを施して凹凸を設けた後フォトレジストを除去した凹凸を有する第1の原盤に、樹脂液を押し付けて硬化を行うかまたはメッキを行い、第1の原盤を剥離した第2の原盤に樹脂液を押し付けて硬化を行うかまたはメッキを行い、第2の原盤を剥離した第3の原盤に主成分がNiであるメッキを行い、金属の型をとった後剥離することで作成してなるNiもしくはNi合金による金属盤で構成し、該型をとった金属盤の凹凸パターンの上に軟磁性層を設け、さらに、該軟磁性層と前記金属盤の凹凸パターンとの間に非磁性層を設けたことを特徴とする磁気転写用マスター担体。
A magnetic transfer master carrier having a concavo-convex pattern corresponding to information to be transferred,
A laser or electron beam modulated according to information is irradiated while rotating a disk coated with photoresist, and the photoresist is developed and etched to provide unevenness, and then the photoresist is removed. The master is pressed against the master 1 and cured or plated, and the resin is pressed against the second master from which the first master is peeled off, cured or plated, and the second master is The peeled third master is plated with Ni as a main component, and is made of a metal plate made of Ni or Ni alloy formed by peeling after taking a metal mold, and the metal plate taking the mold A magnetic transfer master carrier comprising a soft magnetic layer provided on the concavo-convex pattern, and a nonmagnetic layer provided between the soft magnetic layer and the concavo-convex pattern of the metal disk .
前記凹凸の深さが80nm〜800nmであることを特徴とする請求項1〜6のいずれか1項に記載の磁気転写用マスター担体。  The magnetic transfer master carrier according to any one of claims 1 to 6, wherein the unevenness has a depth of 80 nm to 800 nm. 前記軟磁性層の厚みが50nm〜500nmであることを特徴とする請求項1〜7のいずれか1項に記載の磁気転写用マスター担体。The master carrier for magnetic transfer according to any one of claims 1 to 7, wherein the soft magnetic layer has a thickness of 50 nm to 500 nm. 最上層にダイヤモンドライクカーボン保護膜を設けたことを特徴とする請求項1〜のいずれか1項に記載の磁気転写用マスター担体。The master carrier for magnetic transfer according to any one of claims 1 to 8 , wherein a diamond-like carbon protective film is provided on the uppermost layer. 前記凹凸パターンが半径方向に長いことを特徴とする請求項1〜のいずれか1項に記載の磁気転写用マスター担体。Magnetic transfer master carrier according to any one of claims 1 to 9, wherein the uneven pattern, wherein the long radially.
JP2000066122A 2000-03-10 2000-03-10 Master carrier for magnetic transfer Expired - Fee Related JP3999436B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000066122A JP3999436B2 (en) 2000-03-10 2000-03-10 Master carrier for magnetic transfer
MYPI20011097A MY124923A (en) 2000-03-10 2000-03-10 Master medium for magnetic transfer including metal disk with relief or recess pattern
CNB011037121A CN1208760C (en) 2000-03-10 2001-02-08 Main carrier for magnetic duplication
KR1020010007052A KR20010088331A (en) 2000-03-10 2001-02-13 Master carrier for magnetic transfer
EP01105377A EP1132898A3 (en) 2000-03-10 2001-03-09 Master medium for magnetic transfer including metal disk with relief or recess pattern
SG200101486A SG106603A1 (en) 2000-03-10 2001-03-09 Master medium for magnetic transfer including metal disk with relief or recess pattern
US09/802,933 US20010028964A1 (en) 2000-03-10 2001-03-12 Master medium for magnetic transfer including metal disk with relief or recess pattern
US10/425,598 US6759183B2 (en) 2000-03-10 2003-04-30 Master medium for magnetic transfer including metal disk with relief or recess pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000066122A JP3999436B2 (en) 2000-03-10 2000-03-10 Master carrier for magnetic transfer

Publications (2)

Publication Number Publication Date
JP2001256644A JP2001256644A (en) 2001-09-21
JP3999436B2 true JP3999436B2 (en) 2007-10-31

Family

ID=18585536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066122A Expired - Fee Related JP3999436B2 (en) 2000-03-10 2000-03-10 Master carrier for magnetic transfer

Country Status (7)

Country Link
US (2) US20010028964A1 (en)
EP (1) EP1132898A3 (en)
JP (1) JP3999436B2 (en)
KR (1) KR20010088331A (en)
CN (1) CN1208760C (en)
MY (1) MY124923A (en)
SG (1) SG106603A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358570B2 (en) 2009-10-22 2013-01-22 Fuji Electric Co., Ltd. Method of drawing a pattern for magnetic transfer

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020088375A (en) * 2001-05-18 2002-11-27 후지 샤신 필름 가부시기가이샤 Master carrier for magnetic transfer, magnetic transfer method and method of manufacturing master carrier for magnetic transfer
KR20030043747A (en) * 2001-11-28 2003-06-02 후지 샤신 필름 가부시기가이샤 Master carrier for magnetic transfer and magnetic transfer method
US6911270B2 (en) * 2001-12-14 2005-06-28 Fuji Photo Film Co., Ltd. Master information carrier for magnetic transfer
JP2003248923A (en) * 2002-02-26 2003-09-05 Fuji Photo Film Co Ltd Master substrate for magnetic transfer and its manufacturing method
JP3727603B2 (en) 2002-03-15 2005-12-14 富士写真フイルム株式会社 Magnetic transfer device holder
US7105280B1 (en) * 2002-06-28 2006-09-12 Seagate Technology Llc Utilizing permanent master for making stampers/imprinters for patterning of recording media
US20040040668A1 (en) * 2002-08-27 2004-03-04 Fuji Photo Film Co., Ltd. Holder for magnetic transfer device
DE60302404T2 (en) 2002-09-13 2006-08-03 Fuji Photo Film Co., Ltd., Minami-Ashigara Ur information carrier for magnetic transmission
US20040057158A1 (en) * 2002-09-19 2004-03-25 Fuji Photo Film Co., Ltd. Method of depicting a pattern with electron beam and method of producing disc-like substrate carrying thereon a pattern depicted with electron beam
KR20040034407A (en) 2002-10-15 2004-04-28 후지 샤신 필름 가부시기가이샤 Method of electron beam lithography, disk-shaped carrier for high density recording and magnetic disk medium
US6755984B2 (en) * 2002-10-24 2004-06-29 Hewlett-Packard Development Company, L.P. Micro-casted silicon carbide nano-imprinting stamp
JP4109085B2 (en) * 2002-11-06 2008-06-25 富士フイルム株式会社 Electron beam drawing method
JP2004241023A (en) * 2003-02-04 2004-08-26 Fuji Photo Film Co Ltd Master carriers for magnetic transfer
JP2004253015A (en) * 2003-02-18 2004-09-09 Fuji Photo Film Co Ltd Master carrier for magnetic transfer
US20040180174A1 (en) * 2003-03-04 2004-09-16 Fuji Photo Film Co., Ltd. Master information carrier for magnetic transfer and its production method
JP2004348796A (en) * 2003-05-20 2004-12-09 Fuji Photo Film Co Ltd Master carrier for magnetic transfer and magnetic transfer method
US7294251B2 (en) * 2003-08-19 2007-11-13 Fujifilm Corporation Process of producing master carrier for magnetic transfer
JP4190371B2 (en) * 2003-08-26 2008-12-03 Tdk株式会社 Uneven pattern forming stamper, uneven pattern forming method, and magnetic recording medium
US20050047286A1 (en) * 2003-08-29 2005-03-03 Hanks Darwin Mitchel Focus error signal generation
JP4249063B2 (en) * 2004-03-10 2009-04-02 富士フイルム株式会社 Master carrier for magnetic transfer, magnetic transfer device, and magnetic transfer method
JP2006017782A (en) 2004-06-30 2006-01-19 Fuji Photo Film Co Ltd Electron beam drawing method
EP1612838A3 (en) 2004-06-30 2006-08-16 Fuji Photo Film Co., Ltd Electron beam lithography method
JP2006213979A (en) * 2005-02-04 2006-08-17 Fuji Photo Film Co Ltd Method for producing inversion board
JP2006216181A (en) * 2005-02-04 2006-08-17 Fuji Photo Film Co Ltd Manufacturing method of master disk for magnetic transfer
EP1688927A3 (en) * 2005-02-08 2007-08-08 FUJIFILM Corporation Magnetic transfer master disk, its manufacturing method and magnetic transfer method
JP4218896B2 (en) * 2005-03-02 2009-02-04 Tdk株式会社 Magnetic recording medium, recording / reproducing apparatus, and stamper
KR100624462B1 (en) * 2005-03-04 2006-09-19 삼성전자주식회사 Method of manufacturing patterned media for recoding
JP2006260690A (en) 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd Master disk for magnetic transfer
JP2006268950A (en) * 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd Method for manufacturing magnetic transfer master disk, magnetic transfer master disk, and magnetic recording medium
JP2006277818A (en) * 2005-03-29 2006-10-12 Fuji Photo Film Co Ltd Manufacturing method of master disk for magnetic transfer, electrocasting bath component density management system, and magnetic recording medium
JP2006277817A (en) 2005-03-29 2006-10-12 Fuji Photo Film Co Ltd Method for manufacturing magnetic transfer master disk
JP2007179705A (en) 2005-12-28 2007-07-12 Fujitsu Ltd Master body and magnetic recording medium
JP4850671B2 (en) 2006-12-01 2012-01-11 富士フイルム株式会社 MOLD, MANUFACTURING METHOD THEREOF, AND MAGNETIC RECORDING MEDIUM
US20080206602A1 (en) * 2007-02-28 2008-08-28 Katine Jordan A Nanoimprinting of topography for patterned magnetic media
JP2008226352A (en) * 2007-03-13 2008-09-25 Fujifilm Corp Manufacturing method of master carrier for magnetic transfer
JP4850817B2 (en) 2007-11-29 2012-01-11 富士フイルム株式会社 Manufacturing method of magnetic transfer master disk
JP2009245555A (en) 2008-03-31 2009-10-22 Fujifilm Corp Production method of magnetic transfer master carrier, magnetic transfer master carrier, magnetic transfer method, and magnetic recording medium
KR101457528B1 (en) * 2008-05-15 2014-11-04 삼성디스플레이 주식회사 Method of manufacturing imprint substrate and method of imprinting
JP2010073272A (en) * 2008-09-19 2010-04-02 Fujifilm Corp Master disk for transfer and method for manufacturing the same
JP2011150757A (en) * 2010-01-22 2011-08-04 Fuji Electric Device Technology Co Ltd Method for manufacturing master disk for magnetic transfer
JP2011194629A (en) * 2010-03-18 2011-10-06 Fujifilm Corp Method for manufacturing master mold, and method for manufacturing mold structure
JP2015072953A (en) * 2013-10-01 2015-04-16 キヤノン株式会社 Demagnetization device, drawing device, and method of manufacturing article

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944405B1 (en) * 1970-03-27 1974-11-28
US3844907A (en) * 1970-03-27 1974-10-29 Fuji Photo Film Co Ltd Method of reproducing magnetization pattern
JPS63183623A (en) 1987-01-23 1988-07-29 Sony Corp Method for contact magnetic field transfer to flexible disk
US5067039A (en) * 1989-10-20 1991-11-19 Insite Peripherals, Inc. High track density magnetic media with pitted optical servo tracks and method for stamping the tracks on the media
JP2751532B2 (en) * 1990-02-26 1998-05-18 ソニー株式会社 Magnetic transfer method
DE69127058T2 (en) * 1990-11-28 1998-03-26 Sharp Kk Manufacturing process of a die
US5796533A (en) 1994-03-15 1998-08-18 Kao Corporation System for magnetic contact duplication
US5858477A (en) * 1996-12-10 1999-01-12 Akashic Memories Corporation Method for producing recording media having protective overcoats of highly tetrahedral amorphous carbon
JP3323743B2 (en) 1996-07-22 2002-09-09 松下電器産業株式会社 Method for manufacturing master information carrier and magnetic recording medium
JP3343326B2 (en) 1997-03-27 2002-11-11 松下電器産業株式会社 Master information carrier
TW342495B (en) 1996-07-22 1998-10-11 Matsushita Electric Ind Co Ltd Master information carrier, method of producing the same, and method for recording master information signal on magnetic recording medium
JP4025398B2 (en) 1997-10-17 2007-12-19 株式会社日立製作所 On-vehicle control device and fault diagnosis method used therefor
JPH11161944A (en) * 1997-11-27 1999-06-18 Sony Corp Magnetic disk and magnetic disk device
US6190838B1 (en) * 1998-04-06 2001-02-20 Imation Corp. Process for making multiple data storage disk stampers from one master
JP2001307324A (en) * 2000-02-15 2001-11-02 Fuji Photo Film Co Ltd Magnetic transferring master carrier and magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358570B2 (en) 2009-10-22 2013-01-22 Fuji Electric Co., Ltd. Method of drawing a pattern for magnetic transfer

Also Published As

Publication number Publication date
US6759183B2 (en) 2004-07-06
US20030198833A1 (en) 2003-10-23
US20010028964A1 (en) 2001-10-11
JP2001256644A (en) 2001-09-21
EP1132898A3 (en) 2005-12-07
SG106603A1 (en) 2004-10-29
CN1208760C (en) 2005-06-29
EP1132898A2 (en) 2001-09-12
KR20010088331A (en) 2001-09-26
CN1313587A (en) 2001-09-19
MY124923A (en) 2006-07-31

Similar Documents

Publication Publication Date Title
JP3999436B2 (en) Master carrier for magnetic transfer
KR20020086291A (en) Master carrier for magnetic transfer
JP3963637B2 (en) Magnetic transfer method
US6804069B2 (en) Magnetic transfer method to prevent dropout of servo signal
KR20030043747A (en) Master carrier for magnetic transfer and magnetic transfer method
JP2003272142A (en) Master carrier for magnetic transfer
JP2002050038A (en) Magnetic transfer method
JP4046480B2 (en) Magnetic transfer method and magnetic transfer apparatus
JP3973187B2 (en) Magnetic transfer method
US20030026026A1 (en) Master carrier for magnetic transfer
US20070217047A1 (en) Master medium for perpendicular magnetic transfer, method of perpendicular magnetic transfer, perpendicular magnetic recording medium and perpendicular magnetic recording apparatus
JP3986951B2 (en) Master carrier for magnetic transfer and magnetic transfer method
US20060181796A1 (en) Disk-shaped magnetic recording medium
JP2003141715A (en) Master carrier for magnetic transfer
US7641822B2 (en) Master information carrier for magnetic transfer and a method for producing the carrier
JP2003173516A (en) Magnetic transfer master carrier
JP3964452B2 (en) Master carrier for magnetic transfer
JP4089904B2 (en) Method for manufacturing magnetic recording medium
JP2002342923A (en) Magnetic transfer method
JP2003022530A (en) Magnetic transfer method
JP2003248918A (en) Substrate of magnetic transfer master
JP2002117533A (en) Master carrier for magnetic transfer
JP2006202401A (en) Master disk for magnetic transfer, magnetic recording medium, and magnetic recording device
JP2004241023A (en) Master carriers for magnetic transfer
JP2003173513A (en) Magnetic transfer master carrier and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070529

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees