JP3997646B2 - Battery remaining capacity calculation method - Google Patents

Battery remaining capacity calculation method Download PDF

Info

Publication number
JP3997646B2
JP3997646B2 JP09806999A JP9806999A JP3997646B2 JP 3997646 B2 JP3997646 B2 JP 3997646B2 JP 09806999 A JP09806999 A JP 09806999A JP 9806999 A JP9806999 A JP 9806999A JP 3997646 B2 JP3997646 B2 JP 3997646B2
Authority
JP
Japan
Prior art keywords
discharge
charge
current
processing element
discharge amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09806999A
Other languages
Japanese (ja)
Other versions
JP2000295775A (en
Inventor
貴史 山下
徹也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP09806999A priority Critical patent/JP3997646B2/en
Publication of JP2000295775A publication Critical patent/JP2000295775A/en
Application granted granted Critical
Publication of JP3997646B2 publication Critical patent/JP3997646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気自動車などににおける電池の残存容量演算方式に関する。
【0002】
【従来の技術】
たとえばEV自動車に用いられる電池は、メモリ効果や電池劣化などによる電池の放電特性変化をもつので、放電電圧Vと積算充放電量Ahとの関係を示す放電特性を学習しておき、この放電特性に積算充放電量(単に充放電量ともいう)Ahを代入して今後放電可能な残存容量を算出する残存容量算出方式(放電特性式残存容量算出方式)が提案されている。
【0003】
【発明が解決しようとする課題】
ところが、上述の方式における充放電量Ahは、電池の充放電電流を逐次検出してこれを初期値に無限に累算(積算)する方法であるため、次第に積算誤差が累積してしまい、その結果、この積算誤差による残存容量の直接の変動の他に、推定放電特性がこの積算誤差により変形してしまうために残存容量推定誤差が生じてしまう。
【0004】
本発明は上記問題点に鑑みなされたものであり、電流積算誤差による残存容量の推定誤差低減が可能な電池の残存容量演算方式を提供することをその目的としている。
【0005】
【課題を解決するための手段】
上記課題の解決のためになされたこの発明の電池の残存容量演算方式によれば、充放電電流を積算(累算)して得た充放電量Ahと予め学習し、記憶する放電特性(放電電圧Vと充放電量Ahとの関係)とに基づいて、残存容量を演算する。
【0006】
具体的に一例を挙げれば、満充電状態を基準としての充放電量Ahより深放電側の上記放電特性により規定される領域の面積を積分することにより今後放電可能な残存容量を電力量の形態で得ることができる。
(放電特性学習の一例)
電池は劣化やメモリ効果などにより充放電の繰り返しとともにその放電特性が変化する。そこで上述した放電特性の学習の一例として初期放電特性から今回の放電特性を学習する例について以下に説明する。
【0007】
まず予め、電池の初期放電特性を記憶しておく。次にこの初期放電特性を放電量Ahの減少方向へ圧縮して今回の放電特性を求める。たとえば、所定の放電量Ah’の点から現在の放電電圧V、放電量Ahの点までの放電量Ahの変化量ΔAhを求め、所定の放電量Ah’の点から初期放電特性上にて放電電圧Vに対応する初期放電量Ahiniまでの初期放電量Ahiniの変化量ΔAhiniを求め、両変化量の比K(=ΔAh/Ahini)を求め、残存放電可能電力量を、初期放電特性の初期放電量Ahiniに比率を掛けて放電量Ahとした今回の放電特性を求める。したがって、この今回の放電特性の現在の座標点から所定の放電終止電圧値までの放電領域の面積を積分すれば残存放電可能電力量を求めることができる。
【0008】
この初期放電特性の放電量軸圧縮操作による今回の放電特性の学習は、同じ電池においては、初期放電特性でも、電池劣化が生じた放電特性でも、各放電電圧Vにおいて比K(=ΔAh/Ahini)はほぼ等しいという本出願人になされた実験結果およびその解析を基礎とする知見に基づくものである。なお、この実験結果およびその解析については、本出願人により出願中の特願平10−246760号公報を参照されたい。
【0009】
なお、メモリ効果をもつ電池に所定の残存放電可能電力量が残っている状態で所定量の充電がなされた場合には、充電終了後に充電により増加した電荷がすべて放電した後、検出した放電電圧Vmafterと、充電前の放電電圧Vmbeforeとの差であるメモリ効果電圧低下量ΔVmを求めることができる。そして、この時点の放電量Ahよりも深放電側の放電特性を放電電圧軸に平行にこのメモリ効果電圧低下量ΔVmだけ減らせばよい。これにより、メモリ効果を読み込んだ放電特性を学習することができる。
【0010】
なお、この操作は、電池劣化による容量低下は電池の内部抵抗の増大に起因し、メモリ効果による容量低下は電池の起電力の低下に起因すると考えることができるので、同じ電池においては、充電終了後に充電により増加した電荷がすべて放電した後の時点において、上記充電とその後の放電による電池劣化を無視すれば、充電直前の所定の放電量Ahにおける放電電圧Vの値Vmbeforeと充電後の上記所定の放電量Ahにおける放電電圧の値Vmafterとの差をメモリ効果による電池の起電力の低下とみなすことができるという本出願人になされた実験結果およびその解析を基礎とする知見に基づくものである。なお、この実験結果およびその解析については、本出願人により出願中の特願平10−246760号公報を参照されたい。
【0014】
請求項記載の電池の残存容量演算方式によれば、積算誤差が所定のしきい値を超えて増大した可能性が生じた後、満充電状態に達することなく所定の期間が経過した場合に、直前の満充電状態以降の最も深放電状態である座標点よりも深放電側の放電特性上の座標点である深放電座標点における充放電量値Ahd’と、この深放電座標点における放電電圧の値に等しい放電電圧を検出した場合における充放電量Ahの値Ahdとの差を深放電状態積算誤差として算出し、この深放電状態積算誤差に基づいて放電特性を修正する。
【0015】
このようにすれば、積算誤差が所定のしきい値を超えて増大した可能性が生じた後、満充電状態に達することなく所定の期間が経過した場合における深放電時でも、積算誤差による放電特性の変形による残存容量推定誤差を低減できる。
なお、上記深放電状態積算誤差は、本当に積算誤差であるのか、又は、メモリ効果によるものかが不明である。しかしながら、どちらにせよ、現実にこのような深放電時による積算誤差を、回復可能なメモリ効果による一時的な容量減少ではなく現実の積算誤差とすることにより、残存容量を誤って過大に推定することがなくなり、電池の過放電を防止することができる。
【0016】
請求項記載の構成によれば請求項記載の電池の残存容量演算方式において更に、放電特性上の前記深放電座標点を最深放電状態積算誤差だけ放電量軸と平行にシフトする。
このようにすれば、簡単に放電特性の修正を行うことができる。
請求項記載の構成によれば請求項又は記載の電池の残存容量演算方式において更に、充放電量Ahの現在値と放電電圧Vの現在値とにより規定される現座標点が、記憶する放電特性よりも高容量側の空間領域に存在する場合にシフトを実行する。
【0017】
すなわち、メモリ効果による放電特性の変形は記憶する放電特性より容量低下側(低容量側)に出現するため、高容量側に出現する積算誤差(座標点の学習、記憶する放電特性からのシフト)は確実に単なる積算誤差であるとして放電特性のシフトを行うことができる。
請求項記載の構成によれば請求項乃至のいずれか記載の電池の残存容量演算方式において更に、充放電量Ahの現在値と放電電圧Vの現在値とにより規定される現座標点が、記憶する放電特性と、放電特性に所定のメモリ効果を加味したメモリ効果付き放電特性との間の領域にある場合に、放電特性の前記シフトを行わない。
【0018】
すなわち、この場合には、上記積算誤差はメモリ効果によるシフトである可能性が高く、放電により回復可能であるので、この積算誤差による恒久的な放電特性の修正は行わない。
これによりメモリ効果による一時的な容量低減すなわち放電特性変形を積算誤差と誤って推定して放電特性を誤って修正する可能性を低減することができる。
【0019】
請求項記載の構成によれば請求項乃至のいずれか記載の電池の残存容量演算方式において更に、充放電量Ahの現在値と放電電圧Vの現在値とにより規定される現座標点が、放電特性に所定のメモリ効果を加味したメモリ効果付き放電特性よりも低容量側の空間領域にある場合に、現座標点をメモリ効果付き放電特性上の等放電電圧の座標点まで放電量軸と平行にシフトする。
【0020】
すなわち、座標点がメモリ効果付き放電特性を超えて更に低容量側に異常にシフトすることはメモリ効果とは無関係であり、積算誤差に起因すると考えてよいので、積算誤差とみなして放電特性の前記シフトにより修正を行う。
これにより、積算誤差による放電特性の補正を一層良好に行うことができる
【0022】
【発明の実施の形態】
本発明の電池の残存容量演算方式の好適な実施形態を図面に沿って以下に説明する。
【0023】
【実施例】
(装置構成)
図1は、本発明に係るハイブリッド車用の電池劣化度判定装置の一例を示すブロック図である。
1は電池、2はハイブリッド車の回転電機を含む動力伝達処理要素であって、エンジン及び車両駆動軸に連結されてそれらと電池との間で電力の形態でエネルギー授受を行う。3は、電池1に対して入出力する直流電力と、動力伝達処理要素2に対して入出力する交流電力との変換を行う双方向電力変換装置である。これら動力伝達処理要素2や双方向電力変換装置3の構成は周知であり、かつ、本発明の要旨でもないので更に詳しい説明は省略する。
【0024】
電池1は、多数のNiーMH電池を直列接続してなる組み電池からなり、電流センサ5はその充放電電流を検出し、この充放電電流Aは電池1の出力電圧V1〜Vnとともにマイコン構成のコントローラ4に入力される。
電池1は、多数のNiーMH電池を直列接続してなる組み電池からなり、個々の電圧V1〜Vnはコントローラ4に入力される。また、電流センサ5はその充放電電流を検出し、検出した電流は前記電圧と同様にマイコン構成のコントローラ4に入力される。
(残存容量演算動作)
以下、図2に示すフローチャートを参照して、この実施例の残存容量算出ルーチンを説明する。
【0025】
(ステップS100)
まず、放電電圧V、充放電電流Aを検出し、それに前回の充放電量A検出時から充放電電流Aを積分して前回の充放電量に累算(充電で加算、放電で減算)することにより前回の満充電状態を基準(0)とする今回の充放電量Ahを累算する。
【0026】
また、検出した放電電圧V1〜Vnのうちの最小値を代表放電電圧として選択する。これは電池の転極などを防止するためである。更に、この代表放電電圧を基準放電電力(この実施例では2kW)放電時の放電電圧(以下Vという)に換算する。この換算は、次のように行う。
まず、電池の内部抵抗rと開放電圧とを求める。内部抵抗rは、たとえば放電電圧Vと放電電流Aとの特性上におけるV−I特性におけるΔV/ΔAとして求めることができる。次に、検出した放電電流Aと内部抵抗rを掛けて電池の内部抵抗rを掛けてその電圧降下を求め、開放電圧を求める。このようにして求めたモデル電池が所定の基準放電電力(ここでは2kW)を放電する場合の電池の出力電圧を今回の放電電圧Vとする。
【0027】
(ステップS102)
次に、前回の放電特性修正ルーチンの実行からの累計放電量が所定のしきい値に達したかどうかを判定し、達したら、真の放電特性と、残存容量算出に用いる記憶放電特性との間の誤差が大きいと判断してステップS110へ進んで放電特性の修正を行い、達していなければ上記誤差はまだ小さいと判断してステップS103へ進んで残存容量の算出処理を行う。
【0028】
なお、この実施例では、上記両放電特性間のずれの大小の判定は放電量の累計値が所定のしきい値を超えたかどうかで判定したが、その他や、充回数の累計値、前回の放電特性修正時点からの充放電時間の累計値や、またはそれらの組み合わせなどで判定を行ってもよい。
(ステップS103)
次に、満充電かどうかを調べ、満充電の場合には、ステップS114へ進んで上記放電特性間の誤差の修正を行い、そうでなければステップS104へ進む。
【0029】
なお、満充電の判定には種々の方式があるが、ここでは、放電電圧Vの放電量Ahに対する変化量dV/dAhのピーク値を検出した場合に満充電と判定する方法を採用する。
(ステップS104)
このステップでは、充電中かどうかを調べ、充電中でなければステップS107へ進み、充電中であれば残存容量算出は行わず、ステップS105で充電開始直後かどうかを調べ、そうであればその時の充放電量Ahを、充電開始時点の充放電量AHo=Qdoとして記憶して(S106)、S100へ戻り、そうでなければ直接戻る。
【0030】
(ステップS107)
このステップでは充電分極が解消したかどうかを調べ、解消していないと判断した場合にはS108へ進み、解消したと判断した場合にはS109へ進む。
なお、上記充電分極の解消したかどうかは、今回の放電量がその前の充電開始点における充放電量Ahである充電開始時点充放電量AHo=Qdo(ステップS104で算出)に達したかどうかで判断する。
又は、上記充電分極の解消したかどうかを、前回の満充電以降の最深放電点にまで放電により達したかで判断してもよい。
【0031】
(ステップS108)
このステップでは、まだ前回の充電時における充電分極が解消していないので、現在記憶する放電特性において予め算出し、記憶する満充電時の残存容量から今回の充放電量Ahを差し引いて今回の残存容量とする。
なお、記憶する放電特性からの満充電時の残存容量の算出は、上記放電特性において満充電時から所定の放電終止電圧値までの領域において、放電電力(V・Ah)を積分して求めればよい。
【0032】
(ステップS109)
このステップでは、前回の充電時における充電分極が解消しているので、現在記憶する放電特性を修正し、この修正した放電特性から残存容量を算出する。
この残存容量算出ルーチン2を図3に示すフローチャートを参照して更に説明する。
【0033】
(ステップS200)
まず、充電分極解消直後かどうか、すなわち今回の放電量が前回の充電開始点の充放電量Ahに等しい点まで放電されたかどうかを調べ、そうであればメモリ効果による放電電圧の低下量ΔVを求めるためにステップS202、S204を経由してステップS206へ進み、充電分極解消直後ではなく更に放電が深くなっていれば直接ステップS206へ進む。
【0034】
(ステップS202)
このステップでは、予め記憶する初期放電特性上における今回の充放電量Ah(充電開始点の充放電量Qdoともいう)に対応する放電電圧放電電圧Vbeforeと、今回検出した放電電圧V(=Vqdo)との差ΔVを算出してこれをメモリ効果電圧とする。
【0035】
(ステップS204)
次のステップS204では、この充電開始点の充放電量Qdoよりも深い場合の残存容量の算出のために、初期放電特性をメモリ効果電圧ΔVだけ放電電圧軸と平行にレベルダウンしたメモリ効果織り込み済み放電特性を形成する。
なお、初期放電特性は電池の運用の最初における充放電量Ahと放電電圧Vとの関係を示す特性線であり、予め記憶しているものとする。また、完全放電した場合はこのΔVmを0にキャンセルする。
【0036】
(ステップS205)
このステップは、メモリ効果織り込み済み放電特性を用い、今回の充放電量Ahが、放電により前回の充電開始点の充放電量Ahに等しい点を残存容量減少側に超えてから次の充電開始までの範囲にある間の放電特性を求める。この操作は、電池劣化により電池の容量が減少することを、残存容量算出に用いる放電特性に織り込むための処理である。この放電特性の導出処理を図4を参照して以下に説明する。
【0037】
まず、既述するように前回の充電開始点の充放電量をQd0とする。
次に前回の充電開始点の充放電量Qd0より深放電側にある今回の充放電量Ahに等しい今回の充放電量Qd1とそれに対応する放電電圧Vに等しい放電電圧における前述したメモリ効果織り込み済み放電特性上の充放電量Qdxを求め、容量低下率Pを次の式から算出する。
【0038】
P=(Qd1−Qd0)/(Qdx−Qdo)
この式は、電池劣化による残存容量の低下率を示す。
次に、予め記憶する初期放電特性の今回の今回の充放電量Ah(=Qd1)よりも深放電側における初期放電特性の各座標点の充放電量Ahの値に上記に容量低下率Pを掛けて、今回の放電特性を得る。
【0039】
(ステップS206)
次に、今回の放電特性で決定されるV−Ah平面上における面積を現在の充放電量Ahから所定の基準放電電力(ここでは2kW)を放電可能な限界まで積分して求めて所定の基準放電電力値での放電による残存放電可能電力量とする。
以上により電池劣化とメモリ効果とを織り込んだ残存容量の算出を行うことができる。
【0040】
(ステップS110)
ステップS102にて、前回の放電特性修正ルーチンの実行からの累計放電量が所定のしきい値に達した場合には、真の放電特性と、残存容量算出に用いる記憶放電特性との間の誤差が大きいと判断して運転者に満充電を行って上記誤差のキャンセルを要求するための警報を出力する。
【0041】
すなわち、上述した残存容量処理サイクルを繰り返していると、誤差特に充放電量Ahの累算誤差が増大し、それにより、上記容量低下率Pを用いた容量圧縮の原点をなす前回の充電開始点の充放電量Qd0と今回の充放電量Ahとが表面的に一致しても実際は一致していないなどの誤差が生じ、その結果として前述した電池劣化を織り込んだ放電特性自体が歪んでしまう。そこで、図5に示すフローチャートの処理を行って充放電量Ahの累算誤差による放電特性のずれを解消する。
【0042】
(ステップS112)
次に、ステップS112にて満充電かどうかを調べ、満充電であればS114へ進み、満充電でなければS116へ進む。
(ステップS114)
このステップでは、満充電時の充放電量Ahを誤差充放電量ΔAhとしてキャンセルし、次に、S106で記憶した充電開始点の充放電量Qdoから誤差充放電量ΔAhを差し引いて、真の充電開始点の充放電量を求める。次に、S110で発報した満充電要求をオフして(S116)、S104へリターンする。
【0043】
これにより、充放電量Ahの累積誤差による放電特性の形成誤差をキャンセルするとともに、充電開始点の決定誤差もキャンセルすることができる。
(ステップS118)
このステップでは、S110にて警報を出力したにもかかわらず満充電に到達していない場合における上記充放電量Ahの累積誤差による放電特性の歪みの一時的な修正を行う。
【0044】
すなわち、予め記憶している(フローチャートには図示省略)前回の満充電時点以降における最も深い放電点(すなわち充放電量Ahの最大値)における放電電圧Vの値Vminまで今回の放電電圧Vが達したかどうかを調べ、達していなければS104へリターンし、達していれば、ステップS120へ進む。
(ステップS120)
このステップでは、今回の充放電量Ahすなわち最も深い放電点における充放電量をAhmaxとする場合に、この座標点(Vmin、Ahmax)が図6に示す領域A〜Cのどれに属するかどうかを調べ、それが領域A又はCにある場合に次に説明する方式で放電特性を修正する。
【0045】
なお、図6に示す各領域はマップとして予め記憶しているものとする。図6に示すマップについて更に説明する。
累算した充放電量Ahの誤差が大きくなれば、この累算した充放電量Ahに基づいて算出した放電特性の形状は真の放電特性の形状からずれる。
しかしS120では、完全放電によるメモリ効果による放電電圧低下が存在するために、この放電特性による座標点(Vmin、Ahmax)の放電特性からのずれが、累算した充放電量Ahの誤差に起因するものか、メモリ効果に起因するものかがわからない。
【0046】
そこで、この実施例では、初期放電特性と、それを最大メモリ効果電圧ΔVmmaxだけ放電電圧軸に平行にレベルシフトした放電特性(メモリ効果放電特性)とを形成し、これら両放電特性間の領域をBとし、初期放電特性より上側の領域をA、メモリ効果放電特性より下側の領域をCとする。なお、最大メモリ効果電圧ΔVmmaxとはメモリ効果を最大に見込んだ場合の放電特性である。
【0047】
(充放電量Ahが過大である場合)
ステップS120にて求めた今回の最深放電点である座標点R1(Vmin、Ahmax)が図6に示す領域Aに位置するということは、充放電量Ahの誤差(ΔAh’という)は、メモリ効果よりも累積充放電量Ahの誤差とみなせるわけである。そこで、この場合は、今回の充放電量Ah=Ahmaxから充放電量の誤差ΔAh’を差し引いて、充放電量Ahを修正する。
【0048】
なお、充放電量の誤差ΔAh’は、初期放電特性上において放電電圧がVminである場合の充放電量Ah2と、今回の充放電量Ah=Ahmaxとの差である。同時にS106で記憶する充電開始点の充放電量Qdoからもこの充放電量の誤差ΔAh’を差し引く。
(充放電量Ahが過小である場合)
ステップS120にて求めた今回の最深放電点である座標点R2(Vmin、Ahmax)が図6に示す領域Cに位置するということは、充放電量の誤差(ΔAh”という)がメモリ効果と累積充放電量Ahの誤差との両方に起因するとみなせるわけである。そこで、この場合は、今回の充放電量Ah=Ahmaxに誤差充放電量ΔAh’を加算して、充放電量Ahを修正する。
【0049】
なお、充放電量の誤差ΔAh”は、メモリ効果放電特性上において放電電圧がVminである場合の充放電量Ah3と、今回の充放電量Ah=Ahmaxとの差である。同時にS106で記憶する充電開始点の充放電量Qdoにも充放電量の誤差ΔAh”を加算する。
(充放電量Ahが過大でも過小でもない場合)
ステップS120にて求めた今回の最深放電点である座標点R3が図6に示す領域Bに位置するということは、充放電量の誤差がメモリ効果に起因する可能性が高いことを意味する。
【0050】
メモリ効果は、S204で補正されるので、メモリ効果に起因する充放電量の誤差をここで修正すると二重の修正となってしまいかえって誤差が増大する。
そこで、今回の最深放電点である座標点R3が図6に示す領域Bに位置する場合には、充放電量Ahの修正を行わずにステップS104へリターンする。
【図面の簡単な説明】
【図1】本発明の電池特性演算装置の一実施例を示すブロック図である。
【図2】残存容量演算動作を示すフローチャートである。
【図3】実施例1の残存容量演算動作を示すフローチャートである。
【図4】電池の放電特性図である。
【図5】充放電量Ahの誤差累積を補正するためのフローチャートである。
【図6】図5にて用いるマップを示す電池の放電特性図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery remaining capacity calculation method in an electric vehicle or the like.
[0002]
[Prior art]
For example, since a battery used in an EV vehicle has a change in the discharge characteristic of the battery due to a memory effect, battery deterioration, or the like, the discharge characteristic indicating the relationship between the discharge voltage V and the integrated charge / discharge amount Ah is learned, and this discharge characteristic. Substituting an accumulated charge / discharge amount (also simply referred to as charge / discharge amount) Ah for a remaining capacity calculation method (discharge characteristic equation remaining capacity calculation method) for calculating a remaining capacity that can be discharged in the future.
[0003]
[Problems to be solved by the invention]
However, since the charge / discharge amount Ah in the above-described method is a method of sequentially detecting the charge / discharge current of the battery and accumulating (accumulating) this indefinitely to the initial value, the accumulation error gradually accumulates. As a result, in addition to the direct fluctuation of the remaining capacity due to the accumulated error, the estimated discharge characteristic is deformed by the accumulated error, so that a remaining capacity estimated error occurs.
[0004]
The present invention has been made in view of the above problems, and an object thereof is to provide a battery remaining capacity calculation method capable of reducing an estimation error of a remaining capacity due to a current integration error.
[0005]
[Hand stage for Solving the Problems]
According to the battery remaining capacity calculation method of the present invention made to solve the above-mentioned problems, the discharge characteristics (discharges) learned and stored in advance as the charge / discharge amount Ah obtained by integrating (accumulating) the charge / discharge current. The remaining capacity is calculated based on the relationship between the voltage V and the charge / discharge amount Ah.
[0006]
To give a specific example, the remaining capacity that can be discharged in the future is determined by integrating the area of the region defined by the above discharge characteristics on the deep discharge side from the charge / discharge amount Ah with reference to the fully charged state. Can be obtained at
(Example of discharge characteristics learning)
The discharge characteristics of a battery change with repeated charge / discharge due to deterioration, memory effect, and the like. Therefore, an example of learning the current discharge characteristics from the initial discharge characteristics will be described below as an example of learning of the discharge characteristics described above.
[0007]
First, the initial discharge characteristics of the battery are stored in advance. Next, the initial discharge characteristics are compressed in the decreasing direction of the discharge amount Ah to obtain the current discharge characteristics. For example, the change amount ΔAh of the discharge amount Ah from the point of the predetermined discharge amount Ah ′ to the current discharge voltage V and the point of the discharge amount Ah is obtained, and the discharge is performed on the initial discharge characteristics from the point of the predetermined discharge amount Ah ′. The change amount ΔAhini of the initial discharge amount Ahini up to the initial discharge amount Ahini corresponding to the voltage V is obtained, the ratio K (= ΔAh / Ahini) of both the change amounts is obtained, and the remaining dischargeable electric energy is determined as the initial discharge characteristic initial discharge. The current discharge characteristics are obtained by multiplying the amount Ahini by the ratio to obtain the discharge amount Ah. Therefore, the remaining dischargeable electric energy can be obtained by integrating the area of the discharge region from the current coordinate point of the current discharge characteristic to the predetermined discharge end voltage value.
[0008]
The learning of the current discharge characteristic by the discharge amount axial compression operation of the initial discharge characteristic is the ratio K (= ΔAh / Ahini) at each discharge voltage V in the same battery regardless of the initial discharge characteristic or the discharge characteristic in which the battery has deteriorated. ) Is based on experimental results made by the present applicant that are substantially equal and knowledge based on the analysis thereof. For the results of this experiment and its analysis, refer to Japanese Patent Application No. 10-246760 filed by the present applicant.
[0009]
In addition, when a predetermined amount of charging is performed in a state in which a predetermined remaining dischargeable electric energy remains in a battery having a memory effect, the discharge voltage detected after discharging all the electric charge increased by charging after the end of charging is detected. The memory effect voltage drop amount ΔVm, which is the difference between Vmafter and the discharge voltage Vmbefore before charging, can be obtained. Then, the discharge characteristic on the deeper discharge side than the discharge amount Ah at this time may be reduced by this memory effect voltage drop amount ΔVm in parallel with the discharge voltage axis. Thereby, it is possible to learn the discharge characteristic reading the memory effect.
[0010]
Note that this operation can be thought of as a decrease in capacity due to battery deterioration due to an increase in the internal resistance of the battery, and a decrease in capacity due to the memory effect due to a decrease in the electromotive force of the battery. If the deterioration of the battery due to the charge and the subsequent discharge is ignored at the time after all the charges increased by the charge are discharged later, the value Vmfore of the discharge voltage V at the predetermined discharge amount Ah immediately before the charge and the predetermined after the charge This is based on the experimental results made by the present applicant and the knowledge based on the analysis that the difference between the discharge voltage value Vmatter at the discharge amount Ah of the battery can be regarded as a decrease in the electromotive force of the battery due to the memory effect. . For the results of this experiment and its analysis, refer to Japanese Patent Application No. 10-246760 filed by the present applicant.
[0014]
According to the battery remaining capacity calculation method according to claim 1 , after the possibility that the integration error has increased beyond a predetermined threshold value has occurred, a predetermined period has elapsed without reaching a fully charged state. The charge / discharge amount value Ahd ′ at the deep discharge coordinate point, which is a coordinate point on the discharge characteristics on the deep discharge side with respect to the coordinate point in the deepest discharge state after the previous full charge state, and the discharge at this deep discharge coordinate point The difference between the charge discharge amount Ah and the value Ahd when a discharge voltage equal to the voltage value is detected is calculated as a deep discharge state integration error, and the discharge characteristics are corrected based on the deep discharge state integration error.
[0015]
In this way, after the possibility that the integration error has increased beyond a predetermined threshold has occurred, the discharge due to the integration error can occur even during deep discharge when a predetermined period has elapsed without reaching the full charge state. Remaining capacity estimation error due to characteristic deformation can be reduced.
It is unknown whether the deep discharge state integration error is really an integration error or due to a memory effect. In any case, however, the remaining capacity is erroneously overestimated by actually making the accumulated error due to such deep discharge an actual accumulated error rather than a temporary capacity decrease due to the recoverable memory effect. Therefore, overdischarge of the battery can be prevented.
[0016]
According to the second aspect of the present invention, in the battery remaining capacity calculation method according to the first aspect, the deep discharge coordinate point on the discharge characteristics is shifted in parallel with the discharge amount axis by the deepest discharge state integration error.
In this way, the discharge characteristics can be easily corrected.
According to the configuration of claim 3, in the battery remaining capacity calculation method according to claim 1 or 2, the current coordinate point defined by the current value of the charge / discharge amount Ah and the current value of the discharge voltage V is stored. The shift is executed when it exists in the space region on the higher capacity side than the discharge characteristics to be performed.
[0017]
That is, since the deformation of the discharge characteristic due to the memory effect appears on the capacity lowering side (low capacity side) than the stored discharge characteristic, the accumulated error appearing on the high capacity side (coordinate point learning, shift from the stored discharge characteristic) It is possible to shift the discharge characteristics as if it is a simple integration error.
In yet remaining capacity calculation method of a battery according to claim 4 claim 1 to 3 according to the configuration described, current coordinate point defined by the current value of the current value and the discharge voltage V of the charge and discharge amount Ah However, in the region between the discharge characteristic to be stored and the discharge characteristic with a memory effect obtained by adding a predetermined memory effect to the discharge characteristic, the shift of the discharge characteristic is not performed.
[0018]
That is, in this case, there is a high possibility that the integration error is a shift due to the memory effect, and it can be recovered by discharge. Therefore, the permanent discharge characteristic is not corrected by the integration error.
As a result, it is possible to reduce the possibility that the temporary reduction in capacity due to the memory effect, that is, the discharge characteristic deformation is erroneously estimated as an integration error and the discharge characteristic is erroneously corrected.
[0019]
In yet remaining capacity calculation method of a battery according to claim 5 claims 1 to 4 According to the configuration described, current coordinate point defined by the current value of the current value and the discharge voltage V of the charge and discharge amount Ah Is in the space area on the lower capacity side than the discharge characteristic with the memory effect, which adds the predetermined memory effect to the discharge characteristic, the amount of discharge from the current coordinate point to the coordinate point of the equal discharge voltage on the discharge characteristic with the memory effect Shift parallel to the axis.
[0020]
In other words, the abnormal shift of the coordinate point beyond the discharge characteristic with the memory effect to the low capacity side is irrelevant to the memory effect and can be considered to be caused by the integration error. Correction is performed by the shift.
Thereby, the correction of the discharge characteristic due to the integration error can be performed more satisfactorily .
[0022]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of a battery remaining capacity calculation method of the present invention will be described below with reference to the drawings.
[0023]
【Example】
(Device configuration)
FIG. 1 is a block diagram showing an example of a battery deterioration degree determination apparatus for a hybrid vehicle according to the present invention.
Reference numeral 1 denotes a battery, and 2 denotes a power transmission processing element including a rotating electric machine of the hybrid vehicle. The power transmission processing element is connected to the engine and the vehicle drive shaft, and exchanges energy in the form of electric power between them and the battery. Reference numeral 3 denotes a bidirectional power converter that performs conversion between DC power input / output to / from the battery 1 and AC power input / output to / from the power transmission processing element 2. Since the configurations of the power transmission processing element 2 and the bidirectional power converter 3 are well known and are not the gist of the present invention, further detailed description is omitted.
[0024]
The battery 1 is composed of an assembled battery in which a large number of Ni-MH batteries are connected in series. The current sensor 5 detects the charge / discharge current, and the charge / discharge current A is a microcomputer configuration together with the output voltages V1 to Vn of the battery 1. To the controller 4.
The battery 1 is an assembled battery formed by connecting a large number of Ni-MH batteries in series, and individual voltages V <b> 1 to Vn are input to the controller 4. The current sensor 5 detects the charging / discharging current, and the detected current is input to the controller 4 having a microcomputer configuration in the same manner as the voltage.
(Remaining capacity calculation operation)
The remaining capacity calculation routine of this embodiment will be described below with reference to the flowchart shown in FIG.
[0025]
(Step S100)
First, the discharge voltage V and the charge / discharge current A are detected, and the charge / discharge current A is integrated to the previous charge / discharge amount from the time of detection of the previous charge / discharge amount A, and accumulated (added by charging, subtracted by discharging). Thus, the current charge / discharge amount Ah with the previous full charge state as the reference (0) is accumulated.
[0026]
Further, the minimum value among the detected discharge voltages V1 to Vn is selected as the representative discharge voltage. This is to prevent battery inversion. Further, this representative discharge voltage is converted into a discharge voltage (hereinafter referred to as V) at the time of discharging a reference discharge power (2 kW in this embodiment). This conversion is performed as follows.
First, the internal resistance r and open circuit voltage of the battery are obtained. The internal resistance r can be obtained, for example, as ΔV / ΔA in the VI characteristic on the characteristics of the discharge voltage V and the discharge current A. Next, the detected discharge current A is multiplied by the internal resistance r, and the internal resistance r of the battery is multiplied to obtain the voltage drop, thereby obtaining the open circuit voltage. The output voltage of the battery when the model battery thus obtained discharges a predetermined reference discharge power (here 2 kW) is defined as the current discharge voltage V.
[0027]
(Step S102)
Next, it is determined whether or not the cumulative discharge amount from the previous execution of the discharge characteristic correction routine has reached a predetermined threshold, and if so, the true discharge characteristic and the memory discharge characteristic used for calculating the remaining capacity are determined. If it is determined that the error is large, the process proceeds to step S110 to correct the discharge characteristics. If not, the error is determined to be still small and the process proceeds to step S103 to calculate the remaining capacity.
[0028]
In this embodiment, whether the deviation between the two discharge characteristics is large or small is determined based on whether or not the cumulative value of the discharge amount exceeds a predetermined threshold value. The determination may be made based on the cumulative value of the charge / discharge time from the time of correcting the discharge characteristics, or a combination thereof.
(Step S103)
Next, it is checked whether the battery is fully charged. If the battery is fully charged, the process proceeds to step S114 to correct the error between the discharge characteristics. If not, the process proceeds to step S104.
[0029]
There are various methods for determining full charge. Here, a method of determining full charge when the peak value of the change amount dV / dAh with respect to the discharge amount Ah of the discharge voltage V is detected is adopted.
(Step S104)
In this step, it is checked whether or not charging is in progress. If charging is not in progress, the process proceeds to step S107. If charging is in progress, the remaining capacity is not calculated. In step S105, whether or not charging is immediately started is checked. The charge / discharge amount Ah is stored as the charge / discharge amount AHo = Qdo at the start of charging (S106), and the process returns to S100. Otherwise, the process returns directly.
[0030]
(Step S107)
In this step, it is checked whether or not the charge polarization has been eliminated. If it is determined that it has not been eliminated, the process proceeds to S108, and if it is determined that it has been eliminated, the process proceeds to S109.
Whether or not the above charge polarization has been eliminated is whether or not the current discharge amount has reached a charge start time charge / discharge amount AHo = Qdo (calculated in step S104) which is the charge / discharge amount Ah at the previous charge start point. Judge with.
Alternatively, whether or not the charge polarization has been eliminated may be determined based on whether or not the deepest discharge point after the previous full charge has been reached by the discharge.
[0031]
(Step S108)
In this step, since the charge polarization at the time of the previous charge has not yet been resolved, the current charge is stored in advance by subtracting the current charge / discharge amount Ah from the stored full charge remaining capacity. Capacity.
The remaining capacity at the time of full charge can be calculated from the stored discharge characteristics by integrating the discharge power (V · Ah) in the region from the time of full charge to a predetermined discharge end voltage value in the above discharge characteristics. Good.
[0032]
(Step S109)
In this step, since the charge polarization at the time of the previous charge has been eliminated, the currently stored discharge characteristic is corrected, and the remaining capacity is calculated from the corrected discharge characteristic.
This remaining capacity calculation routine 2 will be further described with reference to the flowchart shown in FIG.
[0033]
(Step S200)
First, it is checked whether or not the charge polarization has been canceled, that is, whether or not the current discharge amount has been discharged to a point equal to the charge / discharge amount Ah at the previous charge start point. If so, the decrease amount ΔV of the discharge voltage due to the memory effect is determined. In order to obtain it, the process proceeds to step S206 via steps S202 and S204. If the discharge is deeper than immediately after the charge polarization is eliminated, the process proceeds directly to step S206.
[0034]
(Step S202)
In this step, a discharge voltage discharge voltage Vbefore corresponding to the current charge / discharge amount Ah (also referred to as charge / discharge amount Qdo at the charge start point) in the initial discharge characteristics stored in advance, and the discharge voltage V (= Vqdo) detected this time Is calculated as a memory effect voltage.
[0035]
(Step S204)
In the next step S204, in order to calculate the remaining capacity when deeper than the charge / discharge amount Qdo at the charge start point, the memory effect has been incorporated in which the initial discharge characteristics are leveled down by the memory effect voltage ΔV in parallel with the discharge voltage axis. Form discharge characteristics.
The initial discharge characteristics are characteristic lines indicating the relationship between the charge / discharge amount Ah and the discharge voltage V at the beginning of battery operation, and are stored in advance. Further, when the battery is completely discharged, ΔVm is canceled to zero.
[0036]
(Step S205)
This step uses the memory effect incorporated discharge characteristics, and the current charge / discharge amount Ah exceeds the point equal to the charge / discharge amount Ah at the previous charge start point due to discharge until the next charge start. The discharge characteristics while being in the range are obtained. This operation is a process for incorporating the decrease in battery capacity due to battery deterioration into the discharge characteristics used for calculating the remaining capacity. The discharge characteristic derivation process will be described below with reference to FIG.
[0037]
First, as described above, the charge / discharge amount at the previous charging start point is set to Qd0.
Next, the memory effect described above is already incorporated in the current charge / discharge amount Qd1 equal to the current charge / discharge amount Ah on the deep discharge side from the charge / discharge amount Qd0 at the previous charge start point and the discharge voltage equal to the corresponding discharge voltage V. The charge / discharge amount Qdx on the discharge characteristics is obtained, and the capacity reduction rate P is calculated from the following equation.
[0038]
P = (Qd1-Qd0) / (Qdx-Qdo)
This equation shows the rate of decrease in remaining capacity due to battery deterioration.
Next, the capacity reduction rate P is set to the value of the charge / discharge amount Ah at each coordinate point of the initial discharge characteristic on the deep discharge side from the current charge / discharge amount Ah (= Qd1) of the current initial discharge characteristic stored in advance. Multiply the current discharge characteristics.
[0039]
(Step S206)
Next, an area on the V-Ah plane determined by the current discharge characteristics is obtained by integrating a predetermined reference discharge power (here 2 kW) from the current charge / discharge amount Ah to a dischargeable limit, and a predetermined reference. The amount of electric power that can be discharged by discharge at the discharge power value.
As described above, the remaining capacity can be calculated in consideration of the battery deterioration and the memory effect.
[0040]
(Step S110)
In step S102, if the cumulative discharge amount from the previous execution of the discharge characteristic correction routine has reached a predetermined threshold value, an error between the true discharge characteristic and the memory discharge characteristic used for calculating the remaining capacity. Is determined to be large, the driver is fully charged, and an alarm for requesting cancellation of the error is output.
[0041]
That is, if the above-described remaining capacity processing cycle is repeated, an error, particularly an accumulated error of the charge / discharge amount Ah, increases, and thereby the previous charging start point that forms the origin of capacity compression using the capacity reduction rate P. Even if the charge / discharge amount Qd0 of this time and the current charge / discharge amount Ah are superficially matched, an error such as not actually coincidence occurs, and as a result, the discharge characteristic itself incorporating the above-described battery deterioration is distorted. Therefore, the process of the flowchart shown in FIG. 5 is performed to eliminate the deviation in the discharge characteristics due to the accumulated error of the charge / discharge amount Ah.
[0042]
(Step S112)
Next, in step S112, it is checked whether or not the battery is fully charged. If it is fully charged, the process proceeds to S114, and if not fully charged, the process proceeds to S116.
(Step S114)
In this step, the charge / discharge amount Ah at the time of full charge is canceled as the error charge / discharge amount ΔAh, and then the error charge / discharge amount ΔAh is subtracted from the charge / discharge amount Qdo at the charge start point stored in S106 to obtain the true charge. Obtain the charge / discharge amount at the starting point. Next, the full charge request issued in S110 is turned off (S116), and the process returns to S104.
[0043]
As a result, it is possible to cancel the formation error of the discharge characteristic due to the accumulated error of the charge / discharge amount Ah and also cancel the determination error of the charging start point.
(Step S118)
In this step, the distortion of the discharge characteristics due to the accumulated error of the charge / discharge amount Ah in the case where the full charge has not been reached despite the output of the alarm in S110 is temporarily corrected.
[0044]
That is, the current discharge voltage V reaches the value Vmin of the discharge voltage V stored in advance (not shown in the flowchart) at the deepest discharge point after the previous full charge time (that is, the maximum value of the charge / discharge amount Ah). If not reached, the process returns to S104, and if reached, the process proceeds to step S120.
(Step S120)
In this step, when the current charge / discharge amount Ah, that is, the charge / discharge amount at the deepest discharge point is Ahmax, it is determined which of the areas A to C shown in FIG. 6 the coordinate point (Vmin, Ahmax) belongs to. When it is in the region A or C, the discharge characteristics are corrected by the method described below.
[0045]
Note that each area shown in FIG. 6 is stored in advance as a map. The map shown in FIG. 6 will be further described.
If the error of the accumulated charge / discharge amount Ah increases, the shape of the discharge characteristic calculated based on the accumulated charge / discharge amount Ah deviates from the shape of the true discharge characteristic.
However, in S120, since there is a discharge voltage drop due to the memory effect due to complete discharge, the deviation of the coordinate point (Vmin, Ahmax) from the discharge characteristic due to this discharge characteristic is caused by an error in the accumulated charge / discharge amount Ah. I don't know if it is due to memory effects.
[0046]
Therefore, in this embodiment, an initial discharge characteristic and a discharge characteristic (memory effect discharge characteristic) obtained by level-shifting it in parallel to the discharge voltage axis by the maximum memory effect voltage ΔVmmax are formed, and the region between these two discharge characteristics is defined. Let B be the region above the initial discharge characteristics and A be the region below the memory effect discharge characteristics. The maximum memory effect voltage ΔVmmax is a discharge characteristic when the memory effect is expected to be maximized.
[0047]
(When charge / discharge amount Ah is excessive)
The fact that the coordinate point R1 (Vmin, Ahmax), which is the current deepest discharge point obtained in step S120, is located in the region A shown in FIG. 6 indicates that the error (ΔAh ′) in the charge / discharge amount Ah is a memory effect. Rather than the accumulated charge / discharge amount Ah. Therefore, in this case, the charge / discharge amount Ah is corrected by subtracting the charge / discharge amount error ΔAh ′ from the current charge / discharge amount Ah = Ahmax.
[0048]
The charge / discharge amount error ΔAh ′ is a difference between the charge / discharge amount Ah2 when the discharge voltage is Vmin and the current charge / discharge amount Ah = Ahmax on the initial discharge characteristics. At the same time, the charge / discharge amount error ΔAh ′ is also subtracted from the charge / discharge amount Qdo at the charge start point stored in S106.
(When charge / discharge amount Ah is too small)
The fact that the coordinate point R2 (Vmin, Ahmax), which is the current deepest discharge point obtained in step S120, is located in the region C shown in FIG. 6 means that the charge / discharge amount error (ΔAh ″) is cumulative with the memory effect. In this case, the charge / discharge amount Ah is corrected by adding the error charge / discharge amount ΔAh ′ to the current charge / discharge amount Ah = Ahmax. .
[0049]
The charge / discharge amount error ΔAh ″ is the difference between the charge / discharge amount Ah3 when the discharge voltage is Vmin and the current charge / discharge amount Ah = Ahmax on the memory effect discharge characteristics. The charge / discharge amount error ΔAh ″ is also added to the charge / discharge amount Qdo at the charge start point.
(When charge / discharge amount Ah is neither too much nor too little)
The fact that the coordinate point R3, which is the current deepest discharge point obtained in step S120, is located in the region B shown in FIG.
[0050]
Since the memory effect is corrected in S204, if the error in the charge / discharge amount due to the memory effect is corrected here, it becomes a double correction, and the error increases.
Therefore, when the coordinate point R3, which is the deepest discharge point this time, is located in the region B shown in FIG. 6, the process returns to step S104 without correcting the charge / discharge amount Ah.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a battery characteristic calculation device of the present invention.
FIG. 2 is a flowchart showing a remaining capacity calculation operation.
FIG. 3 is a flowchart illustrating a remaining capacity calculation operation according to the first embodiment.
FIG. 4 is a discharge characteristic diagram of a battery.
FIG. 5 is a flowchart for correcting error accumulation of a charge / discharge amount Ah.
6 is a discharge characteristic diagram of a battery showing a map used in FIG. 5. FIG.

Claims (5)

充放電可能な電池の放電電圧V及び充放電電流Aを検出する放電パラメータ検出処理要素、
前記充放電電流Aを積算して所定の基準座標からの充放電量Ahを積算する充放電量算出処理要素、
前記放電電圧Vと前記充放電量Ahとの関係を示す放電特性を記憶する放電特性記憶処理要素、
前記放電特性及び前記積算充放電量Ahに基づいて現時点から所定の放電終止電圧値までの放電可能容量である現容量を演算する現容量演算処理要素、
を備える電池の残存容量演算方式であって、
前記充放電量算出処理要素の積算誤差が所定のしきい値を超えて増大した可能性が生じたかどうかを判定する積算誤差増大判定処理要素、
前記充放電量算出処理要素の積算誤差が所定のしきい値を超えて増大した可能性が生じた後、満充電状態に達することなく所定の期間が経過したかどうかを判定する満充電状態未了判定処理要素、
前記満充電状態未了判定処理要素が前記所定の期間が経過したと判定した場合に、直前の満充電状態以降の最も深放電状態である座標点である深放電座標点における充放電量値Ahd’と、前記深放電座標点における放電電圧の値に等しい放電電圧を検出した場合における前記充放電量Ahの値Ahdとの差を深放電状態積算誤差として算出する積算誤差算出処理要素、及び、
前記深放電状態積算誤差に基づいて前記放電特性を修正する放電特性修正処理要素、
を有することを特徴とする電池の残存容量演算方式
A discharge parameter detection processing element for detecting a discharge voltage V and a charge / discharge current A of a chargeable / dischargeable battery;
A charge / discharge amount calculation processing element for integrating the charge / discharge current A and integrating the charge / discharge amount Ah from a predetermined reference coordinate;
A discharge characteristic storage processing element for storing discharge characteristics indicating a relationship between the discharge voltage V and the charge / discharge amount Ah;
A current capacity calculation processing element for calculating a current capacity that is a dischargeable capacity from the current time to a predetermined discharge end voltage value based on the discharge characteristics and the integrated charge / discharge amount Ah;
A battery remaining capacity calculation method comprising:
An integration error increase determination processing element for determining whether or not there is a possibility that the integration error of the charge / discharge amount calculation processing element has increased beyond a predetermined threshold;
After the possibility that the accumulated error of the charge / discharge amount calculation processing element has increased beyond a predetermined threshold has occurred, it is not fully charged to determine whether or not a predetermined period has elapsed without reaching a fully charged state. End determination processing element,
When the full charge state incomplete determination processing element determines that the predetermined period has elapsed, the charge / discharge amount value Ahd at a deep discharge coordinate point that is a coordinate point that is the deepest discharge state immediately after the previous full charge state And a cumulative error calculation processing element that calculates a difference between the charge discharge amount Ah value Ahd when a discharge voltage equal to the discharge voltage value at the deep discharge coordinate point is detected as a deep discharge state cumulative error;
A discharge characteristic correction processing element for correcting the discharge characteristic based on the deep discharge state integration error;
Battery capacity calculation method characterized by having
請求項記載の電池の残存容量演算方式において、
前記放電特性修正処理要素は、
前記放電特性上の前記深放電座標点を前記最深放電状態積算誤差だけ放電量軸と平行にシフトすることを特徴とする電池の残存容量演算方式。
In the battery remaining capacity calculation method according to claim 1 ,
The discharge characteristic correction processing element is:
The battery remaining capacity calculation method, wherein the deep discharge coordinate point on the discharge characteristic is shifted in parallel with the discharge amount axis by the deepest discharge state integration error.
請求項又は記載の電池の残存容量演算方式において、
前記放電特性修正処理要素は、
前記充放電量Ahの現在値と前記放電電圧Vの現在値とにより規定される現座標点が、記憶する前記放電特性よりも高容量側の空間領域に存在する場合に前記シフトを実行することを特徴とする電池の残存容量演算方式。
In the battery remaining capacity calculation method according to claim 1 or 2 ,
The discharge characteristic correction processing element is:
The shift is executed when a current coordinate point defined by a current value of the charge / discharge amount Ah and a current value of the discharge voltage V exists in a space region on the higher capacity side than the stored discharge characteristics. A remaining capacity calculation method for batteries.
請求項乃至のいずれか記載の電池の残存容量演算方式において、
前記放電特性修正処理要素は、
前記充放電量Ahの現在値と前記放電電圧Vの現在値とにより規定される現座標点が、記憶する前記放電特性と、前記放電特性に所定のメモリ効果を加味したメモリ効果付き放電特性との間の領域にある場合に、前記放電特性の前記シフトを行わないすることを特徴とする電池の残存容量演算方式。
In the battery remaining capacity calculation method according to any one of claims 1 to 3 ,
The discharge characteristic correction processing element is:
The current coordinate point defined by the current value of the charge / discharge amount Ah and the current value of the discharge voltage V stores the discharge characteristic, and a discharge characteristic with a memory effect obtained by adding a predetermined memory effect to the discharge characteristic. The battery remaining capacity calculation method is characterized in that the shift of the discharge characteristics is not performed when the battery is in a region between the two.
請求項乃至のいずれか記載の電池の残存容量演算方式において、
前記放電特性修正処理要素は、
前記充放電量Ahの現在値と前記放電電圧Vの現在値とにより規定される現座標点が、前記放電特性に所定のメモリ効果を加味したメモリ効果付き放電特性よりも低容量側の空間領域にある場合に、前記現座標点を前記メモリ効果付き放電特性上の等放電電圧の座標点まで放電量軸と平行にシフトすることを特徴とする電池の残存容量演算方式
In the battery remaining capacity calculation method according to any one of claims 1 to 4 ,
The discharge characteristic correction processing element is:
The current coordinate point defined by the current value of the charge / discharge amount Ah and the current value of the discharge voltage V is a space region on the lower capacity side than the discharge characteristic with a memory effect in which a predetermined memory effect is added to the discharge characteristic. In this case, the current coordinate point is shifted in parallel with the discharge amount axis to the coordinate point of the equal discharge voltage on the discharge characteristic with the memory effect .
JP09806999A 1999-04-05 1999-04-05 Battery remaining capacity calculation method Expired - Fee Related JP3997646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09806999A JP3997646B2 (en) 1999-04-05 1999-04-05 Battery remaining capacity calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09806999A JP3997646B2 (en) 1999-04-05 1999-04-05 Battery remaining capacity calculation method

Publications (2)

Publication Number Publication Date
JP2000295775A JP2000295775A (en) 2000-10-20
JP3997646B2 true JP3997646B2 (en) 2007-10-24

Family

ID=14210062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09806999A Expired - Fee Related JP3997646B2 (en) 1999-04-05 1999-04-05 Battery remaining capacity calculation method

Country Status (1)

Country Link
JP (1) JP3997646B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560867B2 (en) * 1999-08-31 2004-09-02 本田技研工業株式会社 Hybrid vehicle battery control device
JP2007322182A (en) * 2006-05-30 2007-12-13 Kyocera Corp Electronic device and portable terminal device
KR100906908B1 (en) 2006-12-11 2009-07-08 현대자동차주식회사 Method for controlling battery charging of hybrid electric vehicle
JP2014059206A (en) * 2012-09-18 2014-04-03 Toyota Industries Corp Charge state estimation device and charge state estimation method
JP6155774B2 (en) 2013-04-03 2017-07-05 株式会社Gsユアサ State estimation device and state estimation method
JP6649814B2 (en) * 2016-03-09 2020-02-19 プライムアースEvエナジー株式会社 Secondary battery charge rate estimation method, charge rate estimation device, and charge rate estimation program
JP7057882B2 (en) 2017-03-28 2022-04-21 株式会社Gsユアサ Estimator, power storage device, estimation method
CN115372836A (en) * 2022-04-02 2022-11-22 深圳市德兰明海科技有限公司 SOC estimation method, mobile power supply and readable storage medium

Also Published As

Publication number Publication date
JP2000295775A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
US8000915B2 (en) Method for estimating state of charge of a rechargeable battery
JP5261828B2 (en) Battery state estimation device
US7893652B2 (en) Battery control apparatus, electric vehicle, and computer-readable medium storing a program that causes a computer to execute processing for estimating a state of charge of a secondary battery
US10838011B2 (en) Method for estimating state of charge and on-vehicle battery system
JP3964635B2 (en) Memory effect detection method and solution
JP3960241B2 (en) Secondary battery remaining capacity estimation device, secondary battery remaining capacity estimation method, and computer-readable recording medium storing a program for causing a computer to execute processing by the secondary battery remaining capacity estimation method
US7880442B2 (en) Charging control device for a storage battery
WO2017170621A1 (en) Secondary battery deterioration estimation device and secondary battery deterioration estimation method
JP3006298B2 (en) Battery remaining capacity meter
JP4110639B2 (en) Battery remaining capacity calculation device
JP3997646B2 (en) Battery remaining capacity calculation method
WO2019184842A1 (en) Method and apparatus for calculating soc of power battery pack, and electric vehicle
JP3104483B2 (en) Battery remaining capacity detection device for hybrid vehicles
JP3432463B2 (en) Battery capacity measurement device
CN107024666B (en) Apparatus for estimating battery SOC
JP3397187B2 (en) Battery state of charge determination device
JP2022182460A (en) Estimation device, power storage device, and estimation method
JP2000131404A (en) Cell deterioration degree determining apparatus
KR20160049604A (en) System for predicting soc of the battery and method for thereof
JP4872513B2 (en) Battery current-voltage characteristic detection device and internal resistance detection device using the same
JP2000221249A (en) Detecting apparatus for charging state of battery
JP2002340996A (en) Battery capacity judging apparatus
JP2018063191A (en) Charge state estimation device
JP2006189385A (en) Storage system, and residual capacity calculation method for secondary battery
JP4110637B2 (en) Battery remaining capacity calculation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees