JP3995704B1 - Water treatment system for drinking water production and operation method thereof - Google Patents

Water treatment system for drinking water production and operation method thereof Download PDF

Info

Publication number
JP3995704B1
JP3995704B1 JP2006341601A JP2006341601A JP3995704B1 JP 3995704 B1 JP3995704 B1 JP 3995704B1 JP 2006341601 A JP2006341601 A JP 2006341601A JP 2006341601 A JP2006341601 A JP 2006341601A JP 3995704 B1 JP3995704 B1 JP 3995704B1
Authority
JP
Japan
Prior art keywords
water
membrane
reverse osmosis
membrane device
osmosis membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006341601A
Other languages
Japanese (ja)
Other versions
JP2008149285A (en
Inventor
直人 新田
昌伸 野下
憲治 竹坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2006341601A priority Critical patent/JP3995704B1/en
Application granted granted Critical
Publication of JP3995704B1 publication Critical patent/JP3995704B1/en
Publication of JP2008149285A publication Critical patent/JP2008149285A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】海水を淡水化可能であり、かつ、高機動車に搭載できるほど小型である飲料水製造用水処理システム及びその運転方法を提供すること。
【解決手段】本発明の飲料水製造用水処理システムは、運転停止時に後段RO膜装置(低圧RO膜装置)の透過水を前段RO膜装置(高圧RO膜装置)の出口側へと逆流させるため、サックバックタンクを不要とした。また、直列方向に配置した前段RO膜装置及び後段RO膜装置に、1台の加圧ポンプを用いてMF膜分離装置又はUF膜分離装置の処理水を供給するため、RO膜処置のための複数の加圧ポンプは不要である。これにより、高機動車にも搭載可能な程度にシステムを小型化された。
【選択図】図1
A water treatment system for producing drinking water and a method for operating the same are provided that can desalinate seawater and are small enough to be mounted on a high mobility vehicle.
The water treatment system for drinking water production according to the present invention is configured to cause the permeated water of a subsequent RO membrane device (low pressure RO membrane device) to flow backward to the outlet side of the preceding RO membrane device (high pressure RO membrane device) when operation is stopped. No need for a sackback tank. In addition, since the treated water of the MF membrane separation device or the UF membrane separation device is supplied to the upstream RO membrane device and the downstream RO membrane device arranged in series using a single pressure pump, Multiple pressurizing pumps are not required. As a result, the system has been downsized to such an extent that it can be mounted on high mobility vehicles.
[Selection] Figure 1

Description

本発明は、河川水、湖沼水等の淡水又は海水を原水として、精密ろ過膜(MF膜)分離装置又は限外ろ過膜(UF膜)分離装置と、前段(1段目)の逆浸透膜(RO膜)装置及び後段(2段目)の逆浸透膜(RO膜)装置とを用いて膜分離処理を行い、飲料水を製造するための水処理システムに関する。   The present invention provides a microfiltration membrane (MF membrane) separation device or an ultrafiltration membrane (UF membrane) separation device using fresh water such as river water or lake water or seawater as raw water, and a reverse osmosis membrane in the previous stage (first stage). The present invention relates to a water treatment system for producing drinking water by performing a membrane separation process using a (RO membrane) device and a reverse (second stage) reverse osmosis membrane (RO membrane) device.

MF膜又はUF膜は、微粒子等の除去性能が高いため、原水中に含まれる微細な固形物、懸濁物質、微生物等を分離する固液分離手段として使用される。また、このMF膜を組み込んだMF膜分離装置又はUF膜を組み込んだUF膜分離装置は、操作が簡便であることから、医薬、化学、半導体等の分野的で工業的に広く利用されている。   Since the MF membrane or UF membrane has high removal performance of fine particles and the like, it is used as a solid-liquid separation means for separating fine solids, suspended substances, microorganisms and the like contained in raw water. In addition, the MF membrane separation device incorporating the MF membrane or the UF membrane separation device incorporating the UF membrane is easy to operate, and is widely used in the fields of medicine, chemistry, semiconductors, and the like in industry. .

また、RO膜は、水中の塩類、有機物質(トリハロメタン、農薬等)、微細粒子(生菌、死菌、ウイルス等)を安定かつ活効率的に除去できるため、超純水製造から海水淡水化まで広い範囲で利用されている。例えば、医薬品、半導体の分野において、注射用水、超純水等の製造に利用されている。   RO membranes can remove salt, organic substances (trihalomethane, agricultural chemicals, etc.) and fine particles (viable bacteria, dead bacteria, viruses, etc.) in water stably and vigorously. It is used in a wide range. For example, in the fields of pharmaceuticals and semiconductors, it is used for the production of water for injection, ultrapure water, and the like.

RO膜は、非常に微細な細孔を有しているため、原水(例えば、工業用水)を、まずMF膜分離装置又はUF膜分離装置を用いて前処理し、それらの処理水をRO膜分離装置で膜分離処理することが一般的である。   Since the RO membrane has very fine pores, raw water (for example, industrial water) is first pretreated using an MF membrane separation device or a UF membrane separation device, and the treated water is supplied to the RO membrane. It is common to perform membrane separation treatment with a separation device.

ここで、地震、津波等の災害時に飲料水を製造するため、被災地の原水を浄化する浄化装置として、長毛ろ過装置と珪藻土ろ過装置を用いる車載型の移動式浄水装置が、特許文献1に開示されている。   Here, in order to produce drinking water at the time of disasters such as earthquakes and tsunamis, an in-vehicle mobile water purification device using a long hair filtration device and a diatomaceous earth filtration device is disclosed in Patent Document 1 as a purification device for purifying raw water in the affected area. It is disclosed.

また、RO膜を用いる海水淡水化装置と、UF膜を用いる汚濁淡水の浄化装置等を備える車両搭載型清水製造装置が、特許文献2に開示されている。   Further, Patent Document 2 discloses a vehicle-mounted fresh water production apparatus including a seawater desalination apparatus using an RO membrane and a contaminated fresh water purification device using a UF membrane.

また、回転するろ過筒を通じてろ過を行う第一ろ過器と、MF膜又はRO膜処理を行う第二ろ過器と、RO膜を用いて純水を得る第三ろ過器とを備える移動式浄水設備が、特許文献3に開示されている。   A mobile water purification facility comprising a first filter that performs filtration through a rotating filter cylinder, a second filter that performs MF membrane or RO membrane treatment, and a third filter that obtains pure water using the RO membrane. However, this is disclosed in Patent Document 3.

また、直列方向に2段に接続された逆浸透膜装置によって海水を高収率で換水か処理する処理方法が、特許文献4に開示されている。
実公昭62−9997号公報 特開平9−141261号公報 特開平8−71567号公報 特開2005−246158号公報
Further, Patent Document 4 discloses a treatment method for treating seawater with high yield by using a reverse osmosis membrane device connected in two stages in series.
Japanese Utility Model Publication No. 62-9997 JP-A-9-141261 JP-A-8-71567 JP 2005-246158 A

しかし、特許文献1に開示される移動式浄水装置は、細菌、ウイルス、塩類、重金属類、農薬等の化学物質を除去することができず、原水の濁度が高い場合には、珪藻土ろ過器を頻繁に手動で逆流洗浄しなければならないという欠点があった。   However, the mobile water purifier disclosed in Patent Literature 1 cannot remove chemical substances such as bacteria, viruses, salts, heavy metals, and agricultural chemicals, and when the turbidity of raw water is high, a diatomaceous earth filter Has had the disadvantage of having to be manually backwashed frequently.

また、特許文献2及び特許文献3に開示される移動式浄水設備は、原水タンクや凝集剤を添加した原水を貯留するタンクを有するため、大型車両でなければ浄水設備を搭載することが困難である。   Moreover, since the mobile water purification equipment disclosed in Patent Literature 2 and Patent Literature 3 includes a raw water tank or a tank for storing raw water added with a flocculant, it is difficult to mount the water purification equipment unless it is a large vehicle. is there.

また、特許文献4に開示される海水淡水化装置では、2段に接続されたRO膜装置のそれぞれに加圧ポンプが必要である。さらに、装置を停止する際に、前段のRO膜装置内に濃縮された高濃度海水が溜まり、RO膜にカルシウム塩等が析出することを防止するために、前段のRO膜装置の透過水を前段のRO膜装置内に給水するためのサックバックタンクも必要となる。このため、特許文献4に開示される海水淡水化装置も大型車両でなければ搭載することが困難である。   Further, in the seawater desalination apparatus disclosed in Patent Document 4, a pressure pump is required for each of the RO membrane apparatuses connected in two stages. Furthermore, when the device is stopped, in order to prevent the concentrated high-concentration seawater from accumulating in the previous RO membrane device and the calcium salt etc. from precipitating on the RO membrane, A suck-back tank for supplying water into the upstream RO membrane device is also required. For this reason, it is difficult to mount the seawater desalination apparatus disclosed in Patent Document 4 unless it is a large vehicle.

その一方、地震等の被災地では道路等が陥没したり、道路にはがれき等の障害物があり、従来のトラック等の大型車両では走行できない箇所がある。このような場合、被災地での浄水の供給ができなくなるため、多少の悪路でも走行可能な小型で機動性の高い高機動車と呼ばれる小型車両の利用が検討されている。   On the other hand, roads etc. are depressed in areas affected by earthquakes, etc., or there are obstacles such as debris on the roads, and there are places where large vehicles such as conventional trucks cannot run. In such a case, since it becomes impossible to supply purified water in the stricken area, the use of a small vehicle called a high mobility vehicle that is small and highly mobile that can travel even on some rough roads has been studied.

しかし、高機動車の荷台寸法は、縦2070mm×横2000mm×高さ1175mm程度であり、一般的な大型車両の荷台寸法である縦4500mm×横2990mm×高さ2080mmと比較すると、浄水設備のスペースが非常に限られることが大きな問題である。   However, the size of the carrier bed of the high mobility vehicle is about 2070 mm long × 2000 mm wide × 1175 mm high, and compared to the size of a general large vehicle carrier 4500 mm long × 2990 mm wide × 2080 mm high, the space for water purification equipment It is a big problem that is very limited.

ここで、原水が河川水や湖沼水といった淡水の場合には、MF膜分離装置又はUF膜分離装置で原水を処理した後、1台のRO膜装置で処理すれば飲料水として利用することができる。しかし、原水が海水の場合には、MF膜分離装置又はUF膜分離装置の処理水をRO膜装置(1段目のRO膜装置)で処理した後、さらにもう1台のRO膜装置(2段目のRO膜装置)で処理しなければ飲料水として利用することができない。   Here, when the raw water is fresh water such as river water or lake water, it can be used as drinking water if it is treated with one RO membrane device after being treated with the MF membrane separation device or UF membrane separation device. it can. However, when the raw water is seawater, after treating the treated water of the MF membrane separation device or the UF membrane separation device with the RO membrane device (the first stage RO membrane device), another RO membrane device (2 It cannot be used as drinking water unless it is processed by the stage RO membrane device.

災害地で採取できる原水は、淡水の場合もあれば海水の場合もあるため、移動式の飲料水製造システムは、海水も処理できるものであることが好ましいが、海水を処理するためには特許文献4に開示されている装置のように、サックバックタンクやRO膜処理のための複数の加圧ポンプが必要となる。このため、海水に対応可能な飲料水製造システムは、淡水専用の飲料水製造システムよりも、高機動車に搭載するスペース的な余裕がさらに少ない。   Since the raw water that can be collected in the disaster area may be fresh water or seawater, the mobile drinking water production system is preferably capable of processing seawater. Like the apparatus disclosed in Document 4, a plurality of pressure pumps for suck-back tank and RO membrane treatment are required. For this reason, the drinking water manufacturing system which can respond to seawater has much less space margin to be mounted on a high mobility vehicle than the drinking water manufacturing system dedicated to fresh water.

本発明は、海水の原水を淡水化可能であり、かつ、高機動車に搭載できるほど小型である飲料水製造用水処理システム及びその運転方法の提供を目的とする。   An object of the present invention is to provide a water treatment system for producing drinking water that can desalinate raw seawater and is small enough to be mounted on a high mobility vehicle, and an operation method thereof.

本発明の飲料水製造用水処理システム及びその運転方法は、運転停止時に低圧RO膜装置の透過水(飲料水)を高圧RO膜装置の出口側経路へと逆流させるため、サックバックタンクが不要であることを特徴とする。   The water treatment system for drinking water production of the present invention and the operation method thereof allow the permeated water (drinking water) of the low-pressure RO membrane device to flow back to the outlet side path of the high-pressure RO membrane device when the operation is stopped. It is characterized by being.

また、直列方向に配置した前段RO膜装置及び後段RO膜装置に、1台の加圧ポンプを用いてMF膜分離装置又はUF膜分離装置の処理水を供給するため、RO膜処理のための複数の加圧ポンプは不要であることも特徴とする。   In addition, since the treated water of the MF membrane separation device or the UF membrane separation device is supplied to the former stage RO membrane device and the latter stage RO membrane device arranged in series using a single pressurizing pump, A plurality of pressurizing pumps is also unnecessary.

具体的に、本発明は、
MF膜又はUF膜を用いた膜分離装置と、
前段RO膜装置と、
後段RO膜装置とを備え、
膜分離装置の処理水を前段RO膜装置及び後段RO膜装置で順次処理する飲料水製造用水処理システムであって、
膜分離装置の処理水は加圧ポンプによって前段RO膜装置の入口に供給され、前段RO膜装置の透過水出口はタンク及びポンプを介することなく後段RO膜装置の入口に接続され、
後段RO膜装置の透過水出口下流にある透過水側経路、吸着装置又は飲料水貯水タンクのいずれかが前段RO膜装置の透過水出口側経路へと接続されていることを特徴とするシステムに関する(請求項1)。
Specifically, the present invention
A membrane separator using an MF membrane or a UF membrane;
A pre-stage RO membrane device;
A post-stage RO membrane device,
A water treatment system for producing drinking water that sequentially treats treated water of a membrane separation apparatus with a front-stage RO membrane apparatus and a rear-stage RO membrane apparatus,
The treated water of the membrane separator is supplied to the inlet of the upstream RO membrane device by a pressure pump, and the permeated water outlet of the upstream RO membrane device is connected to the inlet of the downstream RO membrane device without going through the tank and pump,
The system is characterized in that any one of the permeated water side path, the adsorption device, and the drinking water storage tank downstream of the permeated water outlet of the latter stage RO membrane apparatus is connected to the permeated water outlet side path of the former stage RO membrane apparatus. (Claim 1).

また、本発明は、
MF膜又はUF膜を用いた膜分離装置と、
前段RO膜装置と、
後段RO膜装置とを備え、
膜分離装置の処理水を前段RO膜分離装置及び後段RO膜装置で順次処理する飲料水製造用水処理システムの運転方法であって、
運転時には、膜分離装置の処理水を加圧ポンプによって前段RO膜装置の入口に供給し、前段RO膜装置の透過水をタンク及びポンプを介することなく後段RO膜装置の入口に供給し、後段RO膜装置の透過水出口から後段RO膜透過水を得、
運転停止時には加圧ポンプ停止時に、後段RO膜装置の透過水出口下流にある透過水側経路透過水出口側経路、吸着装置又は飲料水貯水タンクのいずれかに存在する後段RO膜装置の透過処理水を、後段RO膜装置を介することなく前段RO膜装置の透過水出口側へと流入させることを特徴とする飲料水製造用水処理システムの運転方法に関する(請求項5)。
The present invention also provides:
A membrane separator using an MF membrane or a UF membrane;
A pre-stage RO membrane device;
A post-stage RO membrane device,
An operation method of a water treatment system for drinking water production in which treated water of a membrane separator is sequentially treated by a front-stage RO membrane separator and a rear-stage RO membrane apparatus,
During operation, the treated water of the membrane separation device is supplied to the inlet of the upstream RO membrane device by a pressure pump, and the permeated water of the upstream RO membrane device is supplied to the inlet of the downstream RO membrane device without passing through the tank and the pump. The RO membrane permeate is obtained from the permeate outlet of the RO membrane device,
At the time of shutdown, when the pressurizing pump is stopped, the permeate treatment of the downstream RO membrane device existing in either the permeate water side passage, the adsorber or the drinking water storage tank downstream of the permeate outlet of the downstream RO membrane device The present invention relates to a method for operating a water treatment system for producing drinking water, characterized in that water is allowed to flow into a permeate outlet side of a front-stage RO membrane device without passing through a rear-stage RO membrane device.

本発明の飲料水製造用水処理システム及びその運転方法は、海水を原水とした場合であっても飲料水を製造することができるように、2台のRO膜装置(前段RO膜装置及び後段RO膜装置)が直列方向に接続されている。このため、1台の加圧ポンプで膜分離装置の処理水を前段RO膜装置及び後段RO膜装置に供給することが可能であり、前段RO膜装置と後段RO膜装置との間に、後段RO膜装置専用の加圧ポンプが不要である。   The water treatment system for drinking water production and the operation method thereof of the present invention have two RO membrane devices (an upstream RO membrane device and a subsequent RO membrane) so that drinking water can be produced even when seawater is used as raw water. Membrane device) are connected in series. For this reason, it is possible to supply the treated water of the membrane separation apparatus to the pre-stage RO membrane apparatus and the post-stage RO membrane apparatus with one pressurizing pump, and between the pre-stage RO membrane apparatus and the post-stage RO membrane apparatus, A pressure pump dedicated to the RO membrane device is not required.

また、後段逆浸透膜装置の透過水出口下流にある透過水側経路、吸着装置又は飲料水貯水タンクのいずれかが前段RO膜装置の透過水出口側経路へと接続されているために、システムの運転を停止した場合には後段RO膜装置の透過水出口側経路、吸着装置又は飲料水貯水タンク内の飲料水(淡水)を前段RO膜装置へとサックバックさせることが可能である。このため、前段RO膜装置と後段RO膜装置との間に、前段RO膜装置の透過水を貯蔵するサックバックタンクが不要であり、システム全体の構成を小型化及び簡略化することが可能となる。   In addition, since either the permeate side path, the adsorption device or the drinking water storage tank downstream of the permeate outlet of the latter stage reverse osmosis membrane apparatus is connected to the permeate outlet side path of the former stage RO membrane apparatus, the system When the operation is stopped, it is possible to suck back drinking water (fresh water) in the permeated water outlet side path of the subsequent RO membrane device, the adsorption device or the drinking water storage tank to the previous RO membrane device. For this reason, there is no need for a sackback tank for storing the permeated water of the front-stage RO membrane device between the front-stage RO membrane device and the rear-stage RO membrane device, and the configuration of the entire system can be reduced in size and simplified. Become.

前段RO膜装置の供給水圧は6MPa以上8MPa以下であり、後段RO膜装置の供給水圧は1MPa以上2MPa以下であることが好ましい(請求項2,6)。   The supply water pressure of the upstream RO membrane device is preferably 6 MPa or more and 8 MPa or less, and the supply water pressure of the downstream RO membrane device is preferably 1 MPa or more and 2 MPa or less (Claims 2 and 6).

1台の加圧ポンプで膜分離装置の処理水を前段RO膜装置及び後段RO膜装置に供給するためには、前段RO膜装置の供給水圧を6MPa以上とすることによって、後段RO膜装置の供給水圧を1MPa以上とすることが好ましい。一方、前段RO膜装置の供給水圧を高くするほど加圧ポンプが大型化せざるを得ず、設置スペースが拡大し、消費電力も大きくなってしまう。このため、前段RO膜装置の供給水圧を8MPa以下とし、後段RO膜装置の供給水圧を2MPa以下とすることが実用的である。   In order to supply the treated water of the membrane separator to the pre-stage RO membrane apparatus and the post-stage RO membrane apparatus with one pressurizing pump, the supply water pressure of the pre-stage RO membrane apparatus is set to 6 MPa or more. The supply water pressure is preferably 1 MPa or more. On the other hand, the higher the supply water pressure of the pre-stage RO membrane device, the larger the pressure pump has to be, which increases the installation space and power consumption. For this reason, it is practical to set the supply water pressure of the front-stage RO membrane device to 8 MPa or less and the supply water pressure of the rear-stage RO membrane device to 2 MPa or less.

加圧ポンプの前にブースターポンプを設置することが好ましい(請求項3,7)。   It is preferable to install a booster pump before the pressurizing pump (claims 3 and 7).

ブースターポンプは、加圧ポンプのキャビテーションを防止するために、加圧ポンプ吸込側を加圧するものである。加圧ポンプのキャビテーションを防止するためには、ブースターポンプで0.1MPa以上に昇圧することが好ましい。   The booster pump pressurizes the suction pump suction side to prevent cavitation of the pressurization pump. In order to prevent cavitation of the pressurizing pump, it is preferable to increase the pressure to 0.1 MPa or more with a booster pump.

膜分離装置で処理する前に、原水をフィルターろ過してもよい(請求項3,8)。   The raw water may be filtered before treatment with the membrane separator (claims 3 and 8).

原水をフィルターろ過して懸濁物を除去すれば、MF膜又はUF膜の目詰まりを防止して、長期間安定して飲料水の製造が可能となる。また、フィルターろ過は、長毛ろ過器と比較して設置スペースが小さく、原水濁度に応じて様々な平均孔径を有するフィルターを選択することもできるという利点もある。   If raw water is filtered and the suspended matter is removed, clogging of the MF membrane or UF membrane is prevented, and drinking water can be produced stably for a long period of time. Moreover, filter filtration has the advantage that an installation space is small compared with a long hair filter, and the filter which has various average pore diameters can also be selected according to raw | natural water turbidity.

本発明の飲料水製造用水処理システム及びその運転方法は、加圧ポンプが1台で足り、サックバックタンクも省略したことにより、設置スペースが従来の海水対応車載型飲料水製造システムよりも小型化及び省電力化できる。また、開放系であるサックバックタンクを省略したことにより、飲料水がシステム内部で汚染される危険性も減少することができる。   The drinking water production water treatment system and its operating method of the present invention requires only one pressure pump and omits the sackback tank, so that the installation space is smaller than the conventional seawater-compatible in-vehicle drinking water production system. And it can save power. Further, since the suck-back tank that is an open system is omitted, the risk that the drinking water is contaminated inside the system can be reduced.

以下に、本発明の実施の形態について、適宜図面を参照しながら説明する。なお、本発明は、これらに限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings as appropriate. Note that the present invention is not limited to these.

海水を淡水化する、従来の飲料水製造用水処理システムの一例を、図2に示す。この水処理システムでは、まず揚水ポンプ31によって原水を経路32へと吸水し、長毛ろ過器33によって前処理することにより、原水中の懸濁物質を除去する。   An example of a conventional water treatment system for drinking water production that desalinates seawater is shown in FIG. In this water treatment system, raw water is first sucked into the path 32 by the pumping pump 31 and pretreated by the long hair filter 33 to remove suspended substances in the raw water.

次に、長毛ろ過器33の処理水は、経路34に設置されたろ過ポンプ35によって加圧(0.2MPa程度)され、MF膜分離装置36の供給水入口へと供給される。なお、ここではMF膜分離装置36を使用しているが、UF膜分離装置を使用する場合もある。   Next, the treated water of the long hair filter 33 is pressurized (about 0.2 MPa) by the filtration pump 35 installed in the path 34 and supplied to the supply water inlet of the MF membrane separation device 36. Although the MF membrane separation device 36 is used here, a UF membrane separation device may be used.

MF膜分離装置36の処理水(透過水)は、透過水出口側の経路37を経てMF膜処理水タンク38に貯水される。さらに、経路39に設置された1段目加圧ポンプ40によって加圧され(5〜7MPa程度)、前段RO膜装置(ここでは、高圧RO装置)41の供給水入口へと供給される。   The treated water (permeated water) of the MF membrane separation device 36 is stored in the MF membrane treated water tank 38 via the passage 37 on the permeate outlet side. Further, the pressure is increased by the first-stage pressurizing pump 40 installed in the path 39 (about 5 to 7 MPa) and supplied to the supply water inlet of the preceding-stage RO membrane apparatus (here, the high-pressure RO apparatus) 41.

高圧RO膜装置41の透過水は、透過水出口側の経路42を経て、サックバックタンク43に貯水される。次に、サックバックタンク43内の透過水は、経路44に設置された2段目加圧ポンプ45によって加圧され(1〜2MPa程度)、後段RO膜装置(ここでは、低圧RO装置)46の供給水入口へと供給される。   The permeated water of the high-pressure RO membrane device 41 is stored in the suck back tank 43 through the passage 42 on the permeate outlet side. Next, the permeated water in the sackback tank 43 is pressurized by a second-stage pressurizing pump 45 installed in the path 44 (about 1-2 MPa), and a subsequent-stage RO membrane device (here, a low-pressure RO device) 46. To the feed water inlet.

そして、後段RO膜装置46の透過水は、透過水出口側の経路47から飲料水(浄水)として流出する。このとき、図2に示すように、経路47には、活性炭吸着装置48を設置し、浄水を吸着処理することが多い。   And the permeated water of the back | latter stage RO membrane apparatus 46 flows out as drinking water (purified water) from the path | route 47 by the permeated water exit side. At this time, as shown in FIG. 2, the activated carbon adsorption device 48 is often installed in the path 47 to adsorb the purified water.

図2に示す飲料水製造用水処理システムでは、加圧ポンプが2台とサックバックタンクがあるため、システムを高機動車に搭載するにはスペース的に無理があった。また、消費電力も多く、高機動車だけで電力を供給するには不安があった。   In the drinking water production water treatment system shown in FIG. 2, since there are two pressure pumps and a suck-back tank, it is difficult to mount the system on a high mobility vehicle. In addition, there is a lot of power consumption, and there was anxiety about supplying power only with high mobility vehicles.

次に、本発明の飲料水製造用水処理システムの一例を、図1に示す。この水処理システムでは、まず揚水ポンプ1によって原水を経路2へと吸水し、プレフィルター(簡易フィルター)3によって前処理することにより、原水中の懸濁物質を除去する。   Next, an example of the water treatment system for drinking water production of the present invention is shown in FIG. In this water treatment system, first, raw water is absorbed into a path 2 by a pumping pump 1 and pretreated by a prefilter (simple filter) 3 to remove suspended substances in the raw water.

プレフィルター3の処理水は、経路4に設置されたろ過ポンプ5によって加圧され(0.2MPa程度)、MF膜分離装置6の供給水入口へと供給され、さらに経路7を経てMF膜処理水タンク8に貯水される。なお、MF膜分離装置6の代わりにUF膜分離装置を使用してもよい。   The treated water of the prefilter 3 is pressurized (about 0.2 MPa) by the filtration pump 5 installed in the path 4, supplied to the feed water inlet of the MF membrane separation device 6, and further through the path 7 MF membrane treated water. Water is stored in the tank 8. Note that a UF membrane separator may be used instead of the MF membrane separator 6.

MF膜処理水タンク8内の処理水は、経路9に設置されたブースターポンプ10によって0.3MPa程度に加圧され、さらに加圧ポンプ11によって6MPa以上8MPa以下の圧力に加圧されて、前段RO膜装置(ここでは、高圧RO装置)14の供給水入口に供給される。   The treated water in the MF membrane treated water tank 8 is pressurized to about 0.3 MPa by a booster pump 10 installed in the path 9 and further pressurized to a pressure of 6 MPa or more and 8 MPa or less by a pressurizing pump 11, It is supplied to a supply water inlet of a membrane device (here, a high pressure RO device) 14.

そして、前段RO膜装置14の透過水は、経路15を経て後段RO膜装置(ここでは、低圧RO装置)17の供給水入口に供給される。このとき、経路15内の透過水は、1MPa以上2MPa以下の水圧に維持されているため、加圧ポンプを別途使用せずに直接後段RO膜装置17に供給することができる。   Then, the permeated water of the upstream RO membrane device 14 is supplied to the supply water inlet of the downstream RO membrane device (here, the low pressure RO device) 17 via the path 15. At this time, since the permeated water in the path 15 is maintained at a water pressure of 1 MPa or more and 2 MPa or less, it can be directly supplied to the subsequent RO membrane device 17 without using a pressure pump.

後段RO膜装置17の透過水は、透過水出口側の経路18から飲料水(浄水)として流出する。このとき、経路18には、活性炭吸着装置20を設置し、浄水を吸着処理することが好ましい。   The permeated water of the downstream RO membrane device 17 flows out as drinking water (purified water) from the path 18 on the permeate outlet side. At this time, it is preferable to install an activated carbon adsorption device 20 in the path 18 to adsorb purified water.

前段RO膜装置14及び後段RO膜装置17の濃縮水は、経路21及び経路22からそれぞれ系外へと排出される。前段RO膜流量調整弁23及び後段RO膜流量調整弁24の開度を調整することにより、前段RO膜装置14及び後段RO膜装置17の濃縮水量及び透過水量を調整することができる。   The concentrated water from the upstream RO membrane device 14 and the downstream RO membrane device 17 is discharged out of the system from the path 21 and the path 22, respectively. By adjusting the opening degree of the pre-stage RO membrane flow rate adjustment valve 23 and the post-stage RO membrane flow rate adjustment valve 24, the concentrated water amount and the permeated water amount of the pre-stage RO membrane device 14 and the post-stage RO membrane device 17 can be adjusted.

経路18には、サックバック経路25が接続しており、システムの運転を停止した場合(ポンプはすべて停止)には、後段RO膜装置17の透過水が経路25から経路15、さらに前段RO膜装置14の透過水出口側へと逆流させることができるため、経路18及び活性炭吸着装置20内の透過水(淡水)をサックバック水として利用することができる。なお、サックバック経路25は活性炭吸着装置20の透過水出口側配管下流や、さらにその下流に設置された飲料水貯水タンク(図示せず)に接続してもよい。   The suckback path 25 is connected to the path 18, and when the operation of the system is stopped (all pumps are stopped), the permeated water of the rear RO membrane device 17 passes from the path 25 to the path 15 and further to the front RO membrane. Since it can be made to flow backward to the permeate outlet side of device 14, permeate (fresh water) in channel 18 and activated carbon adsorption device 20 can be used as suck back water. The suck back path 25 may be connected to the permeate outlet side piping downstream of the activated carbon adsorbing device 20 or a drinking water storage tank (not shown) installed downstream thereof.

(起動方法)
ここで、本発明の飲料水製造用水処理システムの運転方法について説明する。システム起動時には、まず、前段RO膜流量調整弁23及び後段RO膜流量調整弁24を全開にし、サックバック水給水弁26を全閉にする。
(starting method)
Here, the operation method of the water treatment system for drinking water production of the present invention will be described. When the system is started, first, the front-stage RO membrane flow rate adjustment valve 23 and the rear-stage RO membrane flow rate adjustment valve 24 are fully opened, and the suck-back water supply valve 26 is fully closed.

次に、ブースターポンプ10を起動する。加圧ポンプ入口側圧力スイッチ12が規定値(例えば、0.05MPa)以上の圧力を検知すると、加圧ポンプ11を起動する。   Next, the booster pump 10 is started. When the pressure pump inlet side pressure switch 12 detects a pressure equal to or higher than a specified value (for example, 0.05 MPa), the pressure pump 11 is activated.

前段RO膜供給水流量計13の指示値に基づいて加圧ポンプ11の回転数を制御し、前段RO膜装置14への供給水量を調整する。前段RO供給水流量計13の指示値は、前段RO膜装置14の必要供給水量(必要前段RO処理水量/RO回収率×100)を目標値とすることが好ましい。例えば、必要前段RO処理水量が2m3/h、RO回収率が50%である場合、前段RO膜装置14の必要供給水量(目標値)は、4m3/hとすることが好ましい。前段RO供給水流量計13の指示値が目標値未満となれば、加圧ポンプ11の回転数を上げて指示値が4m3/hとなるように制御する。また、前段RO供給水流量計13の指示値が目標値を超えれば、回転数を下げて指示値が4m3/hになるように制御し、前段RO膜装置14への供給水量を調整する。 Based on the indicated value of the upstream RO membrane supply water flow meter 13, the number of revolutions of the pressurizing pump 11 is controlled to adjust the amount of water supplied to the upstream RO membrane device 14. The indicated value of the upstream RO supply water flow meter 13 is preferably a target value of the required supply water amount of the upstream RO membrane device 14 (necessary upstream RO treated water amount / RO recovery rate × 100). For example, when the required upstream RO treatment water amount is 2 m 3 / h and the RO recovery rate is 50%, the required supply water amount (target value) of the upstream RO membrane device 14 is preferably 4 m 3 / h. If the indicated value of the upstream RO supply water flow meter 13 is less than the target value, the number of revolutions of the pressurizing pump 11 is increased to control the indicated value to 4 m 3 / h. Also, if the indicated value of the upstream RO supply water flow meter 13 exceeds the target value, the rotational speed is decreased to control the indicated value to 4 m 3 / h, and the amount of water supplied to the upstream RO membrane device 14 is adjusted. .

また、前段RO膜透過水流量計16の指示値に基づいて前段RO膜流量調整弁23の開度を調整し、前段RO膜装置14の透過水量を調整する。すなわち、前段RO透過水流量計16の指示値が目標値(前段RO膜装置14の必要処理水量)未満となれば、前段RO膜装置流量調節弁23を閉じて指示値が目標値となるように制御する。また、前段RO透過水流量計の指示値が目標値を超えれば、前段RO膜装置流量調節弁23を開いて指示値が目標値となるように制御し、前段RO膜装置14の透過水量を調整する。なお、海水を処理する場合、前段RO膜装置8のRO回収率は、40%〜60%の範囲に調整することが好ましく、淡水を処理する場合には、前段RO膜装置8のRO回収率は、60%〜90%の範囲に調整することが好ましい。   Further, the opening degree of the pre-stage RO membrane flow rate adjustment valve 23 is adjusted based on the instruction value of the pre-stage RO membrane permeate flow meter 16, and the permeate amount of the pre-stage RO membrane device 14 is adjusted. That is, if the indicated value of the upstream RO permeate flow meter 16 is less than the target value (required treated water amount of the upstream RO membrane device 14), the upstream RO membrane device flow rate control valve 23 is closed and the indicated value becomes the target value. To control. If the indicated value of the upstream RO permeate flow meter exceeds the target value, the upstream RO membrane device flow rate control valve 23 is opened to control the indicated value to the target value, and the amount of permeated water of the upstream RO membrane device 14 is controlled. adjust. In addition, when processing seawater, it is preferable to adjust the RO collection | recovery rate of the front | former stage RO membrane apparatus 8 to the range of 40%-60%, and when processing fresh water, the RO collection | recovery rate of the front | former stage RO membrane apparatus 8 Is preferably adjusted to a range of 60% to 90%.

前段RO膜透過水流量計16の指示値が目標値(前段RO膜装置14の必要処理水量:例えば、2m3/h)の所定割合(25〜30%以上、好ましくは、30%以上)になれば、後段RO膜透過水流量計19の指示値に基づいて後段RO膜流量調整弁24の開度を調整し、後段RO膜装置17の透過水量を調整する。すなわち、前段RO膜透過水流量計16の指示値が目標値の30%(例えば、0.6m3/h)となった段階で、後段RO透過水流量計19の指示値に基づく後段RO膜流量調節弁24の開度制御を開始する。 The indicated value of the front-stage RO membrane permeate flow meter 16 becomes a predetermined value (25-30% or more, preferably 30% or more) of a target value (necessary amount of treated water of the front-stage RO membrane device 14: 2 m 3 / h, for example). If so, the opening degree of the rear-stage RO membrane flow rate adjustment valve 24 is adjusted based on the instruction value of the rear-stage RO membrane permeate flow meter 19, and the permeated water amount of the rear-stage RO membrane device 17 is adjusted. That is, when the indicated value of the upstream RO membrane permeate flow meter 16 reaches 30% of the target value (for example, 0.6 m 3 / h), the downstream RO membrane flow rate based on the indicated value of the downstream RO permeate flow meter 19 The opening degree control of the control valve 24 is started.

後段RO透過水流量計19の指示値が目標値(後段RO膜装置17の必要処理水量:例えば、1.6m3/h)未満となれば、後段RO膜装置流量調節弁24を閉じて指示値が目標値(後段RO膜装置17の必要処理水量:例えば、1.6m3/h)となるように制御する。また、後段RO透過水流量計19の指示値が目標値(後段RO膜装置17の必要処理水量:例えば、1.6m3/h)を超えれば、後段RO膜装置流量調節弁24を開いて指示値が目標値(後段RO膜装置17の必要処理水量:例えば、1.6m3/h)の100%となるように制御し、後段RO膜装置17の透過水量を調整する。 If the indicated value of the downstream RO permeate flow meter 19 is less than the target value (required treated water amount of the downstream RO membrane device 17: for example, 1.6 m 3 / h), the downstream RO membrane device flow control valve 24 is closed to indicate the value. Is controlled to be a target value (necessary amount of treated water of the rear-stage RO membrane device 17: 1.6 m 3 / h, for example). Further, if the indicated value of the rear-stage RO permeate flow meter 19 exceeds the target value (required amount of treated water of the rear-stage RO membrane device 17: for example, 1.6 m 3 / h), the latter-stage RO membrane device flow control valve 24 is opened to indicate The value is controlled to be 100% of the target value (necessary treated water amount of the downstream RO membrane device 17: 1.6 m 3 / h, for example), and the permeated water amount of the downstream RO membrane device 17 is adjusted.

流量制御を安定させるためには、後段RO膜透過水流量計19の指示値を先に目標値(後段RO膜装置17の必要処理水量:例えば、1.6m3/h)で安定させた後に、前段RO膜透過水流量計16の指示値を目標値(前段RO膜装置14の必要処理水量:例えば、2m3/h)に安定させる。また、後段RO透過水量計19は前段RO透過水量計16の変動の影響を受けるため、前段RO透過水量計16の応答を遅くして、ゆっくり目標値(前段RO膜装置14の必要処理水量)に近づける。一方、後段RO透過水量計19は応答を早くし、前段RO透過水量の変動に追随させる。なお、後段RO膜装置13のRO回収率(後段RO膜装置17の処理水量/後段RO膜装置17の供給水量×100)のは、60%〜90%の範囲に調整することが好ましい。 In order to stabilize the flow rate control, after the indication value of the downstream RO membrane permeate flow meter 19 is first stabilized at a target value (necessary treatment water amount of the downstream RO membrane device 17: for example, 1.6 m 3 / h), The indicated value of the upstream RO membrane permeate flow meter 16 is stabilized at a target value (necessary amount of treated water of the upstream RO membrane device 14: 2 m 3 / h, for example). Further, since the latter stage RO permeate meter 19 is affected by the fluctuation of the former stage RO permeate meter 16, the response of the former stage RO permeate meter 16 is delayed and the target value (necessary treated water amount of the former stage RO membrane device 14) is slowly increased. Move closer to. On the other hand, the latter-stage RO permeated water meter 19 speeds up the response and follows the fluctuation of the former-stage RO permeated water amount. Note that the RO recovery rate of the rear RO membrane device 13 (the amount of treated water of the rear RO membrane device 17 / the amount of supplied water of the rear RO membrane device 17 × 100) is preferably adjusted to a range of 60% to 90%.

(停止方法)
次に、システム停止時には、前段RO膜流量調整弁23、後段RO膜流量調整弁24及びサックバック水給水弁26を全開にし、加圧ポンプ11、ブースターポンプ10の順に停止させる。これにより、加圧ポンプ11を停止した際に起こる前段RO膜装置14へのサックバック現象により、後段RO膜透過水をサックバック水として前段RO膜装置14の透過水出口側に流入させて、前段RO膜装置14のRO膜の破損を防止することができる。そして、サックバック現象が終了するのを確認するのに必要な一定時間(10分間程度)経過後、前段RO膜流量調整弁23、後段RO膜流量調整弁24及びサックバック水給水弁26を全閉にしてシステム停止する。また、システムを再起動する時は、上記のシステム起動方法に従い、運転する。
(How to stop)
Next, when the system is stopped, the front-stage RO membrane flow rate adjustment valve 23, the rear-stage RO membrane flow rate adjustment valve 24, and the suck-back water supply valve 26 are fully opened, and the pressurizing pump 11 and the booster pump 10 are stopped in this order. Thereby, due to the suck back phenomenon to the upstream RO membrane device 14 that occurs when the pressurizing pump 11 is stopped, the downstream RO membrane permeated water flows into the permeate outlet side of the upstream RO membrane device 14 as suck back water, Damage to the RO membrane of the pre-stage RO membrane device 14 can be prevented. After a certain time (about 10 minutes) necessary for confirming the completion of the suck back phenomenon, all of the upstream RO membrane flow rate adjustment valve 23, the subsequent RO membrane flow rate adjustment valve 24 and the suck back water supply valve 26 are Close and shut down the system. When the system is restarted, the system is operated according to the system startup method described above.

なお、図1に示した飲料水製造用水処理が、淡水を原水として飲料水を製造できることはいうまでもなく、原水が淡水の場合、前段RO膜装置8のRO回収率は、60%〜90%の範囲に調整することが好ましい。   In addition, it goes without saying that the drinking water production water treatment shown in FIG. 1 can produce drinking water using fresh water as raw water. When raw water is fresh water, the RO recovery rate of the pre-stage RO membrane device 8 is 60% to 90%. It is preferable to adjust to the range of%.

本発明の飲料水製造用水処理システム及びその運転方法は、災害地や飲料水供給設備を持たない地域に派遣される高機動車等の車両に搭載可能な水処理システム及びその運転方法として有用である。   INDUSTRIAL APPLICABILITY The water treatment system for drinking water production and the operation method thereof according to the present invention are useful as a water treatment system that can be mounted on a vehicle such as a high mobility vehicle dispatched to a disaster area or an area that does not have a drinking water supply facility, and an operation method thereof. is there.

本発明の飲料水製造用水処理システムの一例を示すフロー図である。It is a flowchart which shows an example of the water treatment system for drinking water manufacture of this invention. 従来の飲料水製造用水処理システムの一例を示すフロー図である。It is a flow figure showing an example of the conventional water treatment system for drinking water manufacture.

符号の説明Explanation of symbols

1,31:揚水ポンプ
2,32:経路
3:プレフィルター(簡易フィルター)
4,34:経路
5,35:ろ過ポンプ
6,36:MF膜分離装置(又はUF膜分離装置)
7,37:経路
8,38:MF膜処理水タンク(又はUF膜処理水タンク)
9,39:経路
10:ブースターポンプ
11:加圧ポンプ
12:加圧ポンプ入口側圧力スイッチ
13:前段RO膜供給水流量計(高圧RO膜供給水流量計)
14,41:前段RO膜装置(高圧RO膜装置)
15,42:経路
16:前段RO膜透過水流量計(高圧RO膜透過水流量計)
17,46:後段RO膜装置(低圧RO膜装置)
18,47:経路
19:後段RO膜透過水流量計(低圧RO膜透過水流量計)
20,48:活性炭吸着装置
21,22:濃縮水排水経路
23:前段RO膜流量調整弁(高圧RO膜流量調整弁)
24:後段RO膜流量調整弁(低圧RO膜流量調整弁)
25:サックバック系路
26:サックバック水給水弁
33:長毛ろ過器
40:1段目加圧ポンプ
43:サックバックタンク
45:2段目加圧ポンプ
1, 31: Pumping pump 2, 32: Path 3: Pre-filter (simple filter)
4, 34: Path 5, 35: Filtration pump 6, 36: MF membrane separator (or UF membrane separator)
7, 37: Path 8, 38: MF membrane treated water tank (or UF membrane treated water tank)
9, 39: path 10: booster pump 11: pressurization pump 12: pressure switch inlet side pressure switch 13: upstream RO membrane supply water flow meter (high pressure RO membrane supply water flow meter)
14, 41: Pre-stage RO membrane device (high pressure RO membrane device)
15, 42: Path 16: Pre-stage RO membrane permeate flow meter (high pressure RO membrane permeate flow meter)
17, 46: Subsequent RO membrane device (low pressure RO membrane device)
18, 47: Route 19: Rear RO membrane permeate flow meter (low pressure RO membrane permeate flow meter)
20, 48: Activated carbon adsorption device 21, 22: Condensate drainage path 23: Pre-stage RO membrane flow rate adjustment valve (high pressure RO membrane flow rate adjustment valve)
24: Rear RO membrane flow rate adjustment valve (low pressure RO membrane flow rate adjustment valve)
25: Suckback system 26: Suckback water supply valve 33: Long hair filter 40: First stage pressurizing pump 43: Suckback tank 45: Second stage pressurizing pump

Claims (8)

精密ろ過膜又は限外ろ過膜を用いた膜分離装置と、
前段逆浸透膜装置と、
後段逆浸透膜装置とを備え、
膜分離装置の処理水を前段逆浸透膜装置及び後段逆浸透膜装置で順次処理する飲料水製造用水処理システムであって、
膜分離装置の処理水は加圧ポンプによって前段逆浸透膜装置の入口に供給され、前段逆浸透膜装置の透過水出口はタンク及びポンプを介することなく後段逆浸透膜装置の入口に接続され、
後段逆浸透膜装置の透過水出口下流にある透過水側経路、吸着装置又は飲料水貯水タンクのいずれかが前段逆浸透膜装置の透過水出口側経路へと接続されていることを特徴とする飲料水製造用水処理システム。
A membrane separator using a microfiltration membrane or an ultrafiltration membrane;
Pre-stage reverse osmosis membrane device,
A reverse osmosis membrane device,
A water treatment system for producing drinking water that sequentially treats treated water of a membrane separator with a reverse osmosis membrane device and a reverse osmosis membrane device,
The treated water of the membrane separator is supplied to the inlet of the upstream reverse osmosis membrane device by a pressure pump, and the permeated water outlet of the upstream reverse osmosis membrane device is connected to the inlet of the downstream reverse osmosis membrane device without passing through the tank and the pump,
Any one of the permeated water side path, the adsorption device or the drinking water storage tank downstream of the permeated water outlet of the latter stage reverse osmosis membrane device is connected to the permeated water outlet side path of the former stage reverse osmosis membrane device. Water treatment system for drinking water production.
前段逆浸透膜装置の供給水圧が6MPa以上8MPa以下であり、後段逆浸透膜装置の供給水圧が1MPa以上2MPa以下である請求項1に記載の飲料水製造用水処理システム。   The water treatment system for drinking water production according to claim 1, wherein the supply water pressure of the upstream reverse osmosis membrane device is 6 MPa or more and 8 MPa or less, and the supply water pressure of the downstream reverse osmosis membrane device is 1 MPa or more and 2 MPa or less. 加圧ポンプの前にブースターポンプを設置する請求項1又は2に記載の飲料水製造用水処理システム。   The water treatment system for drinking water production according to claim 1 or 2, wherein a booster pump is installed in front of the pressure pump. 膜分離装置で処理する前に、原水をフィルターろ過する請求項1乃至3のいずれか1項に記載の飲料水製造用水処理システム。   The water treatment system for drinking water production according to any one of claims 1 to 3, wherein the raw water is filtered and filtered before being treated by the membrane separator. 精密ろ過膜又は限外ろ過膜を用いた膜分離装置と、
前段逆浸透膜装置と、
後段逆浸透膜装置とを備え、
膜分離装置の処理水を前段逆浸透膜分離装置及び後段逆浸透膜装置で順次処理する飲料水製造用水処理システムの運転方法であって、
運転時には、膜分離装置の処理水を加圧ポンプによって前段逆浸透膜装置の入口に供給し、前段逆浸透膜装置の透過水をタンク及びポンプを介することなく後段逆浸透膜装置の入口に供給し、後段逆浸透膜装置の透過水出口から後段逆浸透膜透過水を得、
運転停止時には、後段逆浸透膜装置の透過水出口下流にある透過水側経路、吸着装置又は飲料水貯水タンクのいずれかに存在する後段逆浸透膜装置の透過水を、前段逆浸透膜装置の透過水出口側へと流入させることを特徴とする飲料水製造用水処理システムの運転方法。
A membrane separator using a microfiltration membrane or an ultrafiltration membrane;
Pre-stage reverse osmosis membrane device,
A reverse osmosis membrane device,
A method for operating a water treatment system for drinking water production in which treated water from a membrane separation device is sequentially treated by a reverse reverse osmosis membrane separation device and a reverse reverse osmosis membrane device.
During operation, treated water from the membrane separation device is supplied to the inlet of the upstream reverse osmosis membrane device by a pressure pump, and the permeated water of the upstream reverse osmosis membrane device is supplied to the inlet of the downstream reverse osmosis membrane device without passing through the tank and pump. And obtaining the reverse osmosis membrane permeated water from the permeate outlet of the reverse osmosis membrane device,
When the operation is stopped, the permeated water of the rear reverse osmosis membrane device existing in either the permeated water side path downstream of the rear reverse osmosis membrane device, the adsorbing device or the drinking water storage tank, A method for operating a water treatment system for producing drinking water, wherein the water treatment system is caused to flow into a permeate outlet side.
前段逆浸透膜装置の供給水圧が6MPa以上8MPa以下であり、後段逆浸透膜装置の供給水圧が1MPa以上2MPa以下である請求項5に記載の飲料水製造用水処理システムの運転方法。   The operating method of the water treatment system for drinking water production according to claim 5, wherein the supply water pressure of the upstream reverse osmosis membrane device is 6 MPa or more and 8 MPa or less, and the supply water pressure of the downstream reverse osmosis membrane device is 1 MPa or more and 2 MPa or less. 加圧ポンプの前に原水をブースターポンプにより加圧する請求項5又は6に記載の飲料水製造用水処理システムの運転方法。   The operating method of the water treatment system for drinking water manufacture of Claim 5 or 6 which pressurizes raw | natural water with a booster pump before a pressurization pump. 膜分離装置で処理する前に、原水をフィルターろ過する請求項5乃至7のいずれか1項に記載の飲料水製造用水処理システムの運転方法。   The method for operating a water treatment system for drinking water production according to any one of claims 5 to 7, wherein the raw water is filtered before being treated by the membrane separator.
JP2006341601A 2006-12-19 2006-12-19 Water treatment system for drinking water production and operation method thereof Expired - Fee Related JP3995704B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341601A JP3995704B1 (en) 2006-12-19 2006-12-19 Water treatment system for drinking water production and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341601A JP3995704B1 (en) 2006-12-19 2006-12-19 Water treatment system for drinking water production and operation method thereof

Publications (2)

Publication Number Publication Date
JP3995704B1 true JP3995704B1 (en) 2007-10-24
JP2008149285A JP2008149285A (en) 2008-07-03

Family

ID=38683376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341601A Expired - Fee Related JP3995704B1 (en) 2006-12-19 2006-12-19 Water treatment system for drinking water production and operation method thereof

Country Status (1)

Country Link
JP (1) JP3995704B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112962A (en) * 2013-03-06 2013-05-22 上海汇兴水处理科技有限公司 All-filtered three-water-quality water purification machine
CN106673281A (en) * 2016-12-27 2017-05-17 佛山市云米电器科技有限公司 Water treatment system
JP2021514298A (en) * 2018-02-22 2021-06-10 カンボーリス, アンブロジオスKAMBOURIS, Ambrosios Systems and methods for preparing plant-derived products using osmosis technology

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930460B2 (en) 2008-06-06 2012-05-16 沖電気工業株式会社 Wireless communication connection control method
JPWO2010046960A1 (en) * 2008-10-20 2012-03-15 生田 尚之 Container type water purification system
WO2012037274A2 (en) * 2010-09-14 2012-03-22 The Regents Of The University Of California Apparatus, system and method for integrated filtration and reverse osmosis desalination
US20120061300A1 (en) * 2010-09-15 2012-03-15 Takeshi Matsushiro Membrane filtration system
JP5832190B2 (en) * 2011-07-25 2015-12-16 新日本空調株式会社 Water refrigerant refrigeration system
KR101405305B1 (en) * 2011-12-28 2014-06-12 고등기술연구원연구조합 Method for treating and reusing wastewater having highly concentrated ions
WO2014064821A1 (en) * 2012-10-26 2014-05-01 株式会社 日立製作所 Seawater desalination system
CN104030471B (en) * 2014-06-10 2016-08-31 安徽志国电器有限公司 A kind of effluent purification machine
JP7074169B2 (en) 2020-09-16 2022-05-24 栗田工業株式会社 Membrane filtration system and its control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112962A (en) * 2013-03-06 2013-05-22 上海汇兴水处理科技有限公司 All-filtered three-water-quality water purification machine
CN106673281A (en) * 2016-12-27 2017-05-17 佛山市云米电器科技有限公司 Water treatment system
CN106673281B (en) * 2016-12-27 2023-09-05 佛山市云米电器科技有限公司 water treatment system
JP2021514298A (en) * 2018-02-22 2021-06-10 カンボーリス, アンブロジオスKAMBOURIS, Ambrosios Systems and methods for preparing plant-derived products using osmosis technology

Also Published As

Publication number Publication date
JP2008149285A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP3995704B1 (en) Water treatment system for drinking water production and operation method thereof
JP4903113B2 (en) Water treatment system and operation method thereof
JP2007181822A (en) Water treatment system for producing drinking water and its operation method
JP4996067B2 (en) Water treatment apparatus using reverse osmosis membrane and method of using the same
TWI393678B (en) Desalination system
JP3957081B1 (en) Water treatment system for drinking water production and operation method thereof
US10583401B2 (en) Integrated ultrafiltration and reverse osmosis desalination systems
JP3957080B1 (en) Water treatment system for drinking water production and operation method thereof
JP2008100220A (en) Method for producing freshwater
US20180297866A1 (en) Water treatment system and water treatment method
JP2007152271A (en) Water treatment system and its operation method
JP4113568B1 (en) Water treatment system for drinking water production and operation method thereof
JP2000093751A (en) Reverse osmosis separation device and reverse osmosis separation method
WO2013031545A1 (en) Desalination system and desalination method
JP2000051663A (en) Apparatus and method for separation of reverse osmosis membrane
JP7044848B1 (en) Liquid treatment equipment, pure water production system and liquid treatment method
KR102061975B1 (en) Reverse osmotic water purifier and merhod for purifying water using the water purifier
JP2006218341A (en) Method and apparatus for treating water
JP2017042741A (en) Water purifier
CN205687675U (en) Reverse osmosis membrane brackish water desalination system
JP2005046762A (en) Water treatment method and water treatment apparatus
CN204369692U (en) A kind of sewage water recycling and processing equipment
CN210237325U (en) Multifunctional reverse osmosis machine
JP2006167533A (en) Method for condensing sea water
KR20020076197A (en) Reverse Osmosis Water Purification Apparatus for Coercive Circulation of Waste Water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3995704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees