JP3983234B2 - Manufacturing method of toner external additive - Google Patents

Manufacturing method of toner external additive Download PDF

Info

Publication number
JP3983234B2
JP3983234B2 JP2004236422A JP2004236422A JP3983234B2 JP 3983234 B2 JP3983234 B2 JP 3983234B2 JP 2004236422 A JP2004236422 A JP 2004236422A JP 2004236422 A JP2004236422 A JP 2004236422A JP 3983234 B2 JP3983234 B2 JP 3983234B2
Authority
JP
Japan
Prior art keywords
silica powder
hexamethyldisilazane
powder
sieve
external additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004236422A
Other languages
Japanese (ja)
Other versions
JP2006053458A (en
Inventor
尚作 八代
栄俊 内藤
光芳 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004236422A priority Critical patent/JP3983234B2/en
Publication of JP2006053458A publication Critical patent/JP2006053458A/en
Application granted granted Critical
Publication of JP3983234B2 publication Critical patent/JP3983234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はトナー外添材の製造方法に関する。 The present invention relates to a method for producing a toner external additive .

コピー機、レーザープリンター等に使用される静電荷像現像トナーにおいては、流動性改善剤として、シランカップリング剤で表面処理されてなるシリカ粉末を外添材として用いている。トナー外添材は、湿度による帯電量の変化を少なくするために、シリカ粉末は疎水化処理されている必要があり、それが不十分であると、トナー表面にシリカ粉末を均一に被着させることができないので、長期間にわたって優れた印字性を持続するできなくなる。そこで、シランカップリング剤によるシリカ粉末の均一な処理方法として従来より多くの提案があるが(例えば特許文献1)、まだ十分とはいえない。この課題の解決ポイントは、表面処理を施すときに、シランカップリング剤の液滴ないしはシリカ粉末の自己縮合性による要因をいかにして軽減し、凝集粒子の生成を少なくするかである。
特開2001−261327号公報
In electrostatic charge image developing toners used in copying machines, laser printers, etc., silica powder surface-treated with a silane coupling agent is used as an external additive as a fluidity improver. In the toner external additive material, the silica powder needs to be hydrophobized in order to reduce the change in charge amount due to humidity. If this is insufficient, the silica powder is uniformly applied to the toner surface. Therefore, excellent printability cannot be maintained over a long period of time. Thus, although there have been many proposals as a uniform processing method of silica powder with a silane coupling agent (for example, Patent Document 1), it is not yet sufficient. The solution to this problem is how to reduce the generation of aggregated particles by reducing the factors caused by the self-condensability of the silane coupling agent droplets or silica powder during the surface treatment.
JP 2001-261327 A

本発明の目的は、凝集の少ないシリカ粉末からなるトナー外添材の製造方法を提供することである。 An object of the present invention is to provide a method for producing a toner external additive comprising a silica powder with little aggregation.

すなわち、本発明は、含水率0.5質量%以下で体積平均径が0.02〜1μmであるシリカ粉末を、100℃以上の温度下浮遊させた状態で、ヘキサメチルジシラザン濃度が0.05〜2体積%ガスと接触させることを特徴とするトナー外添材の製造方法である。 That is, the present invention is a silica powder moisture content is 0.02~1μm volume average diameter of 0.5 wt% or less, a temperature of above 100 ° C., in a suspended state, hexamethyldisilazane concentration A method for producing a toner external additive comprising contacting with 0.05 to 2% by volume of a gas.

本発明においては、以下の方法で測定されたトナー外添材の流動性指数が80%以上であることが好ましい。
(流動性指数)
平均径5μmのスチレン樹脂10gと試料(トナー外添材)0.1gをミキサーに入れ、室温下、480rpmで10秒間混合し、得られた混合粉の2gを150μm、75μm、45μmの三段篩に入れ、0.25mm振幅の振動を3分間加えて分級した後、それぞれの篩上残留粉量から、以下の1式により算出された値。
100−50A−30B−10C・・・(1)
A:150μm篩上残留粉量
B:75μm篩上残留粉量
C:45μm篩上残留粉量
In the present invention, and this is preferable fluidity index of measured toner out添材the following method is 80% or more.
(Liquidity index)
10 g of styrene resin having an average diameter of 5 μm and 0.1 g of a sample (toner external additive) are placed in a mixer and mixed at room temperature at 480 rpm for 10 seconds, and 2 g of the obtained mixed powder is 150 μm, 75 μm, and 45 μm three-stage sieve. After adding and classifying the vibration of 0.25 mm amplitude for 3 minutes, the value calculated by the following formula 1 from the amount of residual powder on each sieve.
100-50A-30B-10C (1)
A: Amount of residual powder on 150 μm sieve B: Amount of residual powder on 75 μm sieve C: Amount of residual powder on 45 μm sieve

また、本発明においては、以下の2式、3式の関係を有させることが好ましい。
0.5≦DAt/DAs≦2.5・・・(2)
1.0≦DMt/DMs≦1.5・・・(3)
DAt:ヘキサメチルジシラザン処理後のシリカ粉末の動的光散乱法による体積平均径
DAs:ヘキサメチルジシラザン処理前のシリカ粉末の動的光散乱法による体積平均径
DMt:ヘキサメチルジシラザン処理後のシリカ粉末の動的光散乱法による最頻径
DMs:ヘキサメチルジシラザン処理前のシリカ粉末の動的光散乱法による最頻径
Moreover, in this invention, it is preferable to have the relationship of the following 2 type | formulas and 3 type | formulas .
0.5 ≦ DAt / DAs ≦ 2.5 (2)
1.0 ≦ DMt / DMs ≦ 1.5 (3)
DAt: Volume average diameter of silica powder after hexamethyldisilazane treatment by dynamic light scattering method DAs: Volume average diameter of silica powder before hexamethyldisilazane treatment by dynamic light scattering method DMt: After hexamethyldisilazane treatment Mode diameter of silica powder by dynamic light scattering method DMs: Mode diameter of silica powder by dynamic light scattering method before hexamethyldisilazane treatment

本発明によれば、凝集の小さいシリカ粉末からなるトナー外添材の製造方法が提供される。 According to the present invention, there is provided a method for producing a toner external additive made of silica powder with small aggregation.

本発明で重要なことは、シランカップリング剤としてヘキサメチルジシラザンを用いるとともに、表面処理されるシリカ粉末(以下、シリカ粉末原料ともいう。)の含水率を0.5質量%以下に制御することである。シリカ粉末原料の含水率が0.5質量%をこえると、ヘキサメチルジシラザンの縮合反応がシリカ表面で起こりやすくなり、シリカ粉末同士を凝集させることになる。含水率の下限は0.01質量%であることが好ましい。含水率は、例えばシリカ粉末原料を100℃以上の加熱ガスで浮遊状態にしながら加熱処理することによって調整することができる。含水率は、カールフィッシャー法によって測定することができる。 What is important in the present invention is that hexamethyldisilazane is used as the silane coupling agent, and the water content of the surface-treated silica powder (hereinafter also referred to as silica powder raw material) is controlled to 0.5% by mass or less. That is. When the water content of the silica powder raw material exceeds 0.5 mass%, the condensation reaction of hexamethyldisilazane tends to occur on the silica surface, and the silica powders are aggregated. The lower limit of the moisture content is preferably 0.01% by mass. The water content can be adjusted, for example, by subjecting the silica powder raw material to a heat treatment in a floating state with a heating gas of 100 ° C. or higher. The moisture content can be measured by the Karl Fischer method.

シリカ粉末原料の粒径は、体積平均径で0.02〜1μmである。とくに、最大粒径が4μm以下、平均球形度が0.9以上であることが好ましい。平均球形度は、以下のようにして測定することができる。 The particle diameter of the silica powder raw material is 0.02 to 1 μm in volume average diameter. In particular, the maximum particle size is preferably 4 μm or less and the average sphericity is 0.9 or more. The average sphericity can be measured as follows.

実体顕微鏡、例えば「モデルSMZ−10型」(ニコン社製)、走査型電子顕微鏡、透過型電子顕微鏡等にて撮影した粒子像を画像解析装置、例えば(日本アビオニクス社製など)に取り込み、写真から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)として算出される。このようにして得られた任意の粒子200個の球形度を求めその平均値を平均球形度とする。 A particle image taken with a stereomicroscope such as “Model SMZ-10” (Nikon Corporation), a scanning electron microscope, a transmission electron microscope or the like is taken into an image analysis apparatus such as Nihon Avionics Co., Ltd. To measure the projected area (A) and perimeter (PM) of the particles. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same circumference as the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , and each particle Is calculated as sphericity = A / B = A × 4π / (PM) 2 . The sphericity of 200 arbitrary particles thus obtained is obtained, and the average value is defined as the average sphericity.

本発明において、シリカ粉末原料の表面処理は、シリカ粉末原料を浮遊させた状態でヘキサメチルジシラザンを含むガスと接触させることによって行われる。ヘキサメチルジシラザンを液滴で処理したのでは、凝集粒子の生成を抑制する効果が小さい。ヘキサメチルジシラザンを含むガスのヘキサメチルジシラザン濃度は0.05〜2体積%、好ましくは0.2〜1.5体積%である。ガス中のヘキサメチルジシラザン濃度が0.05体積%未満では、ヘキサメチルジシラザンによる処理量が小さいので十分な表面処理が困難となり、2体積%をこえると、ヘキサメチルジシラザンが局所的に反応して、自己縮合による凝集を引き起こす恐れがある。ヘキサメチルジシラザンを含むガスの調整は、窒素、空気等のキャリアガスに、ガス化させたシランカップリング剤を混合させることによって行うことができる。 In the present invention, the surface treatment of the silica powder raw material is performed by bringing the silica powder raw material into contact with a gas containing hexamethyldisilazane in a suspended state. When hexamethyldisilazane is treated with droplets, the effect of suppressing the formation of aggregated particles is small. Hexamethyldisilazane concentration of the gas containing hexamethyldisilazane 0.05-2% by volume, preferably 0.2 to 1.5% by volume. If the hexamethyldisilazane concentration in the gas is less than 0.05% by volume, the amount of treatment with hexamethyldisilazane is small, so that sufficient surface treatment becomes difficult, and if it exceeds 2% by volume, hexamethyldisilazane is locally produced. May react and cause aggregation due to self-condensation. The gas containing hexamethyldisilazane can be adjusted by mixing a gasified silane coupling agent with a carrier gas such as nitrogen or air.

本発明で使用されるシランカップリング剤は、ヘキサメチルジシラザンである。シランカップリング剤が例えばジメチルジエトシキシラン、ヘキシルトリメトキシシラン等であっては上記流動性指数がヘキサメチルジシラザンよりも小さくなる(比較例4、5)。 The silane coupling agent used in the present invention is hexamethyldisilazane . Silane coupling agents such as dimethyl diene Toshiki Sila emissions, is a f hexyl trimethoxysilane the fluidity index is smaller than hexamethyldisilazane (Comparative Examples 4 and 5).

本発明のように、ヘキサメチルジシラザンを含むガスによってシリカ粉末原料を表面処理するためには、シリカ粉末原料を浮遊させることが必要となる。それを例示すれば、例えばステンレス製円筒容器の外周にリボンヒーター等のヒーターが配置され、下方の入口にはガスを均一に供給するための例えば20μmのステンレス製網が、また上方の出口には粉末が系外へ飛散しないように例えばろ布が、それぞれ取り付けられてなる処理容器を、その内部温度が100℃以上に保持した状態でシリカ粉末原料を入れ、処理容器の下方から窒素ガス等のキャリアガスを供給してシリカ粉末原料を浮遊させる一方、処理容器の下方からはヘキサメチルジシラザンを含むガスを供給し、シリカ粉末原料と接触させる方法をあげることができる。また、ミキサーなどの攪拌装置でシリカ粉末原料を攪拌し浮遊状態としたところに、ヘキサメチルジシラザンを含むガスを送り込む方法であってもよい。いずれの場合であっても、ヘキサメチルジシラザンを含むガスは、例えば内部温度200〜300℃に加熱された電気釜にヘキサメチルジシラザンを滴下してガス化させ、それを窒素ガス等のキャリアガスと混合し、処理容器に供給することができる。ヘキサメチルジシラザンガスの濃度は、キャリアガスの流量を一定にし、電気釜等に滴下するときのヘキサメチルジシラザンの供給速度によって調整することができる。 As in the present invention, in order to surface-treat a silica powder raw material with a gas containing hexamethyldisilazane , it is necessary to float the silica powder raw material. For example, a heater such as a ribbon heater is arranged on the outer periphery of a stainless steel cylindrical container, for example, a stainless steel net of 20 μm for uniformly supplying gas to the lower inlet, and the upper outlet to the upper outlet. In order to prevent the powder from splashing out of the system, for example, a processing container to which a filter cloth is attached is put in a silica powder raw material in a state in which the internal temperature is maintained at 100 ° C. A method of supplying a carrier gas to float the silica powder raw material while supplying a gas containing hexamethyldisilazane from below the processing vessel and bringing it into contact with the silica powder raw material can be mentioned. Alternatively, a method may be used in which a gas containing hexamethyldisilazane is fed into a place where the silica powder raw material is stirred and floated with a stirring device such as a mixer. In any case, the gas containing hexamethyldisilazane is gasified by, for example, dropping hexamethyldisilazane into an electric kettle heated to an internal temperature of 200 to 300 ° C., and gasifying it. It can be mixed with gas and supplied to the processing vessel. The concentration of hexamethyldisilazane gas can be adjusted by adjusting the supply rate of hexamethyldisilazane when the carrier gas flow rate is kept constant and dropping into an electric kettle or the like.

浮遊状態のシリカ原料粉末とヘキサメチルジシラザンを含むガスの接触は、温度100℃以上で行われる。その理由は、ヘキサメチルジシラザンガスの凝縮を防ぐこと、及びヘキサメチルジシラザンとシリカ粉末の反応の副生物として生じる水分を、シリカ粉末表面に吸着させないためである。接触温度の上限は特にないが、ヘキサメチルジシラザンの分解を防ぐ理由から350℃であることが好ましい。特に好ましい接触温度は180〜250℃である。接触時間は1.0〜10secであることが好ましい。 The contact between the floating silica raw material powder and the gas containing hexamethyldisilazane is performed at a temperature of 100 ° C. or higher. The reason is to prevent condensation of hexamethyldisilazane gas and to prevent moisture generated as a by-product of the reaction between hexamethyldisilazane and silica powder from being adsorbed on the silica powder surface. The upper limit of the contact temperature is not particularly limited, but is preferably 350 ° C. for the purpose of preventing the decomposition of hexamethyldisilazane . A particularly preferred contact temperature is 180 to 250 ° C. The contact time is preferably 1.0 to 10 seconds.

本発明においては、例えばシリカ粉末原料の含水率、ヘキサメチルジシラザンガスの濃度、ヘキサメチルジシラザンガスの接触温度等の条件を制御して、上記2式、3式の関係を有するように処理することが特に好ましい。最頻径の比(DMt/DMs)及び体積平均径の比(DAt/DAs)は、表面処理前後においてシリカ粉末が凝集によって粒度変化した程度を表す指標であり、これらの値が小さいほど表面処理されたシリカ粉末は凝集していないことを示すものである。 In the present invention, for example, the water content of the silica powder source, the concentration of hexamethyldisilazane gas, by controlling the conditions of the contact temperature of the hexamethyldisilazane gas, the two equations, treated to have three equations relationship It is particularly preferable to do this. The ratio of the mode diameter (DMt / DMs) and the ratio of volume average diameter (DAt / DAs) are indices indicating the degree of change in the particle size of the silica powder due to aggregation before and after the surface treatment. This indicates that the silica powder is not agglomerated.

動的光散乱法による粒度分布測定は、例えば測定装置として日機装社製「マイクロトラックUPA150」を用い、試料を例えばメチエチルケトン、トルエン、エタノール等から選ばれた有機溶媒に分散させてスラリー化して行われる。本発明においては、表面処理前後の粒度分布変化をみているので、有機溶媒の種類には影響は受けないが、表面処理前後の測定では同じ有機溶媒を用いる必要がある。最頻径、体積平均径等は、得られた粒度分布の結果から、測定装置が自動計算してくる。 For the particle size distribution measurement by the dynamic light scattering method, for example, “MICROTRACK UPA150” manufactured by Nikkiso Co., Ltd. is used as a measuring device, and the sample is dispersed in an organic solvent selected from, for example, methyl ethyl ketone, toluene, ethanol, etc., and slurried. Done. In the present invention, since the change in the particle size distribution before and after the surface treatment is observed, the type of the organic solvent is not affected, but the same organic solvent must be used in the measurement before and after the surface treatment. The measuring device automatically calculates the mode diameter, the volume average diameter, and the like from the obtained particle size distribution result.

本発明によって製造されたトナー外添材は、従来のトナー外添材と同様にして使用することができる。たとえば、スチレン系樹脂100質量部あたり、酸化鉄(Fe)等の磁性粉70〜110質量部、モノアゾ鉄錯体等の荷電制御剤1〜5質量部、ワックス類2〜5質量部を含む混合物を、100〜150℃で溶融混練した後、冷却・粉砕・分級を行って平均粒径3〜10μmのトナー粒子を製造し、このトナー粒子100質量部にトナー外添材0.5〜2質量部を混合することである。 The toner external additive produced by the present invention can be used in the same manner as a conventional toner external additive. For example, per 100 parts by mass of a styrene resin, 70 to 110 parts by mass of magnetic powder such as iron oxide (Fe 3 O 4 ), 1 to 5 parts by mass of a charge control agent such as a monoazo iron complex, and 2 to 5 parts by mass of waxes. The mixture containing the mixture is melt-kneaded at 100 to 150 ° C., and then cooled, pulverized, and classified to produce toner particles having an average particle diameter of 3 to 10 μm. 2 parts by weight are mixed.

実施例1
シリカ粉末原料(注:動的光散乱法による体積平均径DAsが0.29μm、最頻径DMsが0.05μmであるもの。)の15kgを上記処理容器(寸法:直径600mm円筒)に充填し、下方から800NL/minの窒素を送給して浮遊させる一方、処理容器の内部温度を220℃になるように加熱し20分間保持した。これによって、シリカ粉末原料の含水率は0.2質量%となった。この加熱・浮遊状態の場にシランカップリング剤を含むガスを供給して処理を行った。用いたシランカップリング剤は、ヘキサメチルジシラザン(信越化学工業社製「HMDS−3」)であり、これの400gを40g/minで供給することで、供給した全ガス量に対するヘキサメチルジシラザンガスの濃度を0.60体積%とした。表面処理後のシリカ粉末について、動的光散乱法による粒度分布を測定した。その結果を表1に示す。
Example 1
15 kg of silica powder raw material (Note: Volume average diameter DAs by dynamic light scattering method is 0.29 μm and mode diameter DMs is 0.05 μm) is charged into the above processing container (dimension: diameter 600 mm cylinder). While 800 NL / min nitrogen was fed from below and floated, the internal temperature of the processing vessel was heated to 220 ° C. and held for 20 minutes. Thereby, the moisture content of the silica powder raw material became 0.2 mass%. Processing was performed by supplying a gas containing a silane coupling agent to the heated / floating state. The silane coupling agent used was hexamethyldisilazane (“HMDS-3” manufactured by Shin-Etsu Chemical Co., Ltd.). By supplying 400 g at 40 g / min, hexamethyldisilazane with respect to the total amount of gas supplied. The gas concentration was 0.60% by volume. About the silica powder after surface treatment, the particle size distribution by the dynamic light scattering method was measured. The results are shown in Table 1.

実施例2
ヘキサメチルジシラザン800gを80g/minで供給することで、供給した全ガス量に対するヘキサメチルジシラザンガスの濃度を1.2体積%としたこと以外は、実施例1と同様の方法で表面処理シリカ粉末を製造した。
Example 2
Surface treatment was performed in the same manner as in Example 1 except that 800 g of hexamethyldisilazane was supplied at 80 g / min, so that the concentration of hexamethyldisilazane gas relative to the total amount of gas supplied was 1.2% by volume. Silica powder was produced.

比較例1
ヘキサメチルジシラザン2000gを200g/minの速度で供給し、供給した全ガス量に対するヘキサメチルジシラザンガスの濃度を3.0体積%としたこと以外は、実施例1と同様の方法で表面処理シリカ粉末を製造した。
Comparative Example 1
Surface treatment was performed in the same manner as in Example 1 except that 2000 g of hexamethyldisilazane was supplied at a rate of 200 g / min and the concentration of hexamethyldisilazane gas was 3.0% by volume with respect to the total amount of gas supplied. Silica powder was produced.

比較例2
処理容器の内部温度を80℃とし、加熱処理をせずにシリカ粉末原料の水分量を1.0重量%としたこと以外は、実施例1に準じて表面処理を行った。
Comparative Example 2
Surface treatment was performed according to Example 1 except that the internal temperature of the processing vessel was 80 ° C. and the moisture content of the silica powder raw material was 1.0 wt% without heat treatment.

比較例3
ヘキサメチルジシランザンををガス状ではなく液状で噴霧したこと以外は、実施例1に準じて表面処理を行った。
Comparative Example 3
Surface treatment was performed according to Example 1 except that hexamethyldisilanezane was sprayed in a liquid rather than gaseous form.

比較例4
シランカップリング剤として、ヘキシルトリエトキシシラン(信越化学工業社製「KBM−3063」)を用いたこと以外は、実施例1と同様の方法で表面処理シリカ粉末を製造した。
Comparative Example 4
A surface-treated silica powder was produced in the same manner as in Example 1 except that hexyltriethoxysilane (“KBM-3063” manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the silane coupling agent.

比較例5
シランカップリング剤として、ジメチルジエトキシシラン(信越化学工業社製「KBE−22」)を用いたこと以外は、実施例1と同様の方法で表面処理シリカ粉末を製造した。
Comparative Example 5
A surface-treated silica powder was produced in the same manner as in Example 1 except that dimethyldiethoxysilane (“KBE-22” manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the silane coupling agent.

上記で得られたシリカ粉末のトナー外添材としての適用試験を行った。試験は、平均径5μmのスチレン樹脂10gと試料0.1gをミキサーに入れ、室温下、480rpmで10秒間混合し、得られた混合粉の2gを150μm、75μm、45μmの三段篩に入れ、0.25mm振幅の振動を3分間加えて分級した。それぞれの篩上残留粉量から、上記1式により流動性指数を算出した。それらの結果を表1に示す。 An application test of the silica powder obtained above as a toner external additive was performed. In the test, 10 g of a styrene resin having an average diameter of 5 μm and 0.1 g of a sample were put in a mixer, mixed at room temperature at 480 rpm for 10 seconds, and 2 g of the obtained mixed powder was put on a three-stage sieve of 150 μm, 75 μm, and 45 μm, Classification was performed by applying a vibration of 0.25 mm amplitude for 3 minutes. From the amount of residual powder on each sieve, the fluidity index was calculated by the above formula 1. The results are shown in Table 1.

表1から、本発明の方法で製造されたトナー外添材によれば、樹脂粒子の流動性指数を大幅に向上させることができ、トナー外添材として好適であることが示された。 From Table 1, it was shown that according to the toner external additive produced by the method of the present invention, the fluidity index of the resin particles can be greatly improved and is suitable as the toner external additive.

本発明によって製造されたトナー外添材は、例えば静電荷像現像トナーの外添材として用いることができる。 The toner external additive produced by the present invention can be used, for example, as an external additive for an electrostatic charge image developing toner.

Claims (3)

含水率0.5質量%以下で体積平均径が0.02〜1μmであるシリカ粉末を、100℃以上の温度下浮遊させた状態で、ヘキサメチルジシラザン濃度が0.05〜2体積%ガスと接触させることを特徴とするトナー外添材の製造方法 The silica powder having a volume average diameter in water content of 0.5 wt% or less 0.02 to 1 .mu.m, a temperature above 100 ° C., in a suspended state, hexamethyldisilazane concentration from 0.05 to 2 vol A method for producing a toner external additive, wherein the toner is brought into contact with a gas in an amount of 5 %. 以下の方法で測定されたトナー外添材の流動性指数が80%以上であることを特徴とする請求項1記載の製造方法。
(流動性指数)
平均径5μmのスチレン樹脂10gと試料(トナー外添材)0.1gをミキサーに入れ、室温下、480rpmで10秒間混合し、得られた混合粉の2gを150μm、75μm、45μmの三段篩に入れ、0.25mm振幅の振動を3分間加えて分級した後、それぞれの篩上残留粉量から、以下の1式により算出された値。
100−50A−30B−10C・・・(1)
A:150μm篩上残留粉量
B:75μm篩上残留粉量
C:45μm篩上残留粉量
2. The production method according to claim 1, wherein the fluidity index of the toner external additive measured by the following method is 80% or more .
(Liquidity index)
10 g of styrene resin having an average diameter of 5 μm and 0.1 g of a sample (toner external additive) are placed in a mixer and mixed at room temperature at 480 rpm for 10 seconds. 2 g of the obtained mixed powder is 150 μm, 75 μm, and 45 μm three-stage sieve. After adding and classifying the vibration of 0.25 mm amplitude for 3 minutes, the value calculated by the following formula 1 from the amount of residual powder on each sieve.
100-50A-30B-10C (1)
A: Residual amount of powder on 150 μm sieve
B: Residual amount of powder on 75 μm sieve
C: Amount of residual powder on a 45 μm sieve
以下の2式、3式の関係を有させることを特徴とする請求項記載の製造方法。
0.5≦DAt/DAs≦2.5・・・(2)
1.0≦DMt/DMs≦1.5・・・(3)
DAt:ヘキサメチルジシラザン処理後のシリカ粉末の動的光散乱法による体積平均径
DAs:ヘキサメチルジシラザン処理前のシリカ粉末の動的光散乱法による体積平均径
DMt:ヘキサメチルジシラザン処理後のシリカ粉末の動的光散乱法による最頻径
DMs:ヘキサメチルジシラザン処理前のシリカ粉末の動的光散乱法による最頻径
The process according to claim 1, wherein the to have the following two equations, three equations of the relationship.
0.5 ≦ DAt / DAs ≦ 2.5 (2)
1.0 ≦ DMt / DMs ≦ 1.5 (3)
DAt: Volume average diameter of silica powder after hexamethyldisilazane treatment by dynamic light scattering method DAs: Volume average diameter of silica powder before hexamethyldisilazane treatment by dynamic light scattering method DMt: After hexamethyldisilazane treatment Mode diameter of silica powder by dynamic light scattering method DMs: Mode diameter of silica powder by dynamic light scattering method before hexamethyldisilazane treatment
JP2004236422A 2004-08-16 2004-08-16 Manufacturing method of toner external additive Active JP3983234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236422A JP3983234B2 (en) 2004-08-16 2004-08-16 Manufacturing method of toner external additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236422A JP3983234B2 (en) 2004-08-16 2004-08-16 Manufacturing method of toner external additive

Publications (2)

Publication Number Publication Date
JP2006053458A JP2006053458A (en) 2006-02-23
JP3983234B2 true JP3983234B2 (en) 2007-09-26

Family

ID=36030960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236422A Active JP3983234B2 (en) 2004-08-16 2004-08-16 Manufacturing method of toner external additive

Country Status (1)

Country Link
JP (1) JP3983234B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4010420B2 (en) * 2004-08-16 2007-11-21 電気化学工業株式会社 Epoxy resin filler and method for producing the same
KR100782778B1 (en) 2006-08-31 2007-12-05 동부일렉트로닉스 주식회사 Planar layer of image sensor, method for manufacturing the planar layer and image sensor comprising the planar layer
US8202502B2 (en) 2006-09-15 2012-06-19 Cabot Corporation Method of preparing hydrophobic silica
US20080070146A1 (en) 2006-09-15 2008-03-20 Cabot Corporation Hydrophobic-treated metal oxide
US8435474B2 (en) 2006-09-15 2013-05-07 Cabot Corporation Surface-treated metal oxide particles
US8455165B2 (en) 2006-09-15 2013-06-04 Cabot Corporation Cyclic-treated metal oxide
DE102007033448A1 (en) * 2007-07-18 2009-01-22 Wacker Chemie Ag Highly dispersed metal oxides with a high positive surface charge
JP5014169B2 (en) * 2007-09-14 2012-08-29 株式会社リコー Image forming apparatus
JP2010040567A (en) * 2008-07-31 2010-02-18 Tokyo Electron Ltd Method and device for cleaning and protecting surface of oxide film
JP5468463B2 (en) * 2010-05-11 2014-04-09 電気化学工業株式会社 Surface-modified spherical silica powder and method for producing the same
ES2685825T3 (en) * 2015-12-09 2018-10-11 Evonik Degussa Gmbh Hydrophobic silica for a composition intended for an electrophotographic toner

Also Published As

Publication number Publication date
JP2006053458A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP3983234B2 (en) Manufacturing method of toner external additive
KR101206685B1 (en) Dry-process fine silica particle
JP2006206413A (en) Surface-treated silica microparticle
JP6030059B2 (en) Spherical silica fine powder and toner external additive for developing electrostatic image using spherical silica fine powder
JP2008019157A (en) Dry-process fine silica particle
JP5989201B2 (en) Silicone oil-treated silica particles and electrophotographic toner
JP5504600B2 (en) Hydrophobic silica fine particles and electrophotographic toner composition
JP6445877B2 (en) Ultra fine silica powder and its use
JP5468463B2 (en) Surface-modified spherical silica powder and method for producing the same
JP5871718B2 (en) Surface treatment method for hydrophilic sol-gel silica particles and method for producing hydrophobic sol-gel silica powder
JP3957590B2 (en) Method for producing highly dispersed, highly hydrophobic spherical silica fine powder
JP2015079166A (en) Production method of toner
JP2004217515A (en) Silica fine particle
JP6577471B2 (en) Silica fine powder and its use
JP2005148448A (en) Silica fine powder, method for manufacturing the same, and use
JP2014074905A (en) Toner and manufacturing method of toner
JP6036448B2 (en) Resin particles and method for producing the same
JP6381231B2 (en) Toner production method
TWI626216B (en) Hydrophobized spherical vermiculite fine powder and use thereof
JP2015000830A (en) Spherical silica composition and use of the same
WO2016117344A1 (en) Silicone oil-treated silica particles and toner for electrophotography
JP5568864B2 (en) Hydrophobic silica fine particles and electrophotographic toner composition
CN116888072A (en) Method for producing surface-treated fumed silica particles, and toner external additive for developing electrostatic images
JP2018054881A (en) Amorphous aluminosilicate-based toner external additive
JP2023019806A (en) Surface-modified silica powder using precipitated silicic acid, and production method of the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3983234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250