JP3982545B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3982545B2
JP3982545B2 JP2005275493A JP2005275493A JP3982545B2 JP 3982545 B2 JP3982545 B2 JP 3982545B2 JP 2005275493 A JP2005275493 A JP 2005275493A JP 2005275493 A JP2005275493 A JP 2005275493A JP 3982545 B2 JP3982545 B2 JP 3982545B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
pressure
low
pressure refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005275493A
Other languages
Japanese (ja)
Other versions
JP2007085647A (en
Inventor
隆之 瀬戸口
誠 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005275493A priority Critical patent/JP3982545B2/en
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to PCT/JP2006/318376 priority patent/WO2007034745A1/en
Priority to AU2006293191A priority patent/AU2006293191B2/en
Priority to CN2006800342799A priority patent/CN101268312B/en
Priority to EP06798039.1A priority patent/EP1944562B1/en
Priority to US12/067,087 priority patent/US20090282861A1/en
Publication of JP2007085647A publication Critical patent/JP2007085647A/en
Application granted granted Critical
Publication of JP3982545B2 publication Critical patent/JP3982545B2/en
Priority to KR1020087008289A priority patent/KR100905995B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本願発明は、過冷却熱交換器を用いた空気調和装置に関するものである。   The present invention relates to an air conditioner using a supercooling heat exchanger.

図4は、従来の過冷却熱交換器を用いた空気調和装置の構成を示している。   FIG. 4 shows a configuration of an air conditioner using a conventional supercooling heat exchanger.

同空気調和装置は、圧縮機1、四路切換弁2、冷房運転時に凝縮器として作用し、暖房運転時に蒸発器として作用する室外機側熱交換器3、暖房用膨張弁4、レシーバー5、冷房用膨張弁6、および冷房運転時に蒸発器として作用し、暖房運転時に凝縮器として作用する室内機側熱交換器8等を上記四路切換弁2を介して順次接続して、図示のような空気調和用の冷凍サイクルを構成している。   The air conditioner includes a compressor 1, a four-way switching valve 2, an outdoor-unit heat exchanger 3, a heating expansion valve 4, a receiver 5, which act as a condenser during cooling operation and act as an evaporator during heating operation. The cooling expansion valve 6 and the indoor unit side heat exchanger 8 that acts as an evaporator during the cooling operation and acts as a condenser during the heating operation are sequentially connected via the four-way switching valve 2 as shown in the figure. The air conditioning refrigeration cycle is configured.

そして、上記四路切換弁2の切換作動により、冷房運転時には図中に実線矢印で示す方向に、また暖房運転時には同図中に点線矢印で示す方向に、それぞれ冷媒が可逆的に流通せしめられて、冷房又は暖房作用が実現される。   The switching operation of the four-way switching valve 2 allows the refrigerant to flow reversibly in the direction indicated by the solid arrow in the figure during cooling operation and in the direction indicated by the dotted arrow in the figure during heating operation. Thus, cooling or heating action is realized.

上記室外機側熱交換器3および室内機側熱交換器8は、それぞれ多数の冷媒パスを備えて構成されている。したがって、分流器部分の冷媒分配性能を最大限に向上させたとしても、各冷媒パスの冷媒の均等な分配が困難となる。   The outdoor unit side heat exchanger 3 and the indoor unit side heat exchanger 8 are each provided with a large number of refrigerant paths. Therefore, even if the refrigerant distribution performance of the flow divider part is improved to the maximum, it is difficult to evenly distribute the refrigerant in each refrigerant path.

そこで、室外機側熱交換器3又は室内機側熱交換器8を蒸発器として作用させている場合には、それらの出口側冷媒が適切な湿り状態となるように、上記暖房用膨張弁4又は冷房用膨張弁6の減圧量が適切に設定されている。そのようにすると、室外機側熱交換器3又は室内機側熱交換器8に例えば冷媒の偏流が生じたとしても、蒸発器としての能力が最大限に確保されることになり、蒸発器の可及的なコンパクト化が図られる。   Therefore, when the outdoor unit side heat exchanger 3 or the indoor unit side heat exchanger 8 is operated as an evaporator, the heating expansion valve 4 is set so that the outlet side refrigerant is in an appropriate wet state. Alternatively, the amount of pressure reduction of the cooling expansion valve 6 is set appropriately. As a result, even if, for example, a refrigerant drift occurs in the outdoor unit side heat exchanger 3 or the indoor unit side heat exchanger 8, the capability as an evaporator is ensured to the maximum. Miniaturization is possible as much as possible.

また、一方凝縮器出口側冷媒の過冷却をとり、蒸発器側のエンタルピ差を拡大して循環量を落とし、蒸発器側の圧損を低減することによって、さらなる蒸発器の性能向上を図るために、過冷却熱交換器として内管となる低圧冷媒吸入管14と外管となる高圧液冷媒管15とからなる二重管構造の液−ガス熱交換器13が設けられている。   In order to further improve the performance of the evaporator by supercooling the refrigerant on the one side of the condenser, expanding the enthalpy difference on the evaporator side, reducing the circulation rate, and reducing the pressure loss on the evaporator side As a supercooling heat exchanger, there is provided a liquid-gas heat exchanger 13 having a double tube structure comprising a low-pressure refrigerant suction pipe 14 serving as an inner pipe and a high-pressure liquid refrigerant pipe 15 serving as an outer pipe.

この液−ガス熱交換器13は、例えば冷媒流量、二重管長さ、外管の内径、内管の外径が、所定の関係で適切に設定されている。   In the liquid-gas heat exchanger 13, for example, the refrigerant flow rate, the double tube length, the inner diameter of the outer tube, and the outer diameter of the inner tube are appropriately set in a predetermined relationship.

このように液−ガス熱交換器13が設けられていると、蒸発器出口側の冷媒が過熱され、圧縮機1への液バックを防止することができるとともに、凝縮器出口側の冷媒が過冷却され、蒸発器側のエンタルピ差を拡大して冷媒の循環量を落とすことができるので、その圧損も低減でき、蒸発器8(または蒸発器3)のさらなるコンパクト化を図ることができる(一例として特許文献1参照)。   When the liquid-gas heat exchanger 13 is provided in this way, the refrigerant on the evaporator outlet side is overheated, so that liquid back to the compressor 1 can be prevented and the refrigerant on the condenser outlet side is excessive. Since the refrigerant is cooled and the enthalpy difference on the evaporator side can be enlarged to reduce the circulation amount of the refrigerant, the pressure loss can be reduced, and the evaporator 8 (or the evaporator 3) can be further downsized (an example). Patent Document 1).

特開平5−332641号公報(明細書1−5頁、図1−5)JP-A-5-332641 (Specification 1-5, FIG. 1-5)

ところが、上記のように高圧冷媒と低圧冷媒を熱交換する過冷却熱交換器においては、冷房時と暖房時で冷媒の流れる方向が逆になるため、どちらかの運転モードにおいて、それらが平行流となり、熱交換効率が悪くなる問題がある。例えば図4の場合、冷房時は対向流であるが暖房時は平行流となり、熱交換効率が落ちる。   However, in the supercooling heat exchanger that exchanges heat between the high-pressure refrigerant and the low-pressure refrigerant as described above, the refrigerant flows in opposite directions during cooling and heating. Thus, there is a problem that the heat exchange efficiency is deteriorated. For example, in the case of FIG. 4, the counterflow is during cooling, but the parallel flow is during heating, resulting in a decrease in heat exchange efficiency.

本願発明は、このような問題を解決するためになされたもので、低圧冷媒と高圧冷媒を熱交換する過冷却熱交換器を備えた空気調和装置において、過冷却熱交換器を第1,第2の2つの熱交換器に分割し、それらの内の何れか一方側の熱交換器は高圧冷媒と低圧冷媒が対向流になるように配置する一方、他方側の熱交換器は高圧冷媒と低圧冷媒が平行流となるように配置することによって、上記従来の問題を適切に解決した空気調和装置を提供することを目的とするものである。   The present invention has been made to solve such a problem. In an air conditioner equipped with a supercooling heat exchanger for exchanging heat between a low-pressure refrigerant and a high-pressure refrigerant, the supercooling heat exchanger is the first and first supercooling heat exchangers. The heat exchanger on one side is arranged so that the high-pressure refrigerant and the low-pressure refrigerant are opposed to each other, while the heat exchanger on the other side is the high-pressure refrigerant. An object of the present invention is to provide an air conditioner in which the above-mentioned conventional problems are appropriately solved by arranging the low-pressure refrigerant to be in parallel flow.

本願各発明は、同目的を達成するために、次のような課題解決手段を備えて構成されている。   In order to achieve the same object, each invention of the present application includes the following problem solving means.

(1) 請求項1の発明
この発明は、圧縮機1、四路切換弁2、冷房運転時に凝縮器として作用し、暖房運転時に蒸発器として作用する室外機側熱交換器3、および冷房運転時に蒸発器として作用し、暖房運転時に凝縮器として作用する室内機側熱交換器(8)を上記四路切換弁2を介して順次接続し、上記四路切換弁2の切換作動により冷媒が可逆的に流通せしめられるようにするとともに、上記四路切換弁2と圧縮機1の吸入側との間に、低圧冷媒吸入管14と高圧液冷媒管15とからなっていて低圧冷媒と高圧冷媒とを熱交換する過冷却熱交換器13を設けてなる空気調和装置において、上記過冷却熱交換器13の連続する高圧液冷媒管15を第1,第2の2つの熱交換器13A,13B部分に分割するとともに、それら第1の熱交換器13A部分と第2の熱交換器13B部分を相互に逆方向に冷媒が流れるようにすることによって、それら第1,第2の熱交換器13A,13B部分の何れか一方側熱交換器13A又は13Bでは高圧液冷媒管15の高圧冷媒と低圧冷媒吸入管14の低圧冷媒とが相互に対向流になるようにする一方、他方側熱交換器13B又は13A部分では高圧液冷媒管15の高圧冷媒と低圧冷媒吸入管14の低圧冷媒とが相互に平行流となるようにしたことを特徴としている。
(1) Invention of Claim 1 This invention is the compressor 1, the four-way selector valve 2, the outdoor unit side heat exchanger 3 that acts as a condenser during cooling operation and acts as an evaporator during heating operation, and cooling operation. The indoor unit-side heat exchanger (8) that sometimes acts as an evaporator and acts as a condenser during heating operation is sequentially connected via the four-way switching valve 2, and the refrigerant is generated by the switching operation of the four-way switching valve 2. The low-pressure refrigerant and the high-pressure refrigerant are constituted by a low-pressure refrigerant suction pipe 14 and a high-pressure liquid refrigerant pipe 15 between the four-way switching valve 2 and the suction side of the compressor 1. In the air conditioner comprising the supercooling heat exchanger 13 for exchanging heat with each other, the continuous high-pressure liquid refrigerant pipe 15 of the supercooling heat exchanger 13 is connected to the first and second heat exchangers 13A and 13B. Divided into parts and those first heat exchange By allowing the refrigerant to flow through the 13A portion and the second heat exchanger 13B portion in directions opposite to each other, either one of the first and second heat exchangers 13A and 13B portions, the heat exchanger 13A or In 13B, the high-pressure refrigerant in the high-pressure liquid refrigerant pipe 15 and the low-pressure refrigerant in the low-pressure refrigerant suction pipe 14 are opposed to each other, while in the other side heat exchanger 13B or 13A, the high-pressure refrigerant in the high-pressure liquid refrigerant pipe 15 is used. And the low-pressure refrigerant in the low-pressure refrigerant suction pipe 14 are parallel to each other.

前述のように、高圧冷媒と低圧冷媒を熱交換する過冷却熱交換器13では、冷房時と暖房時で冷媒の流れる方向が逆になるため、そのままの構成では、どちらかの運転モードにおいて、それらが平行流となり、熱交換効率が悪くなる問題がある。   As described above, in the supercooling heat exchanger 13 that exchanges heat between the high-pressure refrigerant and the low-pressure refrigerant, the refrigerant flows in the opposite directions during cooling and heating. There is a problem that they become parallel flows and the heat exchange efficiency deteriorates.

ところが、上記のように、当該過冷却熱交換器13の連続する高圧液冷媒管15を第1,第2の2つの熱交換器13A,13B部分に分割するとともに、それら第1の熱交換器13A部分と第2の熱交換器13B部分を相互に逆方向に冷媒が流れるようにすることによって、それら第1,第2の熱交換器13A,13B部分の何れか一方側熱交換器13A又は13Bでは高圧液冷媒管15の高圧冷媒と低圧冷媒吸入管14の低圧冷媒とが相互に対向流になるようにする一方、他方側熱交換器13B又は13A部分では高圧液冷媒管15の高圧冷媒と低圧冷媒吸入管14の低圧冷媒とが相互に平行流となるようにすると、冷房時および暖房時共に冷媒の半分を対向流に形成することができ、冷房時および暖房時共に同じ熱交換効率になるので、冷房時と暖房時で冷媒の流れの方向が変化しても、変わりなく過冷却熱交換器13の熱交換性能を維持することができるようになる。   However, as described above, the continuous high-pressure liquid refrigerant pipe 15 of the supercooling heat exchanger 13 is divided into the first and second two heat exchangers 13A and 13B, and the first heat exchangers are divided. By allowing the refrigerant to flow through the 13A portion and the second heat exchanger 13B portion in directions opposite to each other, either one of the first and second heat exchangers 13A and 13B portions, the heat exchanger 13A or In 13B, the high-pressure refrigerant in the high-pressure liquid refrigerant tube 15 and the low-pressure refrigerant in the low-pressure refrigerant suction tube 14 are opposed to each other, while in the other side heat exchanger 13B or 13A, the high-pressure refrigerant in the high-pressure liquid refrigerant tube 15 is used. If the refrigerant and the low-pressure refrigerant in the low-pressure refrigerant suction pipe 14 are in parallel with each other, half of the refrigerant can be formed in a counter flow both during cooling and during heating, and the same heat exchange efficiency can be obtained during both cooling and heating. So Even if the direction of flow of the refrigerant is changed by the heating at the time of tufts, it is possible to maintain the heat exchange performance of the supercooling heat exchanger 13 without change.

(2) 請求項2の発明
この発明の課題解決手段は、上記請求項1の発明の構成において、第1,第2の熱交換器13A,13B部分は、それぞれ低圧冷媒吸入管14の外周に高圧液冷媒管15を相互に逆方向に巻きつけて構成されていることを特徴としている。
(2) Invention of Claim 2 The problem-solving means of the present invention is that, in the configuration of the invention of Claim 1, the first and second heat exchangers 13A, 13B are respectively arranged on the outer periphery of the low-pressure refrigerant suction pipe. It is characterized in that the high-pressure liquid refrigerant pipe 15 is wound in opposite directions.

このように、第1,第2の熱交換器13A,13B部分を、それぞれ低圧冷媒吸入管14の外周に対して高圧液冷媒管15を巻きつけた構成にすると、さらに熱交換器自体の容積を大きくする必要がなく、過冷却熱交換器13A,13Bの可及的な小型化を図ることができる。   As described above, when the first and second heat exchangers 13A and 13B are configured so that the high-pressure liquid refrigerant pipe 15 is wound around the outer periphery of the low-pressure refrigerant suction pipe 14, the volume of the heat exchanger itself is further increased. The subcooling heat exchangers 13A and 13B can be miniaturized as much as possible.

また、過冷却熱交換効率の向上により、蒸発器自体の小型、コンパクト化にも有効に寄与し得る。   In addition, the improvement of the supercooling heat exchange efficiency can effectively contribute to the miniaturization and compactness of the evaporator itself.

さらに、既存の低圧冷媒吸入管14に対して高圧液冷媒管15を巻くことで、吸入ガス圧損の上昇を抑えることができ、COPの低下をなくすことが可能である。   Further, by winding the high-pressure liquid refrigerant pipe 15 around the existing low-pressure refrigerant suction pipe 14, it is possible to suppress an increase in the suction gas pressure loss and to eliminate the COP reduction.

(3) 請求項3の発明
この発明の課題解決手段は、上記請求項1の発明の構成において、第1,第2の熱交換器13A,13B部分は、それぞれ低圧冷媒吸入管14の外周に対して同低圧冷媒吸入管14よりも大径の高圧液冷媒管15を同軸構造に嵌合し、冷媒の入口と出口を相互に逆方向に設けて構成されていることを特徴としている。
(3) Invention of Claim 3 The problem-solving means of the present invention is the configuration of the invention of Claim 1, in which the first and second heat exchangers 13A, 13B are arranged on the outer periphery of the low-pressure refrigerant suction pipe 14, respectively. On the other hand, a high-pressure liquid refrigerant pipe 15 having a diameter larger than that of the low-pressure refrigerant suction pipe 14 is fitted in a coaxial structure, and an inlet and an outlet of the refrigerant are provided in opposite directions.

このように、過冷却用の第1,第2の熱交換器13A,13Bを、それぞれ低圧冷媒吸入管14に対して高圧液冷媒管15を同軸構造に嵌合し、冷媒の入口と出口が相互に逆方向の二重管構造にすると、さらに過冷却熱交換器13A,13B自体の構造が簡単になる。   In this way, the first and second heat exchangers 13A and 13B for supercooling are fitted with the high-pressure liquid refrigerant pipe 15 in a coaxial structure with respect to the low-pressure refrigerant suction pipe 14, respectively, and the refrigerant inlet and outlet are If the double pipe structure is opposite to each other, the structure of the supercooling heat exchangers 13A and 13B itself is further simplified.

以上の結果、本願発明によると、冷房と暖房で冷媒の流れ方向が変化しても、それとは関係なく冷房時、暖房時共に全く同様に過冷却熱交換器の高い熱交換性能を維持することができる。その結果、蒸発器のさらなるコンパクト化を図ることができる。   As a result of the above, according to the present invention, even if the refrigerant flow direction changes between cooling and heating, the high heat exchange performance of the supercooling heat exchanger can be maintained in the same manner both during cooling and during heating. Can do. As a result, the evaporator can be further downsized.

さらに、その場合において、可及的に過冷却熱交換器自体の小型化、構造の簡単化をも図ることができる。   Furthermore, in that case, the supercooling heat exchanger itself can be miniaturized and the structure can be simplified as much as possible.

添付した図面の図1および図2は、本願発明の最良の実施の形態に係る空気調和装置の冷凍回路の全体および要部の構成を示している。   1 and 2 of the attached drawings show the entire refrigeration circuit of the air-conditioning apparatus according to the best mode of the present invention and the configuration of the main part.

本実施の形態の空気調和装置は、先ず図1に示すように、圧縮機1、四路切換弁2、冷房運転時に凝縮器として作用し、暖房運転時に蒸発器として作用する室外機側熱交換器3、暖房用膨張弁4、レシーバー5、冷房用膨張弁6、および冷房運転時に蒸発器として作用し、暖房運転時に凝縮器として作用する室内機側熱交換器8等を上記四路切換弁2を介して順次接続して、図示のような空気調和用の冷凍サイクルを構成している。   As shown in FIG. 1, the air conditioner according to the present embodiment firstly functions as a compressor 1, a four-way switching valve 2, a condenser during cooling operation, and an outdoor unit side heat exchange that acts as an evaporator during heating operation. The above four-way switching valve includes the heater 3, the expansion valve 4 for heating, the receiver 5, the expansion valve 6 for cooling, and the indoor-unit-side heat exchanger 8 that functions as an evaporator during cooling operation and functions as a condenser during heating operation. 2 are sequentially connected to each other to form an air-conditioning refrigeration cycle as shown.

そして、上記四路切換弁2の切換作動により、冷房運転時には図中に実線矢印で示す方向に、また暖房運転時には同図中に点線矢印で示す方向に、それぞれ冷媒が可逆的に流通せしめられて、冷房又は暖房作用が実現される。   The switching operation of the four-way switching valve 2 allows the refrigerant to flow reversibly in the direction indicated by the solid arrow in the figure during cooling operation and in the direction indicated by the dotted arrow in the figure during heating operation. Thus, cooling or heating action is realized.

そして、本実施の形態でも、前述の図4の場合と同様に、低圧冷媒の吸入管14と高圧液冷媒管15とからなり、低圧冷媒と高圧冷媒を熱交換する過冷却熱交換器としての液−ガス熱交換器13が設けられている。   Also in the present embodiment, as in the case of FIG. 4 described above, the supercooling heat exchanger includes a low-pressure refrigerant suction pipe 14 and a high-pressure liquid refrigerant pipe 15 and exchanges heat between the low-pressure refrigerant and the high-pressure refrigerant. A liquid-gas heat exchanger 13 is provided.

このように液−ガス熱交換器13が設けられていると、すでに述べたように蒸発器出口側の冷媒が過熱され、圧縮機1への液バックを防止することができるとともに、凝縮器出口側の冷媒が過冷却され、蒸発器側のエンタルピ差を拡大して冷媒の循環量を落とすことができるので、その圧損も低減でき、蒸発器(冷房時の室内機側熱交換器8又は暖房時の室外機側熱交換器3)の可及的なコンパクト化を図ることができる。   When the liquid-gas heat exchanger 13 is provided in this way, the refrigerant on the evaporator outlet side is overheated as described above, and liquid back to the compressor 1 can be prevented, and the condenser outlet The refrigerant on the side is supercooled and the enthalpy difference on the evaporator side can be enlarged to reduce the circulation amount of the refrigerant, so that the pressure loss can be reduced, and the evaporator (the indoor unit side heat exchanger 8 during cooling or the heating) The outdoor unit side heat exchanger 3) can be made as compact as possible.

しかし、本実施の形態の場合には、同液−ガス熱交換器13は、前述の図4の場合とは異なり、相互に逆方向に冷媒が流れる第1の液−ガス熱交換器13Aと第2の液−ガス熱交換器13Bとの2つの液−ガス熱交換器に分割され、例えば第1の熱交換器13Aは高圧冷媒と低圧冷媒が対向流になるように配置されている一方、第2の熱交換器13Bは高圧冷媒と低圧冷媒が平行流となるように配置されている。   However, in the case of the present embodiment, the liquid-gas heat exchanger 13 is different from the case of FIG. 4 described above, and the first liquid-gas heat exchanger 13A in which the refrigerant flows in the opposite directions to each other. The liquid-gas heat exchanger is divided into two liquid-gas heat exchangers 13B. For example, the first heat exchanger 13A is arranged so that the high-pressure refrigerant and the low-pressure refrigerant are opposed to each other. The second heat exchanger 13B is arranged so that the high-pressure refrigerant and the low-pressure refrigerant are in parallel flow.

したがって、このような構成では、冷房時と暖房時で冷媒の流れる方向が変化しても、図示の如く、変わりなく液−ガス熱交換器13の性能を維持することができる。その結果、暖房時にも変りなく凝縮器出口側の冷媒が過冷却され、蒸発器側のエンタルピ差を拡大して冷媒の循環量を落とすことができる。   Therefore, in such a configuration, even if the direction of refrigerant flow changes during cooling and heating, the performance of the liquid-gas heat exchanger 13 can be maintained without change as shown in the figure. As a result, the refrigerant on the condenser outlet side is supercooled without changing even during heating, and the enthalpy difference on the evaporator side can be enlarged to reduce the circulation amount of the refrigerant.

しかも同第1,第2の液−ガス熱交換器13A,13Bは、それぞれ冷房時の室内機側熱交換器(蒸発器)8又は暖房時の室外機側熱交換器(蒸発器)3から四路切換弁2を介して圧縮機1の冷媒吸入口に戻る既存の低圧冷媒吸入管14の外周に対して、同低圧冷媒吸入管14よりも小径の凝縮器出口側からの高圧液冷媒管15を、例えば図2に詳細に示すように、相互に逆向きで螺旋状に巻きつけることにより構成されている。そのため、過冷却熱交換器13自体の容積も小さく、可及的な小型化が図られる。   Moreover, the first and second liquid-gas heat exchangers 13A and 13B are respectively supplied from the indoor unit side heat exchanger (evaporator) 8 during cooling or the outdoor unit side heat exchanger (evaporator) 3 during heating. A high-pressure liquid refrigerant pipe from the outlet side of the condenser having a smaller diameter than the low-pressure refrigerant suction pipe 14 with respect to the outer periphery of the existing low-pressure refrigerant suction pipe 14 returning to the refrigerant suction port of the compressor 1 through the four-way switching valve 2. As shown in detail in FIG. 2, for example, 15 is wound by spiraling in directions opposite to each other. Therefore, the volume of the supercooling heat exchanger 13 itself is small, and the miniaturization is possible.

また、過冷却熱交換効率の向上により、蒸発器自体の小型、コンパクト化にも有効に寄与し得る。   In addition, the improvement of the supercooling heat exchange efficiency can effectively contribute to the miniaturization and compactness of the evaporator itself.

さらに、図2のように既存の低圧冷媒吸入管14に巻くことで、吸入ガス圧損の上昇を抑えることができ、COPの低下をなくすことが可能である。   Furthermore, as shown in FIG. 2, it is possible to suppress an increase in intake gas pressure loss and to eliminate a decrease in COP by winding it around an existing low-pressure refrigerant intake pipe 14.

なお、図2中の符号16は、低圧冷媒吸入管14におけるガス冷媒用のマフラーである。   2 is a muffler for gas refrigerant in the low-pressure refrigerant suction pipe 14.

(その他の実施の形態)
以上の実施の形態では、図2に示すように、分割された第1,第2の熱交換器13A,13Bを、四方切換弁2から圧縮機1の冷媒吸入口に到る既存の低圧冷媒吸入管14に対して細径の高圧液冷媒管15を螺旋状に巻き付ける構造としたが、同第1,第2の熱交換器13A,13Bは、例えば図3に示すように、低圧冷媒吸入管14の外周に同低圧冷媒吸入管14よりも大径の高圧液冷媒管15を同軸構造に嵌合した二重管構造のものとして、それらを相互に冷媒が逆向きに流れるように配置したものでもよい。
(Other embodiments)
In the above embodiment, as shown in FIG. 2, the divided first and second heat exchangers 13 </ b> A and 13 </ b> B are connected to the existing low-pressure refrigerant from the four-way switching valve 2 to the refrigerant inlet of the compressor 1. Although the high-pressure liquid refrigerant pipe 15 having a small diameter is spirally wound around the suction pipe 14, the first and second heat exchangers 13A and 13B are, for example, as shown in FIG. A high-pressure liquid refrigerant pipe 15 having a diameter larger than that of the low-pressure refrigerant suction pipe 14 is arranged on the outer periphery of the pipe 14 so as to have a coaxial structure, and they are arranged so that the refrigerant flows in opposite directions. It may be a thing.

このように、過冷却用の第1,第2の熱交換器13A,13Bを、それぞれ低圧冷媒吸入管14に対して高圧液冷媒管15を同軸構造に嵌合した二重管構成にすると、過冷却熱交換器自体の構造が簡単になる。   In this way, when the first and second heat exchangers 13A and 13B for supercooling have a double pipe configuration in which the high pressure liquid refrigerant pipe 15 is fitted into the coaxial structure with respect to the low pressure refrigerant suction pipe 14, respectively. The structure of the supercooling heat exchanger itself is simplified.

図1は、本願発明の最良の実施の形態に係る空気調和装置の構成を示す冷凍回路図である。FIG. 1 is a refrigeration circuit diagram showing a configuration of an air-conditioning apparatus according to the best embodiment of the present invention. 図2は、同装置の要部である第1,第2の2つの液−ガス熱交換器部分の拡大図である。FIG. 2 is an enlarged view of the first and second liquid-gas heat exchanger portions which are the main parts of the apparatus. 図3は、本願発明のその他の実施の形態に係る空気調和装置の第1,第2の2つの液−ガス熱交換器部分の拡大図である。FIG. 3 is an enlarged view of the first and second two liquid-gas heat exchanger portions of an air conditioner according to another embodiment of the present invention. 図4は、従来例に係る空気調和装置の構成を示す冷凍回路図である。FIG. 4 is a refrigeration circuit diagram showing a configuration of an air conditioner according to a conventional example.

符号の説明Explanation of symbols

1は圧縮機、2は四路切換弁、3は室外機側熱交換器、4,6は膨張弁、5はレシーバー、8は室内機側熱交換器、13Aは第1の熱交換器、13Bは第2の熱交換器、14は低圧冷媒吸入管、15は高圧液冷媒管、16はマフラーである。   1 is a compressor, 2 is a four-way switching valve, 3 is an outdoor unit side heat exchanger, 4 and 6 are expansion valves, 5 is a receiver, 8 is an indoor unit side heat exchanger, 13A is a first heat exchanger, 13B is a second heat exchanger, 14 is a low-pressure refrigerant suction pipe, 15 is a high-pressure liquid refrigerant pipe, and 16 is a muffler.

Claims (3)

圧縮機(1)、四路切換弁(2)、冷房運転時に凝縮器として作用し、暖房運転時に蒸発器として作用する室外機側熱交換器(3)、および冷房運転時に蒸発器として作用し、暖房運転時に凝縮器として作用する室内機側熱交換器(8)を上記四路切換弁(2)を介して順次接続し、上記四路切換弁(2)の切換作動により冷媒が可逆的に流通せしめられるようにするとともに、上記四路切換弁(2)と圧縮機(1)の吸入側との間に、低圧冷媒吸入管(14)と高圧液冷媒管(15)とからなっていて低圧冷媒と高圧冷媒とを熱交換する過冷却熱交換器(13)を設けてなる空気調和装置において、上記過冷却熱交換器(13)の連続する高圧液冷媒管(15)を第1,第2の2つの熱交換器(13A),(13B)部分に分割するとともに、それら第1の熱交換器(13A)部分と第2の熱交換器(13B)分を相互に逆方向に冷媒が流れるようにすることによって、それら第1,第2の熱交換器(13A),(13B)部分の何れか一方側熱交換器(13A)又は(13B)では高圧液冷媒管(15)の高圧冷媒と低圧冷媒吸入管(14)の低圧冷媒とが相互に対向流になるようにする一方、他方側熱交換器(13B)又は(13A)部分では高圧液冷媒管(15)の高圧冷媒と低圧冷媒吸入管(14)の低圧冷媒とが相互に平行流となるようにしたことを特徴とする空気調和装置。 Compressor (1), four-way selector valve (2), outdoor unit-side heat exchanger (3) that acts as a condenser during cooling operation and acts as an evaporator during heating operation, and acts as an evaporator during cooling operation The indoor unit-side heat exchanger (8) acting as a condenser during heating operation is sequentially connected through the four-way switching valve (2), and the refrigerant is reversible by the switching operation of the four-way switching valve (2). And a low-pressure refrigerant suction pipe (14) and a high-pressure liquid refrigerant pipe (15) between the four-way switching valve (2) and the suction side of the compressor (1). in the air conditioning apparatus formed by providing a subcooling heat exchanger (13) for exchanging heat between low pressure refrigerant and high-pressure refrigerant Te, high-pressure liquid refrigerant pipe successive of the supercooling heat exchanger (13) to (15) first the second of the two heat exchangers (13A), divided result together in (13B) parts By their first heat exchanger (13A) portion and so that the refrigerant flows in the opposite direction a second heat exchanger (13B) unit content from each other, they first, second heat exchanger ( In either one of the heat exchangers (13A) or (13B) of the portions 13A) and (13B), the high-pressure refrigerant in the high-pressure liquid refrigerant pipe (15) and the low-pressure refrigerant in the low-pressure refrigerant suction pipe (14) flow counter-to each other. On the other hand, in the other side heat exchanger (13B) or (13A), the high-pressure refrigerant in the high-pressure liquid refrigerant pipe (15) and the low-pressure refrigerant in the low-pressure refrigerant suction pipe (14) are parallel to each other. An air conditioner characterized by being configured as described above . 第1,第2の熱交換器(13A),(13B)部分は、それぞれ低圧冷媒吸入管(14)の外周に高圧液冷媒管(15)を相互に逆方向に巻きつけて構成されていることを特徴とする請求項1記載の空気調和装置。 First, second heat exchanger (13A), and is configured by winding in the opposite direction the high-pressure liquid refrigerant pipe (15) to each other on the outer periphery of (13B) portions, respectively a low-pressure refrigerant suction pipe (14) The air conditioner according to claim 1. 第1,第2の熱交換器(13A),(13B)部分は、それぞれ低圧冷媒吸入管(14)の外周に同低圧冷媒吸入管(14)よりも大径の高圧液冷媒管15を同軸構造に嵌合し、冷媒の入口と出口を相互に逆方向に設けて構成されていることを特徴とする請求項1記載の空気調和装置。 First, second heat exchanger (13A), (13B) portions, coaxial high-pressure liquid refrigerant pipe 15 of larger diameter than the low-pressure refrigerant suction pipe on the outer periphery of each of the low-pressure refrigerant suction pipe (14) (14) fitted to the structure, the air conditioner according to claim 1, characterized in that it is constituted by providing in the opposite direction to the inlet and outlet of the coolant from each other.
JP2005275493A 2005-09-22 2005-09-22 Air conditioner Expired - Fee Related JP3982545B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005275493A JP3982545B2 (en) 2005-09-22 2005-09-22 Air conditioner
AU2006293191A AU2006293191B2 (en) 2005-09-22 2006-09-15 Air conditioning apparatus
CN2006800342799A CN101268312B (en) 2005-09-22 2006-09-15 Air conditioner
EP06798039.1A EP1944562B1 (en) 2005-09-22 2006-09-15 Air conditioner
PCT/JP2006/318376 WO2007034745A1 (en) 2005-09-22 2006-09-15 Air conditioner
US12/067,087 US20090282861A1 (en) 2005-09-22 2006-09-15 Air conditioning apparatus
KR1020087008289A KR100905995B1 (en) 2005-09-22 2008-04-04 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275493A JP3982545B2 (en) 2005-09-22 2005-09-22 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007085647A JP2007085647A (en) 2007-04-05
JP3982545B2 true JP3982545B2 (en) 2007-09-26

Family

ID=37888790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275493A Expired - Fee Related JP3982545B2 (en) 2005-09-22 2005-09-22 Air conditioner

Country Status (7)

Country Link
US (1) US20090282861A1 (en)
EP (1) EP1944562B1 (en)
JP (1) JP3982545B2 (en)
KR (1) KR100905995B1 (en)
CN (1) CN101268312B (en)
AU (1) AU2006293191B2 (en)
WO (1) WO2007034745A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304078A (en) * 2007-06-05 2008-12-18 Denso Corp Refrigerating cycle device
KR101460222B1 (en) * 2007-10-09 2014-11-10 비/이 에어로스페이스 인코포레이티드 Thermal control system and method
JP2009115415A (en) * 2007-11-08 2009-05-28 Calsonic Kansei Corp Supercritical refrigerating cycle
JP4947043B2 (en) * 2008-07-14 2012-06-06 ダイキン工業株式会社 Outdoor unit for air conditioner and method for manufacturing the same
DK176868B1 (en) * 2008-09-16 2010-02-01 Lars Christian Wulf Zimmermann Symmetrical refrigerant regulator for flooded multi-channel evaporator
EP2282624B1 (en) * 2009-08-05 2012-04-18 ABB Research Ltd. Evaporator and cooling circuit
JP5496217B2 (en) * 2009-10-27 2014-05-21 三菱電機株式会社 heat pump
ES2780181T3 (en) * 2010-10-12 2020-08-24 Mitsubishi Electric Corp Air conditioner
JP2012097957A (en) * 2010-11-02 2012-05-24 Showa Denko Kk Intermediate heat exchanger
CN102095271A (en) * 2011-03-01 2011-06-15 四川长虹空调有限公司 Heat pump air conditioner
DE102012204404B4 (en) * 2011-03-25 2022-09-08 Denso Corporation heat exchange system and vehicle refrigeration cycle system
JP5938821B2 (en) * 2011-12-12 2016-06-22 E・T・E株式会社 Refrigeration equipment
US9482445B2 (en) * 2012-09-06 2016-11-01 Jiangsu Tenesun Electrical Appliance Co., Ltd. Heat pump water heater with heat utilization balance processor and heat utilization balance processor thereof
CN103807936B (en) * 2012-11-08 2018-06-26 杭州三花研究院有限公司 A kind of heat pump air conditioning system
WO2014200476A1 (en) * 2013-06-12 2014-12-18 Danfoss Turbocor Compressors B.V. Compressor with rotor cooling passageway
JP2015034671A (en) * 2013-08-09 2015-02-19 株式会社アタゴ製作所 Heat exchanger for heat pump type water heater
NZ756750A (en) 2013-09-13 2022-05-27 Genentech Inc Methods and compositions comprising purified recombinant polypeptides
CN105928267B (en) * 2016-06-01 2018-10-30 唐玉敏 A kind of plural parallel stage displacement heat-exchange system
CN105928398A (en) * 2016-06-01 2016-09-07 唐玉敏 Multistage parallel displacement module of heat exchange system
CN105928242B (en) * 2016-06-01 2018-07-20 唐玉敏 A kind of heat-exchange system plural serial stage replacement module
CN106016860B (en) * 2016-06-01 2018-10-09 唐玉敏 A kind of heat-exchange system replacement module
CN105928240B (en) * 2016-06-01 2019-04-12 唐玉敏 A kind of heat-exchange system
CN105928231B (en) * 2016-06-01 2018-10-09 唐玉敏 A kind of plural serial stage displacement heat-exchange system
CN105928397B (en) * 2016-06-01 2018-03-20 唐玉敏 A kind of multistage series-parallel connection displacement heat-exchange system
CN105928241B (en) * 2016-06-01 2018-07-17 唐玉敏 A kind of heat-exchange system multistage series-parallel connection replacement module
SE542346C2 (en) 2017-05-22 2020-04-14 Swep Int Ab Reversible refrigeration system
SE544732C2 (en) * 2017-05-22 2022-10-25 Swep Int Ab A reversible refrigeration system
KR20190055614A (en) * 2017-11-15 2019-05-23 엘지전자 주식회사 Plate heat exchanger and Air conditioner having the same
JPWO2019111349A1 (en) * 2017-12-06 2020-12-24 三菱電機株式会社 Manufacturing method of heat exchanger, refrigeration cycle device and heat exchanger
CN108302839A (en) * 2017-12-29 2018-07-20 青岛海尔空调器有限总公司 Air-conditioner system
US20220136741A1 (en) * 2019-04-05 2022-05-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2021014525A1 (en) * 2019-07-22 2021-01-28 三菱電機株式会社 Air conditioning apparatus and outdoor unit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135667U (en) * 1982-03-08 1983-09-12 松下冷機株式会社 refrigeration cycle
DE3505789A1 (en) * 1985-02-20 1986-08-21 Grote, Paul, 2901 Friedrichsfehn SPIRAL HEAT EXCHANGER
JP3336628B2 (en) 1992-05-29 2002-10-21 ダイキン工業株式会社 Refrigeration equipment
JPH06213518A (en) 1993-01-13 1994-08-02 Hitachi Ltd Heat pump type air conditioner for mixed refrigerant
JPH1054616A (en) * 1996-08-14 1998-02-24 Daikin Ind Ltd Air conditioner
TW568254U (en) * 1997-01-06 2003-12-21 Mitsubishi Electric Corp Refrigerant circulating apparatus
JPH11325655A (en) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd Silencer and air conditioner
JP2001056188A (en) * 1999-06-10 2001-02-27 Sanden Corp Heat exchanger used in vapor pressurizing type refrigeration cycle and the like
ES2298230T3 (en) * 2000-04-28 2008-05-16 Daikin Industries, Ltd. OPERATIVE METHOD OF COLLECTION OF REFRIGERANT AND OIL AND DEVICE OF COLLECTION CONTROL OF REFRIGERANT AND OIL.
JP3811116B2 (en) * 2001-10-19 2006-08-16 松下電器産業株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
KR100905995B1 (en) 2009-07-06
JP2007085647A (en) 2007-04-05
CN101268312B (en) 2010-05-19
US20090282861A1 (en) 2009-11-19
AU2006293191B2 (en) 2009-11-19
WO2007034745A1 (en) 2007-03-29
EP1944562A4 (en) 2011-03-23
CN101268312A (en) 2008-09-17
AU2006293191A1 (en) 2007-03-29
EP1944562A1 (en) 2008-07-16
EP1944562B1 (en) 2013-04-17
KR20080042178A (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP3982545B2 (en) Air conditioner
JP3948475B2 (en) Air conditioner
JP5496217B2 (en) heat pump
JP5936785B1 (en) Air conditioner
JP2005083741A (en) Air conditioner having heat exchanger and refrigerant switching means
JP2008232548A (en) Heat exchanger
JPWO2018138770A1 (en) Heat source side unit and refrigeration cycle apparatus
JP2007278676A (en) Heat exchanger
JP2009133593A (en) Cooling apparatus
JP2008267653A (en) Refrigerating device
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
JP7386613B2 (en) Heat exchanger and air conditioner equipped with it
JP6984048B2 (en) Air conditioner
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP3991654B2 (en) Air conditioner
JP6413692B2 (en) Air conditioner
JP2010190541A (en) Air conditioning device
KR20130027287A (en) An air conditioner
JP2008170134A (en) Refrigerating device
CN116438413A (en) Refrigeration cycle device
KR20150039989A (en) An air conditioner
JP2006071148A (en) Refrigerating cycle
WO2015025414A1 (en) Refrigeration cycle device, and air conditioner and water heater using same refrigeration cycle device
KR20110103827A (en) Heat exchanger for air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3982545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees