JP3974880B2 - Jitter transfer characteristic measuring device - Google Patents

Jitter transfer characteristic measuring device Download PDF

Info

Publication number
JP3974880B2
JP3974880B2 JP2003195250A JP2003195250A JP3974880B2 JP 3974880 B2 JP3974880 B2 JP 3974880B2 JP 2003195250 A JP2003195250 A JP 2003195250A JP 2003195250 A JP2003195250 A JP 2003195250A JP 3974880 B2 JP3974880 B2 JP 3974880B2
Authority
JP
Japan
Prior art keywords
signal
jitter
frequency
amplitude
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003195250A
Other languages
Japanese (ja)
Other versions
JP2005030866A (en
Inventor
修 杉山
健 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2003195250A priority Critical patent/JP3974880B2/en
Publication of JP2005030866A publication Critical patent/JP2005030866A/en
Application granted granted Critical
Publication of JP3974880B2 publication Critical patent/JP3974880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、各種ネットワークに用いられる装置のジッタ伝達特性を、高精度に且つ高い再現性をもって測定できるようにするための技術に関する。
【0002】
【従来の技術】
SDH、SONET,OTN等のネットワークに接続される装置のジッタ特性に関し、ITU−TやTelcordia等の国際規格で規定されている代表的な特性としてジッタ伝達特性がある。
【0003】
ジッタ伝達特性は、所定量のジッタを有する信号を被測定装置に入力したときに、その装置が入力信号のジッタをどの程度抑圧して出力するかを表すものであり、入力信号のジッタ量と出力信号のジッタ量との比を、ジッタ周波数を変えて測定することによって得られ、図5のように、被測定装置について得られたジッタ伝達特性Gと規格特性Rとを対比することで、被測定装置のジッタ伝達特性の良否を判定することができる。
【0004】
なお、ジッタ伝達特性の規格特性Rとしては、図5に示しているように、平坦部におけるジッタ伝達特性の値が+0.1dBを越えてはならないと規定されている。
【0005】
例えば、ビットレートが9953Mbps(1UI=100ps)、入力ジッタJaが1.5UIであれば、その0.1dBは僅か0.017UI、即ち、1.7psに相当する。
【0006】
また、ジッタ測定装置における測定精度についてITU−T O.172では最も精度の高いところで0.05dB以下と規定されている。
【0007】
ところが、ジッタ伝達特性を測定する場合、被測定装置の出力信号には、図6に示すように、入力信号に付与したジッタの周波数成分fmの他に被測定装置自身が発生する他の周波数のジッタ成分も多く含まれており、このジッタ成分の影響により測定誤差が生じ、上記した測定精度を得ることは困難である。
【0008】
このため、被測定装置の出力信号のジッタ成分から、図6に示しているようにフィルタによって入力信号に付与したジッタと等しい周波数成分のみを抽出する必要がある。
【0009】
また、入力信号に付与するジッタの周波数は、広い範囲(例えば100Hz〜数10MHz)にわたって変化させる必要がある。
【0010】
このような要求を満たすために、従来のジッタ伝達特性測定装置は、次の特許文献1に記載されているように、被測定装置の出力信号から検出したジッタ成分信号と、入力信号に付与したジッタの周波数より所定周波数だけ高い周波数の局発信号とをミキサに入力して混合し、そのミキサの出力から所定周波数のジッタ成分のみを狭帯域のバンドパスフィルタによって抽出し、その振幅を検出していた。
【0011】
この構成によれば、ジッタ周波数が広い範囲で可変される場合でも、固定周波数で狭帯域なバンドパスフィルタにより、入力信号に付与したジッタに対応する出力ジッタ量を検出することができる。
【0012】
【特許文献1】
特開平8−220163公報
【0013】
【発明が解決しようとする課題】
上記のように入力ジッタに対応したジッタ成分をバンドパスフィルタによって抽出するジッタ伝達特性測定装置では、バンドパスフィルタの特性によって測定精度が決定され、バンドパスフィルタの帯域が狭いほど測定精度が高くなり、前記したITU−Tの規格を満たすためには、バンドパスフィルタの帯域幅として数Hz以下が要求される。
【0014】
しかし、このように狭帯域なフィルタは一般的にフィルタ素子を多段接続して構成しなければならず、温度の変化によって特性が変動しやすく、その特性変動によって測定精度および再現性が著しく低下するという問題がある。
【0015】
これを解決するために、前記した特許文献1では、温度の変化とバンドパスフィルタの特性の変化との関係を予め記憶しておき、局発信号の周波数を温度変化に追従変化させて、バンドパスフィルタの特性のずれを相対的に補償しているが、バンドパスフィルタ個々の特性にもバラツキがあるため、測定装置個々で温度と通過特性の関係を取得するという煩雑な作業が必要となり、また、温度補償を完全に行なうことが困難である。
【0016】
本発明は、この点をさらに改善して、温度変化等に対する補償が不要で、再現性が高く、高精度な測定を行なえるジッタ伝達特性測定装置を提供することを目的としている。
【0017】
【課題を解決するための手段】
前記目的を達成するために、本発明の請求項1のジッタ伝達特性測定装置は、
クロック信号を発生するクロック信号発生器(21)と、
指定された変調周波数で所定振幅の正弦波の変調信号を出力するとともに該変調信号に対し所定周波数だけ差のある局発信号を出力する信号発生器(22)と、
前記クロック信号を前記変調信号によって位相変調し、該位相変調されたクロック信号または該クロック信号に同期したパターン信号を入力ジッタ信号として被測定装置に入力するジッタ信号生成部(23)と、
前記入力ジッタ信号を受けた被測定装置が出力する信号のジッタを復調するジッタ復調部(24)と、
前記ジッタ復調部の出力信号と前記局発信号とを混合するミキサ(25)と、
前記ミキサの出力信号から前記所定周波数を含む帯域の信号を抽出する低域通過フィルタ(26)と、
前記低域通過フィルタの出力信号をサンプリングし、該サンプル値をディジタル変換して出力するA/D変換器(27)と、
前記A/D変換器から出力されるサンプル値に対してフーリエ変換処理を行い、前記所定周波数の信号成分の振幅値を求める振幅演算手段(30)と、
前記変調信号の振幅値と前記振幅演算手段によって算出された振幅値とに基づいて前記被測定装置のジッタ伝達特性を算出する伝達特性演算手段(31)とを備え
前記信号発生器は、前記指定された変調周波数に対する前記局発信号の周波数差を変更できるように構成され、
前記振幅演算手段は、前記周波数差の変更に連動して前記フーリエ変換処理で振幅を求める信号成分の周波数を変更することを特徴とする。
【0019】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明の実施形態のジッタ伝達特性測定装置20の構成を示している。
【0020】
図1において、クロック信号発生器21は、被測定装置1のデータ伝送レートに対応した周波数fcのクロック信号Cを出力する。
【0021】
信号発生器22は、所定振幅Vmの正弦波の変調信号Mと、その変調信号Mに対し所定周波数fiだけ差のある局発信号Lを出力する。
【0022】
この信号発生器22は、後述する測定制御部32から指定された変調周波数fmで変調信号Mを出力し、局発信号Lをfm±fiのいずれかの周波数faで出力する。この指定される変調周波数fmはジッタ周波数であり、例えば100Hz〜80MHzの範囲で指定され、所定周波数fiは例えば60Hzに設定される。
【0023】
また、信号発生器22が出力する変調信号Mの振幅Vmは、通常、被測定装置1のジッタ耐力を越えない範囲に設定されており、ジッタ耐力の周波数特性に沿って変調周波数fmに応じて変化させたり、あるいは一定値であってもよい。
【0024】
クロック信号Cおよび変調信号Mはジッタ信号生成部23に入力される。
ジッタ信号生成部23は、位相変調器を含み、クロック信号Cを変調信号Mによって位相変調して、変調信号Mの振幅Vmに対応した量のジッタが付与された信号C′を入力ジッタ信号として生成して被測定装置1に入力する。
【0025】
なお、ここでは、被測定装置1が、クロック用の入力端子から入力される信号に対して波形整形処理等を行ない、その処理された信号を出力端子から出力するように構成されているものとし、その入力端子に前記入力ジッタ信号C′を入力する場合について説明するが、被測定装置1がデータ用の入出力端子しか有していない場合には、ジッタ信号生成部23が、位相変調されたクロック信号C′に同期したパターン信号を生成し、これを入力ジッタ信号として被測定装置1に入力してもよい。
【0026】
この入力ジッタ信号C′を受けた被測定装置1は、その信号C′に基づいて内部で生成した信号C″を出力する。
【0027】
ジッタ復調部24は、位相検波器を含み、被測定装置1の出力信号C″のジッタ成分を復調し、その復調信号M′をミキサ25に出力する。
【0028】
このジッタ復調は、例えば、基準となるクロック信号Cと被測定装置1の出力信号C″との位相比較を行い、その位相差に等しい幅のパルス信号を生成し、そのパルス信号から低域通過フィルタによりクロック周波数成分を除去することで得られる。
【0029】
ただし、この復調信号M′には、前記図5で示したように、入力ジッタ信号C′に付与されている変調信号Mの周波数成分の他に、被測定装置1自体が発生する他の周波数成分が含まれている。
【0030】
ミキサ25は、復調信号M′と信号発生器22から出力されている局発信号Lとを混合して、その和および差の周波数成分を出力する。
【0031】
低域通過フィルタ26は、ミキサ25の出力から所定周波数fiを含む帯域の信号を抽出する。
【0032】
即ち、復調信号M′の周波数成分をfmのみとし、局発信号Lの周波数faをfm+fiとすれば、ミキサ25から出力される和の成分の周波数は、
(fm+fi)+fm=2fm+fi
となる。
【0033】
また、差の成分の周波数は、
(fm+fi)−fm=fi
となる。
【0034】
また、局発信号Lの周波数faを、fm−fiとすれば、和の成分の周波数は、
(fm−fi)+fm=2fm−fi
となり、差の成分の周波数は、
fm−(fm−fi)=fi
となる。
【0035】
したがって、変調周波数fmの下限値fmaが所定周波数fiより高ければ、図2に示すように、低域通過フィルタ26の遮断周波数fbを2fma−fiとfiの間に設定することで、図3に示すように所定周波数fiを含む帯域の信号を抽出することができる。
【0036】
なお、後述するように、この装置ではフーリエ変換によって所定周波数fiの信号成分の振幅値を求めているので、所定周波数fiの成分を損失無く通過できるように低域通過フィルタ26の遮断周波数fbを設定しておけば問題なく、2fma−fiより高くてもよく、また特別に厳しい特性は要求されない。
【0037】
低域通過フィルタ26の出力信号uは、A/D変換器27によって所定の周期Ts(1/2fb以下の周期)で一定時間サンプリングされ、そのサンプル値がディジタル変換されて振幅演算手段30に出力される。
【0038】
振幅演算手段30は、A/D変換器27から時系列に出力されるサンプル値Uに対してDFT(離散的フーリエ変換)あるいはFFT(高速フーリエ変換)の処理を行い、所定周波数fiの信号成分の振幅を求める。
【0039】
例えば、DFT処理の場合で、時系列に得られるサンプル値をU(p)(p=0〜N−1)とすると、±fbの周波数範囲をN分割して得られる周波数ポイントk(=0〜N−1)についての振幅(スペクトラム)X(k)は、以下のDFT演算によって求めることができる。
【0040】
X(k)=ΣU(p)exp(−j2πpk/N)
ただし記号Σはp=0〜N−1までの総和を表す。
【0041】
上記演算を、所定周波数fiについて行なう、即ち、所定周波数fiが周波数ポイントに一致するように選んでおいて演算を行なうことで、図3に示している各周波数の信号成分から、周波数fiの信号成分の振幅Vxのみを求めることができる。
【0042】
この振幅演算手段30によって得られた振幅値Vxは、伝達特性演算手段31に出力される。
【0043】
伝達特性演算手段31は、変調信号Mの振幅値Vmと振幅演算手段30によって算出された振幅値Vxとに基づいて被測定装置1のジッタ伝達特性を算出する。
【0044】
即ち、ジッタ伝達特性は、入力ジッタ量(単位UI)をJaとし、出力ジッタ量をJbとすれば、次式で表される。
【0045】
G(dB)=20・log(Jb/Ja)
【0046】
ここで、入力ジッタ量Jaは変調信号Mの振幅値Vmに比例し、出力ジッタ量Jbは振幅演算手段30によって算出された振幅値Vxに比例する。
【0047】
したがって、次の演算を行なうことで、ジッタ伝達特性Gを求めることができる。
【0048】
G(dB)=20・log(Vx/Vm)
【0049】
ただし、実際には、信号発生器22が出力する変調信号Mの振幅精度、ジッタ信号生成部23の位相変調特性、ジッタ復調部24の位相検波特性、ミキサ25の周波数特性等の影響があるので、上記理論的な演算では、正確なジッタ伝達特性が得られない。
【0050】
そのため、予め被測定装置1の測定に先立って(後からでもよい)、図1の点線で示しているように、ジッタ信号生成部23から出力された入力ジッタ信号C′をジッタ復調部24に直接入力して、振幅演算手段30によって各変調周波数毎の振幅値Vm′を求めて、これを記憶しておき、被測定装置1を接続したときに各変調周波数毎に得られる振幅値Vxに対して、次の演算を行なうことで、正確なジッタ伝達特性Gを求める。
【0051】
G(dB)=20・log(Vx/Vm′)
【0052】
測定制御部32は、信号発生器22に変調周波数fmを指定して伝達特性演算手段31によって算出されたジッタ伝達特性Gをその変調周波数fmに対応付けて内部のメモリに記憶するという処理を、所定の変調周波数範囲について順次行い、各変調周波数毎のジッタ伝達特性を取得し、その取得した特性データと、予め指定されている規格特性Rのデータとを特性表示手段33に出力する。
【0053】
特性表示手段33は、被測定装置1について得られたジッタ伝達特性Gと、規格特性Rとを受けて、表示器34の画面に、前記図4に示したように、両特性を同一座標面で識別可能に表示する。
【0054】
この表示から、被測定装置1のジッタ伝達特性Gが変調周波数範囲の全域で、規格特性Rより低ければ、被測定装置1のジッタ伝達特性は、規格を満足しているものと判断できる。
【0055】
また、被測定装置1のジッタ伝達特性Gの一部でも規格特性Rより高ければ、被測定装置1のジッタ伝達特性は、規格を満足していないと判断できる。
【0056】
なお、ジッタ伝達特性の評価は、上記のように表示画面上で測定者が行なうだけでなく、測定されたジッタ伝達特性Gと規格特性Rとの比較処理を各周波数毎に行い、規格を満たしているか否かを自動的に判別してその結果を表示等で出力する構成にしてもよい。
【0057】
このようにして得られたジッタ伝達特性は、上記したように、フーリエ変換処理によって算出されたポイント周波数fiだけの振幅成分に基づいているので、ITU−Tで規定されている精度を満足することができる。
【0058】
また、上記のようにディジタル演算処理で周波数fiの振幅値を求めているので、温度変化による誤差は原理的に生じず、再現性の高い測定が行なえる。
【0059】
なお、上記のフーリエ変換による振幅算出の精度は、取りこんだ信号の周期数が多い程、即ち、所定周波数fiが高い程精度が高くなる。
【0060】
また、各変調周波数について同一周期分のサンプル値を取り込めばよいとすれば、所定周波数fiが高くなるほど取り込むサンプル値数を少なくでき、測定時間を短縮できる。
【0061】
つまり、精度および測定時間の面で所定周波数fiが高い程有利となるが、このように所定周波数fiを高く(例えば1kHz)設定すると、変調信号Mの周波数領域(100Hz〜80MHz)に入ってしまい、変調周波数fmが所定周波数fiに一致する状態が生じ、ミキサ25の出力から差の周波数成分を正しく抽出することができなくなる。
【0062】
このような場合には、所定周波数fiを変調周波数fmと一致しない周波数(例えば400Hz等)に変更して、その変更した周波数成分の振幅値を求めればよい。
【0063】
図4に示すジッタ伝達測定測定装置20′は、上記点を考慮したものであり、信号発生器22を所定周波数fiの変更ができるように構成する、即ち、指定された変調周波数fmに対して局発信号Lの周波数を変更できるように構成するとともに、その信号発生器22の所定周波数fiの変更に連動して、振幅演算手段30がフーリエ変換で振幅を求める信号の周波数fiを変更できるように構成しておくことで、高い所定周波数fiにおける精度の高い測定や短時間の測定が行なえる。
【0064】
【発明の効果】
以上説明したように、本発明のジッタ伝達特性測定装置は、ジッタ復調部の出力信号と局発信号との混合成分から、入力ジッタ周波数に対応した所定周波数を含む帯域成分を低域通過フィルタにより抽出し、その出力信号をA/D変換して得られたサンプル値列に対して、フーリエ変換処理を行なうことにより所定周波数のジッタの振幅を求めて、ジッタ伝達特性を算出している。
【0065】
このため、温度補償等を行なうことなく、高精度で且つ高い再現性でジッタ伝達特性を測定することができる。
【0066】
また、信号発生器を所定周波数の変更ができるように構成するとともに、振幅演算手段による振幅値の算出対象の周波数を変更できるように構成しておくことで、より精度の高い測定が行なえる。
【図面の簡単な説明】
【図1】本発明の実施形態の構成を示す図
【図2】実施形態の要部の特性例を示す図
【図3】実施形態の要部の出力信号に含まれるジッタ成分を示す図
【図4】実施形態の変形例を示す図
【図5】ジッタ伝達特性の一例を示す図
【図6】被測定装置の出力信号に含まれるジッタ成分を示す図
【符号の説明】
1……被測定装置、20、20′……ジッタ伝達特性測定装置、21……クロック信号発生器、22……信号発生器、23……ジッタ信号生成部、24……ジッタ復調部、25……ミキサ、26……低域通過フィルタ、27……A/D変換器、30……振幅演算手段、31……伝達特性演算手段、32……測定制御部、33……特性表示手段、34……表示器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for measuring jitter transfer characteristics of devices used in various networks with high accuracy and high reproducibility.
[0002]
[Prior art]
Regarding jitter characteristics of devices connected to networks such as SDH, SONET, and OTN, there is a jitter transfer characteristic as a typical characteristic defined in international standards such as ITU-T and Telcordia.
[0003]
Jitter transfer characteristics indicate how much the input signal jitter is suppressed and output when a signal having a predetermined amount of jitter is input to the device under test. By comparing the jitter transfer characteristic G and the standard characteristic R obtained for the device under test as shown in FIG. The quality of the jitter transfer characteristic of the device under test can be determined.
[0004]
As shown in FIG. 5, the standard characteristic R of the jitter transfer characteristic is defined such that the value of the jitter transfer characteristic in the flat portion should not exceed +0.1 dB.
[0005]
For example, if the bit rate is 9953 Mbps (1 UI = 100 ps) and the input jitter Ja is 1.5 UI, the 0.1 dB corresponds to only 0.017 UI, that is, 1.7 ps.
[0006]
In addition, regarding the measurement accuracy in the jitter measuring apparatus, ITU-T O.D. 172 specifies 0.05 dB or less at the highest accuracy.
[0007]
However, when measuring the jitter transfer characteristics, the output signal of the device under test has other frequencies generated by the device under test itself in addition to the frequency component fm of the jitter added to the input signal, as shown in FIG. A lot of jitter components are also included, and measurement errors occur due to the influence of the jitter components, and it is difficult to obtain the measurement accuracy described above.
[0008]
Therefore, it is necessary to extract only the frequency component equal to the jitter added to the input signal by the filter as shown in FIG. 6 from the jitter component of the output signal of the device under test.
[0009]
Moreover, it is necessary to change the frequency of the jitter given to the input signal over a wide range (for example, 100 Hz to several tens of MHz).
[0010]
In order to satisfy such a requirement, the conventional jitter transfer characteristic measuring device applies the jitter component signal detected from the output signal of the device under test and the input signal as described in the following Patent Document 1. A local oscillator signal with a frequency higher than the jitter frequency is input to the mixer and mixed, and only the jitter component of the predetermined frequency is extracted from the output of the mixer by a narrowband bandpass filter to detect its amplitude. It was.
[0011]
According to this configuration, even when the jitter frequency is varied in a wide range, the output jitter amount corresponding to the jitter added to the input signal can be detected by the bandpass filter having a fixed frequency and a narrow band.
[0012]
[Patent Document 1]
JP-A-8-220163
[Problems to be solved by the invention]
As described above, in a jitter transfer characteristic measurement device that extracts a jitter component corresponding to input jitter using a bandpass filter, the measurement accuracy is determined by the characteristics of the bandpass filter. The narrower the bandpass filter, the higher the measurement accuracy. In order to satisfy the above-mentioned ITU-T standard, the bandwidth of the bandpass filter is required to be several Hz or less.
[0014]
However, such a narrow-band filter generally has to be configured by connecting filter elements in multiple stages, and its characteristics are likely to fluctuate due to changes in temperature, and the measurement accuracy and reproducibility are significantly reduced due to the fluctuations in characteristics. There is a problem.
[0015]
In order to solve this, in the above-described Patent Document 1, the relationship between the change in temperature and the change in the characteristics of the bandpass filter is stored in advance, and the frequency of the local oscillation signal is changed following the change in temperature. Although the relative deviation of the characteristics of the pass filter is relatively compensated, there is also a variation in the characteristics of the individual band pass filters, so a complicated work of obtaining the relationship between the temperature and the pass characteristics of each measuring device is required. Moreover, it is difficult to perform temperature compensation completely.
[0016]
An object of the present invention is to further improve this point and provide a jitter transfer characteristic measuring apparatus that does not require compensation for a temperature change or the like, has high reproducibility, and can perform highly accurate measurement.
[0017]
[Means for Solving the Problems]
In order to achieve the above object, a jitter transfer characteristic measuring apparatus according to claim 1 of the present invention comprises:
A clock signal generator (21) for generating a clock signal;
A signal generator (22) for outputting a sinusoidal modulation signal having a predetermined amplitude at a specified modulation frequency and outputting a local oscillation signal having a difference by a predetermined frequency with respect to the modulation signal;
A jitter signal generator (23) that phase-modulates the clock signal with the modulation signal and inputs the phase-modulated clock signal or a pattern signal synchronized with the clock signal as an input jitter signal to the device under test;
A jitter demodulator (24) for demodulating the jitter of the signal output from the device under test that has received the input jitter signal;
A mixer (25) for mixing the output signal of the jitter demodulator and the local signal;
A low-pass filter (26) for extracting a signal in a band including the predetermined frequency from the output signal of the mixer;
An A / D converter (27) for sampling the output signal of the low-pass filter, digitally converting the sampled value, and outputting it;
Amplitude calculation means (30) for performing a Fourier transform process on the sample value output from the A / D converter to obtain the amplitude value of the signal component of the predetermined frequency;
Transfer characteristic calculation means (31) for calculating jitter transfer characteristics of the device under test based on the amplitude value of the modulation signal and the amplitude value calculated by the amplitude calculation means ;
The signal generator is configured to change a frequency difference of the local oscillation signal with respect to the specified modulation frequency;
The amplitude calculation means changes the frequency of the signal component for which the amplitude is obtained by the Fourier transform process in conjunction with the change of the frequency difference.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the configuration of a jitter transfer characteristic measuring apparatus 20 according to an embodiment of the present invention.
[0020]
In FIG. 1, a clock signal generator 21 outputs a clock signal C having a frequency fc corresponding to the data transmission rate of the device under test 1.
[0021]
The signal generator 22 outputs a sine wave modulation signal M having a predetermined amplitude Vm and a local signal L having a difference from the modulation signal M by a predetermined frequency fi.
[0022]
The signal generator 22 outputs a modulation signal M at a modulation frequency fm designated by a measurement control unit 32 to be described later, and outputs a local oscillation signal L at a frequency fa of fm ± fi. The designated modulation frequency fm is a jitter frequency, for example, designated in the range of 100 Hz to 80 MHz, and the predetermined frequency fi is set to 60 Hz, for example.
[0023]
Further, the amplitude Vm of the modulation signal M output from the signal generator 22 is normally set in a range that does not exceed the jitter tolerance of the device under test 1, and depends on the modulation frequency fm along the frequency characteristics of the jitter tolerance. It may be changed or may be a constant value.
[0024]
The clock signal C and the modulation signal M are input to the jitter signal generator 23.
The jitter signal generation unit 23 includes a phase modulator, phase-modulates the clock signal C with the modulation signal M, and uses a signal C ′ to which an amount of jitter corresponding to the amplitude Vm of the modulation signal M is given as an input jitter signal. Generate and input to the device under test 1.
[0025]
Here, it is assumed that the device under test 1 is configured to perform waveform shaping processing or the like on the signal input from the clock input terminal and output the processed signal from the output terminal. The case where the input jitter signal C ′ is input to the input terminal will be described. However, when the device under test 1 has only an input / output terminal for data, the jitter signal generator 23 is phase-modulated. Alternatively, a pattern signal synchronized with the clock signal C ′ may be generated and input to the device under test 1 as an input jitter signal.
[0026]
Upon receiving the input jitter signal C ′, the device under measurement 1 outputs a signal C ″ generated internally based on the signal C ′.
[0027]
The jitter demodulator 24 includes a phase detector, demodulates the jitter component of the output signal C ″ of the device under test 1, and outputs the demodulated signal M ′ to the mixer 25.
[0028]
In this jitter demodulation, for example, a phase comparison between the reference clock signal C and the output signal C ″ of the device under test 1 is performed, a pulse signal having a width equal to the phase difference is generated, and a low-pass signal is generated from the pulse signal. It is obtained by removing the clock frequency component with a filter.
[0029]
However, in this demodulated signal M ′, as shown in FIG. 5, in addition to the frequency component of the modulated signal M given to the input jitter signal C ′, other frequencies generated by the device under test 1 itself are included. Contains ingredients.
[0030]
The mixer 25 mixes the demodulated signal M ′ with the local signal L output from the signal generator 22 and outputs the sum and difference frequency components.
[0031]
The low-pass filter 26 extracts a signal in a band including the predetermined frequency fi from the output of the mixer 25.
[0032]
That is, if the frequency component of the demodulated signal M ′ is only fm and the frequency fa of the local oscillation signal L is fm + fi, the frequency of the sum component output from the mixer 25 is
(Fm + fi) + fm = 2fm + fi
It becomes.
[0033]
The frequency of the difference component is
(Fm + fi) −fm = fi
It becomes.
[0034]
If the frequency fa of the local oscillation signal L is fm-fi, the frequency of the sum component is
(Fm−fi) + fm = 2fm−fi
The frequency of the difference component is
fm− (fm−fi) = fi
It becomes.
[0035]
Therefore, if the lower limit value fma of the modulation frequency fm is higher than the predetermined frequency fi, the cutoff frequency fb of the low-pass filter 26 is set between 2 fma-fi and fi as shown in FIG. As shown, a signal in a band including the predetermined frequency fi can be extracted.
[0036]
As will be described later, since this apparatus obtains the amplitude value of the signal component of the predetermined frequency fi by Fourier transform, the cutoff frequency fb of the low-pass filter 26 is set so that the component of the predetermined frequency fi can be passed without loss. If set, there is no problem, and it may be higher than 2 fma-fi, and particularly severe characteristics are not required.
[0037]
The output signal u of the low-pass filter 26 is sampled by the A / D converter 27 for a predetermined time with a predetermined period Ts (period of 1/2 fb or less), and the sample value is digitally converted and output to the amplitude calculation means 30. Is done.
[0038]
The amplitude calculation means 30 performs DFT (Discrete Fourier Transform) or FFT (Fast Fourier Transform) processing on the sample value U output in time series from the A / D converter 27, and a signal component of a predetermined frequency fi. Find the amplitude of.
[0039]
For example, in the case of DFT processing, if the sample value obtained in time series is U (p) (p = 0 to N−1), the frequency point k (= 0) obtained by dividing the frequency range of ± fb by N. ˜N−1) can be obtained by the following DFT calculation.
[0040]
X (k) = p ΣU ( p) exp (-j2πpk / N)
However the symbol p sigma represents the sum of up to p = 0~N-1.
[0041]
The above calculation is performed for the predetermined frequency fi, that is, by selecting the predetermined frequency fi so as to coincide with the frequency point and performing the calculation, the signal of the frequency fi is obtained from the signal component of each frequency shown in FIG. Only the component amplitude Vx can be determined.
[0042]
The amplitude value Vx obtained by the amplitude calculating means 30 is output to the transfer characteristic calculating means 31.
[0043]
The transfer characteristic calculation means 31 calculates the jitter transfer characteristic of the device under measurement 1 based on the amplitude value Vm of the modulation signal M and the amplitude value Vx calculated by the amplitude calculation means 30.
[0044]
That is, the jitter transfer characteristic is expressed by the following equation, where Ja is the input jitter amount (unit UI) and Jb is the output jitter amount.
[0045]
G (dB) = 20 · log (Jb / Ja)
[0046]
Here, the input jitter amount Ja is proportional to the amplitude value Vm of the modulation signal M, and the output jitter amount Jb is proportional to the amplitude value Vx calculated by the amplitude calculator 30.
[0047]
Therefore, the jitter transfer characteristic G can be obtained by performing the following calculation.
[0048]
G (dB) = 20 · log (Vx / Vm)
[0049]
In practice, however, the amplitude accuracy of the modulation signal M output from the signal generator 22, the phase modulation characteristic of the jitter signal generation unit 23, the phase detection characteristic of the jitter demodulation unit 24, the frequency characteristic of the mixer 25, etc. are affected. In the above theoretical calculation, accurate jitter transfer characteristics cannot be obtained.
[0050]
Therefore, prior to the measurement of the device under test 1 (or later), the input jitter signal C ′ output from the jitter signal generator 23 is sent to the jitter demodulator 24 as shown by the dotted line in FIG. Directly input, the amplitude value Vm ′ for each modulation frequency is obtained by the amplitude calculation means 30 and stored, and the amplitude value Vx obtained for each modulation frequency when the device under test 1 is connected is obtained. On the other hand, an accurate jitter transfer characteristic G is obtained by performing the following calculation.
[0051]
G (dB) = 20 · log (Vx / Vm ′)
[0052]
The measurement control unit 32 assigns the modulation frequency fm to the signal generator 22 and stores the jitter transfer characteristic G calculated by the transfer characteristic calculation means 31 in the internal memory in association with the modulation frequency fm. The processing is sequentially performed for a predetermined modulation frequency range, the jitter transfer characteristic for each modulation frequency is acquired, and the acquired characteristic data and data of the standard characteristic R designated in advance are output to the characteristic display means 33.
[0053]
The characteristic display means 33 receives the jitter transfer characteristic G and the standard characteristic R obtained for the device under test 1, and displays both characteristics on the same coordinate plane as shown in FIG. Is displayed in an identifiable manner.
[0054]
From this display, if the jitter transfer characteristic G of the device under measurement 1 is lower than the standard characteristic R over the entire modulation frequency range, it can be determined that the jitter transfer characteristic of the device under measurement 1 satisfies the standard.
[0055]
If even a part of the jitter transfer characteristic G of the device under test 1 is higher than the standard characteristic R, it can be determined that the jitter transfer characteristic of the device under test 1 does not satisfy the standard.
[0056]
Note that the jitter transfer characteristics are evaluated not only by the measurer on the display screen as described above, but also by comparing the measured jitter transfer characteristics G with the standard characteristics R for each frequency so as to satisfy the standards. It may be configured to automatically determine whether or not it is output and output the result by display or the like.
[0057]
Since the jitter transfer characteristic obtained in this way is based on the amplitude component of only the point frequency fi calculated by the Fourier transform process as described above, it satisfies the accuracy specified by ITU-T. Can do.
[0058]
In addition, since the amplitude value of the frequency fi is obtained by digital arithmetic processing as described above, an error due to a temperature change does not occur in principle, and measurement with high reproducibility can be performed.
[0059]
Note that the accuracy of amplitude calculation by the Fourier transform described above increases as the number of periods of the acquired signal increases, that is, as the predetermined frequency fi increases.
[0060]
Further, if it is sufficient to acquire sample values for the same period for each modulation frequency, the number of sample values to be acquired can be reduced as the predetermined frequency fi is increased, and the measurement time can be shortened.
[0061]
That is, the higher the predetermined frequency fi in terms of accuracy and measurement time, the more advantageous. However, when the predetermined frequency fi is set high (for example, 1 kHz) in this way, it enters the frequency region (100 Hz to 80 MHz) of the modulation signal M. Thus, a state occurs in which the modulation frequency fm coincides with the predetermined frequency fi, and the difference frequency component cannot be correctly extracted from the output of the mixer 25.
[0062]
In such a case, the predetermined frequency fi may be changed to a frequency that does not coincide with the modulation frequency fm (for example, 400 Hz), and the amplitude value of the changed frequency component may be obtained.
[0063]
The jitter transfer measurement / measurement apparatus 20 ′ shown in FIG. 4 takes the above-mentioned points into consideration, and configures the signal generator 22 so that the predetermined frequency fi can be changed, that is, with respect to the designated modulation frequency fm. It is configured so that the frequency of the local oscillation signal L can be changed, and in conjunction with the change of the predetermined frequency fi of the signal generator 22, the amplitude calculation means 30 can change the frequency fi of the signal for obtaining the amplitude by Fourier transform. With this configuration, it is possible to perform highly accurate measurement at a high predetermined frequency fi or a short-time measurement.
[0064]
【The invention's effect】
As described above, the jitter transfer characteristic measuring apparatus of the present invention uses a low-pass filter to obtain a band component including a predetermined frequency corresponding to the input jitter frequency from the mixed component of the output signal of the jitter demodulator and the local oscillation signal. The jitter transfer characteristic is calculated by obtaining the amplitude of jitter of a predetermined frequency by performing Fourier transform processing on the sample value sequence obtained by extracting and A / D converting the output signal.
[0065]
Therefore, the jitter transfer characteristic can be measured with high accuracy and high reproducibility without performing temperature compensation or the like.
[0066]
Further, by configuring the signal generator so that the predetermined frequency can be changed, and by configuring the signal generator so that the frequency of the amplitude value calculation target by the amplitude calculating means can be changed, more accurate measurement can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of an embodiment of the present invention. FIG. 2 is a diagram illustrating a characteristic example of a main part of the embodiment. FIG. 3 is a diagram illustrating a jitter component included in an output signal of the main part of the embodiment. FIG. 4 is a diagram showing a modification of the embodiment. FIG. 5 is a diagram showing an example of jitter transfer characteristics. FIG. 6 is a diagram showing jitter components included in the output signal of the device under test.
DESCRIPTION OF SYMBOLS 1 ... Device to be measured, 20, 20 '... Jitter transfer characteristic measuring device, 21 ... Clock signal generator, 22 ... Signal generator, 23 ... Jitter signal generator, 24 ... Jitter demodulator, 25 ...... Mixer, 26 ... Low-pass filter, 27 ... A / D converter, 30 ... Amplitude calculation means, 31 ... Transfer characteristic calculation means, 32 ... Measurement control section, 33 ... Characteristic display means, 34 …… Display

Claims (1)

クロック信号を発生するクロック信号発生器(21)と、
指定された変調周波数で所定振幅の正弦波の変調信号を出力するとともに該変調信号に対し所定周波数だけ差のある局発信号を出力する信号発生器(22)と、
前記クロック信号を前記変調信号によって位相変調し、該位相変調されたクロック信号または該クロック信号に同期したパターン信号を入力ジッタ信号として被測定装置に入力するジッタ信号生成部(23)と、
前記入力ジッタ信号を受けた被測定装置が出力する信号のジッタを復調するジッタ復調部(24)と、
前記ジッタ復調部の出力信号と前記局発信号とを混合するミキサ(25)と、
前記ミキサの出力信号から前記所定周波数を含む帯域の信号を抽出する低域通過フィルタ(26)と、
前記低域通過フィルタの出力信号をサンプリングし、該サンプル値をディジタル変換して出力するA/D変換器(27)と、
前記A/D変換器から出力されるサンプル値に対してフーリエ変換処理を行い、前記所定周波数の信号成分の振幅値を求める振幅演算手段(30)と、
前記変調信号の振幅値と前記振幅演算手段によって算出された振幅値とに基づいて前記被測定装置のジッタ伝達特性を算出する伝達特性演算手段(31)とを備え
前記信号発生器は、前記指定された変調周波数に対する前記局発信号の周波数差を変更できるように構成され、
前記振幅演算手段は、前記周波数差の変更に連動して前記フーリエ変換処理で振幅を求める信号成分の周波数を変更することを特徴とするジッタ伝達特性測定装置。
A clock signal generator (21) for generating a clock signal;
A signal generator (22) for outputting a sine wave modulation signal having a predetermined amplitude at a specified modulation frequency and outputting a local oscillation signal having a difference by a predetermined frequency with respect to the modulation signal;
A jitter signal generator (23) that phase-modulates the clock signal with the modulation signal and inputs the phase-modulated clock signal or a pattern signal synchronized with the clock signal as an input jitter signal to the device under test;
A jitter demodulator (24) for demodulating the jitter of the signal output from the device under test that has received the input jitter signal;
A mixer (25) for mixing the output signal of the jitter demodulator and the local signal;
A low-pass filter (26) for extracting a signal in a band including the predetermined frequency from the output signal of the mixer;
An A / D converter (27) that samples an output signal of the low-pass filter, digitally converts the sample value, and outputs the sample value;
Amplitude calculation means (30) for performing a Fourier transform process on the sample value output from the A / D converter to obtain the amplitude value of the signal component of the predetermined frequency;
Transfer characteristic calculation means (31) for calculating jitter transfer characteristics of the device under test based on the amplitude value of the modulation signal and the amplitude value calculated by the amplitude calculation means ;
The signal generator is configured to change a frequency difference of the local oscillation signal with respect to the designated modulation frequency;
The jitter transfer characteristic measuring apparatus , wherein the amplitude calculating means changes a frequency of a signal component for obtaining an amplitude by the Fourier transform process in conjunction with the change of the frequency difference .
JP2003195250A 2003-07-10 2003-07-10 Jitter transfer characteristic measuring device Expired - Fee Related JP3974880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003195250A JP3974880B2 (en) 2003-07-10 2003-07-10 Jitter transfer characteristic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003195250A JP3974880B2 (en) 2003-07-10 2003-07-10 Jitter transfer characteristic measuring device

Publications (2)

Publication Number Publication Date
JP2005030866A JP2005030866A (en) 2005-02-03
JP3974880B2 true JP3974880B2 (en) 2007-09-12

Family

ID=34206156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003195250A Expired - Fee Related JP3974880B2 (en) 2003-07-10 2003-07-10 Jitter transfer characteristic measuring device

Country Status (1)

Country Link
JP (1) JP3974880B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707104A (en) * 2012-03-07 2012-10-03 江西八达电子有限公司 Time mark standard power source

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8175828B2 (en) * 2009-01-18 2012-05-08 Advantest Corporation Evaluation apparatus, evaluation method, program, recording medium and electronic device
JP5256094B2 (en) * 2009-03-30 2013-08-07 アンリツ株式会社 Jitter measuring device
JP2011196718A (en) * 2010-03-17 2011-10-06 Anritsu Corp Device and method for testing jitter transfer characteristic
KR101856756B1 (en) * 2016-11-07 2018-05-10 한국표준과학연구원 Signal generator and measurement system including signal generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707104A (en) * 2012-03-07 2012-10-03 江西八达电子有限公司 Time mark standard power source

Also Published As

Publication number Publication date
JP2005030866A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
FI106748B (en) Method and apparatus for measuring the phase accuracy and amplitude profile of a uniform phase modulated signal
US8842771B2 (en) Amplitude flatness and phase linearity calibration for RF sources
EP2725726B1 (en) Method and apparatus for magnitude and phase response calibration of receivers
US9651646B2 (en) Phase noise correction system for discrete time signal processing
KR102169078B1 (en) Measuring method and measuring device for measuring broadband measurement signals
JP2016526150A5 (en)
CN107340427B (en) Measuring the amplitude phase response of a measurement instrument using binary phase shift keying test signals
JP2008232807A (en) Signal analyzer
JP3974880B2 (en) Jitter transfer characteristic measuring device
US6794857B2 (en) Apparatus and method for measuring a phase delay characteristic
JP3419342B2 (en) Measuring instrument
JP6756491B2 (en) Methods and Devices for Generating Normalized Phase Spectrum
US11184091B2 (en) Signal generation device, spectrum analyzing device and corresponding methods with correction parameter
JP3078305B2 (en) Harmonic order determination method
US8060045B2 (en) Method for compensating the non-linear distortions of high-frequency signals and device for carrying out said method
JPH08146062A (en) Phase jitter analyzer
JP2557118B2 (en) Timing jitter measurement method
JP2019158418A (en) Measuring system and measuring method
JP2009171240A (en) Jitter transfer characteristic measuring device
JP2018063118A (en) Phase fluctuation measurement device
JPH0771048B2 (en) Frequency shift amount measuring method, its apparatus, and receiving apparatus
RU2072522C1 (en) Method and device for measuring low signal-to-noise ratios
JP2005207846A (en) Jitter measuring device for digital communication
Barel et al. Validation of a microwave multitone signal with known phase
JP2001281278A (en) Wide-band level measuring instrument

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees