JP3974023B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3974023B2
JP3974023B2 JP2002338294A JP2002338294A JP3974023B2 JP 3974023 B2 JP3974023 B2 JP 3974023B2 JP 2002338294 A JP2002338294 A JP 2002338294A JP 2002338294 A JP2002338294 A JP 2002338294A JP 3974023 B2 JP3974023 B2 JP 3974023B2
Authority
JP
Japan
Prior art keywords
insulating layer
layer
dielectric constant
low dielectric
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002338294A
Other languages
Japanese (ja)
Other versions
JP2004088047A (en
Inventor
幸雄 瀧川
俊一 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002338294A priority Critical patent/JP3974023B2/en
Priority to TW092103537A priority patent/TW584916B/en
Priority to CNB031082289A priority patent/CN100477155C/en
Priority to US10/410,247 priority patent/US6693046B2/en
Publication of JP2004088047A publication Critical patent/JP2004088047A/en
Application granted granted Critical
Publication of JP3974023B2 publication Critical patent/JP3974023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3122Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76828Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76835Combinations of two or more different dielectric layers having a low dielectric constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/931Silicon carbide semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に関し、特に多層配線を有する半導体装置に関する。
【0002】
【従来の技術】
大規模集積回路は、益々集積度、動作速度が向上している。集積度向上と共に、集積回路を構成するトランジスタ等の半導体素子は小型化されている。小型化により、半導体素子の動作速度は向上する。
【0003】
半導体素子の微細化、集積度の向上と共に、大規模集積回路の配線は微細化されると共に多層化される。配線における信号の伝播速度は、配線抵抗と配線の寄生容量によりほぼ決定される。
【0004】
配線抵抗の低抵抗化は、配線の主材料をAlから、さらに低抵抗率のCuへ変更することで達成されている。配線材料をさらに低抵抗化することは、現実的には困難である。配線として銅配線を用いると、配線中のCuが層間絶縁膜中に拡散することを防止することが必要となる。銅拡散防止層として、主にSiN、SiC、SiCOが用いられる。銅拡散防止層は、一般的に撥水性が高い。
【0005】
半導体装置の高集積化により、配線間隔が狭くなると、同じ配線厚では配線間の寄生容量が増大してしまう。配線厚を薄くして、寄生容量を低減しようとすると、配線抵抗が上昇してしまう。配線容量を低減するためには、絶縁層として、いわゆるlow k 材料等の、より低誘電率の材料を用いることが最も有効である。
【0006】
半導体の高速動作を実現するために、酸化シリコンよりも低い比誘電率を有する低誘電率材料で層間絶縁層を形成する方法が数多く報告されている。微細配線を有する下層配線層は、特に配線容量の問題が大きいため、低誘電率材料で層間絶縁膜を形成することが検討されている。
【0007】
疎水性表面を有する銅拡散防止層の上に、低誘電率絶縁材料層を形成すると、密着性が低くなり易い。特に、塗布法で低誘電率絶縁層を銅拡散防止層の上に形成すると、密着性が低くなり易い。多層配線を形成すると、低誘電率絶縁層と疎水性下地層との間で界面剥がれが生じる。配線層数が増加すると、低誘電率絶縁層の剥がれの問題はさらに大きくなる。
【0008】
【特許文献】
特開2001−345317
【0009】
【発明が解決しようとする課題】
本発明の1つの目的は、低誘電率絶縁層を形成しても、疎水性下地層との間の剥がれを低減することのできる半導体装置の製造方法を提供することである。
【0010】
本発明の他の目的は、高性能で信頼性の高い、高集積度の半導体装置の製造方法を提供することである。
【0011】
【課題を解決するための手段】
本発明の1観点によれば、
(X)半導体基板上方にシリコンを含有する第1疎水性絶縁層を形成する工程と、
(Y)OH基を含むアルカリ性溶液又は酸性溶液を用いて、前記第1疎水性絶縁層の表面にシラノール基を形成する工程と、
(Z)前記シラノール基が形成された表面を有する第1疎水性絶縁層上に比誘電率が酸化シリコンの比誘電率より低い低誘電率絶縁層を形成する工程と、
を有する半導体装置の製造方法
が提供される。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の実施例を説明する。
図1(A)に示すように、シリコン基板10の表面に素子分離用トレンチを形成し、酸化シリコン等の絶縁物を埋め込んでシャロートレンチアイソレーション(STI)11を形成する。なお、必要に応じてSTIの形成の前又は前後にイオン注入を行ない、シリコン基板10表面に所望のウエル領域を形成する。STI11に囲まれた多数の活性領域が画定される。
【0013】
シリコン基板10の活性領域表面に、ゲート絶縁層14、多結晶シリコンゲート電極15、シリサイド電極16の積層からなる絶縁ゲート電極を作成する。絶縁ゲート電極の両側壁上には、酸化シリコン等のサイドウォールスペーサ17が形成される。なお、この絶縁ゲート電極構造をまとめてGで示す。ゲート電極Gの両側には、サイドウォールスペーサ17の作成前後に所望のイオン注入が行われ、エクステンション付のソース/ドレイン領域が形成される。nチャネルトランジスタとpチャネルトランジスタとを作り分けることにより、CMOSトランジスタ構造が形成される。
【0014】
MOSトランジスタ等の半導体素子形成後、化学気相堆積(CVD)によりホスホシリケートガラス(PSG、燐ガラス)層18を例えば基板温度600℃で厚さ約1.5μm成膜する。成膜されたPSG層18は、ゲート電極などの下地構造を反映した凹凸を有する。PSG層18の表面を化学機械研磨(CMP)により平坦化する。平坦化した表面上に、パッシベーション膜としてSiC膜19を、例えばNoveluss社より入手可能な登録商標ESL3を用い、厚さ約50nm、プラズマCVDにより成膜する。得られるSiC層は疎水性である。このSiC層19は、この上に形成される銅配線に対し、Cuの下方への拡散を防止する銅拡散防止機能も有する。
【0015】
SiC膜19の表面上に、レジストパターンPR1を形成する。レジストパターンPR1は、半導体素子の電極取り出し領域に開口を形成するための開口部を有する。レジストパターンPR1をエッチングマスクとし、SiC層19、PSG層18をエッチングして、接続孔を形成する。
【0016】
図1(B)に示すように、接続孔内壁を覆うように、バリアメタルとしてTiN、Ta等の金属層をスパッタリングにより堆積した後、CVDによりタングステン(W)層を成膜する。SiC膜19の上に堆積した不要の金属層をCMPにより除去する。このようにして、接続孔を埋め、SiC膜19の表面とほぼ面一の表面を有する導電性(コンタクト)プラグPが形成される。
【0017】
図1(C)に示すように、PSG層18、SiC膜19で構成され、Wの導電性プラグPを埋め込んだ絶縁層の表面にアルカリ性の弗化アンモニウム(NH4F)5%水溶液LQ1を滴下し、室温で約2分間接触させ、表面処理を施す。表面処理を施した後、半導体基板表面を水洗し、スピナー乾燥する。表面処理により、SiC層19表面は親水化する。
【0018】
図1(D)に示すように、SiC膜19表面上に、厚さ約150nmのいわゆるlow k materialである低誘電率膜LK1を例えばダウケミカル社より入手可能な登録商標SiLK−J150を用い、塗付によって形成する。低誘電率膜LK1は、塗布後ベーキングによって溶媒を蒸発させ、熱処理によって硬化処理を行なう。このようにして形成された低誘電率絶縁層LK1の上に、例えば酸化シリコン(SiO)のキャップ層20を、例えばCVDにより厚さ約100nm成膜する。
【0019】
キャップ層20表面上に、レジストパターンPR2を作成する。レジストパターンPR2は、第1配線層の配線パターンに相当する開口部を有する。レジストパターンPR2をエッチングマスクとし、キャップ層20、低誘電率絶縁層LK1をエッチングして、配線溝を形成する。その後、レジストパターンPR2は除去する。
【0020】
図2(E)に示すように、導電性プラグPの頭部を露出した配線用溝に、例えば厚さ約30nmのTaNで形成されたバリアメタル層BM及び厚さ約30nmのCu層で形成されたシードメタル層SMをスパッタリングにより形成する。
【0021】
図2(F)に示すように、シードメタル層SMの上に、銅配線層PMをメッキにより成膜する。その後、CMPを行い、キャップ層20表面上の不要の金属層を除去する。
【0022】
図2(G)に示すように、第1配線パターンW1を埋め込んだキャップ層20の表面上に例えば厚さ50nmのSiC層で形成された胴拡散防止層21を前述同様のプラズマCVDで形成する。銅拡散防止層21を成膜した後、銅拡散防止層21表面上に弗化アンモニウム5%水溶液LQ2を滴下し、室温で約2分間接触させ、表面処理を施す。その後、純水洗浄を行なって処理液を除去し、スピナ乾燥を行なう。疎水性SiC層表面が親水化される。
【0023】
図3(H)に示すように、表面処理を施したSiC膜21の表面上に、例えば厚さ約400nmの低誘電率絶縁層LK2を例えばダウケミカル社より入手可能な登録商標SiLK‐J350を用い、塗布法により成膜する。液体材料を塗布した後、ベーキング、加熱キュア処理を行うことにより低誘電率絶縁層LK2が形成される。低誘電率絶縁層LK2の表面上に、例えば厚さ約100nmのSiO層で形成されたキャップ層23、厚さ約50nmの窒化シリコン(SiN)層で形成されたハードマスク層24をCVDで成膜する。
【0024】
図3(I)に示すように、ハードマスク層24、キャプ層23、低誘電率絶縁層LK2、銅拡散防止層21内にデュアルダマシン配線29を埋め込む。例えば、レジストマスクを用いてハードマスク24に配線用トレンチを画定する開口を形成した後、レジストマスクを用いて銅拡散防止層21に達するビア孔を形成する。その後、ハードマスク層24をエッチングマスクとし、キャップ層23、低誘電率絶縁層LK2に配線用トレンチをエッチングする。さらに、ビア孔底に露出している銅拡散防止層21をエッチングすることにより、デュアルダマシン配線用凹部を完成する。
【0025】
次に、図2(F)を参照して説明した工程と同様に、バリアメタル層、シードメタル層、メッキ層を積層し、ハードマスク層24上の不要部をCMPにより除去することにより、第2配線層29を完成する。ハードマスク層24は、CMPにより消滅してもよい。
【0026】
図3(J)に示すように、第2配線層29を埋め込んだ第2層間絶縁膜上に、例えば厚さ50nmのSiC層で形成される銅拡散防止層31をプラズマCVDにより成膜する。SiC層31の表面に弗化アンモニウム5%水溶液を滴下し、室温で2分間接触させ、表面処理を行なう。疎水性SiC層表面が親水化される。
【0027】
図4(K)に示すように、表面処理を行ったSiC層31の上に、登録商標SiLK−J350を用い、前述同様の工程により厚さ約450nmの低誘電率絶縁層LK3を塗布法により成膜する。さらに、低誘電率絶縁層LK3の表面上に、厚さ約100nmのSiO層で形成されたキャップ層33、厚さ約50nmのSiN層で形成されたハードマスク層34を成膜する。前述同様の工程により、第3配線層をハードマスク層34、キャップ層33、低誘電率絶縁層LK3、銅拡散防止層31を貫通して形成する。
【0028】
同様の工程を繰り返すことにより、例えば5層の配線層を形成する。
図4(L)は、5層配線層の構成例を示す。第3層間絶縁膜に第3配線層39が埋め込まれ、その上に銅拡散防止層41、低誘電率絶縁層LK4、キャップ層43、ハードマスク層44が積層され、第4配線層49が埋め込まれる。第4配線層の上に、さらに銅拡散防止層51、低誘電率絶縁層LK5、キャップ層53、ハードマスク層54が成膜され、第5配線層59が埋め込まれる。第5配線層59を覆って、例えばSiC層で形成されるキャップ層60が成膜される。さらに、SiO2膜を形成して層間膜とし、アルミニウムパッドを形成した。
【0029】
このような構成を有する多層配線において、2層目配線層の容量測定を行った。ピッチ0.24μmの櫛歯状配線を用い、配線全長30cmのサンプルを用いた。得られた配線容量は、約180fF/mmであった。又、400℃、30分間の熱処理を5回繰り返した結果、膜剥がれは全く見られなかった。
【0030】
SiC層表面の表面処理を行わないで形成した同様の多層配線を有する半導体装置においては、同様の熱サイクル試験を行なった結果、SiC銅拡散防止層と、SiLK低誘電率絶縁層との界面において剥がれが生じた。この結果から、銅拡散防止層表面を表面処理する効果が明らかとなった。
【0031】
上述の表面処理により、SiC層に対する水の接触角がどのように変化するかを測定した。処理前のSiC層に対する水の接触角は48度であった。弗化アンモニウム5%水溶液で、室温、2分間の表面処理を行なうと、接触角は33度になった。
【0032】
上記実施例においては、処理液として弗化アンモニウム5%水溶液を用いた。処理液はこれに限らない。上述の実施例において、処理液として弗化アンモニウムに代え、第1リン酸アンモニウム30%水溶液を用いた。処理は室温で2分間と前述の実施例同様とした。この場合も、400℃30分間の熱処理を5回繰り返しても膜剥がれは生じなかった。
【0033】
SiC層に対する水の接触角の変化を測定した。処理前の接触角は上述のように48度である。第1リン酸アンモニウム30%水溶液で、室温2分間の表面処理を行なうと、接触角は36度となった。親水化が明らかである。
【0034】
なお、これらの結果は以下のように考えることができるであろう。
図5(A)に示すように、SiC層21(31、41、51)表面は、SiHで終端していると考えられる。このため、SiC層表面は疎水性となっている。SiC層21表面に形成する低誘電率絶縁層の濡れ性が阻害され、密着性が低下すると考えられる。
【0035】
図5(B)に示すように、SiC層21表面を水分を含むアルカリ溶液で表面処理すると、SiH基がSiOH基に変換される。HがOHに置換されたSiC層表面は、親水性となる。
【0036】
図5(C)に示すように、このように表面処理されたSiC層21の表面に有機系低誘電率絶縁層を形成すると、OH基と、絶縁層中のアリルエーテルR−O−C−C=CのC、シロキサン結合Si−O−SiのO、フェニルエーテルR‐O‐R'のO、R‐Hの水素等とが、水素結合又は脱水縮合反応を起こし、低誘電率絶縁層LKとSiC層21とは密着性を向上して成膜される。
【0037】
アルカリ性水溶液として、リン酸アンモニウム、弗化アンモニウム、硫酸アンモニウム、1.4‐ナフトハイドロキノン−2−スルホン酸アンモニウム、硝酸アンモニウム、酢酸アンモニウム、硝酸カルシウムアンモニウム、クエン酸鉄アンモニウム等と純水との混合の水溶液が挙げられる。
【0038】
表面のSiH基をSiOH基に変換するには、アンモニウム水溶液に限らず、OH基を有するアルカリ溶液の処理を行なえば有効であろう。その後に水洗を行い処理液は完全に除去するとすれば、種々のアルカリ溶液を用いることができる。Na等のアルカリ金属を含むアルカリ溶液を用いてもよいであろう。
【0039】
低誘電率絶縁層を形成するための液体材料には、密着性促進剤を含むものがある。密着性促進剤としては、(RO)3SiCH=CH2,(RO)3SiCCH,SiCH2CH=CH2,Si−CH2CCHなど不飽和結合を有するSi化合物が用いられる。これらの材料を用いることにより密着性を高めることが可能である。さらに、これらの密着性促進剤を下地上に塗布した後、低融点絶縁層を塗布してもよい。
【0040】
銅拡散防止層としてSiC層を用いる場合を説明したが、銅拡散防止層としてSiN層、SiOC層を用いた場合にも密着性の向上が期待できる。SiOC層に前述の表面処理を行った時の接触角の変化を測定した。表面処理前のSiOC層に対する水の接触角は98度であった。弗化アンモニウム5%水溶液で、室温、2分間の表面処理を行うと接触角は65度となった。第1リン酸アンモニウム30%水溶液で、室温、2分間の表面処理を行うと接触角は80度となった。親水化したことが明らかである。
【0041】
親水化により低誘電率絶縁材料中のワニス中に含まれるL−ブチロラクトン等との漏れ性も向上する。結果、低誘電率絶縁層の密着性向上に有利となる。
親水化をOH基を有する酸性水溶液で行なうこともできる。酸性水溶液として、酢酸、シュウ酸、クエン酸、オキサロ酸、コハク酸、フマル酸、酒石酸、ギ酸、乳酸等を用いることができよう。SiC層のSiH基を直接酸化してSiOHにすることで親水化がなされる。酢酸3%水溶液で、室温、2分間、SiC層の表面処理を行なうと、接触角は33度となった。
【0042】
薬液処理の際、必要に応じて液を加温してもよい。加温によりOH化を短時間で行なうことができる。温度は、30〜95℃、望ましくは35〜50℃である。フッ化アンモニウム水溶液の場合、室温5分の処理と、40℃に加温し、2分の処理とで同等の密着力向上が得られる。
【0043】
SiH基を有する疎水性表面を親水性表面に変換することにより、膜剥がれが防止され、密着性が向上するものと考えられる。親水性表面を形成するためには、疎水性表面に酸化層を形成してもよいと考えられる。上述の溶液による処理に変え、酸素を含むプラズマ中に疎水性表面を曝し、表面に酸化層を形成しても同様の効果を期待できよう。この場合、図5(B)におけるLQを酸素を含む酸化性ガスのプラズマとすればよいであろう。
【0044】
なお、低誘電率絶縁層として登録商標SiLKの有機絶縁層を用いる場合を説明したが、同様の有機系絶縁層である登録商標FLARを用いても同様の結果が得られるであろう。又、水素シルセスキオキサン、メチルシルセスキオキサン等を用いたポーラスシリカを用いることもできる。無機メチル基等を有するポーラスシリカ塗布材料を用いた絶縁層の場合にも、同様の表面処理により密着性の向上が期待できる。
【0045】
CVDで形成するシリコンオキシカーバイド(SiOC)も酸化シリコンの比誘電率約4.1より低い、例えば3前後の比誘電率を実現できる。Novellus 社の登録商標CORAL,AMAT社の登録商標Black Diamond、Novellus社の登録商標CORALの製造条件を変更し、ソースガスのテトラメチルシクロテトラシロキサン(TOMCOTS)の流量を1/5、酸素流量を1/5以下、電力を1/2等として形成したTORAL(特願平2002−315900の発明の実施の形態の欄、及び図面参照)などを用い、CVDで形成した層間絶縁膜を形成することができる。
【0046】
例えば、10層以上の多層配線構造において、第4層以下の下層配線層の層間絶縁膜にはSiLK,FLAR等を用い、第5〜8層の中層配線の層間絶縁層としてシリコンオキシカーバイドを用いて良好な特性を得ることができる。
【0047】
CVDで堆積するシリコンオキシカーバイドも疎水性となりやすく、SiN層、SiC層などの(銅拡散防止用)下地層との密着性が低くなり易い。下地層表面を親水化し、その上にシリコンオキシカーバイド層を形成することにより、SiC層、SiN層等の表面の水酸基と低誘電率膜のSiH基等が反応して密着性が向上する。
【0048】
以上、実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば種々の変更、改良、組合わせが可能なことは、当業者にとって自明であろう。
【0049】
以下、本発明の特徴を付記する。
(付記1)(1) (X)半導体基板上方に第1疎水性絶縁層を形成する工程と、
(Y)前記第1疎水性絶縁層の表面を親水化する工程と、
(Z)前記親水化された表面を有する第1疎水性絶縁層上に比誘電率が酸化シリコンの比誘電率より低い低誘電率絶縁層を形成する工程と、
を有する半導体装置の製造方法。
【0050】
(付記2)(2) 前記工程(X)の前に、
(a)多数の半導体素子を形成した半導体基板の上方に第1層間絶縁膜を形成する工程と;
(b)前記第1層間絶縁膜に第1銅配線を埋め込む工程と;
を有し、
前記工程(X)が、前記第1銅配線を埋め込んだ第1層間絶縁膜上に、第1疎水性絶縁層を形成し、
前記工程(Z)が、前記第1疎水性絶縁層上に、第2層間絶縁膜を形成する、付記1記載の半導体装置の製造方法。
【0051】
(付記3)(3) さらに、前記工程(Z)の後に、
(c)前記第2層間絶縁膜に第2銅配線を埋め込む工程と;
(d)前記第2銅配線を埋め込んだ第2層間絶縁膜上に、第2疎水性絶縁層を形成する工程と;
(e)前記第2疎水性絶縁層表面を水分を含むアルカリ性溶液で処理し、表面を親水性にする工程と;
を含む付記2記載の半導体装置の製造方法。
【0052】
(付記4) 前記第1、第2層間絶縁膜が、さらに、低誘電率絶縁層の上に酸化物ハードマスク層を有する付記2または3記載の半導体装置の製造方法。
(付記5)(4) 前記第1疎水性絶縁層が、シリコンカーバイド、シリコンナイトライド、シリコンオキシカーバイド、又はこれらの組合せのいずれかで形成される付記1〜3のいずれか1項記載の半導体装置の製造方法。
【0053】
(付記6)(5) 前記工程(Y)が、前記第1疎水性絶縁層表面をOH基を含む、アルカリ性溶液又は酸性溶液で処理し、表面を親水化する付記1〜5のいずれか1項記載の半導体装置の製造方法。
【0054】
(付記7) 前記工程(Y)が、前記第1疎水性絶縁層表面をOH基を含むアルカリ性溶液で処理する工程であり、アルカリ性溶液がリン酸アンモニウム、弗化アンモニウム、硫酸アンモニウム、1.4‐ナフトハイドロキノン−2−スルホン酸アンモニウム、硝酸アンモニウム、酢酸アンモニウム、硝酸カルシウムアンモニウム、クエン酸鉄アンモニウムの少なくとも1種水溶液である付記6記載の半導体装置の製造方法。
【0055】
(付記8) 前記工程(Y)が、前記第1疎水性絶縁層表面をOH基を含む酸性溶液で処理する工程であり、酸性溶液が酢酸、シュウ酸、クエン酸、オキサロ酸、コハク酸、フマル酸、酒石酸、ギ酸、乳酸の少なくとも1種の水溶液である付記6記載の半導体装置の製造方法。
【0056】
(付記9) 前記工程(Y)が、処理液を加温して行なう付記6〜8のいずれか1項記載の半導体装置の製造方法。
(付記10) 前記工程(Y)が、前記疎水性絶縁層表面上に処理液を滴下して行う付記6〜9のいずれか1項記載の半導体装置の製造方法。
【0057】
(付記11) 前記工程(Y)が、前記第1疎水性絶縁層を酸化性ガスのプラズマに曝すことを含む付記1〜5のいずれか1項記載の半導体装置の製造方法。
【0058】
(付記12) 前記工程(X)がプラズマCVDで第1疎水性絶縁層を形成する付記1〜11のいずれか1項記載の半導体装置の製造方法。
(付記13)(6) 前記工程(Z)が、密着性促進剤を含む塗布材料を塗布することを含む付記1〜12のいずれか1項記載の半導体装置の製造方法。
【0059】
(付記14)(7) 前記工程(Z)が、密着性促進剤を塗布し、その上に低誘電率絶縁層塗布材料を塗布することを含む付記1〜12のいずれか1項記載の半導体装置の製造方法。
【0060】
(付記15)(8) 前記低誘電率絶縁層が、ポーラスシリカ層である付記1〜14のいずれか1項記載の半導体装置の製造方法。
(付記16)(9) 前記工程(Z)が、低誘電率絶縁層をCVDで成膜する付記1〜12のいずれか1項記載の半導体装置の製造方法。
【0061】
(付記17) 前記低誘電率絶縁層がシリコンオキシカーバイド層である付記16記載の半導体装置の製造方法。
(付記18)(10) 前記低誘電率絶縁層が、有機材料層である付記1〜17のいずれか1項記載の半導体装置の製造方法。
【0062】
(付記19) 前記工程(b)が第1銅配線をダマシンプロセスで形成する付記2記載の半導体装置の製造方法。
(付記20) 前記工程(c)が第2銅配線をダマシンプロセスで形成する付記3記載の半導体装置の製造方法。
【0063】
【発明の効果】
以上説明したように、本発明によれば、多層配線構造における密着性が向上し、剥がれを低減することができる。
【図面の簡単な説明】
【図1】 本発明の実施例による半導体装置の製造方法を説明するための半導体基板の断面図である。
【図2】 本発明の実施例による半導体装置の製造方法を説明するための半導体基板の断面図である。
【図3】 本発明の実施例による半導体装置の製造方法を説明するための半導体基板の断面図である。
【図4】 本発明の実施例による半導体装置の製造方法を説明するための半導体基板の断面図である。
【図5】 実施例の効果を類推する原理図である。
【符号の説明】
10 シリコン基板
11 STI(シャロートレンチアイソレーション)
G ゲート電極
PR ホトレジストパターン
18 PSG層
19 SiCパッシベーション層
21、31、41、51 銅拡散防止(SiC)層
23、33、43、53 キャップ層
24、34、44、54 ハードマスク(SiN)層
29、39、49、59 配線層
P 導電性プラグ
BM バリアメタル層
SM シードメタル層
PM メッキメタル層
LQ アルカリ溶液(酸素を含むプラズマ)
LK 低誘電率絶縁層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a semiconductor device having a multilayer wiring.
[0002]
[Prior art]
Large scale integrated circuits are increasingly being integrated and operating faster. Along with the improvement in the degree of integration, semiconductor elements such as transistors constituting the integrated circuit are miniaturized. The operating speed of the semiconductor element is improved by downsizing.
[0003]
As semiconductor elements are miniaturized and the degree of integration is improved, the wiring of a large scale integrated circuit is miniaturized and multilayered. The signal propagation speed in the wiring is almost determined by the wiring resistance and the parasitic capacitance of the wiring.
[0004]
The reduction in wiring resistance is achieved by changing the main material of the wiring from Al to Cu having a lower resistivity. It is actually difficult to further reduce the resistance of the wiring material. When copper wiring is used as the wiring, it is necessary to prevent Cu in the wiring from diffusing into the interlayer insulating film. As the copper diffusion preventing layer, SiN, SiC, and SiCO are mainly used. The copper diffusion preventing layer generally has high water repellency.
[0005]
When the wiring interval becomes narrow due to high integration of the semiconductor device, the parasitic capacitance between the wirings increases with the same wiring thickness. If the wiring thickness is reduced to reduce the parasitic capacitance, the wiring resistance increases. In order to reduce the wiring capacitance, it is most effective to use a material having a lower dielectric constant such as a so-called low k material as the insulating layer.
[0006]
In order to realize high-speed operation of semiconductors, many methods for forming an interlayer insulating layer with a low dielectric constant material having a lower relative dielectric constant than silicon oxide have been reported. Since the lower wiring layer having fine wiring has a particularly large wiring capacity problem, it has been studied to form an interlayer insulating film with a low dielectric constant material.
[0007]
When a low dielectric constant insulating material layer is formed on a copper diffusion preventing layer having a hydrophobic surface, the adhesion tends to be lowered. In particular, when a low dielectric constant insulating layer is formed on a copper diffusion prevention layer by a coating method, the adhesion tends to be lowered. When multilayer wiring is formed, interface peeling occurs between the low dielectric constant insulating layer and the hydrophobic underlayer. As the number of wiring layers increases, the problem of peeling off the low dielectric constant insulating layer becomes even greater.
[0008]
[Patent Literature]
JP 2001-345317 A
[0009]
[Problems to be solved by the invention]
One object of the present invention is to provide a method of manufacturing a semiconductor device that can reduce peeling between the insulating layer and the hydrophobic underlayer even when a low dielectric constant insulating layer is formed.
[0010]
Another object of the present invention is to provide a method for manufacturing a highly integrated semiconductor device with high performance and high reliability.
[0011]
[Means for Solving the Problems]
According to one aspect of the present invention,
(X) forming a first hydrophobic insulating layer containing silicon above the semiconductor substrate;
(Y) forming a silanol group on the surface of the first hydrophobic insulating layer using an alkaline solution or an acidic solution containing an OH group ;
(Z) forming a low dielectric constant insulating layer having a relative dielectric constant lower than that of silicon oxide on the first hydrophobic insulating layer having a surface on which the silanol group is formed ;
A method of manufacturing a semiconductor device having the above is provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1A, an element isolation trench is formed on the surface of a silicon substrate 10 and an insulator such as silicon oxide is buried to form a shallow trench isolation (STI) 11. If necessary, ion implantation is performed before or after the formation of the STI to form a desired well region on the surface of the silicon substrate 10. A number of active regions surrounded by the STI 11 are defined.
[0013]
On the surface of the active region of the silicon substrate 10, an insulated gate electrode composed of a stacked layer of a gate insulating layer 14, a polycrystalline silicon gate electrode 15, and a silicide electrode 16 is formed. Side wall spacers 17 such as silicon oxide are formed on both side walls of the insulated gate electrode. This insulated gate electrode structure is collectively indicated by G. On both sides of the gate electrode G, desired ion implantation is performed before and after the formation of the sidewall spacers 17 to form source / drain regions with extensions. A CMOS transistor structure is formed by separately forming an n-channel transistor and a p-channel transistor.
[0014]
After the formation of a semiconductor element such as a MOS transistor, a phosphosilicate glass (PSG, phosphorous glass) layer 18 is formed at a substrate temperature of 600 ° C. and a thickness of about 1.5 μm by chemical vapor deposition (CVD). The formed PSG layer 18 has irregularities reflecting a base structure such as a gate electrode. The surface of the PSG layer 18 is planarized by chemical mechanical polishing (CMP). On the planarized surface, a SiC film 19 is formed as a passivation film by plasma CVD using a registered trademark ESL3 available from Novellus, for example, with a thickness of about 50 nm. The resulting SiC layer is hydrophobic. The SiC layer 19 also has a copper diffusion preventing function for preventing Cu from diffusing downward with respect to the copper wiring formed thereon.
[0015]
A resist pattern PR <b> 1 is formed on the surface of SiC film 19. The resist pattern PR1 has an opening for forming an opening in the electrode extraction region of the semiconductor element. By using resist pattern PR1 as an etching mask, SiC layer 19 and PSG layer 18 are etched to form connection holes.
[0016]
As shown in FIG. 1B, after depositing a metal layer such as TiN or Ta as a barrier metal so as to cover the inner wall of the connection hole, a tungsten (W) layer is formed by CVD. An unnecessary metal layer deposited on the SiC film 19 is removed by CMP. In this manner, a conductive (contact) plug P that fills the connection hole and has a surface that is substantially flush with the surface of the SiC film 19 is formed.
[0017]
As shown in FIG. 1C, an alkaline ammonium fluoride (NH 4 F) 5% aqueous solution LQ1 is formed on the surface of an insulating layer composed of a PSG layer 18 and an SiC film 19 and embedded with a conductive plug P of W. The solution is dropped and contacted at room temperature for about 2 minutes to perform surface treatment. After the surface treatment, the surface of the semiconductor substrate is washed with water and spinner dried. The surface treatment makes the surface of the SiC layer 19 hydrophilic.
[0018]
As shown in FIG. 1D, on the surface of the SiC film 19, a low dielectric constant film LK1, which is a so-called low k material having a thickness of about 150 nm, is used, for example, a registered trademark SiLK-J150 available from Dow Chemical Co., Ltd. Form by painting. The low dielectric constant film LK1 is hardened by heat treatment by evaporating the solvent by baking after coating. On the low dielectric constant insulating layer LK1 thus formed, for example, a silicon oxide (SiO) cap layer 20 is formed to a thickness of about 100 nm by CVD, for example.
[0019]
On the surface of the cap layer 20, a resist pattern PR2 is created. The resist pattern PR2 has an opening corresponding to the wiring pattern of the first wiring layer. Using the resist pattern PR2 as an etching mask, the cap layer 20 and the low dielectric constant insulating layer LK1 are etched to form a wiring groove. Thereafter, the resist pattern PR2 is removed.
[0020]
As shown in FIG. 2 (E), in the wiring groove exposing the head of the conductive plug P, for example, a barrier metal layer BM made of TaN having a thickness of about 30 nm and a Cu layer having a thickness of about 30 nm are formed. The seed metal layer SM thus formed is formed by sputtering.
[0021]
As shown in FIG. 2F, a copper wiring layer PM is formed on the seed metal layer SM by plating. Thereafter, CMP is performed to remove an unnecessary metal layer on the surface of the cap layer 20.
[0022]
As shown in FIG. 2G, on the surface of the cap layer 20 in which the first wiring pattern W1 is embedded, a cylinder diffusion prevention layer 21 formed of, for example, a SiC layer having a thickness of 50 nm is formed by plasma CVD similar to the above. . After the copper diffusion prevention layer 21 is formed, a 5% ammonium fluoride aqueous solution LQ2 is dropped on the surface of the copper diffusion prevention layer 21 and contacted at room temperature for about 2 minutes to perform surface treatment. Thereafter, pure water cleaning is performed to remove the treatment liquid, and spinner drying is performed. The surface of the hydrophobic SiC layer is hydrophilized.
[0023]
As shown in FIG. 3H, on the surface of the surface-treated SiC film 21, a low dielectric constant insulating layer LK2 having a thickness of about 400 nm, for example, is registered trademark SiLK-J350 available from Dow Chemical Co., Ltd. The film is formed by a coating method. After applying the liquid material, the low dielectric constant insulating layer LK2 is formed by performing baking and heat curing treatment. On the surface of the low dielectric constant insulating layer LK2, for example, a cap layer 23 formed of a SiO layer having a thickness of about 100 nm and a hard mask layer 24 formed of a silicon nitride (SiN) layer having a thickness of about 50 nm are formed by CVD. Film.
[0024]
As shown in FIG. 3I, a dual damascene wiring 29 is embedded in the hard mask layer 24, the cap layer 23, the low dielectric constant insulating layer LK 2, and the copper diffusion prevention layer 21. For example, an opening for defining a wiring trench is formed in the hard mask 24 using a resist mask, and then a via hole reaching the copper diffusion preventing layer 21 is formed using the resist mask. Thereafter, using the hard mask layer 24 as an etching mask, the wiring trench is etched in the cap layer 23 and the low dielectric constant insulating layer LK2. Further, by etching the copper diffusion prevention layer 21 exposed at the bottom of the via hole, a dual damascene wiring recess is completed.
[0025]
Next, similarly to the process described with reference to FIG. 2F, a barrier metal layer, a seed metal layer, and a plating layer are stacked, and unnecessary portions on the hard mask layer 24 are removed by CMP, thereby Two wiring layers 29 are completed. The hard mask layer 24 may disappear by CMP.
[0026]
As shown in FIG. 3J, a copper diffusion prevention layer 31 formed of, for example, a 50 nm-thick SiC layer is formed by plasma CVD on the second interlayer insulating film in which the second wiring layer 29 is embedded. A surface treatment is performed by dropping a 5% aqueous solution of ammonium fluoride onto the surface of the SiC layer 31 and bringing it into contact at room temperature for 2 minutes. The surface of the hydrophobic SiC layer is hydrophilized.
[0027]
As shown in FIG. 4K, a low dielectric constant insulating layer LK3 having a thickness of about 450 nm is formed on the SiC layer 31 subjected to the surface treatment by a coating method using a registered trademark SiLK-J350 by the same process as described above. Form a film. Further, a cap layer 33 formed of a SiO layer having a thickness of about 100 nm and a hard mask layer 34 formed of a SiN layer having a thickness of about 50 nm are formed on the surface of the low dielectric constant insulating layer LK3. The third wiring layer is formed through the hard mask layer 34, the cap layer 33, the low dielectric constant insulating layer LK3, and the copper diffusion preventing layer 31 by the same process as described above.
[0028]
By repeating the same process, for example, five wiring layers are formed.
FIG. 4L illustrates a configuration example of a five-layer wiring layer. A third wiring layer 39 is embedded in the third interlayer insulating film, a copper diffusion prevention layer 41, a low dielectric constant insulating layer LK4, a cap layer 43, and a hard mask layer 44 are stacked thereon, and a fourth wiring layer 49 is embedded. It is. A copper diffusion prevention layer 51, a low dielectric constant insulating layer LK5, a cap layer 53, and a hard mask layer 54 are further formed on the fourth wiring layer, and a fifth wiring layer 59 is embedded. A cap layer 60 made of, for example, a SiC layer is formed to cover the fifth wiring layer 59. Further, an SiO 2 film was formed as an interlayer film, and an aluminum pad was formed.
[0029]
In the multilayer wiring having such a configuration, the capacitance of the second wiring layer was measured. A comb-like wiring with a pitch of 0.24 μm was used, and a sample with a total wiring length of 30 cm was used. The obtained wiring capacity was about 180 fF / mm. In addition, as a result of repeating the heat treatment at 400 ° C. for 30 minutes five times, no film peeling was observed.
[0030]
In a semiconductor device having a similar multilayer wiring formed without surface treatment of the SiC layer surface, the same thermal cycle test was conducted. As a result, at the interface between the SiC copper diffusion prevention layer and the SiLK low dielectric constant insulating layer Peeling occurred. From this result, the effect which surface-treats the copper diffusion prevention layer surface became clear.
[0031]
It was measured how the contact angle of water with respect to the SiC layer was changed by the surface treatment described above. The contact angle of water with the SiC layer before treatment was 48 degrees. When surface treatment was performed at room temperature for 2 minutes with a 5% aqueous solution of ammonium fluoride, the contact angle became 33 degrees.
[0032]
In the above embodiment, a 5% aqueous solution of ammonium fluoride was used as the treatment liquid. The treatment liquid is not limited to this. In the above-described embodiment, a 30% aqueous solution of first ammonium phosphate was used as the treatment liquid instead of ammonium fluoride. The treatment was performed at room temperature for 2 minutes, which was the same as in the previous example. Also in this case, film peeling did not occur even when the heat treatment at 400 ° C. for 30 minutes was repeated 5 times.
[0033]
The change in the contact angle of water with the SiC layer was measured. The contact angle before processing is 48 degrees as described above. When surface treatment was performed for 2 minutes at room temperature with a 30% aqueous solution of primary ammonium phosphate, the contact angle was 36 degrees. Hydrophilization is evident.
[0034]
These results can be considered as follows.
As shown in FIG. 5A, the surface of the SiC layer 21 (31, 41, 51) is considered to be terminated with SiH. For this reason, the SiC layer surface is hydrophobic. It is considered that the wettability of the low dielectric constant insulating layer formed on the surface of the SiC layer 21 is hindered and the adhesion is lowered.
[0035]
As shown in FIG. 5B, when the surface of the SiC layer 21 is surface-treated with an alkaline solution containing moisture, SiH groups are converted into SiOH groups. The SiC layer surface in which H is replaced with OH becomes hydrophilic.
[0036]
As shown in FIG. 5C, when an organic low dielectric constant insulating layer is formed on the surface of the surface-treated SiC layer 21, OH groups and allyl ether R—O—C— in the insulating layer are formed. C = C, siloxane-bonded Si—O—Si O, phenyl ether R—O—R ′ O, R—H hydrogen, etc., cause hydrogen bonding or dehydration condensation reaction, resulting in a low dielectric constant insulating layer The LK and the SiC layer 21 are formed with improved adhesion.
[0037]
As an alkaline aqueous solution, a mixed aqueous solution of ammonium phosphate, ammonium fluoride, ammonium sulfate, ammonium 1.4-naphthohydroquinone-2-sulfonate, ammonium nitrate, ammonium acetate, calcium ammonium nitrate, ammonium iron citrate, etc. and pure water is used. Can be mentioned.
[0038]
In order to convert the SiH group on the surface into the SiOH group, it is effective to treat not only an aqueous ammonium solution but also an alkaline solution having an OH group. If it is then washed with water to completely remove the treatment liquid, various alkaline solutions can be used. An alkaline solution containing an alkali metal such as Na may be used.
[0039]
Some liquid materials for forming the low dielectric constant insulating layer include an adhesion promoter. The adhesion promoter, (RO) 3 SiCH = CH 2, (RO) 3 SiCCH, SiCH 2 CH = CH 2, SiCH Si compound having 2 CCH and unsaturated bond is used. Adhesion can be improved by using these materials. Further, after applying these adhesion promoters on the base, a low melting point insulating layer may be applied.
[0040]
Although the case where the SiC layer is used as the copper diffusion preventing layer has been described, the improvement in adhesion can be expected even when the SiN layer and the SiOC layer are used as the copper diffusion preventing layer. The change in the contact angle when the above-mentioned surface treatment was performed on the SiOC layer was measured. The contact angle of water with the SiOC layer before the surface treatment was 98 degrees. When surface treatment was performed with a 5% aqueous solution of ammonium fluoride at room temperature for 2 minutes, the contact angle was 65 degrees. When surface treatment was performed at room temperature for 2 minutes with a 30% aqueous solution of first ammonium phosphate, the contact angle was 80 degrees. It is clear that it has become hydrophilic.
[0041]
Hydrophilicity also improves leakage with L-butyrolactone and the like contained in the varnish in the low dielectric constant insulating material. As a result, it is advantageous for improving the adhesion of the low dielectric constant insulating layer.
Hydrophilization can also be performed with an acidic aqueous solution having an OH group. As the acidic aqueous solution, acetic acid, oxalic acid, citric acid, oxaloic acid, succinic acid, fumaric acid, tartaric acid, formic acid, lactic acid, etc. could be used. Hydrophilization is achieved by directly oxidizing the SiH group of the SiC layer to SiOH. When the SiC layer was surface treated with a 3% aqueous solution of acetic acid at room temperature for 2 minutes, the contact angle was 33 degrees.
[0042]
During the chemical treatment, the solution may be heated as necessary. Oxygenation can be performed in a short time by heating. The temperature is 30 to 95 ° C, preferably 35 to 50 ° C. In the case of an aqueous ammonium fluoride solution, the same adhesion strength improvement can be obtained by treatment at room temperature for 5 minutes and treatment at 40 ° C. for 2 minutes.
[0043]
By converting a hydrophobic surface having a SiH group to a hydrophilic surface, it is considered that film peeling is prevented and adhesion is improved. In order to form a hydrophilic surface, it is considered that an oxide layer may be formed on the hydrophobic surface. The same effect can be expected even if the hydrophobic surface is exposed to a plasma containing oxygen and an oxide layer is formed on the surface instead of the treatment with the above solution. In this case, LQ in FIG. 5B may be an oxidizing gas plasma containing oxygen.
[0044]
In addition, although the case where the organic insulating layer of the registered trademark SiLK is used as the low dielectric constant insulating layer has been described, the same result will be obtained even when the registered trademark FLAG which is a similar organic insulating layer is used. Also, porous silica using hydrogen silsesquioxane, methyl silsesquioxane, or the like can be used. In the case of an insulating layer using a porous silica coating material having an inorganic methyl group or the like, an improvement in adhesion can be expected by the same surface treatment.
[0045]
Silicon oxycarbide (SiOC) formed by CVD can also realize a relative dielectric constant of, for example, about 3 which is lower than the relative dielectric constant of silicon oxide of about 4.1. Novellus registered trademark CORAL, AMAT registered trademark Black Diamond, Novellus registered trademark CORAL production conditions were changed, the source gas tetramethylcyclotetrasiloxane (TOMCOTS) flow rate 1/5, oxygen flow rate 1 / 5 or less, using TORAL (refer to the column of the embodiment of the invention of Japanese Patent Application No. 2002-315900 and the drawings) formed with power of 1/2, etc., to form an interlayer insulating film formed by CVD it can.
[0046]
For example, in a multilayer wiring structure of 10 layers or more, SiLK, FLAR, etc. are used for the interlayer insulating film of the lower wiring layer below the fourth layer, and silicon oxycarbide is used as the interlayer insulating layer of the middle wiring of the fifth to eighth layers. And good characteristics can be obtained.
[0047]
Silicon oxycarbide deposited by CVD is also likely to be hydrophobic, and adhesion to an underlayer (for preventing copper diffusion) such as a SiN layer or a SiC layer is likely to be lowered. By hydrophilizing the surface of the underlayer and forming a silicon oxycarbide layer thereon, the surface hydroxyl groups of the SiC layer, SiN layer, etc. react with the SiH groups of the low dielectric constant film to improve the adhesion.
[0048]
As mentioned above, although this invention was demonstrated along the Example, this invention is not restrict | limited to these. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
[0049]
The features of the present invention will be described below.
(Appendix 1) (1) (X) forming a first hydrophobic insulating layer above the semiconductor substrate;
(Y) hydrophilizing the surface of the first hydrophobic insulating layer;
(Z) forming a low dielectric constant insulating layer having a relative dielectric constant lower than that of silicon oxide on the first hydrophobic insulating layer having the hydrophilic surface;
A method for manufacturing a semiconductor device comprising:
[0050]
(Appendix 2) (2) Before the step (X),
(A) forming a first interlayer insulating film above a semiconductor substrate on which a large number of semiconductor elements are formed;
(B) burying a first copper wiring in the first interlayer insulating film;
Have
The step (X) forms a first hydrophobic insulating layer on the first interlayer insulating film in which the first copper wiring is embedded,
The manufacturing method of the semiconductor device according to appendix 1, wherein the step (Z) forms a second interlayer insulating film on the first hydrophobic insulating layer.
[0051]
(Appendix 3) (3) Furthermore, after the step (Z),
(C) burying a second copper wiring in the second interlayer insulating film;
(D) forming a second hydrophobic insulating layer on the second interlayer insulating film in which the second copper wiring is embedded;
(E) treating the surface of the second hydrophobic insulating layer with an alkaline solution containing moisture to make the surface hydrophilic;
The manufacturing method of the semiconductor device of Claim 2 including this.
[0052]
(Additional remark 4) The manufacturing method of the semiconductor device of Additional remark 2 or 3 with which the said 1st, 2nd interlayer insulation film further has an oxide hard mask layer on a low dielectric constant insulating layer.
(Supplementary Note 5) (4) The semiconductor according to any one of Supplementary Notes 1 to 3, wherein the first hydrophobic insulating layer is formed of silicon carbide, silicon nitride, silicon oxycarbide, or a combination thereof. Device manufacturing method.
[0053]
(Appendix 6) (5) Any one of appendices 1 to 5 in which the step (Y) treats the surface of the first hydrophobic insulating layer with an alkaline solution or an acidic solution containing an OH group to make the surface hydrophilic. A method for manufacturing a semiconductor device according to item.
[0054]
(Supplementary Note 7) The step (Y) is a step of treating the surface of the first hydrophobic insulating layer with an alkaline solution containing an OH group. The alkaline solution is ammonium phosphate, ammonium fluoride, ammonium sulfate, 1.4- The method for producing a semiconductor device according to appendix 6, which is an aqueous solution of at least one of ammonium naphthoquinone-2-sulfonate, ammonium nitrate, ammonium acetate, calcium ammonium nitrate, and ammonium iron citrate.
[0055]
(Supplementary Note 8) The step (Y) is a step of treating the surface of the first hydrophobic insulating layer with an acidic solution containing an OH group. The acidic solution is acetic acid, oxalic acid, citric acid, oxalic acid, succinic acid, The method for manufacturing a semiconductor device according to appendix 6, which is an aqueous solution of at least one of fumaric acid, tartaric acid, formic acid, and lactic acid.
[0056]
(Supplementary Note 9) The method for manufacturing a semiconductor device according to any one of supplementary notes 6 to 8, wherein the step (Y) is performed by heating a processing solution.
(Additional remark 10) The manufacturing method of the semiconductor device of any one of Additional remark 6-9 which the said process (Y) performs by dripping a process liquid on the said hydrophobic insulating layer surface.
[0057]
(Supplementary note 11) The method for manufacturing a semiconductor device according to any one of supplementary notes 1 to 5, wherein the step (Y) includes exposing the first hydrophobic insulating layer to plasma of an oxidizing gas.
[0058]
(Supplementary note 12) The method for manufacturing a semiconductor device according to any one of supplementary notes 1 to 11, wherein the step (X) forms a first hydrophobic insulating layer by plasma CVD.
(Additional remark 13) (6) The manufacturing method of the semiconductor device of any one of Additional remarks 1-12 including the said process (Z) apply | coating the coating material containing an adhesion promoter.
[0059]
(Appendix 14) (7) The semiconductor according to any one of appendices 1 to 12, wherein the step (Z) includes applying an adhesion promoter and applying a low dielectric constant insulating layer coating material thereon. Device manufacturing method.
[0060]
(Additional remark 15) (8) The manufacturing method of the semiconductor device of any one of Additional remark 1-14 whose said low dielectric constant insulating layer is a porous silica layer.
(Supplementary Note 16) (9) The method for manufacturing a semiconductor device according to any one of Supplementary notes 1 to 12, wherein the step (Z) forms a low dielectric constant insulating layer by CVD.
[0061]
(Supplementary note 17) The method for manufacturing a semiconductor device according to supplementary note 16, wherein the low dielectric constant insulating layer is a silicon oxycarbide layer.
(Appendix 18) (10) The method for manufacturing a semiconductor device according to any one of appendices 1 to 17, wherein the low dielectric constant insulating layer is an organic material layer.
[0062]
(Supplementary note 19) The method of manufacturing a semiconductor device according to supplementary note 2, wherein the step (b) forms a first copper wiring by a damascene process.
(Additional remark 20) The manufacturing method of the semiconductor device of Additional remark 3 with which the said process (c) forms a 2nd copper wiring with a damascene process.
[0063]
【The invention's effect】
As described above, according to the present invention, adhesion in a multilayer wiring structure can be improved and peeling can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semiconductor substrate for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a semiconductor substrate for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a semiconductor substrate for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view of a semiconductor substrate for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 5 is a principle diagram for analogizing effects of the embodiment.
[Explanation of symbols]
10 Silicon substrate 11 STI (shallow trench isolation)
G Gate electrode PR Photoresist pattern 18 PSG layer 19 SiC passivation layers 21, 31, 41, 51 Copper diffusion prevention (SiC) layers 23, 33, 43, 53 Cap layers 24, 34, 44, 54 Hard mask (SiN) layer 29 , 39, 49, 59 Wiring layer P Conductive plug BM Barrier metal layer SM Seed metal layer PM Plating metal layer LQ Alkaline solution (plasma containing oxygen)
LK Low dielectric constant insulating layer

Claims (9)

(X)半導体基板上方にシリコンを含有する第1疎水性絶縁層を形成する工程と、
(Y)OH基を含むアルカリ性溶液又は酸性溶液を用いて、前記第1疎水性絶縁層の表面にシラノール基を形成する工程と、
(Z)前記シラノール基が形成された表面を有する第1疎水性絶縁層上に比誘電率が酸化シリコンの比誘電率より低い低誘電率絶縁層を形成する工程と、
を有する半導体装置の製造方法。
(X) forming a first hydrophobic insulating layer containing silicon above the semiconductor substrate;
(Y) forming a silanol group on the surface of the first hydrophobic insulating layer using an alkaline solution or an acidic solution containing an OH group ;
(Z) forming a low dielectric constant insulating layer having a relative dielectric constant lower than that of silicon oxide on the first hydrophobic insulating layer having a surface on which the silanol group is formed ;
A method for manufacturing a semiconductor device comprising:
前記工程(X)の前に、
(a)前記半導体基板の上方に第1層間絶縁膜を形成する工程と;
(b)前記第1層間絶縁膜に第1銅配線を埋め込む工程と;
を有し、
前記工程(X)において、前記第1銅配線埋め込まれた前記第1層間絶縁膜上に、前記第1疎水性絶縁層を形成する、
請求項1記載の半導体装置の製造方法。
Before the step (X),
(A) forming a first interlayer insulating film above the semiconductor substrate;
(B) burying a first copper wiring in the first interlayer insulating film;
Have
In the step (X), the first copper wiring on embedding Mareta the first interlayer insulating film, forming a first hydrophobic insulating layer,
A method for manufacturing a semiconductor device according to claim 1.
前記低誘電率絶縁層を形成する工程の後に、
(c)前記低誘電率絶縁層に第2銅配線を埋め込む工程と;
(d)前記第2銅配線埋め込まれた前記低誘電率絶縁層上に、第2疎水性絶縁層を形成する工程と;
(e)前記第2疎水性絶縁層表面を、OH基を含む、アルカリ性溶液又は酸性溶液で処理し、前記第2疎水性絶縁層の表面にシラノール基を形成する工程と;
を含む請求項2記載の半導体装置の製造方法。
After the step of forming the low dielectric constant insulating layer ,
(C) burying a second copper wiring in the low dielectric constant insulating layer ;
; (D) second copper wiring embedding Mareta the low dielectric constant insulating layer, forming a second hydrophobic insulating layer;
(E) treating the surface of the second hydrophobic insulating layer with an alkaline solution or an acidic solution containing OH groups to form silanol groups on the surface of the second hydrophobic insulating layer ;
A method for manufacturing a semiconductor device according to claim 2, comprising:
前記第1疎水性絶縁層が、シリコンカーバイド、シリコンナイトライド、シリコンオキシカーバイド、又はこれらの組合せのいずれかで形成される請求項1〜3のいずれか1項記載の半導体装置の製造方法。  4. The method of manufacturing a semiconductor device according to claim 1, wherein the first hydrophobic insulating layer is formed of silicon carbide, silicon nitride, silicon oxycarbide, or a combination thereof. 前記低誘電率絶縁層を形成する工程が、密着性促進剤を含む前記低誘電率絶縁層の塗布材料を塗布することを含む請求項1〜のいずれか1項記載の半導体装置の製造方法。 Wherein the step of forming the low dielectric constant insulating layer, the method according to claim 1 or one of claims 4, including applying a coating material of a low dielectric constant insulating layer comprising the adhesion promoter . 前記低誘電率絶縁層を形成する工程が、密着性促進剤を塗布し、その上に前記低誘電率絶縁層塗布材料を塗布することを含む請求項1〜のいずれか1項記載の半導体装置の製造方法。The low dielectric constant step of forming an insulating layer was applied an adhesion-promoting agent of Claim 1 or one of claims 4, including applying a coating material of the low dielectric constant insulating layer thereon A method for manufacturing a semiconductor device. 前記低誘電率絶縁層が、水素を含むポーラスシリカ層である請求項1〜のいずれか1項記載の半導体装置の製造方法。The low dielectric constant insulating layer, a method of manufacturing a semiconductor device according to any one of claims 1 to 6 is a porous silica layer containing hydrogen. 前記低誘電率絶縁層を形成する工程が、低誘電率絶縁層をCVDで成膜する請求項1〜のいずれか1項記載の半導体装置の製造方法。Manufacturing method of the step of forming the low dielectric constant insulating layer, a semiconductor device of any one of claims 1-4 for forming a low dielectric constant insulating layer with CVD. 前記低誘電率絶縁層が、有機材料層である請求項1〜のいずれか1項記載の半導体装置の製造方法。The low dielectric constant insulating layer, a method of manufacturing a semiconductor device according to any one of claims 1-8 which is an organic material layer.
JP2002338294A 2002-06-27 2002-11-21 Manufacturing method of semiconductor device Expired - Fee Related JP3974023B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002338294A JP3974023B2 (en) 2002-06-27 2002-11-21 Manufacturing method of semiconductor device
TW092103537A TW584916B (en) 2002-06-27 2003-02-20 Method of manufacturing semiconductor device having multilevel wiring
CNB031082289A CN100477155C (en) 2002-06-27 2003-03-25 Method for manufacturing semiconductor device having multilevel wiring
US10/410,247 US6693046B2 (en) 2002-06-27 2003-04-10 Method of manufacturing semiconductor device having multilevel wiring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002187802 2002-06-27
JP2002338294A JP3974023B2 (en) 2002-06-27 2002-11-21 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004088047A JP2004088047A (en) 2004-03-18
JP3974023B2 true JP3974023B2 (en) 2007-09-12

Family

ID=29782023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002338294A Expired - Fee Related JP3974023B2 (en) 2002-06-27 2002-11-21 Manufacturing method of semiconductor device

Country Status (4)

Country Link
US (1) US6693046B2 (en)
JP (1) JP3974023B2 (en)
CN (1) CN100477155C (en)
TW (1) TW584916B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812167B2 (en) * 2002-06-05 2004-11-02 Taiwan Semiconductor Manufacturing Co., Ltd Method for improving adhesion between dielectric material layers
US7485570B2 (en) * 2002-10-30 2009-02-03 Fujitsu Limited Silicon oxycarbide, growth method of silicon oxycarbide layer, semiconductor device and manufacture method for semiconductor device
US7151315B2 (en) * 2003-06-11 2006-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method of a non-metal barrier copper damascene integration
DE10335163B3 (en) * 2003-07-30 2005-03-03 Micronas Gmbh gas sensor
US7030041B2 (en) * 2004-03-15 2006-04-18 Applied Materials Inc. Adhesion improvement for low k dielectrics
JP4198631B2 (en) 2004-04-28 2008-12-17 富士通マイクロエレクトロニクス株式会社 Insulating film forming method and semiconductor device
US7244682B2 (en) * 2004-05-06 2007-07-17 Micron Technology, Inc. Methods of removing metal-containing materials
US7517791B2 (en) * 2004-11-30 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7696625B2 (en) * 2004-11-30 2010-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7985677B2 (en) * 2004-11-30 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7282766B2 (en) * 2005-01-17 2007-10-16 Fujitsu Limited Fin-type semiconductor device with low contact resistance
CN100561317C (en) * 2005-03-03 2009-11-18 友达光电股份有限公司 The method of the substrate of liquid crystal panel and formation alignment film
JP4422671B2 (en) * 2005-12-06 2010-02-24 トヨタ自動車株式会社 Semiconductor device and manufacturing method thereof
KR100711912B1 (en) * 2005-12-28 2007-04-27 동부일렉트로닉스 주식회사 Metal line formation method of semiconductor device
JP2007201296A (en) * 2006-01-27 2007-08-09 Tokyo Ohka Kogyo Co Ltd Method of forming multilayer spin-on-glass film
JP4666308B2 (en) 2006-02-24 2011-04-06 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
US7947565B2 (en) 2007-02-07 2011-05-24 United Microelectronics Corp. Forming method of porous low-k layer and interconnect process
KR100849725B1 (en) * 2007-06-28 2008-08-01 주식회사 하이닉스반도체 Method for fabricating isolation layer using rapid vapor deposition in semiconductor device
JP2010533966A (en) * 2007-07-13 2010-10-28 インターモレキュラー, インコーポレイテッド Surface conditioning of low dielectric constant dielectric materials
JP4778018B2 (en) * 2008-04-23 2011-09-21 富士通セミコンダクター株式会社 Insulating film formation method
EP2277194A1 (en) * 2008-05-08 2011-01-26 Basf Se Layered structures comprising silicon carbide layers, a process for their manufacture and their use
JP5702173B2 (en) * 2011-01-31 2015-04-15 ルネサスエレクトロニクス株式会社 Method for manufacturing semiconductor device and method for modifying porous insulating layer
US20130061876A1 (en) * 2011-09-14 2013-03-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Device Surface Clean
US8765546B1 (en) 2013-06-24 2014-07-01 United Microelectronics Corp. Method for fabricating fin-shaped field-effect transistor
JP6335099B2 (en) * 2014-11-04 2018-05-30 東芝メモリ株式会社 Semiconductor device and manufacturing method of semiconductor device
KR20160108944A (en) * 2015-03-09 2016-09-21 동우 화인켐 주식회사 Etching solution composition for silver-containing layer and manufacturing method of an array substrate for display device using the same
KR102655348B1 (en) * 2019-03-19 2024-04-04 어플라이드 머티어리얼스, 인코포레이티드 Hydrophobic and icephobic coatings
CN111554633B (en) * 2020-05-20 2022-09-20 业成科技(成都)有限公司 Method for patterning conductive layer and conductive structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3420399B2 (en) * 1995-07-28 2003-06-23 キヤノン株式会社 Light emitting element
US5714203A (en) * 1995-08-23 1998-02-03 Ictop Entwicklungs Gmbh Procedure for the drying of silicon
JP3849066B2 (en) * 1996-05-15 2006-11-22 ケミプロ化成株式会社 Multi-color organic EL device, manufacturing method thereof, and display using the same
US6025894A (en) * 1996-09-04 2000-02-15 Casio Computer Co., Ltd. Scatter control member for organic electroluminescent light source for passing light with or without scattering depending upon an incident angle
DE19648759A1 (en) * 1996-11-25 1998-05-28 Max Planck Gesellschaft Method of manufacturing microstructures
JP3646510B2 (en) * 1998-03-18 2005-05-11 セイコーエプソン株式会社 Thin film forming method, display device, and color filter
JP3604007B2 (en) * 2000-03-29 2004-12-22 富士通株式会社 Low dielectric constant film forming material, and film and semiconductor device manufacturing method using the same
JP2002315900A (en) 2001-04-20 2002-10-29 Aruze Corp Game machine, its screen image display method, computer readable storage medium and server

Also Published As

Publication number Publication date
CN100477155C (en) 2009-04-08
US6693046B2 (en) 2004-02-17
US20040002208A1 (en) 2004-01-01
JP2004088047A (en) 2004-03-18
TW584916B (en) 2004-04-21
TW200400560A (en) 2004-01-01
CN1467818A (en) 2004-01-14

Similar Documents

Publication Publication Date Title
JP3974023B2 (en) Manufacturing method of semiconductor device
KR100564188B1 (en) Semiconductor integrated circuit device and its manufacturing method
JP4350337B2 (en) Semiconductor device
US6319809B1 (en) Method to reduce via poison in low-k Cu dual damascene by UV-treatment
KR100358545B1 (en) Semiconductor device and process for producing the same
US7622380B1 (en) Method of improving adhesion between two dielectric films
KR20010031049A (en) Borderless vias with hsq gap filled patterned metal layers
JP3193335B2 (en) Method for manufacturing semiconductor device
KR20060055336A (en) Inter-metal dielectric scheme for semiconductors
JP4675258B2 (en) Semiconductor device manufacturing method and semiconductor device
JP4567587B2 (en) Manufacturing method of semiconductor device
JP3887175B2 (en) Semiconductor device and manufacturing method thereof
KR100887118B1 (en) Semiconductor device having multilevel copper wiring layers and its manufacture method
KR100783868B1 (en) A method of manufacturing a semiconductor device and a semiconductor device
JP2005217142A (en) Process for fabricating semiconductor device
US20020173079A1 (en) Dual damascene integration scheme using a bilayer interlevel dielectric
KR100389041B1 (en) Method of forming an interconnection line using an hsq layer as an interdielectric layer
JP2003533025A (en) Semiconductor device having low dielectric constant film and method of manufacturing the same
KR20070048820A (en) Wiring structure in a semiconductor device and method of manufacturing the same
TW413899B (en) Manufacturing process of unlanded via
US6720276B2 (en) Methods of forming spin on glass layers by curing remaining portions thereof
KR100784105B1 (en) Method of manufacturing a semiconductor device
JP4108463B2 (en) Manufacturing method of semiconductor device
KR19980046014A (en) Manufacturing method of semiconductor device
KR20020078368A (en) Method for manufacturing semiconductor device using inorganic low dielectric constant insulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

R150 Certificate of patent or registration of utility model

Ref document number: 3974023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140622

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees