JP3967554B2 - Flavonoid compound and method for producing the same - Google Patents

Flavonoid compound and method for producing the same Download PDF

Info

Publication number
JP3967554B2
JP3967554B2 JP2001073577A JP2001073577A JP3967554B2 JP 3967554 B2 JP3967554 B2 JP 3967554B2 JP 2001073577 A JP2001073577 A JP 2001073577A JP 2001073577 A JP2001073577 A JP 2001073577A JP 3967554 B2 JP3967554 B2 JP 3967554B2
Authority
JP
Japan
Prior art keywords
hesperidin
flavonoid compound
culture
medium
flavonoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001073577A
Other languages
Japanese (ja)
Other versions
JP2002275175A (en
Inventor
義明 三宅
俊彦 大澤
健一郎 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Japan Science and Technology Agency
Tokai National Higher Education and Research System NUC
National Institute of Japan Science and Technology Agency
Original Assignee
Nagoya University NUC
Japan Science and Technology Agency
Tokai National Higher Education and Research System NUC
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001073577A priority Critical patent/JP3967554B2/en
Application filed by Nagoya University NUC, Japan Science and Technology Agency, Tokai National Higher Education and Research System NUC, National Institute of Japan Science and Technology Agency filed Critical Nagoya University NUC
Priority to ES02705208T priority patent/ES2271219T3/en
Priority to IL15781102A priority patent/IL157811A0/en
Priority to EP02705208A priority patent/EP1369489B1/en
Priority to US10/471,438 priority patent/US7138429B2/en
Priority to CNB028061861A priority patent/CN100381436C/en
Priority to DE60214142T priority patent/DE60214142T2/en
Priority to PCT/JP2002/002445 priority patent/WO2002074971A1/en
Publication of JP2002275175A publication Critical patent/JP2002275175A/en
Priority to IL157811A priority patent/IL157811A/en
Priority to US11/462,437 priority patent/US7582675B2/en
Application granted granted Critical
Publication of JP3967554B2 publication Critical patent/JP3967554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pyrane Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は新規なフラボノイド化合物及びその製造方法に関するものである。
【0002】
【従来の技術】
従来より、ヘスペレチンの配糖体であるヘスペリジンは、オレンジやレモン等の柑橘類、特に未熟果の果皮に多く含まれるフラボノイドであり、ビタミンPとして知られている。このヘスペリジンは、抗アレルギー作用、抗ウィルス作用、毛細血管強化作用等の生理活性を有することが知られており、健康食品等に添加して利用されている。
【0003】
【発明が解決しようとする課題】
天然に多く存在するヘスペリジンの有効利用の一環として、ヘスペリジンを物質変換することにより、その利用範囲のより一層の拡大を見込める可能性が高い。特に、前記ヘスペリジンは体内への吸収性があまり高くないことから、物質変換によって栄養的な観点からの価値の向上が期待される。
【0004】
この発明は、前記ヘスペリジンのさらなる利用拡大を目指した鋭意研究の結果なされたものである。この発明の目的とするところは、ヘスペリジンの利用範囲の拡大を図ることができる新規なフラボノイド化合物及びその製造方法を提供することにある。
【0005】
【課題を解決するための手段】
上記の目的を達成するために、請求項1に記載の発明のフラボノイド化合物は、下記化2で示される構造を有するものである。
【0006】
【化2】

Figure 0003967554
請求項2に記載の発明のフラボノイド化合物は、請求項1に記載の発明において、アスペルギルス・サイトイ(Aspergillus saitoi)を用いて、ヘスペリジンを微生物発酵処理することにより得られることを特徴とするものである。
【0007】
請求項3に記載の発明のフラボノイド化合物の製造方法は、請求項1又は請求項2に記載のフラボノイド化合物を製造するフラボノイド化合物の製造方法であって、ヘスペリジンを請求項1に記載のフラボノイド化合物を製造する能力を有するアスペルギルス・サイトイ(Aspergillus saitoi)にて微生物発酵処理することにより、前記ヘスペリジンを微生物変換してフラボノイド化合物を生成させることを特徴とするものである。
【0008】
請求項4に記載の発明のフラボノイド化合物の製造方法は、請求項3に記載の発明において実施され、前記微生物発酵処理は、ヘスペリジンと請求項1に記載のフラボノイド化合物を製造する能力を有するアスペルギルス・サイトイとを含む培地を振盪培養し、前記アスペルギルス・サイトイの栄養菌糸にヘスペリジンからヘスペレチンを微生物変換させる菌糸培養工程を行った後、前記アスペルギルス・サイトイの栄養菌糸から胞子形成を進行させつつ、前記培地中のヘスペレチンからフラボノイド化合物を微生物変換させる胞子形成工程を行うように構成したことを特徴とするものである。
【0009】
なお、前記菌糸培養工程後の胞子形成工程は、そのまま振盪培養しても、静置培養に切り替えてもどちらでもよい。但し、静置培養する場合には、培地の深さを浅くして培地の体積に対する表面積の割合(比表面積)を大きくすることにより、培地全体を好気的条件に保ち、アスペルギルス・サイトイによる微生物変換効率を高めるように構成するのが好ましい。
【0010】
【発明の実施の形態】
以下、この発明を具体化した実施形態を詳細に説明する。
実施形態のフラボノイド化合物は、下記化3で示される構造を有している。
【0011】
【化3】
Figure 0003967554
このフラボノイド化合物は、化学式がC16147で、分子量が約319のフラボノイド化合物(3',5,7,8-tetrahydroxy-4'-methoxyflavanone 又は 2,3-dihydro-5,7,8-trihydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one)である。このフラボノイド化合物は、上記化3で示される構造より、ヘスペレチン(hesperetin;3',5,7-trihydroxy-4'-methoxyflavanone;C16146)の8位に水酸基を備えた有機化合物、いわゆる8−ヒドロキシヘスペレチン(8-hydroxyhesperetin)である。
【0012】
この8−ヒドロキシヘスペレチンは、メタノール、エタノール及びジメチルスルフォキシド(DMSO)に可溶で、若干溶解性が悪いが水にも可溶である。さらに、前記ヘスペレチンには抗酸化作用がほとんど見られないのに対し、この8−ヒドロキシヘスペレチンはα−トコフェロール(ビタミンE)と同等の極めて高い抗酸化作用を発揮することができる。そして、この高い抗酸化作用を利用して、例えば食品や飲料等に添加して健康増進活性を有する健康食品や健康ドリンク等に利用することができる。このとき、8−ヒドロキシヘスペレチンは、生体内で活性酸素を消去して過酸化脂質の生成を抑制し、酸化ストレスに起因する癌、動脈硬化、糖尿病の合併症等の生活習慣病の予防に役立つ。
【0013】
この8−ヒドロキシヘスペレチンは、ヘスペリジン(hesperidin)をアスペルギルス・サイトイ(Aspergillus saitoi)にて微生物発酵処理することによって得られる。すなわち、この8−ヒドロキシヘスペレチンは、ヘスペレチンとルチノース(L−ラムノシル−D−グルコース)との配糖体であるヘスペリジン(ビタミンP)を含有する培地中でアスペルギルス・サイトイを培養し、そのアスペルギルス・サイトイにヘスペリジンを微生物変換させることにより、その培養上澄み液中に生成される。なお、このときの培養条件としては、アスペルギルス・サイトイの生育及び前記微生物変換を良好に行うために、20〜40℃の培養温度、好気的条件であるのが好ましい。
【0014】
前記培地としては、ポテトデキストロース含有培地やツァペック培地等の糸状菌用培地又はオカラ等の有機物を含有する種々の液体培地が好適に使用される。さらに、ヘスペリジンから8−ヒドロキシヘスペレチンを微生物変換させる目的以外の発酵を阻害するように、必要最小限の栄養素を含有する最小培地であるのが好ましく、例えばアルコール発酵しないように単糖類及び二糖類が培地中に含まれないようにするのが好ましい。また、前記培地は、培養開始時点では、アスペルギルス・サイトイの生育を良好にするために、pH3〜7の範囲内であるのが好ましい。
【0015】
さらに、この培養開始時の培地中には、ヘスペリジンの溶解性を高める目的で、低濃度の有機溶媒が含有されるのが好ましい。前記有機溶媒としては、メタノール、エタノール、DMSO等が挙げられるが、ヘスペリジンの溶解性を高めることができるため、DMSOが最も好適に使用される。なお、この培地中のDMSOの含有量としては、好ましくは0.01〜5容量%、より好ましくは0.01〜1容量%である。この培地中のDMSOの含有量が0.01容量%未満の場合には、培地中に充分な量のヘスペリジンを溶解させることができない。逆に5容量%を越える場合には、アスペルギルス・サイトイの生育が著しく阻害される。
【0016】
一方、培養開始時に培地中に添加されるヘスペリジンの含有量としては、多量の8−ヒドロキシヘスペレチンを効率よく得るために、その溶解限界としての飽和濃度まで含有させるのが好ましい。なお、前記飽和濃度は、前記DMSO等の有機溶媒の含有量と深く関連しているが、およそ0.3重量%以下である。また、培養開始時に培地中に添加されるアスペルギルス・サイトイの濃度としては、多量の8−ヒドロキシヘスペレチンを短期間で効率よく得るために、2×106個/mL(cfu/mL)以上であるのが好ましい。
【0017】
さらに、このアスペルギルス・サイトイによる微生物変換効率を高めるために、前記培地中でアスペルギルス・サイトイの栄養菌糸を振盪培養する菌糸培養工程を行った後、その栄養菌糸から胞子形成を進行させる胞子形成工程を行うように構成するのが好ましい。
【0018】
菌糸培養工程は、ヘスペリジンを含有する培地中でアスペルギルス・サイトイを振盪培養することによって、好気的条件を保ちつつ栄養菌糸による微生物変換を行わせる工程である。この工程において、アスペルギルス・サイトイの栄養菌糸は、ヘスペリジンを構成するヘスペレチンとルチノースとの結合を切断してヘスペレチンを生成するグリコシダーゼ反応を極めて効率的に行う。前記振盪培養における振盪速度としては、50〜200rpm/分の範囲内であるのが好ましい。この振盪速度が50rpm/分未満の場合には、アスペルギルス・サイトイを含有した培地全体が好気的でないため、菌糸の増殖が充分にできない。逆に振盪速度が200rpm/分を越える場合には、培地の揺れが激しく、菌糸形成が充分にできない。
【0019】
なおこのとき、培地中に添加されるヘスペリジンの含有量は、前記溶解限界を超えて添加されても構わない。このとき、培養開始時点では溶解されずに培養容器の底部に沈澱していたヘスペリジンが振盪による撹拌作用により適宜培地中に溶解されて微生物発酵に利用され得る。さらに、培地中に溶解限界を超えてヘスペリジンを含有させた場合には、培養容器底部のヘスペリジンの沈澱を防ぐ目的で、50rpm/分程度で沈澱が消失するまで振盪培養するように構成するのが好ましく、その結果としてより多くのヘスペレチンを生成させることができる。
【0020】
胞子形成工程は、培地中に充分な量のヘスペレチンが生成された後に行われ、前記菌糸培養工程後の培地をそのまま培地交換せずに静置培養又は振盪培養することによって、アスペルギルス・サイトイの栄養菌糸に胞子形成を進行させながら微生物変換を行わせる工程である。なお、菌糸培養工程から胞子形成工程に移行するタイミングとしては、菌糸培養工程の終了時期に、培地の表面(液面)にアスペルギルス・サイトイの栄養菌糸が密に存在するのが目視にて確認可能となることから、それを指標にして容易に把握することができる。
【0021】
この工程において、アスペルギルス・サイトイの栄養菌糸は、胞子形成を進行させながら、ヘスペレチンの8位に水酸基を付加させるヒドロキシラーゼ反応を行って8−ヒドロキシヘスペレチンを極めて効率的に生成させる。この8−ヒドロキシヘスペレチンの生成反応は、培養容器内における胞子形成過程の中期から後期にかけて最も効率的に行われ、胞子形成が完了した段階における生成効率はさほど高くはない。このため、無駄に浪費される時間を減らすために、培養容器の液面全体が胞子で完全に被覆される直前に培養を停止し、生成された8−ヒドロキシヘスペレチンを抽出するとよい。
【0022】
また、この胞子形成工程において静置培養を行う場合には、振盪時の物理的刺激による胞子形成の抑制効果を容易に解消することができる。なお、この静置培養時には、培地の深さを浅くして培地の体積に対する表面積の割合(比表面積)を大きくすることにより、培地全体を好気的条件に保ち、アスペルギルス・サイトイの活動を活発化させてその微生物変換効率を高めるように構成するのが好ましい。一方、胞子形成工程において振盪培養を行う場合には、培地の深さを適度に深くしても好気的条件を保つことが容易であることから、一度の培養操作により多量の8−ヒドロキシヘスペレチンを生成させることが可能となる。
【0023】
最後に、上記培養上澄み液又は前記胞子形成工程後の培地から8−ヒドロキシヘスペレチンを抽出して精製する。このとき、前記培地をアスペルギルス・サイトイの細胞膜が破壊されない程度に遠心分離(3000rpm程度)して上澄み画分を得、その上澄み画分を疎水性カラムによる逆相液体クロマトグラフィーにより精製するとよい。なお、前記遠心分離後の沈澱画分にも比較的多量の8−ヒドロキシヘスペレチンが含まれていることから、その沈澱画分にメタノールやエタノール等の有機溶媒を加えて充分に洗浄しながら抽出した後、その抽出液を逆相液体クロマトグラフィーにて精製するように構成するとよい。
【0024】
上記実施形態によって発揮される効果について、以下に記載する。
・ 実施形態のフラボノイド化合物は、上記化3で示される構造を有する8−ヒドロキシヘスペレチンである。この8−ヒドロキシヘスペレチンは、ヘスペレチンの8位に水酸基が付加された新規な構造を有することから、ヘスペリジンの利用範囲の拡大を図ることが可能である。さらに、この8−ヒドロキシヘスペレチンは、ヘスペリジン及びヘスペレチンと比べて著しく高い抗酸化作用を発揮することができることから、生体内で活性酸素を消去して過酸化脂質の生成を抑制し、酸化ストレスに起因する癌、動脈硬化、糖尿病の合併症等の生活習慣病の予防に役立てることができる。また、原料として柑橘類に含有されている天然成分であるヘスペリジンを用いるとともに、焼酎等の酒類の醸造に利用されるアスペルギルス・サイトイが用いられていることから、人体への摂取においてもほとんど問題がない。
【0025】
・ 実施形態のフラボノイド化合物(8−ヒドロキシヘスペレチン)の製造方法は、ヘスペリジンをアスペルギルス・サイトイにて微生物発酵処理することにより、前記ヘスペリジンを微生物変換して得られるものである。このため、ヘスペリジンの利用範囲の拡大を図ることができる新規なフラボノイド化合物を極めて容易に製造することができる。さらに、前記微生物発酵処理において、ヘスペリジンとアスペルギルス・サイトイとを含む培地を振盪培養する菌糸培養工程を行った後に胞子形成工程を行うように構成することによって、非常に簡単な作業工程で、8−ヒドロキシヘスペレチンを極めて効率的に製造することが可能となる。
【0026】
【実施例】
以下、前記実施形態を具体化した実施例及び比較例について説明する。
<ヘスペリジン変換物の製造>
ポテトデキストロース−ブロス培地(DIFCO社製)を複数個の三角フラスコ(容積500mL)に100mLずつ分取し、オートクレーブ滅菌(121℃、15分間)を行った。冷却した後に、2×108個/mL以上の濃度に調製したアスペルギルス・サイトイの胞子懸濁液を1.0mLずつ各フラスコに接種し、30℃の恒温室(大気と同じ成分の好気的条件)内において100rpm/分で振盪培養を行いながら栄養菌糸を育成させた。なお、前記アスペルギルス・サイトイは、(財)応用微生物学研究奨励会(通称IAM)より分譲を受けたアスペルギルス・サイトイ菌株(IAM No.2210)が用いられた。
【0027】
10日間振盪培養を行って栄養菌糸を充分に生育させた後、オートクレーブ滅菌(105℃、5分間)した10重量%のヘスペリジン(SIGMA社製)DMSO希釈液を5mLずつ加え、引続き同好気的条件下で振盪培養を行なって、栄養菌糸からの胞子形成を進行させた。なお、このときの胞子形成の様子を経時的にモニタリングしたところ、ヘスペリジンを投入しておよそ1週間経過後から胞子の形成が始まり、3週間後には培地の液面全体で胞子の形成が認められたことが分かった。
【0028】
本実験では、胞子形成が完全に終了する前でヘスペリジン投入後から2週間経過した時点、すなわち胞子形成の中期から後期と思われる時期のサンプルを採取した。そして、この採取されたサンプルを遠心分離(3000rpm、15分間)して不純物を沈澱除去した後、その上澄み液を分析用高速液体クロマトグラフィー(HPLC)(島津製作所製のLC10A、カラムはYMC社製のA303)にて分析し、フラボノイド組成の変化を調べた。その結果、フラボノイド組成物全体に占めるヘスペリジン変換物のピークの割合はおよそ8.3%であることが分かった。
【0029】
最後に、前記ヘスペリジン変換物を含有することが確認されたHPLC用サンプルの残りをエバポレーターにて濃縮した後、分取用HPLC(島津製作所製のLC8A、カラムはYMC社製のR353−151A、SH343−5)にて分画し、ヘスペリジン変換物の単離精製を行った。
【0030】
<構造決定>
上記<ヘスペリジン変換物の製造>で得られたヘスペリジン変換物の構造決定を行った。1H NMR及び13C NMRスペクトルは、内部標準としてDMSO−d6に溶解させたテトラメチルシラン(Tetramethylsilane;TMS)を用いてJEOL JNM−EX−400 NMR装置(1H NMRは400MHz、13C NMRは100MHz)で分析した。また、質量スペクトル(FAB-MS)は、JEOL JMS−DX−705Lで測定した。結果を表1及び表2に示す。
【0031】
【表1】
Figure 0003967554
【0032】
【表2】
Figure 0003967554
その結果、前記ヘスペリジン変換物は、上記化3で示される構造を有する8−ヒドロキシヘスペレチンであることが確認された。
【0033】
さらに、前記実施形態より把握できる技術的思想について以下に記載する。
・ 前記微生物発酵処理を0.01〜5容量%のジメチルスルフォキシドを含有する培地中で行うことを特徴とする請求項3又は請求項4に記載のフラボノイド化合物の製造方法。このように構成した場合、アスペルギルス・サイトイの生育阻害を低減させつつ、比較的多量のヘスペリジンを培地中に溶解させて、その微生物変換効率を容易に高めることができる。
【0034】
・ さらに前記微生物発酵処理後の培養上澄み液を、疎水性カラムを用いた逆相液体クロマトグラフィーにより精製することを特徴とする請求項3又は請求項4に記載のフラボノイド化合物の製造方法。このように構成した場合、極めて容易にフラボノイド化合物を単離することができる。
【0035】
【発明の効果】
以上詳述したように、この発明によれば、次のような効果を奏する。
請求項1及び請求項2に記載の発明のフラボノイド化合物によれば、ヘスペリジンの利用範囲の拡大を図ることができる。
【0036】
請求項3及び請求項4に記載の発明のフラボノイド化合物の製造方法によれば、ヘスペリジンの利用範囲の拡大を図ることができるフラボノイド化合物を容易に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel flavonoid compound and a method for producing the same.
[0002]
[Prior art]
Conventionally, hesperidin, which is a glycoside of hesperetin, is a flavonoid that is abundant in citrus fruits such as orange and lemon, particularly immature fruit peel, and is known as vitamin P. This hesperidin is known to have physiological activities such as antiallergic action, antiviral action, and capillary strengthening action, and is used by being added to health foods and the like.
[0003]
[Problems to be solved by the invention]
As part of the effective use of hesperidin, which exists in large quantities in nature, it is highly possible to expect further expansion of the range of its use by converting hesperidin into a substance. In particular, since hesperidin is not very absorbable into the body, it is expected to improve its value from a nutritional viewpoint by substance conversion.
[0004]
This invention has been made as a result of earnest research aimed at further expanding the use of hesperidin. An object of the present invention is to provide a novel flavonoid compound capable of expanding the range of use of hesperidin and a method for producing the same.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the flavonoid compound of the invention described in claim 1 has a structure represented by the following chemical formula 2.
[0006]
[Chemical 2]
Figure 0003967554
The flavonoid compound of the invention described in claim 2 is obtained by subjecting hesperidin to microbial fermentation using Aspergillus saitoi in the invention of claim 1. .
[0007]
The method for producing a flavonoid compound according to claim 3 is a method for producing a flavonoid compound according to claim 1 or 2, wherein hesperidin is used as the flavonoid compound according to claim 1. A flavonoid compound is produced by microbial conversion of the hesperidin by microbial fermentation treatment with Aspergillus saitoi having the ability to produce.
[0008]
The method for producing a flavonoid compound according to a fourth aspect of the present invention is carried out in the invention according to the third aspect, wherein the microbial fermentation treatment has the ability to produce hesperidin and the flavonoid compound according to the first aspect. shaking culture medium containing a saitoi, after hesperetin from hesperidin to vegetative mycelium of the Aspergillus saitoi was mycelium culture step of bioconversion, while advancing the sporulation of vegetative mycelia of the Aspergillus saitoi, the medium The present invention is characterized in that a spore formation step of converting flavonoid compounds from microbial hesperetin into microorganisms is performed.
[0009]
In addition, the spore formation process after the said mycelia culture process may be either shaking culture as it is or switching to stationary culture. However, in the case of stationary culture, by reducing the depth of the medium and increasing the ratio of the surface area to the volume of the medium (specific surface area), the whole medium is maintained in an aerobic condition, and microorganisms caused by Aspergillus cytoii It is preferable to configure so as to increase the conversion efficiency.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments embodying the present invention will be described in detail.
The flavonoid compound of the embodiment has a structure represented by the following chemical formula 3.
[0011]
[Chemical 3]
Figure 0003967554
This flavonoid compound has a chemical formula of C 16 H 14 O 7 and a molecular weight of about 319 (3 ', 5,7,8-tetrahydroxy-4'-methoxyflavanone or 2,3-dihydro-5,7,8 -trihydroxy-2- (3-hydroxy-4-methoxyphenyl) -4H-1-benzopyran-4-one). This flavonoid compound is an organic compound having a hydroxyl group at the 8-position of hesperetin (3 ', 5,7-trihydroxy-4'-methoxyflavanone; C 16 H 14 O 6 ), based on the structure shown in Chemical Formula 3 above. It is so-called 8-hydroxyhesperetin.
[0012]
This 8-hydroxyhesperetin is soluble in methanol, ethanol and dimethyl sulfoxide (DMSO), and is slightly insoluble, but also soluble in water. Furthermore, the hesperetin has almost no antioxidant effect, whereas 8-hydroxyhesperetin can exhibit an extremely high antioxidant effect equivalent to α-tocopherol (vitamin E). Then, by utilizing this high antioxidant action, it can be used, for example, for health foods and health drinks that are added to foods and beverages and have health promoting activity. At this time, 8-hydroxyhesperetin eliminates active oxygen in vivo and suppresses the formation of lipid peroxide, and is useful for preventing lifestyle-related diseases such as cancer, arteriosclerosis, and diabetic complications caused by oxidative stress. .
[0013]
This 8-hydroxy hesperetin is obtained by subjecting hesperidin to microbial fermentation in Aspergillus saitoi. That is, this 8-hydroxyhesperetin is cultured in a medium containing hesperidin (vitamin P), which is a glycoside of hesperetin and rutinose (L-rhamnosyl-D-glucose). It is produced in the culture supernatant by converting hesperidin into microorganisms. The culture conditions at this time are preferably a culture temperature of 20 to 40 ° C. and an aerobic condition in order to perform the growth of Aspergillus cytoii and the above-mentioned microbial conversion satisfactorily.
[0014]
As said culture medium, various liquid culture media containing organic substances, such as culture media for filamentous fungi, such as a potato dextrose containing culture medium and a Czapec culture medium, or okara, are used suitably. Furthermore, it is preferably a minimal medium containing the minimum necessary nutrients so as to inhibit fermentation other than the purpose of microbial conversion of 8-hydroxyhesperetin from hesperidin. For example, monosaccharides and disaccharides are used so that alcohol fermentation does not occur. It is preferable not to be contained in the medium. Moreover, it is preferable that the said culture medium exists in the range of pH 3-7 in order to make the growth of Aspergillus cytoii favorable at the time of culture | cultivation start.
[0015]
Further, the medium at the start of the culture preferably contains a low concentration organic solvent for the purpose of increasing the solubility of hesperidin. Examples of the organic solvent include methanol, ethanol, DMSO, and the like, but DMSO is most preferably used because the solubility of hesperidin can be increased. In addition, as content of DMSO in this culture medium, Preferably it is 0.01-5 volume%, More preferably, it is 0.01-1 volume%. When the DMSO content in the medium is less than 0.01% by volume, a sufficient amount of hesperidin cannot be dissolved in the medium. On the other hand, if it exceeds 5% by volume, the growth of Aspergillus cytoii is remarkably inhibited.
[0016]
On the other hand, as the content of hesperidin added to the medium at the start of the culture, in order to efficiently obtain a large amount of 8-hydroxyhesperetin, it is preferable to contain it up to a saturation concentration as its solubility limit. The saturation concentration is closely related to the content of the organic solvent such as DMSO, but is about 0.3% by weight or less. In addition, the concentration of Aspergillus cytoii added to the medium at the start of the culture is 2 × 10 6 cells / mL (cfu / mL) or more in order to efficiently obtain a large amount of 8-hydroxyhesperetin in a short period of time. Is preferred.
[0017]
Further, in order to increase the efficiency of microbial conversion by Aspergillus cytoii, a spore formation step of performing spore formation from the vegetative mycelium after performing a mycelial culturing step of culturing the vegetative mycelium of Aspergillus cytoii in the medium by shaking. It is preferable to do so.
[0018]
The mycelial culture step is a step of performing microbial conversion by vegetative mycelia while maintaining aerobic conditions by culturing Aspergillus cytoii in a medium containing hesperidin with shaking. In this process, the vegetative mycelium of Aspergillus cytoii performs a glycosidase reaction that cleaves the bond between hesperetin and rutinose constituting hesperidin to produce hesperetin very efficiently. The shaking speed in the shaking culture is preferably in the range of 50 to 200 rpm / min. When the shaking speed is less than 50 rpm / minute, the entire medium containing Aspergillus cytoii is not aerobic, so that the mycelium cannot sufficiently grow. On the other hand, when the shaking speed exceeds 200 rpm / min, the medium is vigorously shaken and mycelia cannot be formed sufficiently.
[0019]
At this time, the content of hesperidin added to the medium may be added exceeding the solubility limit. At this time, hesperidin that has not been dissolved at the start of the culture but has precipitated at the bottom of the culture vessel can be appropriately dissolved in the medium by a stirring action by shaking and used for microbial fermentation. Furthermore, when hesperidin is contained in the medium exceeding the solubility limit, it is configured to culture with shaking until the precipitation disappears at about 50 rpm / min for the purpose of preventing the precipitation of hesperidin at the bottom of the culture vessel. Preferably, more hesperetin can be produced as a result.
[0020]
The spore formation process is performed after a sufficient amount of hesperetin is produced in the medium, and the medium after the mycelial culture process is left as it is without changing the medium. This is a step of causing the mycelium to carry out microbial conversion while promoting sporulation. As for the timing of the transition from the hypha culture process to the spore formation process, it is possible to visually confirm that Aspergillus cytoii vegetative hyphae are densely present on the surface (liquid surface) of the medium at the end of the hypha culture process. Therefore, it can be easily grasped by using it as an index.
[0021]
In this step, the vegetative mycelium of Aspergillus cytoii produces 8-hydroxyhesperetin very efficiently by carrying out a hydroxylase reaction for adding a hydroxyl group to the 8-position of hesperetin while promoting spore formation. The production reaction of 8-hydroxyhesperetin is most efficiently performed from the middle stage to the late stage of the sporulation process in the culture vessel, and the production efficiency at the stage where the sporulation is completed is not so high. For this reason, in order to reduce the wasteful time, the culture is stopped immediately before the entire liquid surface of the culture vessel is completely covered with spores, and the produced 8-hydroxyhesperetin is extracted.
[0022]
In addition, when static culture is performed in this spore formation step, the effect of suppressing spore formation by physical stimulation during shaking can be easily eliminated. During this static culture, the depth of the medium is reduced and the ratio of the surface area to the volume of the medium (specific surface area) is increased to keep the entire medium in an aerobic condition and the activity of Aspergillus cytoii is active. It is preferable that the microorganism conversion efficiency is increased by increasing the microbial conversion efficiency. On the other hand, when shaking culture is performed in the spore formation step, it is easy to maintain aerobic conditions even if the depth of the medium is moderately deep. Therefore, a large amount of 8-hydroxyhesperetin can be obtained by a single culture operation. Can be generated.
[0023]
Finally, 8-hydroxyhesperetin is extracted from the culture supernatant or the medium after the spore formation step and purified. At this time, the culture medium is centrifuged (approximately 3000 rpm) to such an extent that the cell membrane of Aspergillus cytoii is not destroyed, and a supernatant fraction is obtained, and the supernatant fraction is purified by reverse phase liquid chromatography using a hydrophobic column. In addition, since a relatively large amount of 8-hydroxyhesperetin is contained in the precipitate fraction after the centrifugation, the precipitate fraction was extracted with sufficient washing by adding an organic solvent such as methanol or ethanol. Thereafter, the extract may be purified by reverse phase liquid chromatography.
[0024]
The effects exhibited by the above embodiment will be described below.
-The flavonoid compound of embodiment is 8-hydroxy hesperetin which has a structure shown by the said Chemical formula 3. Since this 8-hydroxyhesperetin has a novel structure in which a hydroxyl group is added to the 8-position of hesperetin, the utilization range of hesperidin can be expanded. Furthermore, since this 8-hydroxyhesperetin can exhibit a significantly higher antioxidant effect than hesperidin and hesperetin, it eliminates active oxygen in vivo and suppresses the formation of lipid peroxide, resulting from oxidative stress. It can be used to prevent lifestyle-related diseases such as cancer, arteriosclerosis, and diabetic complications. In addition, hesperidin, which is a natural ingredient contained in citrus fruits, is used as a raw material, and Aspergillus cytois used for brewing alcoholic beverages such as shochu is used, so there is almost no problem in ingestion to the human body. .
[0025]
-The manufacturing method of the flavonoid compound (8-hydroxy hesperetin) of embodiment is obtained by carrying out microbial fermentation process of hesperidin in Aspergillus cytoii, and carrying out microbial conversion of the said hesperidin. For this reason, the novel flavonoid compound which can aim at the expansion of the utilization range of hesperidin can be manufactured very easily. Furthermore, in the microbial fermentation treatment, the spore formation process is performed after the mycelial culture process in which the medium containing hesperidin and Aspergillus cytoii is shake-cultured. Hydroxyhesperetin can be produced very efficiently.
[0026]
【Example】
Hereinafter, examples and comparative examples embodying the embodiment will be described.
<Production of converted hesperidin>
Potato dextrose-broth medium (manufactured by DIFCO) was dispensed in 100 mL portions into a plurality of Erlenmeyer flasks (volume: 500 mL), and autoclaved (121 ° C., 15 minutes). After cooling, 1.0 mL of each Aspergillus spore suspension prepared at a concentration of 2 × 10 8 cells / mL or more was inoculated into each flask and kept in a constant temperature room at 30 ° C. (aerobic of the same components as the atmosphere). The vegetative mycelium was grown while shaking culture at 100 rpm / min. In addition, Aspergillus cytoii strain Aspergillus cytoii (IAM No. 2210) obtained from the Applied Microbiology Research Promotion Association (commonly known as IAM) was used.
[0027]
After sufficient vegetative mycelia were grown by shaking culture for 10 days, 5 mL each of 10% by weight of hesperidin (manufactured by SIGMA) DMSO diluted with autoclave sterilization (105 ° C., 5 minutes) was added, and the aerobic conditions were continued. Under shaking culture, sporulation from vegetative mycelium was allowed to proceed. In addition, when the state of spore formation at this time was monitored over time, the formation of spores started approximately 1 week after the introduction of hesperidin, and after 3 weeks, spore formation was observed over the entire liquid surface of the medium. I found out.
[0028]
In this experiment, samples were collected at the time when two weeks had passed after the introduction of hesperidin before the completion of sporulation, that is, at the period considered to be the middle to late stage of sporulation. The collected sample was centrifuged (3000 rpm, 15 minutes) to precipitate and remove impurities, and then the supernatant was analyzed by high performance liquid chromatography (HPLC) (LC10A manufactured by Shimadzu Corporation, column manufactured by YMC). A303) and the change in the flavonoid composition was examined. As a result, it was found that the ratio of the peak of the hesperidin conversion product in the entire flavonoid composition was about 8.3%.
[0029]
Finally, the remainder of the HPLC sample confirmed to contain the hesperidin conversion product was concentrated with an evaporator, and then preparative HPLC (LC8A manufactured by Shimadzu Corporation, columns were R353-151A and SH343 manufactured by YMC). Fractionated in -5), and the hesperidin converted product was isolated and purified.
[0030]
<Structure determination>
The structure of the hesperidin conversion product obtained in the above <Production of hesperidin conversion product> was determined. 1 H NMR and 13 C NMR spectra were obtained using a JEOL JNM-EX-400 NMR apparatus (tetramethylsilane; TMS) dissolved in DMSO-d6 as an internal standard (400 MHz for 1 H NMR, 13 C NMR for 13 C NMR). 100 MHz). Moreover, the mass spectrum (FAB-MS) was measured by JEOL JMS-DX-705L. The results are shown in Tables 1 and 2.
[0031]
[Table 1]
Figure 0003967554
[0032]
[Table 2]
Figure 0003967554
As a result, it was confirmed that the converted hesperidin was 8-hydroxyhesperetin having the structure represented by the above chemical formula 3.
[0033]
Further, the technical idea that can be grasped from the embodiment will be described below.
The method for producing a flavonoid compound according to claim 3 or 4, wherein the microbial fermentation treatment is performed in a medium containing 0.01 to 5% by volume of dimethyl sulfoxide. When configured in this way, a relatively large amount of hesperidin can be dissolved in the medium while reducing the growth inhibition of Aspergillus cytoii, and its microbial conversion efficiency can be easily increased.
[0034]
The method for producing a flavonoid compound according to claim 3 or 4, wherein the culture supernatant after the microbial fermentation treatment is further purified by reverse phase liquid chromatography using a hydrophobic column. When constituted in this way, a flavonoid compound can be isolated very easily.
[0035]
【The invention's effect】
As described in detail above, the present invention has the following effects.
According to the flavonoid compounds of the first and second aspects of the invention, the use range of hesperidin can be expanded.
[0036]
According to the method for producing a flavonoid compound of the invention described in claim 3 and claim 4, a flavonoid compound capable of expanding the utilization range of hesperidin can be easily produced.

Claims (4)

下記化1で示される構造を有するフラボノイド化合物。
Figure 0003967554
A flavonoid compound having a structure represented by the following chemical formula 1.
Figure 0003967554
アスペルギルス・サイトイ(Aspergillus saitoi)を用いて、ヘスペリジンを微生物発酵処理することにより得られることを特徴とする請求項1に記載のフラボノイド化合物。  The flavonoid compound according to claim 1, wherein the flavonoid compound is obtained by subjecting hesperidin to microbial fermentation using Aspergillus saitoi. 請求項1又は請求項2に記載のフラボノイド化合物を製造するフラボノイド化合物の製造方法であって、
ヘスペリジンを請求項1に記載のフラボノイド化合物を製造する能力を有するアスペルギルス・サイトイ(Aspergillus saitoi)にて微生物発酵処理することにより、前記ヘスペリジンを微生物変換してフラボノイド化合物を生成させることを特徴とするフラボノイド化合物の製造方法。
A method for producing a flavonoid compound for producing the flavonoid compound according to claim 1 or 2,
A flavonoid characterized in that hesperidin is subjected to a microbial fermentation treatment in Aspergillus saitoi having the ability to produce the flavonoid compound according to claim 1, thereby producing a flavonoid compound by microbial conversion of the hesperidin. Compound production method.
前記微生物発酵処理は、
ヘスペリジンと請求項1に記載のフラボノイド化合物を製造する能力を有するアスペルギルス・サイトイとを含む培地を振盪培養し、前記アスペルギルス・サイトイの栄養菌糸にヘスペリジンからヘスペレチンを微生物変換させる菌糸培養工程を行った後、
前記アスペルギルス・サイトイの栄養菌糸から胞子形成を進行させつつ、前記培地中のヘスペレチンからフラボノイド化合物を微生物変換させる胞子形成工程を行うように構成したことを特徴とする請求項3に記載のフラボノイド化合物の製造方法。
The microbial fermentation treatment is
Shaking culture medium containing the Aspergillus saitoi with the ability to produce a flavonoid compound according hesperidin and in claim 1, after the hesperetin from hesperidin to vegetative mycelium of the Aspergillus saitoi was mycelium culture step of bioconversion ,
4. The flavonoid compound according to claim 3, wherein the spore formation step of microbial conversion of the flavonoid compound from hesperetin in the medium is performed while the spore formation proceeds from the vegetative mycelium of the Aspergillus cytoii. Production method.
JP2001073577A 2001-03-15 2001-03-15 Flavonoid compound and method for producing the same Expired - Fee Related JP3967554B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2001073577A JP3967554B2 (en) 2001-03-15 2001-03-15 Flavonoid compound and method for producing the same
PCT/JP2002/002445 WO2002074971A1 (en) 2001-03-15 2002-03-14 Flavonoid compound and process for producing the same
EP02705208A EP1369489B1 (en) 2001-03-15 2002-03-14 Flavonoid compound and process for producing the same
US10/471,438 US7138429B2 (en) 2001-03-15 2002-03-14 Flavonoid compound and process for producing the same
CNB028061861A CN100381436C (en) 2001-03-15 2002-03-14 Flavonoid compound and process for producing the same
DE60214142T DE60214142T2 (en) 2001-03-15 2002-03-14 FLAVONOID COMPOUND AND METHOD OF MANUFACTURING THEREOF
ES02705208T ES2271219T3 (en) 2001-03-15 2002-03-14 FLAVONOID COMPOUND AND PRODUCTION PROCEDURE OF SUCH COMPOUND.
IL15781102A IL157811A0 (en) 2001-03-15 2002-03-14 Flavonoid compound and process for producing the same
IL157811A IL157811A (en) 2001-03-15 2003-09-08 8-hydroxyhesperetin and a microbial process for its preparation
US11/462,437 US7582675B2 (en) 2001-03-15 2006-08-04 Flavonoid compound and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073577A JP3967554B2 (en) 2001-03-15 2001-03-15 Flavonoid compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002275175A JP2002275175A (en) 2002-09-25
JP3967554B2 true JP3967554B2 (en) 2007-08-29

Family

ID=18930981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073577A Expired - Fee Related JP3967554B2 (en) 2001-03-15 2001-03-15 Flavonoid compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP3967554B2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL157811A0 (en) 2001-03-15 2004-03-28 Japan Science & Tech Corp Flavonoid compound and process for producing the same
US7776314B2 (en) 2002-06-17 2010-08-17 Grunenthal Gmbh Abuse-proofed dosage system
DE10361596A1 (en) 2003-12-24 2005-09-29 Grünenthal GmbH Process for producing an anti-abuse dosage form
US20070048228A1 (en) 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
DE102004032051A1 (en) 2004-07-01 2006-01-19 Grünenthal GmbH Process for the preparation of a secured against misuse, solid dosage form
DE10336400A1 (en) 2003-08-06 2005-03-24 Grünenthal GmbH Anti-abuse dosage form
US8075872B2 (en) 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
DE102005005446A1 (en) 2005-02-04 2006-08-10 Grünenthal GmbH Break-resistant dosage forms with sustained release
DE102004032049A1 (en) 2004-07-01 2006-01-19 Grünenthal GmbH Anti-abuse, oral dosage form
DE102005005449A1 (en) 2005-02-04 2006-08-10 Grünenthal GmbH Process for producing an anti-abuse dosage form
DE102007011485A1 (en) 2007-03-07 2008-09-11 Grünenthal GmbH Dosage form with more difficult abuse
NZ586792A (en) 2008-01-25 2012-09-28 Gruenenthal Chemie Tamper resistant controlled release pharmaceutical tablets form having convex and concave surfaces
RU2508092C2 (en) 2008-05-09 2014-02-27 Грюненталь Гмбх Method for preparing solid dosage form, particularly tablet for pharmaceutical application and method for preparing solid dosage form precursor, particularly tablet
CN102573805A (en) 2009-07-22 2012-07-11 格吕伦塔尔有限公司 Hot-melt extruded controlled release dosage form
WO2011009604A1 (en) 2009-07-22 2011-01-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
RU2607499C2 (en) 2010-09-02 2017-01-10 Грюненталь Гмбх Destruction-resistant dosage form containing anionic polymer
PL2611426T3 (en) 2010-09-02 2014-09-30 Gruenenthal Gmbh Tamper resistant dosage form comprising inorganic salt
BR112014002022A2 (en) 2011-07-29 2017-02-21 Gruenenthal Gmbh tamper-resistant tablet providing immediate drug release
PT2736497T (en) 2011-07-29 2017-11-30 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
EP2819656A1 (en) 2012-02-28 2015-01-07 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
MX362357B (en) 2012-04-18 2019-01-14 Gruenenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form.
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
EP3003283A1 (en) 2013-05-29 2016-04-13 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
WO2015004245A1 (en) 2013-07-12 2015-01-15 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
CN105934241B (en) 2013-11-26 2020-06-05 格吕伦塔尔有限公司 Preparation of powdered pharmaceutical composition by cryogenic grinding
EP3142646A1 (en) 2014-05-12 2017-03-22 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
EP3148512A1 (en) 2014-05-26 2017-04-05 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
MX2017013637A (en) 2015-04-24 2018-03-08 Gruenenthal Gmbh Tamper-resistant dosage form with immediate release and resistance against solvent extraction.
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
CN110438015B (en) * 2019-09-04 2022-09-16 桂林理工大学 Immature bitter orange endophytic fungus for producing hesperidinase and method for producing hesperidinase by fermenting immature bitter orange endophytic fungus

Also Published As

Publication number Publication date
JP2002275175A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP3967554B2 (en) Flavonoid compound and method for producing the same
US8247002B2 (en) Antioxidant material, anti-deterioration agent and food or beverage
US7582675B2 (en) Flavonoid compound and process for producing the same
JP4522625B2 (en) Citrus fermented product and method for producing the same
KR20120064791A (en) Method for producing vinegar comprising an effective compound derived from soybean and the vinegar produced by the same
JP3967558B2 (en) Method for producing flavonoid compound
JP4522624B2 (en) Lemon fermented product and method for producing the same
JP3967564B2 (en) Lemon fermented product and method for producing the same
JP4520066B2 (en) Antioxidant and method for producing flavonoid compound
JP4335598B2 (en) Antioxidant material, production method of antioxidant material and food and drink
JPH0885789A (en) Preparation of oxidation-resistant substance and its use
KR20100037847A (en) Method for preparing wine by using extract of hippophae rhamnoides
JP2002293779A (en) Flavonoid compound and method for producing the same
JP2004267155A (en) Food and drink, pharmaceutical, arteriosclerosis preventive, and agent for suppressing oxidative denaturation of ldl
JP2002238594A (en) Method for producing phosphorylated isoflavone
JP2808196B2 (en) Novel substance CL190Y1, its production method and antioxidant containing it as an active ingredient
KR102005629B1 (en) Fermented cabbage puree vegetable composition, which increases the level of indole-3-carbinol and food composition comprising same
JP2599000B2 (en) New substance CL190Y2, method for producing the same and antioxidant containing the same as an active ingredient
JP3431575B2 (en) Method for producing menaquinone-7
JP2001120294A (en) Method for producing isoflavone aglucone with phodotorula glutinis having isoflavone aglucone- producing property
KR100609486B1 (en) Process for preparing 4-3,4-dihydroxy-phenyl-but-3-en-2-one from Inonotus obliquus
JPH10243790A (en) Antioxidant substance and its production
JP2008508870A (en) Industrially produced dihydrocoumarin
JP2005022999A (en) Lignan compound and food or drink
JP2023135263A (en) Method for producing flavor-supported filamentous fungus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3967554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees