JP3961809B2 - Magnetic sensor element - Google Patents

Magnetic sensor element Download PDF

Info

Publication number
JP3961809B2
JP3961809B2 JP2001324989A JP2001324989A JP3961809B2 JP 3961809 B2 JP3961809 B2 JP 3961809B2 JP 2001324989 A JP2001324989 A JP 2001324989A JP 2001324989 A JP2001324989 A JP 2001324989A JP 3961809 B2 JP3961809 B2 JP 3961809B2
Authority
JP
Japan
Prior art keywords
magnetic
sensor element
magnet
magnetic sensor
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001324989A
Other languages
Japanese (ja)
Other versions
JP2003130933A (en
Inventor
昌久 伊藤
Original Assignee
株式会社エヌエー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌエー filed Critical 株式会社エヌエー
Priority to JP2001324989A priority Critical patent/JP3961809B2/en
Publication of JP2003130933A publication Critical patent/JP2003130933A/en
Application granted granted Critical
Publication of JP3961809B2 publication Critical patent/JP3961809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気近接スイッチに関し、特に往復動作における原点検出用の磁気近接スイッチに関する。
【0002】
【従来の技術】
従来、近接スイッチの検出信号を自己保持動作させる為には、ラッチ回路、ラッチングリレー等によるのが一般的な方法であった。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のラッチ回路やラッチングリレーを使用した方法では、電源を切ってから再び投入した際に以前の状態を再現できないという欠点があった。
本発明は、上記欠点に対処する為になされたものであり、自己保持動作をさせる為に必要な構成部品の数量はわずかで、前記ラッチ回路のような部品を必要とせずに電源OFF後も再投入時には、以前の状態を再現できる自己保持型磁気センサに使用する磁気センサ素子を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記した課題を解決するため、請求項1記載の本発明では、強磁性薄膜磁気抵抗パターンを、略直交する向きにブリッジ接続加工した磁気抵抗素子と、前記磁気抵抗素子上に、前記磁気抵抗パターンの何れにも角度略45度の向きに磁界が印加されるべく取りつけたバイアス磁石と、前記磁気抵抗素子の側方に近接して、前記バイアス磁石の磁極方向と略直交する方向に、保磁力1000〜3000A/mの磁性材料を配置した磁気センサ素子を提供する。
請求項2記載の本発明では、前記磁性材料が、前記磁気抵抗素子を間に挟んで2個以上配置されている請求項1記載の磁気センサ素子を提供する。
【0005】
【発明の実施の形態】
以下、本発明の磁気センサ素子の実施形態について図面を参照しながら説明する。
【0006】
図1は本発明の磁気センサ素子の構造分解図である。磁気抵抗素子(101)は磁気抵抗パターン(1011)の各要素が互いに直交するようにブリッジ状に形成され、前記磁気抵抗パターン(1011)上を保護物質で覆ってある。
【0007】
バイアス磁石(102)は前記磁気抵抗パターン(1011)の何れにも角度略45度の磁界が印加されるように、前記磁気抵抗素子(101)の上にエポキシ樹脂等により取りつけ固定する。
【0008】
磁性材料(1031、1032)は前記磁気抵抗パターン(1011)を挟み前記バイアス磁石(102)にほぼ接するように、前記磁気抵抗素子(101)に取りつけ、エポキシ樹脂等で固定する。
【0009】
図2は、前記磁気抵抗素子(101)と前記バイアス磁石(102)と前記磁性材料(1031、1032)を一体化した、磁気センサ素子(200)を示す。
【0010】
図3は、前記した図2の磁気センサ素子(200)と、検出対象の磁石(301)を間隔dで配置し、前記磁石(301)の移動させる方向を矢印で示したものである。
【0011】
図3の検出対象磁石(301)単体の、磁極表面からの距離(d)をパラメータとした、磁極方向と直交する方向の磁極中心からの距離に対する磁束密度を図4に示す。一方、図3における磁気センサ素子(200)の、検出対象磁石(301)に対する検出出力波形を図5に示す。
【0012】
図5において、磁石の磁極方向と直交する方向の磁極中心からの距離(X)が十分遠方においても、正のX側では磁気センサ素子出力が正の値を保ち、負のX側では磁気センサ素子出力が負の値を保つ特性となっている。
【0013】
図5に示す磁気センサ素子出力グラフが図4のグラフと異なるのは磁性材料をバイアス磁石つき磁気抵抗素子に付加した為であり、以下さらに詳細に説明する。
【0014】
磁性材料を取りつけない場合のバイアス磁石つき磁気抵抗素子の図5に相当する出力電圧波形は図6のとおりであり、途中の磁界強度の大小に関わりなく、磁界発生源の磁石が遠ざかれば何れの場合も出力はほぼゼロに近づく為、このままでは本発明で意図している自己保持動作とはならない。
【0015】
磁性材料をバイアス磁石つき磁気抵抗素子を挟むように取りつけた場合の動作は、磁性材料の磁気特性によって異なる。
【0016】
(軟質磁性材料の場合)
図7に示すように磁性材料の集磁効果により、感度が高くなり、波形は立ち上がりが急峻になるが、検出対象磁石が遠ざかり磁界がほぼゼロに近くなると磁性材料の磁化は小さくなる為、磁性材料がない時と同様に、出力はほぼゼロに近づくが磁化の残留値は保磁力に依存し、保磁力が小さいほど少なくなる。
【0017】
(硬質磁性材料(磁石用の材料)の場合)
図8に示すように磁性材料がない場合(図6)とほぼ同じ特性を示す。(一般的に磁石用の硬質磁性材料(例えばフェライト)は保磁力が極めて大きく(130KA/m以上)、通常の磁化されたフェライト磁石等で磁化することができない為、あたかも磁性材料が存在しない特性となる。)
【0018】
(中間の磁気的な硬さを持つ磁性材料の場合)
図5に示した本発明の場合に相当し、通常の磁化されたフェライト磁石程度で対象とする磁性材料が磁化し、且つ、適当な保磁力を有する為、磁化されたフェライト磁石を遠ざけても対象の磁性材料には磁化が残留する現象を利用している。
ここで重要なポイントは、検出対象磁石とセンサ間の実用的な動作距離(5mm前後)で、動作する磁性材料を選定できるかどうかということである。
【0019】
図9は各種材料の保磁力を比較したグラフであるが、前記図4のグラフより、実用的な磁石からの距離に対する磁束密度を考慮すると5〜10mTの磁束密度で動作する磁性材料を選定する必要があり、磁性材料を磁化するには保磁力の2.5倍以上の磁化力が必要であるから、前記5〜10mTの磁束密度を相当磁化力に換算すると4000〜8000A/mとなる為、この値の40%は1600〜3200A/mとなり、この値以下の保磁力を有する材料でなければ不安定な磁化となる為に使用できない。
【0020】
また、あまり保磁力が小さいと周辺磁界の影響を受けて磁化が反転する等の誤動作を起こす恐れがある為、保磁力としては1000〜3000A/mの範囲が望ましい。このような磁性材料としては、図9に示したように、例えば、S60CやSUS631などを用いることができる。なお、本発明の実施形態で使用した材料は、図9のグラフ中の保磁力がおよそ、1600A/mのS60Cである。
【0021】
【発明の効果】
本発明の磁気センサ素子は、強磁性薄膜磁気抵抗パターンを、略直交する向きにブリッジ接続加工した磁気抵抗素子と、前記磁気抵抗素子上に、前記磁気抵抗パターンの何れにも角度略45度の向きに磁界が印加されるべく取りつけたバイアス磁石と、前記磁気抵抗素子の側方に近接して、前記バイアス磁石の磁極方向と略直交する方向に、保磁力1000〜3000A/mの磁性材料を配置した構成である。
従って、ラッチ回路のような部品を必要とせず、自己保持動作をさせる為に必要な構成部品の数量はわずかで済み、しかも、電源OFF後も再投入時には、以前の状態を再現できる自己保持型磁気センサに有効に使用できる。
【図面の簡単な説明】
【図1】磁気センサ素子の構造分解図である。
【図2】磁気センサ素子の斜視図である。
【図3】磁気センサ素子と検出対象磁石の斜視図である。
【図4】検出対象磁石の磁極方向と直交する方向の磁束密度を示す図である。
【図5】検出対象磁石の磁極方向と直交する方向の磁気センサ素子出力(本発明に関する)を示す図である。
【図6】検出対象磁石の磁極方向と直交する方向のバイアス磁石つき磁気抵抗素子出力を示す図である。
【図7】検出対象磁石の磁極方向と直交する方向の磁気センサ素子出力(本発明との比較のため、磁性材料をSPCCとした場合)を示す図である。
【図8】検出対象磁石の磁極方向と直交する方向の磁気センサ素子出力(本発明との比較のため、磁性材料を磁石用のフェライトとした場合)を示す図である。
【図9】磁性材料の種類別保磁力を示す図である。
【符号の説明】
101 磁気抵抗素子
102 バイアス磁石
1011 磁気抵抗パターン
1031 磁性材料
1032 磁性材料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic proximity switch, and more particularly to a magnetic proximity switch for detecting an origin in a reciprocating operation.
[0002]
[Prior art]
Conventionally, a latch circuit, a latching relay, or the like has been a general method for performing a self-holding operation of the proximity switch detection signal.
[0003]
[Problems to be solved by the invention]
However, the conventional method using a latch circuit or a latching relay has a drawback that the previous state cannot be reproduced when the power is turned off and then on again.
The present invention has been made to cope with the above-described drawbacks, and the number of components necessary for the self-holding operation is small, and even after the power is turned off without using a component such as the latch circuit. An object of the present invention is to provide a magnetic sensor element for use in a self-holding magnetic sensor that can reproduce the previous state upon re-entry.
[0004]
[Means for Solving the Problems]
In order to solve the above-described problem, in the present invention according to claim 1, a magnetoresistive element in which a ferromagnetic thin film magnetoresistive pattern is bridge-connected in a substantially orthogonal direction, and the magnetoresistive pattern on the magnetoresistive element. In either case, a coercive force is applied in a direction that is close to the side of the magnetoresistive element and is substantially perpendicular to the magnetic pole direction of the bias magnet. Provided is a magnetic sensor element in which a magnetic material of 1000 to 3000 A / m is disposed.
According to a second aspect of the present invention, there is provided the magnetic sensor element according to the first aspect, wherein two or more magnetic materials are arranged with the magnetoresistive element interposed therebetween.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the magnetic sensor element of the present invention will be described with reference to the drawings.
[0006]
FIG. 1 is an exploded view of a magnetic sensor element according to the present invention. The magnetoresistive element (101) is formed in a bridge shape so that the elements of the magnetoresistive pattern (1011) are orthogonal to each other, and the magnetoresistive pattern (1011) is covered with a protective substance.
[0007]
The bias magnet (102) is attached and fixed on the magnetoresistive element (101) with an epoxy resin or the like so that a magnetic field of approximately 45 degrees is applied to any of the magnetoresistive patterns (1011).
[0008]
The magnetic material (1031, 1032) is attached to the magnetoresistive element (101) so as to be substantially in contact with the bias magnet (102) with the magnetoresistive pattern (1011) interposed therebetween, and is fixed with an epoxy resin or the like.
[0009]
FIG. 2 shows a magnetic sensor element (200) in which the magnetoresistive element (101), the bias magnet (102), and the magnetic material (1031, 1032) are integrated.
[0010]
FIG. 3 shows the magnetic sensor element (200) of FIG. 2 and the magnet (301) to be detected arranged at an interval d, and the direction in which the magnet (301) is moved is indicated by an arrow.
[0011]
FIG. 4 shows the magnetic flux density with respect to the distance from the magnetic pole center in the direction orthogonal to the magnetic pole direction, with the distance (d) from the magnetic pole surface of the single magnet to be detected (301) in FIG. 3 as a parameter. On the other hand, a detection output waveform of the magnetic sensor element (200) in FIG. 3 with respect to the detection target magnet (301) is shown in FIG.
[0012]
In FIG. 5, even when the distance (X) from the magnetic pole center in the direction orthogonal to the magnetic pole direction of the magnet is sufficiently far away, the magnetic sensor element output maintains a positive value on the positive X side, and the magnetic sensor on the negative X side. The element output has a characteristic of maintaining a negative value.
[0013]
The magnetic sensor element output graph shown in FIG. 5 is different from the graph of FIG. 4 because a magnetic material is added to the magnetoresistive element with a bias magnet, which will be described in more detail below.
[0014]
The output voltage waveform corresponding to FIG. 5 of the magnetoresistive element with a bias magnet when the magnetic material is not attached is as shown in FIG. 6, regardless of the magnitude of the magnetic field strength in the middle, and any magnetic field source magnet moves away. In this case, since the output is close to zero, the self-holding operation intended by the present invention is not achieved as it is.
[0015]
The operation when the magnetic material is mounted so as to sandwich the magnetoresistive element with a bias magnet differs depending on the magnetic characteristics of the magnetic material.
[0016]
(For soft magnetic materials)
As shown in FIG. 7, due to the magnetic material collection effect, the sensitivity increases, and the waveform rises sharply. However, when the magnet to be detected is moved away and the magnetic field is nearly zero, the magnetization of the magnetic material becomes smaller. As in the case of no material, the output approaches nearly zero, but the residual value of magnetization depends on the coercive force, and decreases as the coercive force decreases.
[0017]
(In the case of hard magnetic materials (materials for magnets))
As shown in FIG. 8, the characteristics are almost the same as in the case where there is no magnetic material (FIG. 6). (Generally, hard magnetic materials for magnets (for example, ferrite) have a very large coercive force (130 KA / m or more) and cannot be magnetized by ordinary magnetized ferrite magnets, etc., so that there is no magnetic material. Will be.)
[0018]
(For magnetic materials with intermediate magnetic hardness)
This corresponds to the case of the present invention shown in FIG. 5, and the target magnetic material is magnetized to the extent of a normal magnetized ferrite magnet and has an appropriate coercive force. A phenomenon in which magnetization remains in the target magnetic material is used.
An important point here is whether or not an operating magnetic material can be selected with a practical operating distance (around 5 mm) between the magnet to be detected and the sensor.
[0019]
FIG. 9 is a graph comparing the coercivity of various materials. From the graph of FIG. 4, a magnetic material that operates at a magnetic flux density of 5 to 10 mT is selected in consideration of the magnetic flux density with respect to the distance from a practical magnet. In order to magnetize a magnetic material, a magnetizing force that is 2.5 times or more of the coercive force is required. 40% of this value is 1600 to 3200 A / m, and a material having a coercive force equal to or less than this value cannot be used because it becomes unstable magnetization.
[0020]
In addition, if the coercive force is too small, there is a risk of malfunction such as magnetization reversal due to the influence of the peripheral magnetic field, so the coercive force is preferably in the range of 1000 to 3000 A / m. As such a magnetic material, for example, S60C or SUS631 can be used as shown in FIG. The material used in the embodiment of the present invention is S60C whose coercive force in the graph of FIG. 9 is approximately 1600 A / m.
[0021]
【The invention's effect】
The magnetic sensor element of the present invention includes a magnetoresistive element in which a ferromagnetic thin film magnetoresistive pattern is bridge-connected in a substantially orthogonal direction, and on the magnetoresistive element, the magnetoresistive pattern has an angle of approximately 45 degrees. A magnetic material having a coercive force of 1000 to 3000 A / m in a direction substantially perpendicular to the magnetic pole direction of the bias magnet, in proximity to the side of the magnetoresistive element, and a bias magnet mounted to apply a magnetic field in the direction. It is the arranged configuration.
Therefore, there is no need for parts such as a latch circuit, the number of components required for self-holding operation is small, and the self-holding type can reproduce the previous state when the power is turned on again after power-off. It can be used effectively for magnetic sensors.
[Brief description of the drawings]
FIG. 1 is an exploded view of a magnetic sensor element.
FIG. 2 is a perspective view of a magnetic sensor element.
FIG. 3 is a perspective view of a magnetic sensor element and a detection target magnet.
FIG. 4 is a diagram showing a magnetic flux density in a direction orthogonal to a magnetic pole direction of a detection target magnet.
FIG. 5 is a diagram showing a magnetic sensor element output (related to the present invention) in a direction orthogonal to a magnetic pole direction of a detection target magnet.
FIG. 6 is a diagram showing a magnetoresistive element output with a bias magnet in a direction orthogonal to a magnetic pole direction of a magnet to be detected.
FIG. 7 is a diagram showing a magnetic sensor element output in a direction perpendicular to the magnetic pole direction of a magnet to be detected (when the magnetic material is SPCC for comparison with the present invention).
FIG. 8 is a diagram showing a magnetic sensor element output in a direction orthogonal to a magnetic pole direction of a magnet to be detected (for comparison with the present invention, when a magnetic material is a ferrite for a magnet).
FIG. 9 is a diagram showing coercive force by type of magnetic material.
[Explanation of symbols]
101 Magnetoresistive element 102 Bias magnet 1011 Magnetoresistive pattern 1031 Magnetic material 1032 Magnetic material

Claims (2)

強磁性薄膜磁気抵抗パターンを、略直交する向きにブリッジ接続加工した磁気抵抗素子と、前記磁気抵抗素子上に、前記磁気抵抗パターンの何れにも角度略45度の向きに磁界が印加されるべく取りつけたバイアス磁石と、前記磁気抵抗素子の側方に近接して、前記バイアス磁石の磁極方向と略直交する方向に、保磁力1000〜3000A/mの磁性材料を配置した磁気センサ素子。A magnetic field should be applied to the magnetoresistive element in which the ferromagnetic thin film magnetoresistive pattern is bridge-connected in a substantially orthogonal direction and to the magnetoresistive element at an angle of approximately 45 degrees. A magnetic sensor element in which a magnetic material having a coercive force of 1000 to 3000 A / m is disposed in a direction substantially perpendicular to the magnetic pole direction of the bias magnet in the vicinity of the attached bias magnet and the side of the magnetoresistive element. 前記磁性材料が、前記磁気抵抗素子を間に挟んで2個以上配置されている請求項1記載の磁気センサ素子。The magnetic sensor element according to claim 1, wherein two or more magnetic materials are arranged with the magnetoresistive element interposed therebetween.
JP2001324989A 2001-10-23 2001-10-23 Magnetic sensor element Expired - Fee Related JP3961809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001324989A JP3961809B2 (en) 2001-10-23 2001-10-23 Magnetic sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001324989A JP3961809B2 (en) 2001-10-23 2001-10-23 Magnetic sensor element

Publications (2)

Publication Number Publication Date
JP2003130933A JP2003130933A (en) 2003-05-08
JP3961809B2 true JP3961809B2 (en) 2007-08-22

Family

ID=19141627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324989A Expired - Fee Related JP3961809B2 (en) 2001-10-23 2001-10-23 Magnetic sensor element

Country Status (1)

Country Link
JP (1) JP3961809B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333490A (en) * 2006-06-13 2007-12-27 Tokai Rika Co Ltd Magnetic position detection device
JP2007333489A (en) * 2006-06-13 2007-12-27 Tokai Rika Co Ltd Magnetic position detection device
JP2008101932A (en) * 2006-10-17 2008-05-01 Tokai Rika Co Ltd Magnetic position sensor
JP2010515880A (en) * 2007-01-08 2010-05-13 キョントン ネットワーク コーポレーション リミテッド Precision pressure sensor
JP5399622B2 (en) * 2007-09-21 2014-01-29 東日本旅客鉄道株式会社 Measuring instrument and measuring method
US10094890B2 (en) 2014-10-09 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Magnetic sensor

Also Published As

Publication number Publication date
JP2003130933A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
US6900713B2 (en) Magnetic switch capable of instantaneous switching of an output signal and magnetic sensor
EP1061592A3 (en) Magneto-resistance effect element, and its use as memory element
JP2004069546A (en) Magnetic detector
JP3961809B2 (en) Magnetic sensor element
JP2790811B2 (en) Thin film magnetic head
JPH08178937A (en) Magnetism detecting device
KR100327296B1 (en) Device for deactivating magnetic markers of the electronic goods monitoring system
JPH06249607A (en) Rotational angle sensor
JPH10233146A (en) Ferromagnet passage sensor
JP5523149B2 (en) Magnetic switch
US6714389B1 (en) Digital magnetoresistive sensor with bias
JP4192267B2 (en) Self-holding proximity switch
JPH09292202A (en) Linear displacement detecting device
JPH0676706A (en) Proximity switch for magnetic body detection
JPH08122011A (en) Magnetic angle detection apparatus
JP4639216B2 (en) Magnetic sensor
US20190242954A1 (en) Extension member for devices using magnetic field detection
JP2003316512A (en) Pointing device
JP3141213B2 (en) Magnetic material detecting device and tachometer using magnetic material detecting device
US20090195242A1 (en) Swing type switching device including magnet and magnetoresistive element
JPH09264703A (en) Magnetic circuit for permanent magnet type linear sensor
JPH04169881A (en) Magnetic shield structure of magnetic sensor
JP5146696B2 (en) Magnetic sensor
JPH08297814A (en) Magneto-resistance effect element
JP2727460B2 (en) Proximity switch magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070517

R150 Certificate of patent or registration of utility model

Ref document number: 3961809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees