JP3960479B1 - Manufacturing method of semiconductor device having double-sided electrode structure - Google Patents

Manufacturing method of semiconductor device having double-sided electrode structure Download PDF

Info

Publication number
JP3960479B1
JP3960479B1 JP2006188289A JP2006188289A JP3960479B1 JP 3960479 B1 JP3960479 B1 JP 3960479B1 JP 2006188289 A JP2006188289 A JP 2006188289A JP 2006188289 A JP2006188289 A JP 2006188289A JP 3960479 B1 JP3960479 B1 JP 3960479B1
Authority
JP
Japan
Prior art keywords
internal connection
semiconductor device
double
electrode
front surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006188289A
Other languages
Japanese (ja)
Other versions
JP2008016729A (en
Inventor
政道 石原
賢秀 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Harima Chemical Inc
Sijtechnology Inc
Original Assignee
Kyushu Institute of Technology NUC
Harima Chemical Inc
Sijtechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Harima Chemical Inc, Sijtechnology Inc filed Critical Kyushu Institute of Technology NUC
Priority to JP2006188289A priority Critical patent/JP3960479B1/en
Application granted granted Critical
Publication of JP3960479B1 publication Critical patent/JP3960479B1/en
Publication of JP2008016729A publication Critical patent/JP2008016729A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19106Disposition of discrete passive components in a mirrored arrangement on two different side of a common die mounting substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

【課題】貫通電極技術を必要とすること無く、簡潔に製造でき、コスト的にも安い両面電極構造の半導体装置およびその製造方法を提供する。
【解決手段】半導体チップを含む回路素子を配置して樹脂封止すると共に、該回路素子に接続される外部接続用電極をおもて面と裏面の両面に配置する。回路素子を有機基板上に配置して、該有機基板に設けた配線パターンと接続する。連結板により一体に構成した複数の内部接続用電極のそれぞれの一端を、配線パターン上の所定位置に接続する。回路素子を樹脂封止した後、連結板が無くなるまでおもて面側を研磨或いは研削して平坦化することにより個々の内部接続用電極に分離して構成する。複数の内部接続用電極のそれぞれの他端をおもて面における外部接続用電極として用いる。有機基板に設けたスルーホール内部の導体層を介して、裏面における外部接続用電極を配線パターンに接続する。
【選択図】 図1
A semiconductor device having a double-sided electrode structure that can be manufactured simply and at low cost without requiring through electrode technology and a method for manufacturing the same are provided.
A circuit element including a semiconductor chip is disposed and sealed with resin, and external connection electrodes connected to the circuit element are disposed on both the front surface and the back surface. A circuit element is disposed on an organic substrate and connected to a wiring pattern provided on the organic substrate. One end of each of the plurality of internal connection electrodes configured integrally with the connecting plate is connected to a predetermined position on the wiring pattern. After the circuit element is resin-sealed, the front surface side is polished or ground and flattened until the connecting plate disappears, thereby being separated into individual internal connection electrodes. The other end of each of the plurality of internal connection electrodes is used as an external connection electrode on the front surface. The external connection electrode on the back surface is connected to the wiring pattern through the conductor layer inside the through hole provided in the organic substrate.
[Selection] Figure 1

Description

本発明は、半導体チップを含む回路素子を配置して樹脂封止すると共に、該回路素子に接続される外部接続用電極をおもて面と裏面の両面に配置した両面電極構造の半導体装置の製造方法に関する。
The invention, together with a resin sealing by placing a circuit element including a semiconductor chip, a semiconductor equipment double-sided electrode structure in which external connection electrodes connected to the circuit elements disposed on both sides of the front surface and the back surface It relates to the manufacturing method.

LSIチップの高集積化に伴い、パッケージサイズの縮小化も強く要求されており、様々な実装パッケージ構造が提案されている。近年、半導体ベアチップに貫通電極を形成して積層しようとする開発が盛んに行われている。一方、リアルサイズの両面電極パッケージもこれから製品化される可能性が高い。いずれの技術においても、従来の両面電極パッケージは常に貫通電極構造を必要としているが(特許文献1,特許文献2参照)、現在の貫通孔の絶縁方法は、高温で処理されるため半導体の実装プロセスへの適用は困難であった。このように、半導体基板への貫通孔の形成とその絶縁方法にはまだ課題が残されていて、貫通電極を必要とせずに配線することが望まれる。   Along with the high integration of LSI chips, there is a strong demand for reducing the package size, and various mounting package structures have been proposed. 2. Description of the Related Art In recent years, developments for forming and stacking through electrodes on a semiconductor bare chip have been actively conducted. On the other hand, real size double-sided electrode packages are also likely to be commercialized. In either technique, the conventional double-sided electrode package always requires a through-electrode structure (see Patent Document 1 and Patent Document 2). However, since current insulation methods for through-holes are processed at high temperatures, semiconductor mounting Application to the process was difficult. As described above, there is still a problem in the formation of the through hole in the semiconductor substrate and the insulating method thereof, and it is desired to perform wiring without requiring the through electrode.

特許文献3は、積層型半導体パッケージ用の多層基板において、その個別単層のパッケージを薄くする技術を開示する。このため、下部配線基板と上部配線基板に分けて別々に製作し、後で貼り合わせる。上部配線基板は上面への電極取出しと再配線を同時に兼ね備えているが、低コストで製造することは困難である。   Patent Document 3 discloses a technique for thinning an individual single layer package in a multilayer substrate for a stacked semiconductor package. For this reason, the lower wiring board and the upper wiring board are separately manufactured and bonded together later. The upper wiring board has both electrode extraction and rewiring at the same time, but it is difficult to manufacture at low cost.

また、特許文献4は、積層型半導体において、その個別単層のパッケージの突起電極を形成する技術を開示する。突起電極のパターン形成をフィルムで行い、開口部に半田ペーストを充填し、過熱することによって突起電極を形成する。工程的に、圧倒的に複雑でコスト高となる。
特開2003−249604号公報 特開2002−158312号 特開2005−286010号公報 特開2003−218283号公報
Patent Document 4 discloses a technique for forming a protruding electrode of an individual single layer package in a stacked semiconductor. The pattern of the bump electrode is formed with a film, the opening is filled with a solder paste, and the bump electrode is formed by heating. The process is overwhelmingly complicated and expensive.
JP 2003-249604 A JP 2002-158312 A JP 2005-286010 A JP 2003-218283 A

本発明は、係る問題点を解決して、貫通電極技術を必要とすること無く、簡潔にしかもコスト的にも安く両面電極パッケージを製造し、供給することを目的としている。これによって、有機基板タイプ両面電極パッケージ、リードフレームタイプ両面電極パッケージ、或いはテープ基板タイプ両面電極パッケージの製造を可能にして、従来の携帯電話への応用以外に各種センサー(音、磁気、圧力、等)用パッケージとしても有効となる。   An object of the present invention is to solve such problems and to manufacture and supply a double-sided electrode package simply and inexpensively without requiring a through electrode technology. This makes it possible to manufacture organic substrate type double-sided electrode packages, lead frame type double-sided electrode packages, or tape substrate type double-sided electrode packages, and various sensors (sound, magnetism, pressure, etc.) in addition to conventional mobile phone applications. ) Is also effective as a package.

本発明の両面電極構造の半導体装置の製造方法は、半導体チップを含む回路素子を配置して樹脂封止すると共に、該回路素子に接続される外部接続用電極をおもて面と裏面の両面に配置する。回路素子を有機基板上に配置して、該有機基板に設けた配線パターンと接続する。連結板により一体に構成した複数の柱状或いは棒状に形成した内部接続用電極のそれぞれの一端を、配線パターン上の所定位置に接続する。回路素子を樹脂封止した後、有機基板側を裏面としてその上に配置される回路素子側のおもて面を、前記連結板が無くなるまで研磨或いは研削して平坦化することにより個々の内部接続用電極に分離して構成する。複数の内部接続用電極のそれぞれの他端をおもて面における外部接続用電極として用いる。有機基板に設けたスルーホール内部の導体層を介して、裏面における外部接続用電極を配線パターンに接続する。 Semiconductor equipment manufacturing method of the double-sided electrode structure of the present invention is to resin sealing by placing a circuit element including a semiconductor chip, the external connection electrodes connected to the circuit element front surface and the back surface of the Place on both sides. A circuit element is disposed on an organic substrate and connected to a wiring pattern provided on the organic substrate. One end of each of the internal connection electrodes formed in a columnar shape or a bar shape integrally formed by the connecting plate is connected to a predetermined position on the wiring pattern. After the circuit element is resin-sealed, the inner surface of each circuit element is disposed by polishing or grinding the front surface of the circuit element disposed on the organic substrate side as a back surface until the connecting plate is removed. Separated into connection electrodes. The other end of each of the plurality of internal connection electrodes is used as an external connection electrode on the front surface. The external connection electrode on the back surface is connected to the wiring pattern through the conductor layer inside the through hole provided in the organic substrate.

また、本発明の両面電極構造の半導体装置の製造方法は、回路素子をリードフレーム上に配置して、該リードフレームのインナーリード部と接続する。連結板により一体に構成した複数の柱状或いは棒状に形成した内部接続用電極のそれぞれの一端を、リードフレームの所定位置に接続する。回路素子を樹脂封止した後、リードフレーム側を裏面としてその上に配置される回路素子側のおもて面を、前記連結板が無くなるまで研磨或いは研削して平坦化することにより個々の内部接続用電極に分離して構成する。複数の内部接続用電極のそれぞれの他端をおもて面における外部接続用電極として用いる。リードフレームに設けたアウターリード部を、裏面における外部接続用電極として用いる。 The semiconductor equipment manufacturing method of the double-sided electrode structure of the present invention, by arranging the circuit elements on a lead frame and is connected to the inner lead portion of the lead frame. One end of each of the internal connection electrodes formed in a columnar shape or a rod shape integrally formed by the connecting plate is connected to a predetermined position of the lead frame. After sealing the circuit element with resin, the inner surface of each circuit element is flattened by polishing or grinding the front surface of the circuit element disposed on the lead frame side as the back surface until the connecting plate is removed. Separated into connection electrodes. The other end of each of the plurality of internal connection electrodes is used as an external connection electrode on the front surface. The outer lead portion provided on the lead frame is used as an external connection electrode on the back surface.

また、本発明の両面電極構造の半導体装置の製造方法は、回路素子を、後に剥離されるテープ基板上に配置し、連結板により一体に構成した複数の柱状或いは棒状に形成した内部接続用電極のそれぞれの一端を、このテープ基板の所定位置に配置する。回路素子を樹脂封止した後、テープ基板側を裏面としてその上に配置される回路素子側のおもて面を、前記連結板が無くなるまで研磨或いは研削して平坦化することにより個々の内部接続用電極に分離して構成して、複数の内部接続用電極のそれぞれの他端をおもて面における外部接続用電極として用いる。テープ基板を剥離した後、この剥離により露出した面上において、回路素子及び内部接続用電極間の配線を行い、複数の内部接続用電極のそれぞれの一端を裏面における外部接続用電極として用いる。 The semiconductor equipment manufacturing method of the double-sided electrode structure of the present invention, the internal connecting the circuit elements, arranged on the tape substrate to be peeled off after, and formed into a plurality of columnar or rod which is integrally formed by a connecting plate One end of each electrode is disposed at a predetermined position on the tape substrate. After the circuit element is resin-sealed, the inner surface of each circuit element is flattened by polishing or grinding the front surface of the circuit element disposed on the tape substrate side as the back surface until the connecting plate is removed. The connection electrodes are separated from each other, and the other ends of the plurality of internal connection electrodes are used as external connection electrodes on the front surface. After the tape substrate is peeled off, wiring between the circuit elements and the internal connection electrodes is performed on the surface exposed by the peeling, and one end of each of the plurality of internal connection electrodes is used as an external connection electrode on the back surface.

本発明によれば、両面電極パッケージの内部接続型構造において、貫通電極技術を必要とすること無く、簡潔にしかもコスト的にも安く実現することが可能となる。これによって、電子機器の携帯電話等の小型実装分野、及び電子機器で3次元接続が有効なセンサー用パッケージとして有効となる。   According to the present invention, the internal connection type structure of the double-sided electrode package can be realized simply and inexpensively without requiring a through electrode technique. This makes it effective as a sensor package in which a three-dimensional connection is effective in a small packaging field such as a mobile phone of an electronic device and an electronic device.

また、本発明によれば、任意の数だけ基板上部及び下部の任意の箇所に配線を取り出して、基板上面を任意に再配線可能にし、上部接続ICとの接続パターンに融通性を持たせることができる。   Further, according to the present invention, an arbitrary number of wirings can be taken out at arbitrary locations on the upper and lower sides of the substrate, the upper surface of the substrate can be arbitrarily rewired, and the connection pattern with the upper connection IC can be made flexible. Can do.

図1は、本発明の両面電極構造の半導体装置の第1の例を示す有機基板タイプの両面電極パッケージの断面図を示している。なお、図示したように、有機基板タイプの両面電極パッケージの有機基板側を裏面として、その上に配置される回路素子側をおもて面とする。LSIチップのような半導体チップは、多層有機基板上にダイボンド材により接着して、有機基板の最上層の配線パターンとはボンディングワイヤ(ワイヤボンド接続方式)により接続する。この有機基板の配線パターンには、本発明の特徴とする内部接続用電極が固定され、かつ電気的に接続される。内部接続用電極の接続の詳細は、図3〜図5を参照して後述する。有機基板の上面は、LSIチップ及びボンディングワイヤを覆うように樹脂封止され、この樹脂封止上面には、再配線を行うこともできる。内部接続用電極の配置から、例えばエリア配置に持っていくためにインクジェットあるいはスクリーン印刷で、若しくはシード層パターン形成後に無電解メッキすることによって再配線を行うことができる。   FIG. 1 is a cross-sectional view of an organic substrate type double-sided electrode package showing a first example of a semiconductor device having a double-sided electrode structure according to the present invention. As shown in the drawing, the organic substrate side of the organic substrate type double-sided electrode package is the back surface, and the circuit element side disposed thereon is the front surface. A semiconductor chip such as an LSI chip is bonded to a multilayer organic substrate with a die bonding material, and connected to a wiring pattern on the uppermost layer of the organic substrate by a bonding wire (wire bonding connection method). The internal connection electrode, which is a feature of the present invention, is fixed and electrically connected to the wiring pattern of the organic substrate. Details of the connection of the internal connection electrodes will be described later with reference to FIGS. The upper surface of the organic substrate is resin-sealed so as to cover the LSI chip and the bonding wire, and rewiring can be performed on the resin-sealed upper surface. Rewiring can be performed by ink-jet or screen printing, for example, to bring the internal connection electrodes into an area arrangement, or by electroless plating after forming the seed layer pattern.

次に、図1に示した両面電極構造の半導体装置(有機基板タイプの両面電極パッケージ)の製造工程を、図2〜図8を参照しつつ順を追って説明する。図2は、多層有機基板上にLSIチップを接着しかつ接続した状態で示す図である。LSIチップは、多層有機基板上にダイボンド材により接着して、有機基板の最上層の配線パターンとはボンディングワイヤにより接続するものとして例示している。多層または単層有機基板の最上層の配線パターンに、ボンディングワイヤ接続電極となるボンディング用金属パッド部が形成されると共に、該パッド部への配線が形成される。この多層または単層有機基板のおもて面の金属パッド部と、LSIチップは、Auボンディングワイヤにより接続される。1個のLSIチップを例示したが、複数のチップを積層することも可能である。   Next, a manufacturing process of the semiconductor device having the double-sided electrode structure (organic substrate type double-sided electrode package) shown in FIG. 1 will be described in order with reference to FIGS. FIG. 2 is a diagram showing a state in which an LSI chip is bonded and connected to a multilayer organic substrate. The LSI chip is illustrated as being bonded to a multilayer organic substrate with a die bond material and connected to the uppermost wiring pattern of the organic substrate by a bonding wire. In the uppermost wiring pattern of the multilayer or single layer organic substrate, a bonding metal pad portion to be a bonding wire connection electrode is formed, and wiring to the pad portion is formed. The metal pad portion on the front surface of the multilayer or single layer organic substrate and the LSI chip are connected by an Au bonding wire. Although one LSI chip has been illustrated, a plurality of chips can be stacked.

或いは、LSIチップは、有機基板に対してフリップチップボンド接続することもできる(図示省略)。この場合、LSIチップは、多層または単層有機基板の最上層の配線パターンに、通常の技術を用いて、フリップチップボンド接続される。   Alternatively, the LSI chip can be flip-chip bonded to the organic substrate (not shown). In this case, the LSI chip is flip-chip bonded to the uppermost wiring pattern of the multilayer or single-layer organic substrate using a normal technique.

多層または単層有機基板は、単層2層配線構造や複数層から成る基板の各層に、それぞれ配線パターンを形成した後これらの基板を貼り合わせ、必要に応じて各層の配線パターンを接続するためのスルーホールを形成したものである。このスルーホールの内部には導体層が形成され、この導体層が裏面側に形成された端面電極部であるランドと接続されている。即ち、スルーホールの導体層は、必ずしもそのままランドにはならない。さらに、このランドには、ハンダ材料を付着させて、外部接続用のバンプを形成することができる。このような多層または単層有機基板は、例えば、「ハンダボール」と呼ばれる小さいハンダ材料を丸めたもの(バンプ)を裏面に実装した(BGA:Ball Grid Array)一括封止有機基板として知られている。   Multi-layer or single-layer organic substrates are used to form a wiring pattern on each layer of a single-layer / two-layer wiring structure or a substrate composed of a plurality of layers, and then bond these substrates together to connect the wiring patterns of each layer as necessary. Through-holes are formed. A conductor layer is formed inside the through hole, and the conductor layer is connected to a land which is an end face electrode portion formed on the back surface side. That is, the through hole conductor layer is not necessarily a land as it is. Further, a solder material can be attached to the land to form a bump for external connection. Such a multi-layer or single-layer organic substrate is known as, for example, a packaged organic substrate (BGA: Ball Grid Array) in which a small solder material called “solder ball” (bump) is mounted on the back surface (BGA: Ball Grid Array). Yes.

図3は、内部接続用電極構造を固定し、接続した状態で示す図である。有機基板の配線パターンの所定の位置には、本発明の特徴とする内部接続用電極が固定されかつ電気的に接続される。内部接続用電極構造を固定及び接続する手法としては、(1)超音波による接合、(2)銀ペースト等の導電性ペーストによる接続、(3)半田接続、(4)有機基板側に設けた接続電極用金属パッド部に凹部を設ける一方、内部接続用電極構造側は凸部を設けて挿入圧着あるいは挿入しカシメる方法、により行うことができる。   FIG. 3 is a diagram showing the internal connection electrode structure fixed and connected. An internal connection electrode, which is a feature of the present invention, is fixed and electrically connected to a predetermined position of the wiring pattern of the organic substrate. As a method for fixing and connecting the internal connection electrode structure, (1) ultrasonic bonding, (2) connection using a conductive paste such as silver paste, (3) solder connection, (4) provided on the organic substrate side. While the connection electrode metal pad portion is provided with a recess, the internal connection electrode structure side can be formed by a method of providing a protrusion and inserting / crimping or inserting and crimping.

内部接続用電極が有機基板の配線パターン上の所定の位置に配置した接続電極用金属パッド部(図2参照)に固定された段階では、全ての内部接続用電極が、連結板により一体に連結されている。   At the stage where the internal connection electrodes are fixed to the connection electrode metal pads (see FIG. 2) arranged at predetermined positions on the wiring pattern of the organic substrate, all the internal connection electrodes are connected together by the connection plate. Has been.

図4は、一体に連結されている内部接続用電極構造の詳細を示す図であり、図4(A)及び(B)は1個の両面電極パッケージのための単体パターンの側面断面図及び斜視図をそれぞれ示し、また図4(C)は4個の両面電極パッケージのための4個の単体パターンを1個に連結したパターンの斜視図を示している。これら単体パターン或いは連結パターンは、複数の内部接続用電極を連結板により一体に連結して構成される。内部接続用電極は、例示したような円柱形状に限らず、矩形、多角形状等を含む柱状(棒状)形状であれば良い。パターン中央部は、例示したように中抜きにすることに限らず、ベタ板でも可能である。一体連結の内部接続用電極パターンの製造はエッチング、或いは削り出し、或いはプレスによって行うことができ、また、その材料としては銅を用いることができる。   FIG. 4 is a diagram showing details of the electrode structure for internal connection connected together, and FIGS. 4A and 4B are a side sectional view and a perspective view of a single pattern for one double-sided electrode package. FIG. 4C shows a perspective view of a pattern in which four single patterns for four double-sided electrode packages are connected to one. These single patterns or connection patterns are configured by integrally connecting a plurality of internal connection electrodes with a connection plate. The internal connection electrode is not limited to the cylindrical shape as illustrated, and may be a columnar (bar-shaped) shape including a rectangular shape, a polygonal shape, and the like. The center portion of the pattern is not limited to being hollowed out as illustrated, but may be a solid plate. The integrally connected electrode pattern for internal connection can be manufactured by etching, cutting, or pressing, and copper can be used as the material thereof.

図5は、樹脂封止した状態で示す図である。一体に連結されている内部接続用電極が固定された後、この状態で、有機基板の上面は、少なくとも連結板下面まで、望ましくは、製造上の表面平坦精度を考慮して連結板上面までトランスファーモールドされ、或いは液状樹脂(材質は、例えばエポキシ系)を用いて樹脂封止される。   FIG. 5 is a diagram showing the resin-sealed state. After the integrally connected internal connection electrodes are fixed, in this state, the upper surface of the organic substrate is transferred to at least the lower surface of the connection plate, preferably to the upper surface of the connection plate in consideration of surface flatness accuracy in manufacturing. Molded or resin-sealed using a liquid resin (material is, for example, an epoxy resin).

図6は、表面研磨又は研削後の状態で示す図である。表面研磨又は研削することにより、内部接続用電極が個々に分離されると共に、表面平坦化が行われる。この表面研磨又は研削は、少なくとも連結板が全て取り除かれるまで行われる。表面平坦化をして、内部接続用電極の上面を露出させた状態の上面図を、図7に示している。この段階の構成により、完成製品として使用可能である。   FIG. 6 is a diagram showing a state after surface polishing or grinding. By surface polishing or grinding, the internal connection electrodes are individually separated and the surface is flattened. This surface polishing or grinding is performed at least until all the connecting plates are removed. FIG. 7 shows a top view of the state where the surface is flattened and the upper surface of the internal connection electrode is exposed. With this stage configuration, it can be used as a finished product.

さらに、図1を参照して前述したように、この樹脂封止上面には再配線を行うこともできる。図6に示す内部接続用電極の配置のままを外部接続電極として利用してもよいが、内部接続用電極の配置から、例えばエリア配置に持っていくためにインクジェットあるいはスクリーン印刷で再配置をすることもできる。或いは、上面の再配線のために、シード層パターン形成後に無電解メッキすることによっても行うことができる。これら手法によって、内部接続用電極の頭部露出位置と異なったところに電極を配置することが可能となる。この再配線後の状態を示す上面図を、図8に示している。さらに、この再配線の上に、保護膜(材質は、例えばソルダーレジスト)を塗布した後、再配線上のバンプ形成部上の保護膜に開口を設け、またはインクジェットにより保護膜をバンプ部以外に選択的に塗布することによって、ここに、外部接続用のバンプ電極を形成することができる。製品として完成させるときは、チップ個片化のための切断が行われる。   Further, as described above with reference to FIG. 1, rewiring can be performed on the resin-encapsulated upper surface. The arrangement of the internal connection electrodes shown in FIG. 6 may be used as the external connection electrode, but the internal connection electrodes are rearranged by, for example, inkjet or screen printing in order to bring them to the area arrangement. You can also. Alternatively, it can be performed by electroless plating after the seed layer pattern is formed for rewiring on the upper surface. By these methods, it is possible to dispose the electrode at a position different from the head exposed position of the internal connection electrode. A top view showing the state after the rewiring is shown in FIG. Furthermore, after applying a protective film (for example, a solder resist) on the rewiring, an opening is formed in the protective film on the bump forming portion on the rewiring, or the protective film is applied to other than the bump portion by inkjet. By selectively applying, a bump electrode for external connection can be formed here. When completed as a product, cutting for chip separation is performed.

次に、図9〜図12を参照して、本発明の両面電極構造の半導体装置の第2の例を示すリードフレームタイプの両面電極パッケージについて説明する。図9は、リードフレーム上にLSIチップを接着しかつ接続した状態で示す図である。なお、図示したように、リードフレームタイプの両面電極パッケージのリードフレーム側を裏面として、その上に配置される回路素子側をおもて面とする。図示したように、LSIチップは、リードフレームのダイパッド上にAgペースト等によるダイボンド材により接着されている(チップダイボンド)。1個のLSIチップを例示したが、複数のチップを積層することも可能である。リードフレームのインナーリード部と、LSIチップは、Auボンディングワイヤにより接続される(ワイヤボンド)。このリードフレームを周囲の回路と電気的に接続するためのアウターリード部は、その先端断面が、例示したようなリードフレーム裏面だけでなく、側面にも露出させることができる。リードフレームは、例えば、PdメッキしたCu合金のような金属板から、プレス加工により、多数個同時に形成され、その後の工程で、この多数個同時に形成されたリードフレームが、各個片に切断されることになる。図示のリードフレームは各個片に切断された状態で示され、それ故に、リードフレーム自体も個々に分離されて図示されているが、この製造段階にあるリードフレームは、実際には未だ一体に連結されている。   Next, a lead frame type double-sided electrode package showing a second example of the semiconductor device having a double-sided electrode structure of the present invention will be described with reference to FIGS. FIG. 9 is a diagram showing an LSI chip bonded and connected on a lead frame. As shown in the drawing, the lead frame side of the lead frame type double-sided electrode package is the back surface, and the circuit element side disposed thereon is the front surface. As shown in the figure, the LSI chip is bonded onto the die pad of the lead frame with a die bonding material such as Ag paste (chip die bonding). Although one LSI chip has been illustrated, a plurality of chips can be stacked. The inner lead portion of the lead frame and the LSI chip are connected by Au bonding wires (wire bonding). The outer lead portion for electrically connecting the lead frame to the surrounding circuit can be exposed not only on the back surface of the lead frame as illustrated, but also on the side surface. For example, a large number of lead frames are formed simultaneously from a metal plate such as a Pd-plated Cu alloy by pressing, and in the subsequent process, the multiple lead frames formed simultaneously are cut into individual pieces. It will be. The lead frame shown is shown cut into individual pieces, and therefore the lead frame itself is also shown separately, but the lead frame in this manufacturing stage is actually still connected together. Has been.

図10は、内部接続用電極構造を固定し、接続した状態で示す図である。リードフレームの所定の位置には、本発明の特徴とする内部接続用電極が固定され、かつ電気的に接続される。内部接続用電極構造を固定及び接続する手法としては、上述した第1の例と同じく、(1)超音波による接合、(2)銀ペースト等の導電性ペーストによる接続、(3)半田接続、(4)リードフレーム側に凹部を設け、電極構造側は凸部を設けて挿入圧着あるいは挿入しカシメる方法、により行うことができる。内部接続用電極がリードフレームの所定の位置に固定された段階では、全ての内部接続用電極が、連結板により一体に連結されている。内部接続用電極構造は、図4を参照して前述したような構造及び材質のものを用いることができる。   FIG. 10 is a diagram showing a state in which the internal connection electrode structure is fixed and connected. The electrode for internal connection, which is a feature of the present invention, is fixed and electrically connected to a predetermined position of the lead frame. As a method for fixing and connecting the electrode structure for internal connection, as in the first example described above, (1) ultrasonic bonding, (2) connection using a conductive paste such as silver paste, (3) solder connection, (4) A concave portion is provided on the lead frame side, and a convex portion is provided on the electrode structure side, and insertion crimping or insertion and crimping can be performed. At the stage where the internal connection electrodes are fixed at predetermined positions of the lead frame, all the internal connection electrodes are integrally connected by the connection plate. As the internal connection electrode structure, the structure and material described above with reference to FIG. 4 can be used.

図11は、樹脂封止した状態で示す図である。一体に連結されている内部接続用電極が接着された後、この状態で、有機基板の上面は、少なくとも連結板下面まで、望ましくは連結板上面までトランスファーモールドされ、或いは液状樹脂を用いて樹脂封止される。   FIG. 11 is a view showing a resin-sealed state. After the integrally connected internal connection electrodes are adhered, in this state, the upper surface of the organic substrate is transfer molded to at least the lower surface of the connection plate, preferably the upper surface of the connection plate, or is sealed with a liquid resin. Stopped.

図12は、表面研磨又は研削後の状態を示す図である。表面研磨又は研削することにより、内部接続用電極が個々に分離されると共に、表面平坦化が行われる。この表面研磨又は研削は、少なくとも連結板が全て取り除かれるまで行われる。   FIG. 12 is a diagram showing a state after surface polishing or grinding. By surface polishing or grinding, the internal connection electrodes are individually separated and the surface is flattened. This surface polishing or grinding is performed at least until all the connecting plates are removed.

この後、チップ個片化のための切断が行われて、製品として完成するが、さらに、上述した例と同じ手法を用いて、この樹脂封止上面に再配線を行うこともできる。   Thereafter, cutting for chip separation is performed to complete the product, but rewiring can also be performed on the resin-encapsulated upper surface using the same technique as in the above-described example.

次に、図13〜図18を参照して、本発明の両面電極構造の半導体装置の第3の例を示すテープ基板タイプの両面電極パッケージについて説明する。まず、図13に示すように、テープ基板上の所定位置に、半導体チップ(ICチップ)、抵抗R、及びコンデンサCのような回路素子を、絶縁性があり、剥離性のよい粘着材を用いて接着配置する。この状態で、各回路素子間の電気的な接続は行われていない。テープ基板は、ポリイミドテープなどに代表される薄膜フィルムの絶縁基材により作成することができる。なお、図示したように、テープ基板タイプの両面電極パッケージのテープ基板側を裏面として、その上に配置される回路素子側をおもて面とする。   Next, a tape substrate type double-sided electrode package showing a third example of the semiconductor device having the double-sided electrode structure of the present invention will be described with reference to FIGS. First, as shown in FIG. 13, circuit elements such as a semiconductor chip (IC chip), a resistor R, and a capacitor C are used at predetermined positions on the tape substrate, using an adhesive material having insulating properties and good peelability. And place them together. In this state, no electrical connection is made between the circuit elements. The tape substrate can be made of an insulating base material of a thin film represented by a polyimide tape or the like. As shown in the figure, the tape substrate side of the double-sided electrode package of the tape substrate type is the back surface, and the circuit element side disposed thereon is the front surface.

図14は、内部接続用電極構造を接着した状態で示す図である。内部接続用電極がテープ基板上の所定の位置に接着された段階では、全ての内部接続用電極が、連結板により一体に連結されている。この内部接続用電極も未だ、回路素子との電気的接続はなされていない。一体連結の内部接続用電極は、図4を参照して前述したような材質及び構成のものを用いることができる。   FIG. 14 is a diagram showing the state where the internal connection electrode structure is adhered. At the stage where the internal connection electrodes are bonded to predetermined positions on the tape substrate, all the internal connection electrodes are integrally connected by the connection plate. The internal connection electrodes are not yet electrically connected to the circuit elements. The integrally connected internal connection electrodes may be made of the materials and structures described above with reference to FIG.

図15は、樹脂封止した状態で示す図である。一体に連結されている内部接続用電極が接着された後、この状態で、テープ基板の上面は、各回路素子を覆うように少なくとも連結板下面まで、望ましくは連結板上面までトランスファーモールドされ、或いは液状樹脂を用いて樹脂封止される。   FIG. 15 is a diagram showing the resin-sealed state. After the internal connection electrodes which are integrally connected are bonded, in this state, the upper surface of the tape substrate is transfer-molded to at least the lower surface of the connection plate, preferably to the upper surface of the connection plate so as to cover each circuit element, or Resin sealing is performed using a liquid resin.

図16は、表面研磨又は研削後の状態で示す図である。表面研磨又は研削することにより、内部接続用電極が個々に分離されると共に、表面平坦化が行われる。この表面研磨又は研削は、少なくとも連結板が全て取り除かれるまで行われる。   FIG. 16 is a diagram showing a state after surface polishing or grinding. By surface polishing or grinding, the internal connection electrodes are individually separated and the surface is flattened. This surface polishing or grinding is performed at least until all the connecting plates are removed.

図17は、テープ基板を剥離した状態で示す図である。図示したように、パッケージ全体を上下反転させた後、テープ基板を剥離する。なお、回路素子を接着した接着剤(粘着剤)は、テープ基板剥離時にはテープ基板側に付くような材質が望ましい。   FIG. 17 is a view showing a state where the tape substrate is peeled off. As shown in the figure, after the entire package is turned upside down, the tape substrate is peeled off. The adhesive (adhesive) to which the circuit elements are bonded is preferably a material that adheres to the tape substrate side when the tape substrate is peeled off.

図18は、最終的に完成した両面電極パッケージを示す断面図である。テープ基板を剥離した後、剥離後の面上で、既に配置済みのICチップ、抵抗R、コンデンサCのような回路素子、及び内部接続用電極の間で所望の配線(表面再配線)を行う。この配線は、インクジェットあるいはスクリーン印刷によって、或いはシード層パターン形成後に無電解メッキすることによって行うことができる。この再配線の上に、保護膜を塗布した後、再配線上のバンプ形成部上の保護膜に開口を設け、またはインクジェットにより保護膜をバンプ部以外に選択的に塗布することによって、ここに、外部接続用のバンプ電極を形成することができる。さらに、他の回路部品(図中には、抵抗R及び他の半導体パッケージを例示)を保護膜上に配置して、それらの配線を行うこともできる。最後に、チップ個片化のための切断が行われて、製品として完成する。   FIG. 18 is a cross-sectional view showing the finally completed double-sided electrode package. After the tape substrate is peeled off, desired wiring (surface rewiring) is performed between the already disposed IC chip, the circuit element such as the resistor R and the capacitor C, and the internal connection electrode on the peeled surface. . This wiring can be performed by ink jet or screen printing, or by electroless plating after the seed layer pattern is formed. After applying a protective film on the rewiring, an opening is formed in the protective film on the bump forming portion on the rewiring, or the protective film is selectively applied to the portion other than the bump portion by inkjet. A bump electrode for external connection can be formed. Furthermore, other circuit components (in the figure, resistor R and other semiconductor packages are illustrated) can be arranged on the protective film, and their wiring can be performed. Finally, cutting for chip separation is performed to complete the product.

本発明の両面電極構造の半導体装置の第1の例を示す有機基板タイプの両面電極パッケージの断面図を示す図である。It is a figure which shows sectional drawing of the organic substrate type double-sided electrode package which shows the 1st example of the semiconductor device of the double-sided electrode structure of this invention. 多層有機基板上にLSIチップを接続した状態で示す図である。It is a figure shown in the state which connected the LSI chip on the multilayer organic substrate. 内部接続用電極構造を固定し、接続した状態で示す図である。It is a figure shown in the state where electrode structure for internal connection was fixed and connected. 一体に連結されている内部接続用電極構造の詳細を示す図である。It is a figure which shows the detail of the electrode structure for internal connection connected integrally. 樹脂封止した状態で示す図である。It is a figure shown in the state sealed with resin. 表面研磨又は研削後の状態で示す図である。It is a figure shown in the state after surface polishing or grinding. 内部接続用電極の上面を露出させた状態の上面図である。It is a top view of the state which exposed the upper surface of the electrode for internal connection. 再配線後の状態を示す上面図である。It is a top view which shows the state after rewiring. リードフレーム上にLSIチップを接続した状態で示す図である。It is a figure shown in the state where an LSI chip was connected on a lead frame. 内部接続用電極構造を固定し、接続した状態で示す図である。It is a figure shown in the state where electrode structure for internal connection was fixed and connected. 樹脂封止した状態で示す図である。It is a figure shown in the state sealed with resin. 表面研磨又は研削後の状態で示す図である。It is a figure shown in the state after surface polishing or grinding. テープ基板上に回路素子を接着配置した状態で示す図である。It is a figure shown in the state which adhered and arranged the circuit element on the tape board | substrate. 内部接続用電極構造を接着した状態で示す図である。It is a figure shown in the state which adhered the electrode structure for internal connection. 樹脂封止した状態で示す図である。It is a figure shown in the state sealed with resin. 表面研磨又は研削後の状態で示す図である。It is a figure shown in the state after surface polishing or grinding. テープ基板を剥離した状態で示す図である。It is a figure shown in the state which peeled the tape board | substrate. 最終的に完成した両面電極パッケージを示す断面図である。It is sectional drawing which shows the double-sided electrode package finally completed.

Claims (12)

半導体チップを含む回路素子を配置して樹脂封止すると共に、該回路素子に接続される外部接続用電極をおもて面と裏面の両面に配置した両面電極構造の半導体装置の製造方法において、
前記回路素子を有機基板上に配置して、該有機基板に設けた配線パターンと接続し、
連結板により一体に構成した複数の柱状或いは棒状に形成した内部接続用電極のそれぞれの一端を、前記配線パターン上の所定位置に接続し、
前記回路素子を樹脂封止した後、有機基板側を裏面としてその上に配置される回路素子側のおもて面を、前記連結板が無くなるまで研磨或いは研削して平坦化することにより個々の内部接続用電極に分離して構成し、
前記複数の内部接続用電極のそれぞれの他端をおもて面における前記外部接続用電極として用い、
前記有機基板に設けたスルーホール内部の導体層を介して、裏面における前記外部接続用電極を前記配線パターンに接続した、
ことから成る両面電極構造の半導体装置の製造方法。
In the method of manufacturing a semiconductor device having a double-sided electrode structure in which circuit elements including a semiconductor chip are arranged and resin-sealed, and external connection electrodes connected to the circuit elements are arranged on both the front surface and the back surface,
The circuit element is disposed on an organic substrate and connected to a wiring pattern provided on the organic substrate.
One end of each of the internal connection electrodes formed in a columnar shape or a bar shape integrally formed by a connecting plate is connected to a predetermined position on the wiring pattern,
After the circuit element is resin-sealed, the front surface of the circuit element side disposed on the organic substrate side as the back surface is polished or ground until the connection plate is removed, and then flattened. Separated into internal connection electrodes,
Using the other end of each of the plurality of internal connection electrodes as the external connection electrode on the front surface,
The external connection electrode on the back surface was connected to the wiring pattern via a conductor layer inside a through hole provided in the organic substrate,
A method of manufacturing a semiconductor device having a double-sided electrode structure.
前記樹脂封止のおもて面には、インクジェットあるいはスクリーン印刷で、若しくはシード層パターン形成後に無電解メッキで再配線をすることによって、おもて面における前記外部接続用電極を、前記内部接続用電極の配置とは異なる位置に配置した請求項1に記載の両面電極構造の半導体装置の製造方法。 The external connection electrode on the front surface is connected to the internal connection by rewiring the resin-encapsulated front surface by inkjet or screen printing or by electroless plating after the seed layer pattern is formed. The method of manufacturing a semiconductor device having a double-sided electrode structure according to claim 1, wherein the semiconductor device is arranged at a position different from the arrangement of the electrodes for use . 前記内部接続用電極は、超音波による接合、或いは導電性ペーストによる接合、或いは半田接続、或いは有機基板側に設けた接続電極用金属パッド部に凹部を設ける一方、内部接続用電極側に凸部を設けて挿入圧着あるいは挿入しカシメることにより固定して電気的に接続した請求項1に記載の両面電極構造の半導体装置の製造方法。 The internal connection electrode is formed with a concave portion in the connection electrode metal pad portion provided on the organic substrate side, while the ultrasonic connection, the conductive paste bonding, the solder connection, or the convex portion on the internal connection electrode side. The method for manufacturing a semiconductor device having a double-sided electrode structure according to claim 1, wherein the semiconductor device is fixed and electrically connected by insertion crimping or insertion and crimping. 前記連結板により一体に連結して構成される前記内部接続用電極は、銅材質を用いて、エッチング、或いは削り出し、或いはプレスによって形成される請求項1に記載の両面電極構造の半導体装置の製造方法。 2. The semiconductor device having a double-sided electrode structure according to claim 1, wherein the internal connection electrode configured to be integrally connected by the connection plate is formed by etching, cutting, or pressing using a copper material. Production method. 半導体チップを含む回路素子を配置して樹脂封止すると共に、該回路素子に接続される外部接続用電極をおもて面と裏面の両面に配置した両面電極構造の半導体装置の製造方法において、
前記回路素子をリードフレーム上に配置して、該リードフレームのインナーリード部と接続し、
連結板により一体に構成した複数の柱状或いは棒状に形成した内部接続用電極のそれぞれの一端を、前記リードフレームの所定位置に接続し、
前記回路素子を樹脂封止した後、リードフレーム側を裏面としてその上に配置される回路素子側のおもて面を、前記連結板が無くなるまで研磨或いは研削して平坦化することにより個々の内部接続用電極に分離して構成し、
前記複数の内部接続用電極のそれぞれの他端をおもて面における前記外部接続用電極として用い、
前記リードフレームに設けたアウターリード部を、裏面における前記外部接続用電極として用いる、
ことから成る両面電極構造の半導体装置の製造方法。
In the method of manufacturing a semiconductor device having a double-sided electrode structure in which circuit elements including a semiconductor chip are arranged and resin-sealed, and external connection electrodes connected to the circuit elements are arranged on both the front surface and the back surface,
The circuit element is disposed on a lead frame and connected to an inner lead portion of the lead frame,
One end of each of the internal connection electrodes formed in a columnar shape or a bar shape integrally formed by a connecting plate is connected to a predetermined position of the lead frame,
After the circuit element is resin-sealed, the front surface of the circuit element disposed on the lead frame side as the back surface is polished or ground until the connection plate is removed, thereby flattening each circuit element. Separated into internal connection electrodes,
Using the other end of each of the plurality of internal connection electrodes as the external connection electrode on the front surface,
The outer lead portion provided on the lead frame is used as the external connection electrode on the back surface.
A method of manufacturing a semiconductor device having a double-sided electrode structure.
前記樹脂封止のおもて面には、インクジェットあるいはスクリーン印刷で、若しくはシード層パターン形成後に無電解メッキで再配線をすることによって、おもて面における前記外部接続用電極を、前記内部接続用電極の配置とは異なる位置に配置した請求項5に記載の両面電極構造の半導体装置の製造方法。 The external connection electrode on the front surface is connected to the internal connection by rewiring the resin-encapsulated front surface by inkjet or screen printing or by electroless plating after the seed layer pattern is formed. The method for manufacturing a semiconductor device having a double-sided electrode structure according to claim 5, wherein the semiconductor device is arranged at a position different from the arrangement of the electrodes for use . 前記内部接続用電極は、超音波による接合、或いは導電性ペーストによる接合、或いは半田接続、或いはリードフレーム側に凹部を設ける一方、内部接続用電極側に凸部を設けて挿入圧着あるいは挿入しカシメることにより固定して電気的に接続した請求項5に記載の両面電極構造の半導体装置の製造方法。 The internal connection electrode is formed by ultrasonic bonding, conductive paste bonding, solder connection, or a concave portion on the lead frame side, and a convex portion on the internal connection electrode side. 6. The method of manufacturing a semiconductor device having a double-sided electrode structure according to claim 5, wherein the semiconductor device is fixed and electrically connected. 前記連結板により一体に連結して構成される前記内部接続用電極は、銅材質を用いて、エッチング、或いは削り出し、或いはプレスによって形成される請求項5に記載の両面電極構造の半導体装置の製造方法。 6. The semiconductor device having a double-sided electrode structure according to claim 5, wherein the internal connection electrode configured by being integrally connected by the connection plate is formed by etching, cutting or pressing using a copper material. Production method. 半導体チップを含む回路素子を配置して樹脂封止すると共に、該回路素子に接続される外部接続用電極をおもて面と裏面の両面に配置した両面電極構造の半導体装置の製造方法において、
前記回路素子を、後に剥離されるテープ基板上に配置し、
連結板により一体に構成した複数の柱状或いは棒状に形成した内部接続用電極のそれぞれの一端を、前記テープ基板の所定位置に配置し、
前記回路素子を樹脂封止した後、テープ基板側を裏面としてその上に配置される回路素子側のおもて面を、前記連結板が無くなるまで研磨或いは研削して平坦化することにより個々の内部接続用電極に分離して構成して、前記複数の内部接続用電極のそれぞれの他端をおもて面における前記外部接続用電極として用い、
前記テープ基板を剥離した後、この剥離により露出した面上において、前記回路素子及び前記内部接続用電極間の配線を行い、前記複数の内部接続用電極の前記それぞれの一端を裏面における前記外部接続用電極として用いる、
ことから成る両面電極構造の半導体装置の製造方法。
In the method of manufacturing a semiconductor device having a double-sided electrode structure in which circuit elements including a semiconductor chip are arranged and resin-sealed, and external connection electrodes connected to the circuit elements are arranged on both the front surface and the back surface,
The circuit element is disposed on a tape substrate to be peeled later,
One end of each of the internal connection electrodes formed in a columnar shape or a bar shape integrally formed by the connecting plate is disposed at a predetermined position of the tape substrate,
After the circuit element is resin-sealed, the front surface of the circuit element side disposed on the tape substrate side as the back surface is polished or ground until the connecting plate is removed, thereby flattening each circuit element. Separated into internal connection electrodes, each other end of the plurality of internal connection electrodes is used as the external connection electrode on the front surface,
After peeling off the tape substrate, wiring between the circuit element and the internal connection electrode is performed on the surface exposed by the peeling, and each one end of the plurality of internal connection electrodes is connected to the external connection on the back surface. Used as an electrode for
A method of manufacturing a semiconductor device having a double-sided electrode structure.
前記樹脂封止のおもて面には、インクジェットあるいはスクリーン印刷で、若しくはシード層パターン形成後に無電解メッキで再配線をすることによって、おもて面における前記外部接続用電極を、前記内部接続用電極の配置とは異なる位置に配置した請求項9に記載の両面電極構造の半導体装置の製造方法。 The external connection electrode on the front surface is connected to the internal connection by rewiring the resin-encapsulated front surface by inkjet or screen printing or by electroless plating after the seed layer pattern is formed. The manufacturing method of the semiconductor device of the double-sided electrode structure of Claim 9 arrange | positioned in the position different from arrangement | positioning of the electrode for operation . 前記回路素子及び前記内部接続用電極間の配線をした上に、保護膜を塗布した後該保護膜に開口を設けることによって、またはインクジェットにより保護膜をバンプ部以外に選択的に塗布することによって、ここに、裏面における前記外部接続用電極としてのバンプ電極を形成した請求項9に記載の両面電極構造の半導体装置の製造方法。 After wiring between the circuit element and the internal connection electrode, by applying a protective film and then providing an opening in the protective film, or by selectively applying a protective film other than the bump portion by inkjet The method for manufacturing a semiconductor device having a double-sided electrode structure according to claim 9, wherein a bump electrode is formed as the external connection electrode on the back surface. 前記連結板により一体に連結して構成される前記内部接続用電極は、銅材質を用いて、エッチング、或いは削り出し、或いはプレスによって形成される請求項9に記載の両面電極構造の半導体装置の製造方法。
10. The semiconductor device having a double-sided electrode structure according to claim 9, wherein the internal connection electrode configured to be integrally connected by the connection plate is formed by etching, cutting, or pressing using a copper material. Production method.
JP2006188289A 2006-07-07 2006-07-07 Manufacturing method of semiconductor device having double-sided electrode structure Active JP3960479B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006188289A JP3960479B1 (en) 2006-07-07 2006-07-07 Manufacturing method of semiconductor device having double-sided electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006188289A JP3960479B1 (en) 2006-07-07 2006-07-07 Manufacturing method of semiconductor device having double-sided electrode structure

Publications (2)

Publication Number Publication Date
JP3960479B1 true JP3960479B1 (en) 2007-08-15
JP2008016729A JP2008016729A (en) 2008-01-24

Family

ID=38456468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006188289A Active JP3960479B1 (en) 2006-07-07 2006-07-07 Manufacturing method of semiconductor device having double-sided electrode structure

Country Status (1)

Country Link
JP (1) JP3960479B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038042A1 (en) * 2007-09-18 2009-03-26 Olympus Corporation Laminated mounting structure and method for manufacturing laminated mounting structure
CN103515343A (en) * 2012-06-22 2014-01-15 株式会社村田制作所 Electronic component module and method for manufacturing the same
JP2014039070A (en) * 2013-11-26 2014-02-27 Olympus Corp Laminate mount structure
US9192051B2 (en) 2010-04-13 2015-11-17 Murata Manufacturing Co., Ltd. Module substrate, module-substrate manufacturing method, and terminal connection substrate
US9491846B2 (en) 2011-09-07 2016-11-08 Murata Manufacturing Co., Ltd. Method of manufacturing module
US9591747B2 (en) 2011-09-09 2017-03-07 Murata Manufacturing Co., Ltd. Module board

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246104A (en) * 2008-03-31 2009-10-22 Kyushu Institute Of Technology Electronic component for wiring and its manufacturing method
JP5043743B2 (en) * 2008-04-18 2012-10-10 ラピスセミコンダクタ株式会社 Manufacturing method of semiconductor device
US8557700B2 (en) * 2008-05-09 2013-10-15 Invensas Corporation Method for manufacturing a chip-size double side connection package
JP5491722B2 (en) * 2008-11-14 2014-05-14 インヴェンサス・コーポレイション Semiconductor device package structure and manufacturing method thereof
JP5214554B2 (en) 2009-07-30 2013-06-19 ラピスセミコンダクタ株式会社 Semiconductor chip built-in package and manufacturing method thereof, and package-on-package semiconductor device and manufacturing method thereof
KR101152822B1 (en) 2009-07-31 2012-06-12 에스케이하이닉스 주식회사 Fabricating method for wafer
JP5381881B2 (en) * 2010-04-12 2014-01-08 株式会社村田製作所 Method for manufacturing module substrate
US8421210B2 (en) * 2010-05-24 2013-04-16 Stats Chippac Ltd. Integrated circuit packaging system with dual side connection and method of manufacture thereof
US8482115B2 (en) * 2010-05-27 2013-07-09 Stats Chippac Ltd. Integrated circuit packaging system with dual side connection and method of manufacture thereof
JP5573422B2 (en) * 2010-06-29 2014-08-20 富士通株式会社 Manufacturing method of semiconductor device
JP5831057B2 (en) * 2011-09-07 2015-12-09 株式会社村田製作所 Module manufacturing method
JP2013058515A (en) * 2011-09-07 2013-03-28 Murata Mfg Co Ltd Manufacturing method of module
JP5708814B2 (en) * 2011-09-07 2015-04-30 株式会社村田製作所 Module manufacturing method
WO2013035715A1 (en) 2011-09-07 2013-03-14 株式会社村田製作所 Module manufacturing method and module
CN104364899B (en) * 2012-06-22 2017-11-24 株式会社村田制作所 Electronic component module
JP2014072279A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Manufacturing method of wiring board with components incorporated therein
JP2014146741A (en) * 2013-01-30 2014-08-14 Fujitsu Ltd Method of manufacturing semiconductor device, and conductive structure
JP2015135849A (en) * 2014-01-16 2015-07-27 ミツミ電機株式会社 Electronic component module and manufacturing method of the same
JP6317629B2 (en) 2014-06-02 2018-04-25 株式会社東芝 Semiconductor device
WO2018180744A1 (en) * 2017-03-27 2018-10-04 株式会社村田製作所 Conductor connecting structure, electronic component, production method for conductor connecting structure, and production method for electronic component
JP6658980B2 (en) 2017-09-14 2020-03-04 株式会社村田製作所 Resin multilayer board and electronic equipment
JP6678196B2 (en) 2018-03-29 2020-04-08 長瀬産業株式会社 Semiconductor device and wiring structure manufacturing method
JP7245037B2 (en) * 2018-11-30 2023-03-23 ローム株式会社 semiconductor equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038042A1 (en) * 2007-09-18 2009-03-26 Olympus Corporation Laminated mounting structure and method for manufacturing laminated mounting structure
US20130133190A1 (en) * 2007-09-18 2013-05-30 Olympus Corporation Stacked mounting structure and method of manufacturing stacked mounting structure
US10244639B2 (en) 2007-09-18 2019-03-26 Olympus Corporation Method of manufacturing stacked mounting structure
US9192051B2 (en) 2010-04-13 2015-11-17 Murata Manufacturing Co., Ltd. Module substrate, module-substrate manufacturing method, and terminal connection substrate
US9491846B2 (en) 2011-09-07 2016-11-08 Murata Manufacturing Co., Ltd. Method of manufacturing module
US9591747B2 (en) 2011-09-09 2017-03-07 Murata Manufacturing Co., Ltd. Module board
CN103515343A (en) * 2012-06-22 2014-01-15 株式会社村田制作所 Electronic component module and method for manufacturing the same
CN103515343B (en) * 2012-06-22 2017-04-12 株式会社村田制作所 electronic component module and method for manufacturing the same
JP2014039070A (en) * 2013-11-26 2014-02-27 Olympus Corp Laminate mount structure

Also Published As

Publication number Publication date
JP2008016729A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP3960479B1 (en) Manufacturing method of semiconductor device having double-sided electrode structure
JP4474431B2 (en) Semiconductor package and manufacturing method thereof
JP4274290B2 (en) Manufacturing method of semiconductor device having double-sided electrode structure
JP3941877B2 (en) Double-sided electrode package and manufacturing method thereof
KR101734882B1 (en) Stackable molded microelectronic packages with area array unit connectors
JP2005026680A (en) Stacked ball grid array package and its manufacturing method
JP4635202B2 (en) Method for manufacturing double-sided electrode package
KR20110002074A (en) Three-dimensionally integrated semiconductor device and method for manufacturing the same
KR100622514B1 (en) Method of manufacturing circuit device
JP2002009236A (en) Multiple layer semiconductor device and its manufacturing method
US20220208714A1 (en) Integrated circuit package structure, integrated circuit package unit and associated packaging method
JPWO2003012863A1 (en) Semiconductor device and manufacturing method thereof
US11670600B2 (en) Panel level metal wall grids array for integrated circuit packaging
JP4379693B2 (en) Semiconductor device and manufacturing method thereof
KR20100019635A (en) Semiconductor device and fabricating method thereof
KR20160093248A (en) Semiconductor package and fabrication method of the same
JP2003273281A (en) Chip package and its manufacturing method
JP5264640B2 (en) Multilayer semiconductor device and manufacturing method thereof
TWI435434B (en) Semiconductor packaging method to save interposer and bottom chip utilized for the same
KR100533761B1 (en) semi-conduSSor package
TWI475662B (en) Multiple die integrated circuit package
JP4465884B2 (en) Semiconductor device and manufacturing method thereof
JP4619104B2 (en) Semiconductor device
JP4452767B2 (en) Semiconductor device and manufacturing method thereof
JP2003100985A (en) Circuit module

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Ref document number: 3960479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250