JP3957138B2 - Post-treatment method of polyester resin - Google Patents

Post-treatment method of polyester resin Download PDF

Info

Publication number
JP3957138B2
JP3957138B2 JP2001334117A JP2001334117A JP3957138B2 JP 3957138 B2 JP3957138 B2 JP 3957138B2 JP 2001334117 A JP2001334117 A JP 2001334117A JP 2001334117 A JP2001334117 A JP 2001334117A JP 3957138 B2 JP3957138 B2 JP 3957138B2
Authority
JP
Japan
Prior art keywords
polyester resin
resin
acid
polycondensation
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001334117A
Other languages
Japanese (ja)
Other versions
JP2003137993A (en
Inventor
彰衡 渡辺
昇 佐藤
耕司 川越
善生 上南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001334117A priority Critical patent/JP3957138B2/en
Publication of JP2003137993A publication Critical patent/JP2003137993A/en
Application granted granted Critical
Publication of JP3957138B2 publication Critical patent/JP3957138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエステル樹脂の後処理方法に関し、更に詳しくは、重縮合触媒の失活のための熱水接触処理を施したポリエステル樹脂であって、安定した成形性を有し、特に射出ブローボトル等の成形に有用なポリエステル樹脂を得ることができる、ポリエステル樹脂の後処理方法に関する。
【0002】
【従来の技術】
従来より、ポリエステル樹脂、例えばポリエチレンテレフタレート樹脂は、機械的強度、化学的安定性、透明性、ガスバリア性、安全衛生性等に優れ、又、比較的安価で軽量であるために、各種飲食品用等のボトル等として広く用いられており、これらのボトルは、通常、有底管状の予備成形体を射出成形し、その予備成形体を再加熱して軟化させた後、ブロー成形金型内で延伸ブロー成形することにより製造されている。
【0003】
そして、これらの飲食品用等のボトルには、主として、汎用のアンチモン化合物やゲルマニウム化合物等の重縮合触媒の存在下に溶融重縮合及び固相重縮合させることにより製造されたポリエチレンテレフタレート樹脂が用いられているが、予備成形体の射出成形等の溶融成形時において、樹脂中に環状三量体等の副生成物が生じ、その環状三量体等がブロー成形金型を汚染し、金型清掃のために生産性を大幅に低下させる等の問題があった。これに対して、その溶融成形時の副生成物の発生を低減化すべく、固相重縮合後の樹脂に熱水と接触させる熱水接触処理を施すことにより樹脂中の触媒を失活させる方法(例えば、特公平7−14997号公報、特公平7−37515号公報等参照。)が提案され、金型汚染の防止に有効であることが確認されている。
【0004】
一方、ポリエチレンテレフタレート樹脂に代表されるポリエステル樹脂は、溶融状態で加水分解による分子量低下を起こし、成形体としての機械的強度等の諸物性が低下する等の欠点を有していることから、通常、製造した樹脂を加熱下に乾燥させ、更に、露点の低い空気や不活性ガス雰囲気下に保管することが行われ、又、成形加工時にも加熱下に乾燥させることが行われている。しかしながら、本発明者等の検討によると、前記熱水接触処理を施したポリエステル樹脂においては、該処理後に加熱下で乾燥を行うにも拘わらず、冷却後包装時の含水率は、該処理を施していない樹脂よりも高い値を示し、安定した低含水率のポリエステル樹脂を連続的に得ることができず、ボトル等の成形性を安定した状態に維持することが困難となるという問題があることが判明した。
【0005】
【発明が解決しようとする課題】
本発明は、前述の現状に鑑みてなされたもので、従って、本発明は、重縮合触媒の失活のための熱水接触処理を施したポリエステル樹脂であって、低含水率を維持することができ、従って、安定した成形性を有し、特に射出ブローボトル等の成形に有用なポリエステル樹脂を得ることができる、ポリエステル樹脂の後処理方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、前記熱水接触処理後、加熱下で乾燥させ、しかる後、樹脂を冷却させる際の雰囲気の湿度が最終的に得られる樹脂の含水率に影響を及ぼしていることを見い出したことによりなされたもので、従って、本発明は、エチレンテレフタレート単位を主たる構成繰り返し単位とし、重縮合触媒の存在下に溶融重縮合及び固相重縮合させることにより製造されたポリエステル樹脂に、熱水と接触させて前記重縮合触媒を失活させた後、加熱下に乾燥させ、次いで、樹脂温度が少なくとも60℃以下になるまでの間を0.010kg水/kg気体、以下の絶対湿度の気体雰囲気下で冷却させる後処理を施すポリエステル樹脂の後処理方法、を要旨とする。
【0007】
【発明の実施の形態】
本発明のポリエステル樹脂の後処理方法におけるポリエステル樹脂は、テレフタル酸を主成分とするジカルボン酸成分とエチレングリコールを主成分とするジオール成分とを、エステル化反応させた後、重縮合触媒の存在下に溶融重縮合及び固相重縮合させることにより製造された、エチレンテレフタレート単位を主たる構成繰り返し単位とするポリエステル樹脂であって、テレフタル酸のジカルボン酸成分に占める割合が80モル%以上、エチレングリコールのジオール成分に占める割合が80モル%以上で、エチレンテレフタレート単位が構成繰り返し単位の64モル%以上を占めるのが好ましく、テレフタル酸のジカルボン酸成分に占める割合が95モル%以上、エチレングリコールのジオール成分に占める割合が95モル%以上で、エチレンテレフタレート単位が構成繰り返し単位の90モル%以上を占めるのが更に好ましい。エチレンテレフタレート単位が前記範囲未満では、成形体としての機械的性質や耐熱性が劣ることとなる。
【0008】
尚、テレフタル酸以外のジカルボン酸成分として、例えば、フタル酸、イソフタル酸、フェニレンジオキシジカルボン酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ジフェニルケトンジカルボン酸、4,4’−ジフェノキシエタンジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸、2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の脂環式ジカルボン酸、及び、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカジカルボン酸、ドデカジカルボン酸等の脂肪族ジカルボン酸、等の一種又は二種以上が、共重合成分として用いられていてもよい。
【0009】
又、エチレングリコール以外のグリコール成分として、例えば、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、オクタメチレングリコール、デカメチレングリコール、ネオペンチルグリコール、ジエチレングリコール、ポリエチレングリコール、ポリテトラメチレンエーテルグリコール等の脂肪族ジオール、1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,1−シクロヘキサンジメチロール、1,4−シクロヘキサンジメチロール等の脂環式ジオール、及び、キシリレングリコール、4,4’−ジヒドロキシビフェニル、2,2−ビス(4’−ヒドロキシフェニル)プロパン、2,2−ビス(4’−β−ヒドロキシエトキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−β−ヒドロキシエトキシフェニル)スルホン酸等の芳香族ジオール、等の一種又は二種以上が、共重合成分として用いられていてもよい。
【0010】
更に、例えば、グリコール酸、p−ヒドロキシ安息香酸、p−β−ヒドロキシエトキシ安息香酸等のヒドロキシカルボン酸やアルコキシカルボン酸、及び、ステアリルアルコール、ベンジルアルコール、ステアリン酸、安息香酸、t−ブチル安息香酸、ベンゾイル安息香酸等の単官能成分、トリカルバリル酸、トリメリット酸、トリメシン酸、ピロメリット酸、没食子酸、トリメチロールエタン、トリメチロールプロパン、グリセロール、ペンタエリスリトール等の三官能以上の多官能成分、等の一種又は二種以上が、共重合成分として用いられていてもよい。
【0011】
本発明におけるポリエステル樹脂の製造は、基本的には、ポリエステル樹脂の慣用の製造方法による。即ち、テレフタル酸とエチレングリコールとを、必要に応じて用いられる前記共重合成分と共に、スラリー調製槽に投入して攪拌下に混合して原料スラリーとなし、エステル化反応槽で常圧〜加圧下、加熱下で、エステル化反応させた後、得られたエステル化反応生成物としてのポリエステル低分子量体を重縮合槽に移送し、重縮合触媒の存在下に、常圧から漸次減圧としての減圧下、加熱下で、溶融重縮合させ、引き続いて、固相重縮合装置に移送し、加熱下で固相重縮合させる。尚、これらは連続式、又は回分式でなされ、又、エステル化反応槽、重縮合槽、及び固相重縮合装置は、それぞれ一段としても多段としてもよい。
【0012】
ここで、原料スラリーの調製は、通常、テレフタル酸とエチレングリコールとを、必要に応じて用いられる前記共重合成分と共に、ジカルボン酸成分に対するジオール成分のモル比を、好ましくは1.0〜3.0、更に好ましくは1.2〜2.0の範囲として、通常、常温〜100℃、好ましくは30〜80℃の温度で、均一に混合することによりなされる。
【0013】
又、エステル化反応は、ケージ圧として、通常0.11MPa以下、好ましくは0.06MPa以下の圧力下で、通常150〜280℃、好ましくは180〜270℃、更に好ましくは220〜265℃の温度でなされ、又、溶融重縮合は、絶対圧で、通常10〜0.01kPa、好ましくは5〜0.05kPaの減圧下で、通常210〜300℃、好ましくは250〜290℃の温度でなされる。
【0014】
又、重縮合触媒としては、例えば、二酸化ゲルマニウム、四酸化ゲルマニウム、水酸化ゲルマニウム、蓚酸ゲルマニウム、ゲルマニウムテトラエトキシド、ゲルマニウムテトラ−n−ブトキシド等のゲルマニウム化合物、三酸化アンチモン、酢酸アンチモン、メトキシアンチモン等のアンチモン化合物、テトラ−n−プロピルチタネート、テトラ−i−プロピルチタネート、テトラ−n−ブチルチタネート、蓚酸チタン、蓚酸チタンカリウム等のチタン化合物等が用いられ、中で、本発明においては、ゲルマニウム化合物、又は/及び、チタン化合物を重縮合触媒としたポリエステル樹脂が好ましい。
【0015】
尚、重縮合時には、前記重縮合触媒と共に、正燐酸、トリス(トリエチレングリコール)ホスフェート、エチルジエチルホスホノアセテート、エチルアシッドホスフェート、トリエチレングリコールアシッドホスフェート、亜燐酸等の燐化合物を安定剤として共存させるのが好ましい。
【0016】
これらの重縮合触媒及び安定剤の反応系への添加は、前記スラリー調製工程、前記エステル化反応工程の任意の段階、又は、溶融重縮合工程の初期の段階のいずれであってもよいが、安定剤は、スラリー調製槽に添加するのが好ましく、又、重縮合触媒は、エステル化反応槽(多段の場合は最終段の反応槽)、又は、エステル化反応生成物を重縮合槽に移送する配管等に添加するのが好ましい。
【0017】
又、溶融重縮合後の樹脂は、通常、重縮合槽の底部に設けられた抜き出し口からストランド状に抜き出して、水冷しながら若しくは水冷後、カッターで切断されてペレット状、チップ状等の粒状体とされるが、固相重縮合に先立ち、この溶融重縮合後の粒状体を、乾燥状態で、又は、窒素、二酸化炭素、アルゴン等の不活性ガス雰囲気下、或いは水蒸気雰囲気下、或いは水蒸気含有不活性ガス雰囲気下で、通常120〜200℃、好ましくは130〜180℃の温度で加熱して樹脂粒状体表面を結晶化させることが好ましい。
【0018】
又、固相重縮合は、窒素、二酸化炭素、アルゴン等の不活性ガス雰囲気下、大気圧以下の条件下で、通常190〜230℃、好ましくは195〜225℃の温度でなされる。この固相重縮合により、樹脂を更に高重合度化させ得ると共に、環状三量体等の反応副生成物を低減化することができる。
【0019】
本発明のポリエステル樹脂の後処理方法は、前述の如くして製造されたポリエステル樹脂の粒状体に、熱水と接触させて前記重縮合触媒を失活させた後、加熱下に乾燥させ、次いで、樹脂温度が少なくとも60℃以下になるまでの間を0.010kg水/kg気体、以下の絶対湿度の気体雰囲気下で冷却させる後処理を施すことを必須とする。
【0020】
ここで、ポリエステル樹脂粒状体の熱水との接触処理は、例えば、サイロ型、或いは回転円筒型等の処理装置に樹脂粒状体を投入し熱水を供給して、後者回転円筒型においては装置を回転させて接触を効率化させて行う回分式、又、ホッパー型の処理装置に、その上部より樹脂粒状体を連続的に投入し、並流或いは向流で熱水を連続的に供給して行う連続式等のいずれの処理方式であってもよく、熱水温度は、通常70〜110℃、好ましくは80〜100℃とし、通常3分〜6時間、好ましくは5分〜3時間の時間でなす。これにより、樹脂中に残存する重縮合触媒を失活させる。
【0021】
又、前記熱水接触処理後のポリエステル樹脂粒状体は、例えば、振動篩機、シモンカッター等の水切り装置で水切りした後、例えば、ホッパー型等の乾燥装置に移送し、樹脂粒状体をその上部より投入し、下部より乾燥気体を通気して乾燥させる。その際の乾燥気体としては、大気空気でもよいが、除湿空気、或いは乾燥窒素が好ましく、好ましくは90〜160℃、更に好ましくは100〜150℃、特に好ましくは110〜140℃の加熱下に、樹脂粒状体の含水率を、好ましくは0.05重量%以下、更に好ましくは0.03重量%以下となるまで乾燥させる。
【0022】
本発明においては、前記乾燥後に冷却させる際の雰囲気の湿度が重要であり、樹脂温度が少なくとも60℃以下になるまでの間を0.010kg水/kg気体、以下の絶対湿度の気体雰囲気下で冷却させることを必須とし、少なくとも50℃以下になるまでとするのが好ましく、少なくとも40℃以下になるのでとするのが更に好ましい。又、それらの温度以下になるまでの間を0.007kg水/kg気体、以下の絶対湿度の気体雰囲気下で冷却するのが好ましく、0.005kg水/kg気体、以下の絶対湿度の気体雰囲気下で冷却するのが更に好ましい。樹脂温度が前記範囲超過、及び、気体雰囲気の絶対湿度が前記範囲超過では、後処理後の樹脂粒状体を低含水率に維持することが困難となる。
【0023】
尚、この冷却は、例えば、ホッパー型装置を用い、その上部より投入した樹脂粒状体を下部から供給する冷却気体により冷却する方式、流動床型装置を用い、樹脂粒状体を流動状態を保ちながらその下部から供給する冷却気体により冷却する方式、又は、パイプ内で樹脂粒状体を冷却気体により気力輸送させながら冷却する方式等により行うことができ、その際の冷却気体としては、窒素等の不活性ガスを用いることとしてもよいが、経済的な面から空気を用いるのが好ましい。又、冷却気体の温度は、35℃以下とするのが好ましく、25℃以下とするのが更に好ましい。
【0024】
冷却気体として空気を用いる場合、外気温及び湿度が低い場合には、冷却気体としての前記絶対湿度の条件を満足することもあり得るが、通常前記絶対湿度の条件を満足させるために除湿することが必要となるが、その除湿方法としては、例えば、モレキュラーシーブ等の吸着剤を用いて空気中の水分を吸着除去する方法や、大気空気を圧縮冷却して水分を結露させることにより除湿する方法等の公知の方法が採られる。
【0025】
本発明のポリエステル樹脂の後処理方法により得られる樹脂の含水率は、好ましくは0.15重量%以下、更に好ましくは0.10重量%以下、特に好ましくは0.07重量%以下とすることができる。
【0026】
【実施例】
以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。
【0027】
実施例1
スラリー調製槽、及びそれに直列に接続された2段のエステル化反応槽、及び2段目のエステル化反応槽に直列に接続された3段の重縮合槽からなる連続重合装置を用い、スラリー調製槽に、高純度テレフタル酸1,000重量部とエチレングリコール564重量部とを連続的に供給すると共に、安定剤として正燐酸を連続的に添加して攪拌、混合することによりスラリーを調製し、このスラリーを第1段目のエステル化反応槽、次いで第2段目のエステル化反応槽に連続的に移送し、その際、260〜265℃の温度、ケージ圧で0.005〜0.043MPaの圧力下でエステル化反応させ、又、第2段目に重縮合触媒として二酸化ゲルマニウムを連続的に添加した。引き続いて、得られたエステル化反応生成物を第1段目の重縮合槽、次いで第2段目の重縮合槽、更に第3段目の重縮合槽に連続的に移送し、その際、273.5〜278.5℃の温度、絶対圧で2.81〜0.22kPaの減圧下で溶融重縮合させ、第3段目の重縮合槽の底部に設けられた抜き出し口からストランド状に抜き出して、水冷後、カッターで切断することにより、チップ状のポリエステル樹脂を製造した。
【0028】
得られた樹脂は、以下に示す方法により測定した固有粘度が0.58dl/gであり、又、以下に示す方法により測定した、ゲルマニウム化合物のゲルマニウム原子としての含有量、及び燐化合物の燐原子としての含有量は、それぞれ、61ppm、及び30ppmであった。
【0029】
<固有粘度>
樹脂試料を、フェノール/テトラクロロエタン(重量比1/1)の混合溶媒に溶解させ、ウベローデ型粘度計を用いて30℃で測定した。
<ゲルマニウム原子、燐原子含有量>
樹脂試料を、硫酸存在下に過酸化水素で常法により灰化、完全分解後、蒸留水にて定容したものについて、プラズマ発光分光分析法により定量した。
【0030】
次いで、得られたポリエステル樹脂チップを、窒素雰囲気下で160℃に保持した攪拌結晶化機内に連続的に供給して予備結晶化させた後、乾燥させ、引き続いて、塔型の固相重縮合装置に連続的に供給し、窒素雰囲気下で、常圧下、206℃で18時間加熱することにより固相重縮合させた。得られた樹脂の固有粘度は0.74dl/gであった。
【0031】
引き続いて、得られた固相重縮合ポリエステル樹脂チップを、ホッパー型の熱水接触処理装置に連続的に移送し、その上部より樹脂チップを供給すると共に、その下部より93℃の熱水を連続的に供給し、滞留時間を2.5時間として熱水と接触させて樹脂中の重縮合触媒を失活させた後、スクリーン型の脱水機にて水切りし、次いで、ホッパー型の乾燥装置に連続的に移送し、その上部より樹脂チップを供給すると共に、その下部より140℃の空気を2,600Nm3 /時間の量で連続的に供給し、滞留時間を1.4時間として乾燥させた。その際、乾燥装置の入口と出口でサンプリングした樹脂チップの含水率を、以下に示す方法により測定したところ、それぞれ0.85重量%、0.02重量%であった。
【0032】
<含水率>
内径80mm、高さ25mmの秤量用のアルミニウム製カップを熱風式電気定温乾燥機(いすず製作所社製「DSF−11S型」)にて140℃で2時間乾燥させ、シリカゲルデシケータ内で1時間放置後、秤量し〔A(g)〕、次いで、そのアルミ製カップに樹脂試料約20gを入れ、秤量した〔B(g)〕後、同上乾燥機にて140℃で2時間乾燥させ、シリカゲルデシケータ内で1時間放置後、秤量した〔C(g)〕。それらの秤量結果から、以下の式により、樹脂中の含水率を算出した。
含水率(%)=〔(B−C)/(B−A)〕×100
【0033】
引き続いて乾燥させた樹脂チップを、流動床型の冷却装置に連続的に移送し、樹脂チップを流動状態を保ちながら、その下部から絶対湿度0.0042kg水/kg空気の空気を冷却気体として吹き付けることにより、樹脂チップの温度が45℃となるまで冷却させた。得られた樹脂チップの含水率は、0.06重量%であった。
【0034】
実施例2
冷却気体として、絶対湿度0.0093kg水/kg空気の空気を用いた外は、実施例1と同様にして後処理を実施した。得られた樹脂チップの含水率は、0.09重量%であった。
【0035】
比較例1
冷却気体として、絶対湿度0.0191kg水/kg空気の空気を用いた外は、実施例1と同様にして後処理を実施した。得られた樹脂チップの含水率は、0.17重量%であった。
【0036】
比較例2
熱水接触処理及び乾燥処理の後処理を施さず、固相重縮合後の樹脂チップを、直ちに流動床型の冷却装置に導入し、冷却気体として、絶対湿度0.0214kg水/kg空気の空気を用いた外は、実施例1と同様にして後処理を実施した。樹脂チップの冷却装置入口における含水率は、0.01重量%、冷却装置出口における含水率は0.03重量%であった。
【0037】
【発明の効果】
本発明によれば、重縮合触媒の失活のための熱水接触処理を施したポリエステル樹脂であって、低含水率を維持することができ、従って、安定した成形性を有し、特に射出ブローボトル等の成形に有用なポリエステル樹脂を得ることができる、ポリエステル樹脂の後処理方法を提供することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a post-treatment method for a polyester resin, and more particularly, a polyester resin that has been subjected to hot water contact treatment for deactivation of a polycondensation catalyst, and has a stable moldability, and particularly an injection blow bottle. It is related with the post-processing method of the polyester resin which can obtain the polyester resin useful for shaping | molding.
[0002]
[Prior art]
Conventionally, polyester resins such as polyethylene terephthalate resins are excellent in mechanical strength, chemical stability, transparency, gas barrier properties, safety and hygiene, etc., and are relatively inexpensive and lightweight. These bottles are usually used in injection molding of a bottomed tubular preform, and the preform is reheated and softened before being blown in a blow mold. Manufactured by stretch blow molding.
[0003]
These bottles for foods and drinks mainly use polyethylene terephthalate resin produced by melt polycondensation and solid phase polycondensation in the presence of a polycondensation catalyst such as a general-purpose antimony compound or germanium compound. At the time of melt molding such as injection molding of a preform, a by-product such as a cyclic trimer is generated in the resin, and the cyclic trimer contaminates the blow mold, and the mold There were problems such as greatly reducing productivity for cleaning. In contrast, a method of deactivating the catalyst in the resin by subjecting the resin after solid-phase polycondensation to hot water contact treatment with hot water to reduce the generation of by-products during the melt molding. (For example, see Japanese Patent Publication Nos. 7-14997, 7-37515, etc.) have been proposed and confirmed to be effective in preventing mold contamination.
[0004]
On the other hand, polyester resins typified by polyethylene terephthalate resin usually suffer from drawbacks such as a decrease in molecular weight due to hydrolysis in the molten state and a decrease in physical properties such as mechanical strength as a molded article. The produced resin is dried under heating, and further stored in an air or inert gas atmosphere having a low dew point, and is also dried under heating during molding. However, according to the study by the present inventors, in the polyester resin subjected to the hot water contact treatment, the moisture content at the time of packaging after cooling is the same as that in the case of drying under heating after the treatment. There is a problem that it shows a higher value than the resin that has not been applied, it is difficult to continuously obtain a stable low moisture content polyester resin, it is difficult to maintain the moldability of bottles and the like in a stable state It has been found.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned present situation. Therefore, the present invention is a polyester resin subjected to a hot water contact treatment for deactivation of a polycondensation catalyst, and maintains a low water content. Therefore, an object of the present invention is to provide a post-treatment method for a polyester resin, which can obtain a polyester resin having stable moldability and particularly useful for molding an injection blow bottle or the like.
[0006]
[Means for Solving the Problems]
The present invention has found that after the hydrothermal contact treatment, drying under heating, and then the humidity of the atmosphere when cooling the resin affects the moisture content of the resin finally obtained. Accordingly, the present invention provides a polyester resin produced by melt polycondensation and solid-phase polycondensation in the presence of a polycondensation catalyst, with hot water and ethylene terephthalate units as the main structural repeating unit. After contacting and deactivating the polycondensation catalyst, drying is performed under heating, and then the gas temperature is 0.010 kg water / kg gas, and the absolute humidity is below, until the resin temperature is at least 60 ° C. The gist is a post-treatment method of a polyester resin which is subjected to a post-treatment to be cooled below.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The polyester resin in the post-treatment method of the polyester resin of the present invention is obtained by esterifying a dicarboxylic acid component mainly composed of terephthalic acid and a diol component mainly composed of ethylene glycol, and then in the presence of a polycondensation catalyst. Produced by melt polycondensation and solid phase polycondensation, and a polyester resin having an ethylene terephthalate unit as a main constituent repeating unit, wherein the proportion of terephthalic acid in the dicarboxylic acid component is 80 mol% or more, The proportion of the diol component is 80 mol% or more, and the ethylene terephthalate unit preferably occupies 64 mol% or more of the structural repeating unit. The proportion of terephthalic acid to the dicarboxylic acid component is 95 mol% or more, and the diol component of ethylene glycol Is a ratio of 95 mol% or more, Chi terephthalate units that account for at least 90 mol% of the structure repeating unit further preferred. When the ethylene terephthalate unit is less than the above range, the mechanical properties and heat resistance as a molded article are inferior.
[0008]
Examples of dicarboxylic acid components other than terephthalic acid include phthalic acid, isophthalic acid, phenylenedioxydicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, and 4,4′-diphenylketone. Dicarboxylic acids, aromatic dicarboxylic acids such as 4,4′-diphenoxyethanedicarboxylic acid, 4,4′-diphenylsulfone dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and fats such as hexahydroterephthalic acid and hexahydroisophthalic acid One or more of cyclic dicarboxylic acids and aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecadicarboxylic acid, dodecadicarboxylic acid, etc. However, it may be used as a copolymerization component.
[0009]
As glycol components other than ethylene glycol, for example, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, octamethylene glycol, decamethylene glycol, neopentyl glycol, diethylene glycol, polyethylene glycol, polytetramethylene ether glycol Aliphatic diols such as 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,1-cyclohexanedimethylol, alicyclic diols such as 1,4-cyclohexanedimethylol, and xylylene glycol, 4′-dihydroxybiphenyl, 2,2-bis (4′-hydroxyphenyl) propane, 2,2-bis (4′-β-hydroxyethoxyphenyl) propane, bis ( - hydroxyphenyl) sulfone, bis (4-beta-hydroxyethoxyphenyl) aromatic diol such as a sulfonic acid, one or two or more like may also be used as a copolymerization component.
[0010]
Furthermore, for example, hydroxycarboxylic acids and alkoxycarboxylic acids such as glycolic acid, p-hydroxybenzoic acid, p-β-hydroxyethoxybenzoic acid, and stearyl alcohol, benzyl alcohol, stearic acid, benzoic acid, t-butylbenzoic acid Monofunctional components such as benzoylbenzoic acid, trifunctional or more polyfunctional components such as tricarbaric acid, trimellitic acid, trimesic acid, pyromellitic acid, gallic acid, trimethylolethane, trimethylolpropane, glycerol, pentaerythritol, 1 type, or 2 or more types, etc. may be used as a copolymerization component.
[0011]
The production of the polyester resin in the present invention is basically based on a conventional production method of a polyester resin. That is, terephthalic acid and ethylene glycol, together with the above-mentioned copolymerization component used as needed, are put into a slurry preparation tank and mixed under stirring to form a raw material slurry. Under normal pressure to increased pressure in an esterification reaction tank After the esterification reaction under heating, the resulting polyester low molecular weight product as the esterification reaction product is transferred to a polycondensation tank, and the pressure is gradually reduced from normal pressure in the presence of a polycondensation catalyst. Then, melt polycondensation is carried out under heating, and subsequently, it is transferred to a solid phase polycondensation apparatus and subjected to solid phase polycondensation under heating. In addition, these are made by a continuous type or a batch type, and an esterification reaction tank, a polycondensation tank, and a solid-phase polycondensation apparatus may each be made into one stage or multistage.
[0012]
Here, preparation of the raw material slurry is usually performed by using terephthalic acid and ethylene glycol together with the above-described copolymer component used as necessary, and the molar ratio of the diol component to the dicarboxylic acid component, preferably 1.0 to 3. 0, more preferably in the range of 1.2 to 2.0, usually by mixing uniformly at a temperature of normal temperature to 100 ° C, preferably 30 to 80 ° C.
[0013]
The esterification reaction is carried out at a temperature of usually 150 to 280 ° C., preferably 180 to 270 ° C., more preferably 220 to 265 ° C. under a cage pressure of usually 0.11 MPa or less, preferably 0.06 MPa or less. In addition, the melt polycondensation is carried out at an absolute pressure of usually 10 to 0.01 kPa, preferably 5 to 0.05 kPa under a reduced pressure, usually 210 to 300 ° C., preferably 250 to 290 ° C. .
[0014]
Examples of polycondensation catalysts include germanium compounds such as germanium dioxide, germanium tetroxide, germanium hydroxide, germanium oxalate, germanium tetraethoxide, germanium tetra-n-butoxide, antimony trioxide, antimony acetate, and methoxyantimony. Antimony compounds, tetra-n-propyl titanate, tetra-i-propyl titanate, tetra-n-butyl titanate, titanium compounds such as titanium oxalate and titanium potassium oxalate are used. In the present invention, germanium compounds are used. Or / and a polyester resin using a titanium compound as a polycondensation catalyst is preferable.
[0015]
During polycondensation, together with the polycondensation catalyst, phosphoric compounds such as orthophosphoric acid, tris (triethylene glycol) phosphate, ethyl diethyl phosphonoacetate, ethyl acid phosphate, triethylene glycol acid phosphate, phosphorous acid coexist as stabilizers. It is preferable to do so.
[0016]
The addition of these polycondensation catalyst and stabilizer to the reaction system may be any stage of the slurry preparation process, the esterification reaction process, or the initial stage of the melt polycondensation process, The stabilizer is preferably added to the slurry preparation tank, and the polycondensation catalyst is transferred to the esterification reaction tank (the final reaction tank in the case of multiple stages) or the esterification reaction product to the polycondensation tank. It is preferable to add to the piping etc.
[0017]
In addition, the resin after melt polycondensation is usually extracted in the form of a strand from an extraction port provided at the bottom of the polycondensation tank, and is cooled with water or cooled with water and then cut with a cutter to form pellets, chips, etc. Prior to solid-phase polycondensation, the granules after melt polycondensation are dried, or in an inert gas atmosphere such as nitrogen, carbon dioxide, argon, etc., in a steam atmosphere, or in steam It is preferable to crystallize the resin granule surface by heating at a temperature of usually 120 to 200 ° C., preferably 130 to 180 ° C. in an inert gas atmosphere.
[0018]
The solid phase polycondensation is usually carried out at a temperature of 190 to 230 ° C., preferably 195 to 225 ° C. under an atmosphere of an inert gas such as nitrogen, carbon dioxide, and argon and under atmospheric pressure. By this solid phase polycondensation, the degree of polymerization of the resin can be further increased, and reaction by-products such as cyclic trimers can be reduced.
[0019]
In the polyester resin post-treatment method of the present invention, the polyester resin granules produced as described above are brought into contact with hot water to deactivate the polycondensation catalyst, and then dried under heating. In addition, it is essential to perform a post-treatment for cooling in a gas atmosphere of 0.010 kg water / kg gas and the following absolute humidity until the resin temperature reaches at least 60 ° C. or less.
[0020]
Here, the contact treatment of the polyester resin granular material with hot water is performed by, for example, supplying the resin granular material to a processing apparatus such as a silo type or a rotating cylindrical type and supplying hot water. In order to improve the contact efficiency by rotating the hopper, the resin particles are continuously fed into the hopper type processing equipment from the top, and hot water is continuously supplied in a cocurrent or countercurrent flow. The hot water temperature is usually 70 to 110 ° C., preferably 80 to 100 ° C., usually 3 minutes to 6 hours, preferably 5 minutes to 3 hours. Do it in time. This deactivates the polycondensation catalyst remaining in the resin.
[0021]
The polyester resin granules after the hot water contact treatment are drained by a draining device such as a vibrating screen or a Simon cutter, and then transferred to a drying device such as a hopper type, for example. Then, it is dried by ventilating a dry gas from the bottom. At that time, the dry gas may be atmospheric air, but is preferably dehumidified air or dry nitrogen, preferably 90 to 160 ° C., more preferably 100 to 150 ° C., particularly preferably 110 to 140 ° C. The resin granule is dried until the water content is preferably 0.05% by weight or less, more preferably 0.03% by weight or less.
[0022]
In the present invention, the humidity of the atmosphere at the time of cooling after drying is important, and the period until the resin temperature is at least 60 ° C. or less is 0.010 kg water / kg gas, in a gas atmosphere having the following absolute humidity: It is essential to cool, and it is preferable to be at least 50 ° C. or less, and more preferable to be at least 40 ° C. or less. Further, it is preferable to cool in the gas atmosphere of 0.007 kg water / kg gas and the following absolute humidity until the temperature becomes lower than those temperatures, 0.005 kg water / kg gas and the gas atmosphere of the following absolute humidity More preferred is cooling below. When the resin temperature exceeds the above range and the absolute humidity of the gas atmosphere exceeds the above range, it becomes difficult to maintain the post-treatment resin granules at a low water content.
[0023]
This cooling is performed, for example, by using a hopper type device and cooling the resin granular material introduced from the upper part by a cooling gas supplied from the lower part, using a fluidized bed type device, while maintaining the resin granular material in a fluid state. Cooling with a cooling gas supplied from the lower part of the pipe, or a cooling method in which the resin granular material is cooled by pneumatic transport in the pipe by a cooling gas, etc. can be performed. Although active gas may be used, it is preferable to use air from an economical viewpoint. The temperature of the cooling gas is preferably 35 ° C. or less, and more preferably 25 ° C. or less.
[0024]
When air is used as the cooling gas, if the ambient temperature and humidity are low, the absolute humidity condition as the cooling gas may be satisfied, but dehumidification is usually performed to satisfy the absolute humidity condition. As a dehumidifying method, for example, a method of adsorbing and removing moisture in the air using an adsorbent such as molecular sieve, or a method of dehumidifying by compressing and cooling atmospheric air to condense moisture A known method such as the above is adopted.
[0025]
The water content of the resin obtained by the post-treatment method of the polyester resin of the present invention is preferably 0.15% by weight or less, more preferably 0.10% by weight or less, and particularly preferably 0.07% by weight or less. it can.
[0026]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.
[0027]
Example 1
Using a continuous polymerization apparatus comprising a slurry preparation tank, a two-stage esterification reaction tank connected in series therewith, and a three-stage polycondensation tank connected in series to the second esterification reaction tank, slurry preparation While continuously supplying 1,000 parts by weight of high-purity terephthalic acid and 564 parts by weight of ethylene glycol to the tank, a slurry is prepared by continuously adding and stirring and mixing orthophosphoric acid as a stabilizer, This slurry was continuously transferred to the first stage esterification reaction tank and then to the second stage esterification reaction tank. At that time, the temperature was 260 to 265 ° C. and the cage pressure was 0.005 to 0.043 MPa. In the second stage, germanium dioxide was continuously added as a polycondensation catalyst. Subsequently, the obtained esterification reaction product was continuously transferred to the first stage polycondensation tank, then to the second stage polycondensation tank, and further to the third stage polycondensation tank, Melt polycondensation is performed at a temperature of 273.5 to 278.5 ° C. and a reduced pressure of 2.81 to 0.22 kPa in absolute pressure, and is formed into a strand shape from an outlet provided at the bottom of the third stage polycondensation tank. The chip-shaped polyester resin was manufactured by extracting and cutting with a cutter after water-cooling.
[0028]
The obtained resin has an intrinsic viscosity of 0.58 dl / g measured by the method shown below, and the germanium compound content as a germanium atom and the phosphorus atom of the phosphorus compound measured by the method shown below. The content of was 61 ppm and 30 ppm, respectively.
[0029]
<Intrinsic viscosity>
The resin sample was dissolved in a mixed solvent of phenol / tetrachloroethane (weight ratio 1/1) and measured at 30 ° C. using an Ubbelohde viscometer.
<Germanium atom, phosphorus atom content>
A resin sample was ashed with hydrogen peroxide in the presence of sulfuric acid in a conventional manner, completely decomposed, and then fixed in distilled water, and then quantified by plasma emission spectrometry.
[0030]
Next, the obtained polyester resin chips are continuously supplied into a stirring crystallization machine maintained at 160 ° C. in a nitrogen atmosphere to be pre-crystallized, and then dried, followed by tower-type solid phase polycondensation. It was continuously supplied to the apparatus and subjected to solid phase polycondensation by heating at 206 ° C. under normal pressure for 18 hours under a nitrogen atmosphere. The intrinsic viscosity of the obtained resin was 0.74 dl / g.
[0031]
Subsequently, the obtained solid phase polycondensation polyester resin chip is continuously transferred to a hopper type hot water contact treatment device, and the resin chip is supplied from the upper part, and hot water at 93 ° C. is continuously supplied from the lower part. The polycondensation catalyst in the resin is deactivated by contacting with hot water at a residence time of 2.5 hours, drained with a screen-type dehydrator, and then put into a hopper-type drying device. It was continuously transferred, and resin chips were supplied from the upper part, and air at 140 ° C. was continuously supplied from the lower part in an amount of 2,600 Nm 3 / hour, and the residence time was 1.4 hours and dried. . At that time, when the moisture content of the resin chips sampled at the inlet and outlet of the drying apparatus was measured by the following method, they were 0.85 wt% and 0.02 wt%, respectively.
[0032]
<Moisture content>
An aluminum cup for weighing with an inner diameter of 80 mm and a height of 25 mm was dried at 140 ° C. for 2 hours with a hot air type electric constant temperature dryer (“DSF-11S type” manufactured by Isuzu Seisakusho), and left in a silica gel desiccator for 1 hour. Then, weigh [A (g)], then put about 20 g of resin sample into the aluminum cup, weigh [B (g)], and then dry it at 140 ° C. for 2 hours in the same dryer, inside the silica gel desiccator And then weighed [C (g)]. From these weighing results, the water content in the resin was calculated by the following formula.
Water content (%) = [(BC) / (BA)] × 100
[0033]
Subsequently, the dried resin chip is continuously transferred to a fluidized bed type cooling device, and air with an absolute humidity of 0.0042 kg water / kg air is blown as a cooling gas from the lower part while keeping the resin chip in a fluid state. As a result, the temperature of the resin chip was cooled to 45 ° C. The water content of the obtained resin chip was 0.06% by weight.
[0034]
Example 2
The post-treatment was performed in the same manner as in Example 1 except that air having an absolute humidity of 0.0093 kg water / kg air was used as the cooling gas. The water content of the obtained resin chip was 0.09% by weight.
[0035]
Comparative Example 1
Post-treatment was performed in the same manner as in Example 1 except that air having an absolute humidity of 0.0191 kg water / kg air was used as the cooling gas. The water content of the obtained resin chip was 0.17% by weight.
[0036]
Comparative Example 2
Resin chips after solid-phase polycondensation are not immediately subjected to hot water contact treatment and drying treatment, but are immediately introduced into a fluidized bed type cooling device, and air of absolute humidity 0.0214 kg water / kg air is used as a cooling gas. The post-treatment was performed in the same manner as in Example 1 except that was used. The moisture content of the resin chip at the inlet of the cooling device was 0.01% by weight, and the moisture content at the outlet of the cooling device was 0.03% by weight.
[0037]
【The invention's effect】
According to the present invention, a polyester resin that has been subjected to a hydrothermal contact treatment for deactivation of a polycondensation catalyst, can maintain a low water content, and thus has a stable moldability, particularly injection. A polyester resin post-treatment method capable of obtaining a polyester resin useful for molding a blow bottle or the like can be provided.

Claims (3)

エチレンテレフタレート単位を主たる構成繰り返し単位とし、重縮合触媒の存在下に溶融重縮合及び固相重縮合させることにより製造されたポリエステル樹脂に、熱水と接触させて前記重縮合触媒を失活させた後、加熱下に乾燥させ、次いで、樹脂温度が少なくとも60℃以下になるまでの間を0.010kg水/kg気体、以下の絶対湿度の気体雰囲気下で冷却させる後処理を施すことを特徴とするポリエステル樹脂の後処理方法。The polyester resin produced by melt polycondensation and solid phase polycondensation in the presence of a polycondensation catalyst with an ethylene terephthalate unit as the main constituent repeating unit was brought into contact with hot water to deactivate the polycondensation catalyst. Then, it is dried under heating, and then subjected to a post-treatment for cooling in a gas atmosphere of 0.010 kg water / kg gas, absolute humidity below until the resin temperature reaches at least 60 ° C. To post-treat the polyester resin. 乾燥時の加熱温度を90〜160℃とする請求項1に記載のポリエステル樹脂の後処理方法。The post-treatment method for a polyester resin according to claim 1, wherein the heating temperature during drying is 90 to 160 ° C. 冷却させる気体を空気とする請求項1又は2に記載のポリエステル樹脂の後処理方法。The post-treatment method for a polyester resin according to claim 1 or 2, wherein the gas to be cooled is air.
JP2001334117A 2001-10-31 2001-10-31 Post-treatment method of polyester resin Expired - Fee Related JP3957138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334117A JP3957138B2 (en) 2001-10-31 2001-10-31 Post-treatment method of polyester resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334117A JP3957138B2 (en) 2001-10-31 2001-10-31 Post-treatment method of polyester resin

Publications (2)

Publication Number Publication Date
JP2003137993A JP2003137993A (en) 2003-05-14
JP3957138B2 true JP3957138B2 (en) 2007-08-15

Family

ID=19149302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334117A Expired - Fee Related JP3957138B2 (en) 2001-10-31 2001-10-31 Post-treatment method of polyester resin

Country Status (1)

Country Link
JP (1) JP3957138B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329723B2 (en) 2003-09-18 2008-02-12 Eastman Chemical Company Thermal crystallization of polyester pellets in liquid
CA2482056A1 (en) 2003-10-10 2005-04-10 Eastman Chemical Company Thermal crystallization of a molten polyester polymer in a fluid
US20060047102A1 (en) 2004-09-02 2006-03-02 Stephen Weinhold Spheroidal polyester polymer particles
US7875184B2 (en) 2005-09-22 2011-01-25 Eastman Chemical Company Crystallized pellet/liquid separator
WO2011074328A1 (en) 2009-12-14 2011-06-23 日本電気株式会社 Polylactic acid-based polyol composition, process for production thereof, urethane resin composition, process for production of same, and molded products thereof

Also Published As

Publication number Publication date
JP2003137993A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
TWI288155B (en) Manufacturing method of copolyester for PET bottles comprising low acetaldehyde content
JP3254836B2 (en) Method for producing polyethylene terephthalate
JPH08283394A (en) Production of polyethylene terephthalate
KR950013878B1 (en) Polyethylene terephthalate for molding purposes and process for preparation thereof
JP5165186B2 (en) POLYESTER RESIN AND PROCESS FOR PRODUCING THE RESIN
JP3957138B2 (en) Post-treatment method of polyester resin
JPH11509573A (en) Method for crystallizing poly (ethylene naphthalene dicarboxylate)
JPH08253563A (en) Method for treating polyethylene terephthalate
JP4069669B2 (en) Method for crystallizing copolyester resin
JPH0764920B2 (en) polyethylene terephthalate
JP4670127B2 (en) How to dry polyester
JP3566110B2 (en) Method for producing modified polyethylene terephthalate resin
JPH06234834A (en) Production of polyethylene terephthalate
JP6180164B2 (en) Polyester resin, method for producing polyester resin, and molded article using polyester resin
JP2003212983A (en) Method for treating polyester resin
JP3685896B2 (en) Drying method of polyester resin
KR101327235B1 (en) Method for preparing polyethylene terephthalate
JP4624590B2 (en) Method for producing metal compound-containing polyester resin composition, preform for hollow molded article, and method for producing hollow molded article
JP4781701B2 (en) Method for producing polyethylene terephthalate and molded body
JP3195340B2 (en) Polyethylene terephthalate molding
JP2007112995A (en) Apparatus for heat treatment of polyester particle and method for multistage solid-phase polycondensation of polyester particle
JP2003212984A (en) Polyester resin
EP1262514B1 (en) A manufacturing method for decreasing the cyclic oligomer content in polyester
JPH0931178A (en) Production of polyethylene threphthalate
JP2023144892A (en) Method for producing molded article including recycled polyethylene terephthalate, and molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Ref document number: 3957138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees