JP3956262B2 - Liquid separation membrane module - Google Patents

Liquid separation membrane module Download PDF

Info

Publication number
JP3956262B2
JP3956262B2 JP16102199A JP16102199A JP3956262B2 JP 3956262 B2 JP3956262 B2 JP 3956262B2 JP 16102199 A JP16102199 A JP 16102199A JP 16102199 A JP16102199 A JP 16102199A JP 3956262 B2 JP3956262 B2 JP 3956262B2
Authority
JP
Japan
Prior art keywords
fabric
separation membrane
reverse osmosis
liquid separation
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16102199A
Other languages
Japanese (ja)
Other versions
JP2000342941A (en
Inventor
卓司 新谷
雅彦 廣瀬
雅明 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP16102199A priority Critical patent/JP3956262B2/en
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to AT99126091T priority patent/ATE306312T1/en
Priority to DE69927674T priority patent/DE69927674D1/en
Priority to ES99126091T priority patent/ES2249867T3/en
Priority to EP99126091A priority patent/EP1059114B1/en
Priority to US09/484,338 priority patent/US6454942B1/en
Priority to CNB001089838A priority patent/CN1136950C/en
Publication of JP2000342941A publication Critical patent/JP2000342941A/en
Application granted granted Critical
Publication of JP3956262B2 publication Critical patent/JP3956262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、逆浸透膜分離装置に用いられる液体分離膜モジュールに関するものである。
【0002】
【従来の技術】
分離膜が袋状に形成され、内部に透過水流路材を備えて、この内部の一端が集水管に連通した3層構造体に原水流路材を重ね合わせて、前記集水管に巻き回されたスパイラル型分離膜エレメントが提案されている。
【0003】
上記のスパイラル型分離膜エレメントにおいては、透過水流路材を備えた分離膜に原水流路材を重ね合わせた3層構造体を集水管に巻き回す際、前記3層構造体の両端を接着剤で接着している。
【0004】
原水は袋状の分離膜の外部を通水され、袋状の分離膜の内部に浸透してきた透過水は、透過水流路材を通り、前記分離膜内が連通されている集水管内へ流れ込み、膜エレメント外に抜き出される。通常、前記透過水流路材は片面に溝を有するシングルトリコット編み物にエポキシ樹脂で強化したものや溶融固着させたもの(特開昭60−19001号公報)や両面に溝を有するダブルトリコット編み物にエポキシ樹脂で強化したものが主に用いられている。この透過水流路材は逆浸透膜を支え、前記透過水流路材の溝によって透過水を集水管内に導く役割を担っている。
【0005】
【発明が解決しようとする課題】
通常、逆浸透膜を用いた液体分離膜モジュールを用いて溶液を膜分離するためには、対象とする溶液の浸透圧以上の圧力を付与することが必要となる。その際、供給液側と透過液側に0.5〜1MPa程度の差圧が負荷される。この時、前記透過水流路材が図7に示すシングルトリコット31または図8に示すダブルトリコット編み物32を用いると、その片面または両面に有する互いに平行な溝へ逆浸透膜が陥没し、薄が閉塞されるために、流路抵抗が増加するという問題が生じる。高圧下でこの透過水流路材が有する互いに平行な溝へ逆浸透膜が陥没したまま、長時間の運転が続けられると、図9に示すようにシングルトリコット31の凹凸面に接触する逆浸透膜33が変形し、透過水が通過するキャビティーが潰れて充分な性能が得られなくなってしまう。ダブルトリコット編み物32を用いた場合は、図10に示すように、逆浸透膜33,34が変形し、透過水が通過するキャビティーが潰れて充分な性能が得られなくなってしまうという問題があった。
【0006】
本発明は、上記従来技術の問題を解決するためになされたものであって、逆浸透膜の透過水流路材の溝への陥没による流路抵抗の増加と逆浸透膜の変形を抑制し、逆浸透膜性能の維持を可能とした実用的な液体分離膜モジュールを提供することを目的とする。
【0007】
【課題を解決するための手段】
前記目的を達成するため、本発明の液体分離膜モジュールは、原液を受圧する逆浸透膜の裏面側を支持する流路材が組み込まれた液体分離膜モジュールにおいて、
前記流路材は、断面が凹凸構造の布帛Aと、前記布帛Aの凹凸面に平坦な布帛Bが積層され、
布帛A及びBを構成する繊維が、低融点ポリマーを鞘に、高融点ポリマーを芯に持つ芯鞘型複合(コンジュゲート)繊維であり、布帛 A および B は全体が加熱により融着されることにより剛直化され、
前記布帛AとBは、融着により一体化されており、
前記布帛Aの凹部と平坦な布帛Bにより形成された空間が、逆浸透に必要な圧力によって陥没しない流路チャンネルを形成していることを特徴とする。
【0008】
前記布帛Aの片面に前記布帛Bを積層した場合は2層、または前記布帛Aの両面に前記布帛Bを積層した場合は3層であることが好ましい。
【0009】
また前記液体分離膜モジュールにおいては、布帛Aが凹凸構造を有するトリコット編地であり、布帛Bが織物または不織布であることが好ましい。
【0010】
また前記液体分離膜モジュールにおいては、布帛Aがシングルトリコット編地であり、前記編地の片面の凹凸面に積層する布帛Bが織物または不織布であることが好ましい。
【0011】
また前記液体分離膜モジュールにおいては、布帛Aがダブルトリコット編地であり、前記編地の両面の凹凸面に積層する布帛Bが織物または不織布であることが好ましい。
【0014】
【発明の実施の形態】
本発明において、布帛Aは断面が凹凸構造であれば織物、編み物、不織布、レース地、網、組み物などいかなるものでも良い。この中でもシングルトリコット編み物やダブルトリコット編み物などが寸法安定性に優れることから好ましい。
【0015】
次に、布帛Bは平坦であれば織物、編み物、不織布などその種類を問わない。この中でも織物または不織布が好ましい。織物としては例えば平織、斜文織、朱子織などを挙げることができ、不織布としてはカーディング法不織布、エアレイ法不織布、湿式法不織布(合成繊維紙を含む)、スパンボンド法不織布、フラッシュ法不織布、メルトブロー法不織布、ケミカルボンディング法不織布、サーマルボンド法不織布、ニードルパンチ法不織布、ウォータージェット法不織布、ステッチボンド法不織布などを挙げることができる。
【0016】
次に、布帛A及びBの剛直化は、全体を加熱により融着させて行う。本発明において、布帛A及びBを構成する繊維が、低融点ポリマーを鞘に高融点ポリマーを芯に持つ芯鞘型複合(コンジュゲート)繊維であり、加熱により融着固定するものであるのは、超純水などを製造するためには、接着剤の脱落やモノマーの留出を極力おさえる必要性からである。
【0017】
高融点成分と低融点成分との代表的な組合せは、高融点ポリエステルと低融点ポリエステル、高融点ポリアミドと低融点ポリアミド、高融点ポリオレフィンと低融点ポリオレフィンなどがあり、このうちでも融着加工後の剛性などの点から高融点ポリエステルと低融点ポリエステルとの組合せが好ましい。低融点成分は一般的に高分子共重合体とすることによって簡単に得ることができ、その融点差は共重合比率の変更、共重合成分の追加、共重合成分の変更、立体規則性あるいは重合度の変更等によって変更することができる。また、これとは別に融点差のある異種重合体との組合せによってもよい。ポリエステルの場合は、一般的に1モル%共重合することにより融点が2℃下がる。ポリエステルに共重合させるモノマー成分は、イソフタル酸、アジピン酸などの酸成分が一般的である。ポリエチレンテレフタレート(融点約260℃)を高融点成分として用いる場合、低融点成分にはポリブチレンテレフタレート(融点約225℃)またはポリブチレンテレフタレートに任意のモノマーを所定量共重合した共重合体を用いる。例えばポリブチレンテレフタレート(75モル%)−イソフタレート(25モル%)共重合体の融点は、融点約175℃となる。
【0018】
前記した両成分の組合せからなる熱可塑性合成繊維は、布帛A及びBのそれぞれの少なくとも一部に使用するのが好ましく、両布帛に使用する低融点成分は同一の融点であることが望ましい。1回の熱処理で加熱融着一体化できるからである。融着以外の手段としては、縫製がある。
【0019】
本発明に用いる流路材は、0〜200kg/cm2の範囲の逆浸透圧に耐えることができ、前記範囲の圧力によって長期間運転しても流路チャンネルは陥没しないものとすることができる。
【0020】
本発明の液体分離膜モジュールは、分離膜が袋状に形成され、内部に透過水流路材を備えて、この内部の一端が集水管に連通するように前記集水管に巻き回された分離膜を有するスパイラル型分離膜エレメントに好適に使用することができる。前記透過水流路材は、内側に互いに平行な溝を有するのが好ましい。
【0021】
本発明において、透過水流路材の互いに平行な溝は、前記透過水流路材の内側に存在する必要がある。透過水流路材の内側とは、直接逆浸透膜の裏面と接しない流路材内部である。逆浸透膜が接する部分に互いに平行な溝が存在すると、逆浸透膜分離を行う際に圧力を付与することで、逆浸透膜がこの溝へ陥没し、流路を閉塞し、透過水の流路抵抗の増加を招くことになる。また、高圧下で長時間運転した場合、逆浸透膜の変形を招き、逆浸透膜がダメージを受け、性能の低下が生じてしまう。
【0022】
本発明の逆浸透膜の透過水流路材は、溝への陥没による流路抵抗の増加と逆浸透膜の変形を抑制し、逆浸透膜性能の維持を可能とした実用的な液体分離膜モジュールを実現できる。
【0023】
また、内側に互いに平行な溝を有する透過水流路材を実現させるためには、従来から使用されていたシングルトリコットやダブルトリコット編み物の透過水流路材の溝面に、堅く密な構造を有するシートを融合し、2層または3層構造にすることが好ましい。
【0024】
前記2層の積層構造としては、例えば図1に示すように、シングルトリコット編地2の凹凸面に、平坦な布帛(例えば平織物)3が融着一体化されて流路材1が形成されている。別の例としては、ダブルトリコット編地5の両面の凹凸面に、平坦な布帛(例えば平織物)3,7が融着一体化されて流路材4が形成されている。
【0025】
前記流路材1,4の上に、逆浸透膜の緻密膜面側が前記流路材の面に向くようにして組み込む(図3〜4)。
【0026】
次に図5及び図6は、前記した流路材を使用したスパイラル型の液体分離膜モジュールを例示したものである。
【0027】
11は流体分離素子であり、12はこの流体分離素子11を収納している円筒容器である。流体分離素子11は円筒容器12内で一端をV字形のシール材13によりシールされ、他方の端部の透過液排出管14を円筒容器12の外側へ突出させている。円筒容器12はV字形のシール材13の開いた方の側壁に原液供給管15を、またもう一方の側壁に原液排出管16を設けている。
【0028】
液体分離素子11は、図6に示すように中心に小孔17を有する中空管からなる透過液排出管14を有し、その外側を封筒状の逆浸透膜19がスパイラル状に巻回している。封筒状の逆浸透膜19はその内側に本発明による透過液流路材20を内挿し、その開口端を上記小孔17に対向させて透過液排出管14の内側に連通している。またスパイラル状に巻回した封筒状の逆浸透膜19の外側面同士の間には原液流路材21が介在している。18は封止部である。
【0029】
【実施例】
以下実施例により本発明をさらに具体的に説明する。
【0030】
【実施例1】
高融点ポリエステル(ポリエチレンテレフタレート:融点約260℃)を芯成分(70重量%)に配置し、低融点ポリエステル(ポリブチレンテレフタレート(75モル%)−イソフタレート(25モル%)共重合体(融点約175℃))を鞘成分(30重量%)に配置し、トータル繊度が70デニール、フィラメント数が17本のフィラメント糸条を用意した。この糸を用いてシングルトリコット編み物を編成した(ウェール38本/インチ、コース45本/インチ)。
【0031】
次にこの編み物の互いに平行な溝を有する面(凹凸面)に、トータル繊度:50デニール、フィラメント数:12本の前記低融点ポリエステルを鞘に、前記高融点ポリエステルを芯に持つ平織り(タテ糸密度:102本/インチ、ヨコ糸密度:74本/インチ、目付35g/m2)を重ね合わせた。次に、185℃、5分間の熱処理により全体を剛直化させると共に、2層を融着して透過水流路材を形成した。
【0032】
一方、芳香族ポリアミド系複合膜(トリメシン酸クロライドとm−フェニレンジアミンとを界面重縮合させた膜、日東電工社製)を準備し、上記流路材を分離膜面に配置して、図5〜6に示すように耐熱性スパイラル型分離膜モジュール(膜面積6.5m2)を製作した。
【0033】
これに5.8%の食塩水を9MPaに昇圧し出口流量5L/min、25℃、pH7で逆浸透膜透過実験を行ったところ、運転後60分後の逆浸透膜性能は阻止率99.75%、透過水量0.72m3/m2/日であった。実験後の逆浸透膜の表面は、透過水流路材への陥没の後はみられず、ダメージもみられなかった。
【0034】
【比較例1】
実施例1で用いた、低融点ポリエステルを鞘に、高融点ポリエステルを芯に持つポリエステルマルチフィラメントを用いたシングルトリコット編み物を、熱処理により剛直化させて透過水流路材(糸径70デニール、ウェール38本/1インチ、コース45本/インチ)を作成した。この流路材には、平織物を積層していない。この流路材を1枚用いて、実施例1の逆浸透膜透過実験を行ったところ、運転後60分後の逆浸透膜性能は阻止率99.52%、透過水量0.51m3/m2/日であった。実験後の逆浸透膜表面は、透過水流路材の溝への陥没の後がみられ、これによる膜のダメージが観察された。
【0035】
実施例1と比較例1は同じ逆浸透膜を用いており、異なるのは透過水流路材のみである。実験後の阻止率が比較例1が低いのは透過水流路材の溝へ逆浸透膜が陥没した際にダメージを受けたことに起因するもので、透過水量が低いのは逆浸透膜が溝へ陥没することで流路を閉塞したため、流路抵抗が増加したためである。
【0036】
【実施例2】
実施例1で作成したダブルトリコット編み物にエポキシ樹脂を含浸した透過水流路材(糸径50デニール、ウェール38本/インチ、コース45本/インチ)の両面に50デニール高融点ポリエステルの平織り(実施例1と同一のもの)を熱可塑性樹脂であるエポキシ樹脂で貼り合わせ3層を接着した透過水流路材の上に逆浸透膜を設置した。実施例1と同様な逆浸透試験を実施したところ、運転後60分後の逆浸透膜性能は阻止率99.73%、透過水量O.74m3/m2/日であった。実験後の逆浸透膜の表面は、透過水流路材への陥没の後はみられず、ダメージもみられなかった。
【0037】
【比較例2】
実施例1で使用したトータル繊度:50デニール、フィラメント数:12本の普通タイプのポリエステルマルチフィラメント糸条を用いてダブルトリコット編み物を形成し、これにエポキシ樹脂を含浸した透過水流路材(糸径50デニール、ウェール38本/インチ、コース45本/インチ)を作成した。この流路材には、平織物を積層していない。この流路材1枚を用いて、実施例1の逆浸透膜透過実験を行ったところ、運転後60分後の逆浸透膜性能は阻止率99.47%、透過水量O.48m3/m2/日であった。実験後の逆浸透膜表面は、透過水流路材の溝への陥没の後がみられ、これによる膜のダメージが観察された。
【0038】
【発明の効果】
本発明により、逆浸透膜の透過水流路材の溝への陥没による流路抵抗の増加と逆浸透膜の変形を抑制し、逆浸透膜性能の維持を可能とした実用的なスパイラル型分離膜型モジュールを提供することが可能となった。
【図面の簡単な説明】
【図1】本発明の実施例1の流路材の断面概念図。
【図2】本発明の実施例2の流路材の断面概念図。
【図3】本発明の実施例1の流路材の上に逆浸透膜を組み込んだ断面概念図。
【図4】本発明の実施例2の流路材の上に逆浸透膜を組み込んだ断面概念図。
【図5】本発明の一実施例のスパイラル型の液体分離膜モジュールの断面図。
【図6】図5のI−I線断面図。
【図7】従来の流路材に用いられているシングルトリコット編地の断面概念図。
【図8】従来の流路材に用いられているダブルトリコット編地の断面概念図。
【図9】従来の流路材に用いられているシングルトリコット編地の上に逆浸透膜を組み込んで長期間運転した後の断面概念図。
【図10】従来の流路材に用いられているダブルトリコット編地の上に逆浸透膜を組み込んで長期間運転した後の断面概念図。
【符号の説明】
1,4 流路材
2,31 シングルトリコット編地
5,32 ダブルトリコット編地
3,6,7 平織物
8,9,33,34 逆浸透膜
11 流体分離素子
12 円筒容器
13 V字形のシール材
14 透過液排出管
15 原液供給管
16 原液排出管
17 小孔
18 封止部
19 逆浸透透膜
20 透過液流路材
21 原液流路材
[0001]
[Technical field to which the invention belongs]
The present invention relates to a liquid separation membrane module used in a reverse osmosis membrane separation device.
[0002]
[Prior art]
The separation membrane is formed in a bag shape, and has a permeated water flow path material inside. The raw water flow path material is superimposed on a three-layer structure whose one end communicates with the water collection pipe, and is wound around the water collection pipe. Spiral separation membrane elements have been proposed.
[0003]
In the above spiral separation membrane element, when the three-layer structure in which the raw water channel material is superimposed on the separation membrane provided with the permeate channel material is wound around the water collecting pipe, both ends of the three-layer structure are bonded to the adhesive. It is glued with.
[0004]
The raw water is passed through the outside of the bag-like separation membrane, and the permeated water that has permeated the inside of the bag-like separation membrane passes through the permeate flow path material and flows into the water collecting pipe where the inside of the separation membrane is communicated. , Extracted outside the membrane element. In general, the permeated water channel material is a single tricot knitted fabric having a groove on one side, reinforced with an epoxy resin, melted and fixed (Japanese Patent Laid-Open No. 60-19001), or a double tricot knitted fabric having a groove on both sides. Those reinforced with resin are mainly used. This permeate flow path material supports the reverse osmosis membrane and plays a role of guiding permeate into the water collecting pipe by the grooves of the permeate flow path material.
[0005]
[Problems to be solved by the invention]
Usually, in order to membrane-separate a solution using a liquid separation membrane module using a reverse osmosis membrane, it is necessary to apply a pressure higher than the osmotic pressure of the target solution. At that time, a differential pressure of about 0.5 to 1 MPa is applied to the supply liquid side and the permeate side. At this time, if the permeate channel material is the single tricot 31 shown in FIG. 7 or the double tricot knitted fabric 32 shown in FIG. 8, the reverse osmosis membrane sinks into the mutually parallel grooves on one side or both sides, and the thin film is blocked. Therefore, there arises a problem that the flow path resistance increases. When the operation is continued for a long time while the reverse osmosis membranes are depressed in the mutually parallel grooves of the permeate flow channel member under high pressure, the reverse osmosis membrane is in contact with the uneven surface of the single tricot 31 as shown in FIG. 33 is deformed, and the cavity through which the permeated water passes is crushed and sufficient performance cannot be obtained. When the double tricot knitted fabric 32 is used, as shown in FIG. 10, the reverse osmosis membranes 33 and 34 are deformed, and the cavities through which the permeated water passes are crushed so that sufficient performance cannot be obtained. It was.
[0006]
The present invention was made to solve the above-described problems of the prior art, and suppresses an increase in flow resistance and deformation of the reverse osmosis membrane due to the depression of the reverse osmosis membrane into the permeate flow channel material, An object is to provide a practical liquid separation membrane module capable of maintaining reverse osmosis membrane performance.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the liquid separation membrane module of the present invention is a liquid separation membrane module in which a flow path material that supports the back side of a reverse osmosis membrane that receives a stock solution is incorporated.
The flow path material is formed by laminating a fabric A having a concavo-convex structure in a cross section and a flat fabric B on the concavo-convex surface of the fabric A,
The fibers constituting the fabrics A and B are core-sheath type composite (conjugate) fibers having a low melting point polymer as a sheath and a high melting point polymer as a core, and the fabrics A and B are fused together by heating. Is stiffened by
The fabrics A and B are integrated by fusion ,
The space formed by the concave portion of the fabric A and the flat fabric B forms a flow channel that does not sink due to the pressure required for reverse osmosis.
[0008]
Two layers are preferable when the fabric B is laminated on one side of the fabric A, or three layers when the fabric B is laminated on both sides of the fabric A.
[0009]
In the liquid separation membrane module, it is preferable that the fabric A is a tricot knitted fabric having an uneven structure, and the fabric B is a woven fabric or a non-woven fabric.
[0010]
In the liquid separation membrane module, it is preferable that the fabric A is a single tricot knitted fabric, and the fabric B laminated on one uneven surface of the knitted fabric is a woven fabric or a non-woven fabric.
[0011]
In the liquid separation membrane module, it is preferable that the fabric A is a double tricot knitted fabric, and the fabric B laminated on the uneven surfaces on both sides of the knitted fabric is a woven fabric or a non-woven fabric.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the fabric A may be any fabric such as a woven fabric, a knitted fabric, a nonwoven fabric, a lace fabric, a net, and a braid as long as the cross section is an uneven structure. Among these, a single tricot knitted fabric, a double tricot knitted fabric and the like are preferable because they are excellent in dimensional stability.
[0015]
Next, the type of fabric B, knitted fabric, nonwoven fabric, etc. is not limited as long as the fabric B is flat. Among these, a woven fabric or a nonwoven fabric is preferable. Examples of the woven fabric include plain weave, oblique woven fabric, and satin weave, and examples of the nonwoven fabric include carded nonwoven fabric, airlaid nonwoven fabric, wet nonwoven fabric (including synthetic fiber paper), spunbond nonwoven fabric, and flash nonwoven fabric. , Melt blown nonwoven fabric, chemical bonding nonwoven fabric, thermal bond nonwoven fabric, needle punch nonwoven fabric, water jet nonwoven fabric, stitch bond nonwoven fabric, and the like.
[0016]
Next, the fabrics A and B are stiffened by fusing the whole with heating . In the present invention, the fibers constituting the fabric A and B, a low-melting polymer is a core-sheath type composite (conjugate) fibers having a high melting point polymer in the core to the sheath, the one in which fused and fixed by heating This is because, in order to produce ultrapure water and the like, it is necessary to suppress the dropping of the adhesive and the distillation of the monomer as much as possible.
[0017]
Typical combinations of the high melting point component and the low melting point component include a high melting point polyester and a low melting point polyester, a high melting point polyamide and a low melting point polyamide, and a high melting point polyolefin and a low melting point polyolefin. A combination of a high-melting polyester and a low-melting polyester is preferable from the viewpoint of rigidity. The low melting point component can generally be easily obtained by using a high molecular weight copolymer, and the melting point difference can be obtained by changing the copolymerization ratio, adding a copolymerization component, changing the copolymerization component, stereoregularity or polymerization. It can be changed by changing the degree. Alternatively, a combination with a different polymer having a different melting point may be used. In the case of polyester, the melting point is generally lowered by 2 ° C. by copolymerization at 1 mol%. The monomer component copolymerized with the polyester is generally an acid component such as isophthalic acid or adipic acid. When polyethylene terephthalate (melting point: about 260 ° C.) is used as the high melting point component, polybutylene terephthalate (melting point: about 225 ° C.) or a copolymer obtained by copolymerizing a predetermined amount of an arbitrary monomer with polybutylene terephthalate is used as the low melting point component. For example, the melting point of polybutylene terephthalate (75 mol%)-isophthalate (25 mol%) copolymer is about 175 ° C.
[0018]
The above-mentioned thermoplastic synthetic fiber comprising a combination of both components is preferably used for at least a part of each of the fabrics A and B, and the low melting point components used for both fabrics preferably have the same melting point. This is because heat fusion can be integrated by a single heat treatment. As means other than fusion, there is sewing.
[0019]
The flow path material used in the present invention can withstand reverse osmosis pressure in the range of 0 to 200 kg / cm 2 , and the flow path channel does not sink even if it is operated for a long time by the pressure in the range. .
[0020]
In the liquid separation membrane module of the present invention, the separation membrane is formed in a bag shape, provided with a permeate flow path material inside, and the separation membrane wound around the water collection pipe so that one end of the inside communicates with the water collection pipe It can be suitably used for a spiral separation membrane element having It is preferable that the permeated water channel material has grooves parallel to each other on the inner side.
[0021]
In the present invention, the grooves parallel to each other of the permeate flow channel material need to exist inside the permeate flow channel material. The inside of the permeated water channel material is the inside of the channel material that does not directly contact the back surface of the reverse osmosis membrane. If there are grooves parallel to each other at the part where the reverse osmosis membrane contacts, the reverse osmosis membrane will sink into this groove by applying pressure during reverse osmosis membrane separation, block the flow path, The road resistance will increase. In addition, when operated under high pressure for a long time, the reverse osmosis membrane is deformed, the reverse osmosis membrane is damaged, and the performance is lowered.
[0022]
The permeate channel material of the reverse osmosis membrane of the present invention is a practical liquid separation membrane module capable of maintaining the reverse osmosis membrane performance by suppressing the increase in channel resistance due to the depression in the groove and the deformation of the reverse osmosis membrane. Can be realized.
[0023]
In addition, in order to realize a permeate channel material having grooves parallel to each other on the inside, a sheet having a tight and dense structure on the groove surface of the permeate channel material of single tricot or double tricot knitting that has been used conventionally. Are preferably combined into a two-layer or three-layer structure.
[0024]
As the two-layer laminated structure, for example, as shown in FIG. 1, a flat cloth (for example, a plain woven fabric) 3 is fused and integrated on an uneven surface of a single tricot knitted fabric 2 to form a flow path material 1. ing. As another example, flow fabric 4 is formed by fusing and integrating flat fabrics (for example, plain woven fabrics) 3 and 7 on the concave and convex surfaces on both sides of a double tricot knitted fabric 5.
[0025]
The reverse osmosis membrane is assembled on the flow path materials 1 and 4 so that the dense membrane surface side faces the flow path material (FIGS. 3 to 4).
[0026]
Next, FIGS. 5 and 6 illustrate a spiral type liquid separation membrane module using the above-described flow path material.
[0027]
Reference numeral 11 denotes a fluid separation element, and reference numeral 12 denotes a cylindrical container that houses the fluid separation element 11. One end of the fluid separation element 11 is sealed in the cylindrical container 12 by a V-shaped sealing material 13, and the permeate discharge pipe 14 at the other end is projected to the outside of the cylindrical container 12. The cylindrical container 12 is provided with a stock solution supply pipe 15 on the open side wall of the V-shaped sealing material 13 and a stock solution discharge pipe 16 on the other side wall.
[0028]
As shown in FIG. 6, the liquid separation element 11 has a permeate discharge pipe 14 composed of a hollow pipe having a small hole 17 at the center, and an envelope-shaped reverse osmosis membrane 19 is wound around the outside in a spiral shape. Yes. The envelope-shaped reverse osmosis membrane 19 has a permeate passage material 20 according to the present invention inserted therein and communicated with the inside of the permeate discharge pipe 14 with its open end facing the small hole 17. Further, a stock solution channel material 21 is interposed between the outer surfaces of the envelope-shaped reverse osmosis membrane 19 wound in a spiral shape. Reference numeral 18 denotes a sealing portion.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0030]
[Example 1]
A high melting point polyester (polyethylene terephthalate: melting point about 260 ° C.) is placed in the core component (70% by weight), and a low melting point polyester (polybutylene terephthalate (75 mol%)-isophthalate (25 mol%) copolymer (melting point about 175 ° C.) was placed in the sheath component (30% by weight), and a filament yarn having a total fineness of 70 denier and 17 filaments was prepared. Using this yarn, a single tricot knitting was knitted (38 wales / inch, 45 courses / inch).
[0031]
Next, a plain weave (warp yarn) having a total fineness of 50 denier, a filament number of 12: the low-melting-point polyester as a sheath and the high-melting-point polyester as a core on the surface (uneven surface) having grooves parallel to each other of the knitted fabric. Density: 102 yarns / inch, weft density: 74 yarns / inch, basis weight 35 g / m 2 ). Next, the whole was stiffened by heat treatment at 185 ° C. for 5 minutes, and the two layers were fused to form a permeate channel material.
[0032]
On the other hand, an aromatic polyamide-based composite membrane (a membrane obtained by interfacial polycondensation of trimesic acid chloride and m-phenylenediamine, manufactured by Nitto Denko Corporation) is prepared, and the above-mentioned flow path material is arranged on the separation membrane surface, and FIG. A heat-resistant spiral separation membrane module (membrane area 6.5 m @ 2) was manufactured as shown in FIGS.
[0033]
When 5.8% saline was pressurized to 9 MPa and a reverse osmosis membrane permeation experiment was conducted at an outlet flow rate of 5 L / min, 25 ° C., and pH 7, the reverse osmosis membrane performance 60 minutes after the operation had a rejection rate of 99. It was 75% and the permeated water amount was 0.72 m 3 / m 2 / day. The surface of the reverse osmosis membrane after the experiment was not observed after the sinking into the permeate channel material, and no damage was observed.
[0034]
[Comparative Example 1]
A single tricot knitted fabric using a polyester multifilament having a low-melting polyester as a sheath and a high-melting polyester as a core used in Example 1 is made rigid by heat treatment to obtain a permeate passage material (yarn diameter 70 denier, wale 38). Book / 1 inch, 45 courses / inch). A plain fabric is not laminated on the channel material. When the reverse osmosis membrane permeation experiment of Example 1 was performed using one sheet of this flow path material, the reverse osmosis membrane performance 60 minutes after the operation was a blocking rate of 99.52% and the permeated water amount was 0.51 m 3 / m. 2 / day. The surface of the reverse osmosis membrane after the experiment was observed after depression in the groove of the permeate channel material, and membrane damage due to this was observed.
[0035]
Example 1 and Comparative Example 1 use the same reverse osmosis membrane, and the only difference is the permeate channel material. The low blocking rate after the experiment in Comparative Example 1 is due to the fact that the reverse osmosis membrane is damaged when the reverse osmosis membrane sinks into the groove of the permeate flow channel material. This is because the flow path resistance is increased because the flow path is blocked by the depression.
[0036]
[Example 2]
Plain weave of 50 denier high melting point polyester on both sides of a permeate flow path material (yarn diameter 50 denier, 38 wales / inch, 45 courses / inch) with double tricot knitting made in Example 1 impregnated with epoxy resin (Example) The reverse osmosis membrane was installed on the permeate flow path material in which three layers were bonded together with an epoxy resin which is a thermoplastic resin and the three layers were adhered. When a reverse osmosis test similar to that of Example 1 was performed, the reverse osmosis membrane performance 60 minutes after the operation was 99.73% with a rejection rate of O.O. It was 74 m 3 / m 2 / day. The surface of the reverse osmosis membrane after the experiment was not observed after the sinking into the permeate channel material, and no damage was observed.
[0037]
[Comparative Example 2]
Permeated water channel material (yarn diameter) in which a double tricot knitted fabric was formed using a polyester multifilament yarn of normal type having a total fineness of 50 denier and 12 filaments used in Example 1, and impregnated with an epoxy resin. 50 denier, 38 wales / inch, 45 courses / inch). A plain fabric is not laminated on the channel material. Using this single channel material, the reverse osmosis membrane permeation experiment of Example 1 was performed. As a result, the reverse osmosis membrane performance 60 minutes after the operation was found to have a rejection rate of 99.47% and a permeated water amount of O.D. It was 48 m 3 / m 2 / day. The surface of the reverse osmosis membrane after the experiment was observed after depression in the groove of the permeate channel material, and membrane damage due to this was observed.
[0038]
【The invention's effect】
According to the present invention, a practical spiral-type separation membrane capable of maintaining reverse osmosis membrane performance by suppressing increase in channel resistance and deformation of the reverse osmosis membrane due to the depression of the reverse osmosis membrane into the groove of the permeate channel material Mold modules can be provided.
[Brief description of the drawings]
FIG. 1 is a conceptual cross-sectional view of a flow path material according to Embodiment 1 of the present invention.
FIG. 2 is a conceptual cross-sectional view of a flow path material of Example 2 of the present invention.
FIG. 3 is a conceptual cross-sectional view in which a reverse osmosis membrane is incorporated on the channel material of Example 1 of the present invention.
FIG. 4 is a conceptual cross-sectional view in which a reverse osmosis membrane is incorporated on a flow path material of Example 2 of the present invention.
FIG. 5 is a cross-sectional view of a spiral type liquid separation membrane module according to an embodiment of the present invention.
6 is a cross-sectional view taken along the line II of FIG.
FIG. 7 is a conceptual cross-sectional view of a single tricot knitted fabric used in a conventional channel material.
FIG. 8 is a conceptual cross-sectional view of a double tricot knitted fabric used in a conventional channel material.
FIG. 9 is a conceptual cross-sectional view after operating for a long time with a reverse osmosis membrane incorporated on a single tricot knitted fabric used in a conventional channel material.
FIG. 10 is a conceptual cross-sectional view after a reverse osmosis membrane is incorporated on a double tricot knitted fabric used for a conventional channel material and operated for a long period of time.
[Explanation of symbols]
1, 4 Channel material 2, 31 Single tricot knitted fabric 5, 32 Double tricot knitted fabric 3, 6, 7 Plain fabric 8, 9, 33, 34 Reverse osmosis membrane 11 Fluid separation element 12 Cylindrical container 13 V-shaped sealing material 14 Permeate discharge pipe 15 Stock solution supply pipe 16 Stock solution discharge pipe 17 Small hole 18 Sealing portion 19 Reverse osmosis membrane 20 Permeate channel material 21 Stock solution channel material

Claims (5)

原液を受圧する逆浸透膜の裏面側を支持する流路材が組み込まれた液体分離膜モジュールにおいて、
前記流路材は、断面が凹凸構造の布帛Aと、前記布帛Aの凹凸面に平坦な布帛Bが積層され、
布帛A及びBを構成する繊維が、低融点ポリマーを鞘に、高融点ポリマーを芯に持つ芯鞘型複合(コンジュゲート)繊維であり、前記布帛 A および B は全体が加熱により融着されることにより剛直化され、
前記布帛AとBは、融着により一体化されており、
前記布帛Aの凹部と平坦な布帛Bにより形成された空間が、逆浸透に必要な圧力によって陥没しない流路チャンネルを形成していることを特徴とする液体分離膜モジュール。
In the liquid separation membrane module in which the flow path material supporting the back side of the reverse osmosis membrane that receives the stock solution is incorporated,
The flow path material is formed by laminating a fabric A having a concavo-convex structure in a cross section and a flat fabric B on the concavo-convex surface of the fabric A,
The fibers constituting the fabrics A and B are core-sheath composite fibers having a low melting point polymer as a sheath and a high melting point polymer as a core, and the fabrics A and B are fused together by heating. Is stiffened by
The fabrics A and B are integrated by fusion ,
A liquid separation membrane module, wherein a space formed by the concave portion of the fabric A and the flat fabric B forms a flow channel that does not sink due to a pressure required for reverse osmosis.
前記布帛Aの片面に前記布帛Bを積層した場合は2層、または前記布帛Aの両面に前記布帛Bを積層した場合は3層である請求項1に記載の液体分離膜モジュール。  2. The liquid separation membrane module according to claim 1, wherein when the fabric B is laminated on one side of the fabric A, there are two layers, or when the fabric B is laminated on both sides of the fabric A, there are three layers. 布帛Aが凹凸構造を有するトリコット編地であり、布帛Bが織物または不織布である請求項1または2に記載の液体分離膜モジュール。  The liquid separation membrane module according to claim 1 or 2, wherein the fabric A is a tricot knitted fabric having an uneven structure, and the fabric B is a woven fabric or a nonwoven fabric. 布帛Aがシングルトリコット編地であり、前記編地の片面の凹凸面に積層する布帛Bが織物または不織布である請求項1〜3のいずれかに記載の液体分離膜モジュール。  The liquid separation membrane module according to any one of claims 1 to 3, wherein the fabric A is a single tricot knitted fabric, and the fabric B laminated on the one-sided uneven surface of the knitted fabric is a woven fabric or a nonwoven fabric. 布帛Aがダブルトリコット編地であり、前記編地の両面の凹凸面に積層する布帛Bが織物または不織布である請求項1〜3のいずれかに記載の液体分離膜モジュール。  The liquid separation membrane module according to any one of claims 1 to 3, wherein the fabric A is a double tricot knitted fabric, and the fabric B laminated on the uneven surfaces on both sides of the knitted fabric is a woven fabric or a nonwoven fabric.
JP16102199A 1999-06-08 1999-06-08 Liquid separation membrane module Expired - Fee Related JP3956262B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP16102199A JP3956262B2 (en) 1999-06-08 1999-06-08 Liquid separation membrane module
DE69927674T DE69927674D1 (en) 1999-06-08 1999-12-28 Membrane module for separation of liquids and process for its preparation
ES99126091T ES2249867T3 (en) 1999-06-08 1999-12-28 MEMBRANE MODULE FOR THE SEPARATION OF LIQUIDS AND METHOD TO MANUFACTURE THE SAME.
EP99126091A EP1059114B1 (en) 1999-06-08 1999-12-28 Liquid separation membrane module and method of producing the same
AT99126091T ATE306312T1 (en) 1999-06-08 1999-12-28 MEMBRANE MODULE FOR SEPARATING LIQUIDS AND METHOD FOR PRODUCING IT
US09/484,338 US6454942B1 (en) 1999-06-08 2000-01-18 Liquid separation membrane module
CNB001089838A CN1136950C (en) 1999-06-08 2000-05-25 Liquid separating membrane module and its mfg. method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16102199A JP3956262B2 (en) 1999-06-08 1999-06-08 Liquid separation membrane module

Publications (2)

Publication Number Publication Date
JP2000342941A JP2000342941A (en) 2000-12-12
JP3956262B2 true JP3956262B2 (en) 2007-08-08

Family

ID=15727091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16102199A Expired - Fee Related JP3956262B2 (en) 1999-06-08 1999-06-08 Liquid separation membrane module

Country Status (1)

Country Link
JP (1) JP3956262B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342653A (en) * 2004-06-04 2005-12-15 Kurita Water Ind Ltd Membrane separation device
US7959780B2 (en) * 2004-07-26 2011-06-14 Emporia Capital Funding Llc Textured ion exchange membranes
SE530221C2 (en) * 2005-02-28 2008-04-01 Alfa Laval Corp Ab Spiral wound membrane module with spacer element for permeate
KR100704383B1 (en) 2005-11-08 2007-04-06 주식회사 새 한 Tricot permeate channel for reverse osmosis membrane filter
JP5186921B2 (en) 2006-03-31 2013-04-24 東レ株式会社 Liquid separation element, flow path material, and manufacturing method thereof
JP2012061419A (en) * 2010-09-16 2012-03-29 Hitachi Ltd Water separation membrane module
KR101830250B1 (en) * 2011-07-07 2018-02-20 도레이 카부시키가이샤 Separation membrane, separation membrane element, and method for producing separation membrane
KR20140082651A (en) * 2011-09-29 2014-07-02 도레이 카부시키가이샤 Separation membrane, separation membrane element, and production method for separation membrane
JP2015085233A (en) * 2013-10-29 2015-05-07 日東電工株式会社 Channel member and forward osmosis membrane element
JP6575154B2 (en) * 2015-06-09 2019-09-18 東レ株式会社 Tricot channel material
CN106914140A (en) 2015-12-24 2017-07-04 通用电气公司 Prepare the method and corresponding filter element of filter element
JP6347775B2 (en) * 2015-12-28 2018-06-27 日東電工株式会社 Spiral membrane element
US20180361318A1 (en) * 2016-01-29 2018-12-20 Toray Industries, Inc. Channel material

Also Published As

Publication number Publication date
JP2000342941A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
JP3956262B2 (en) Liquid separation membrane module
EP1059114B1 (en) Liquid separation membrane module and method of producing the same
KR101645483B1 (en) Filter compound material, method for the production thereof and flat filter elements made of the filter compound material
JP4488431B2 (en) Spiral type separation membrane element
JP3559475B2 (en) Liquid separation membrane module
US6511600B1 (en) Microfilter cartridge
KR102313168B1 (en) Spanbond nonwoven fabric and manufacturing method thereof
KR20190010213A (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
JP6575154B2 (en) Tricot channel material
US11478734B2 (en) Filter medium, method for manufacturing same, and filter unit comprising same
JP2010131483A (en) Liquid separating channel forming material, and method for manufacturing the same
US11207644B2 (en) Filter medium with improved backwashing durability, method for manufacturing same, and filter unit comprising same
JP6844533B2 (en) Channel material
US20110120931A1 (en) Filter Module and System Having Spirally Wound Membrane Filters, and Method for the Production Thereof
KR20050114658A (en) Nonwoven base fabric for reinforcing
JPH0366008B2 (en)
JPS6136964B2 (en)
EP0862491A1 (en) A filter member
JP7358914B2 (en) Channel material
JP2002095935A (en) Spiral separation membrane element
JP6284228B2 (en) Three-layer nonwoven fabric with raised pattern and method for producing the same
JP2018094549A (en) Permeation liquid channel material for spiral type separation element
JPH0952307A (en) Reinforced spun bond non-woven cloth
JP7158270B2 (en) Membrane separation equipment
JP3799262B2 (en) Multilayer filter medium, filter element using the same, and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040830

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070426

R150 Certificate of patent or registration of utility model

Ref document number: 3956262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160518

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees